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Access to electricity is a key enabler of social and economic development. However, 1.2 billion people still do not
benefit from reliable electricity services. Microgrids have been proposed as a cost-effective means to accelerate ac-
cess for communities located far from existing grid infrastructure. Scarcity of capital has been a barrier to both on-
grid and off-grid electrification efforts and governments have sought private sector participation in an effort to close
this gap. There is a lack of quantitative analysis to critically evaluate the key drivers of risk in microgrid utilities, or
how different business models and technologies affect the potential for these projects to attract finance and scale
up deployment. This paper introduces the Stochastic Techno-Economic Microgrid Model (STEMM), which enables
assessment of the effect of technical design decisions as well as financial conditions on the financial viability of
microgrid projects from an investment perspective. Using STEMM, this paper presents a risk analysis of the key un-
certain variables affecting microgrid investments to both debt and equity investors using four technology scenarios
as case studies in Rwanda. We find that major contributors to risk are fuel price volatility, uncertain electricity de-
mand, and foreign exchange risk for investments in hard currency. Choice of technology strongly influences the
risk profile of microgrids, with solar powered microgrids susceptible to demand uncertainty and diesel-based sys-
tems exposed to fuel price volatility. Hybrid solutions provide a middle ground with partial mitigation of both
fuel price and demand risk. If electricity tariffs are linked to changes in fuel price, fuel price risk can be effectively
passed to consumers.

© 2017 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Introduction

It is widely accepted that electrical energy is an enabler and driver of
economic growth anddevelopment (International EnergyAgency, 2011).
Despite this, more than 1.2 billion people in the world today still lack ac-
cess to reliable electricity services (International Energy Agency, 2015).
The regions most affected are also the least urbanized in the world
(United Nations, Department of Economic and Social Affairs, Population
Division, 2014) and the cost of reaching rural populations with a central-
ized grid is high (Parshall et al., 2009).With the decreasing cost of distrib-
uted generation technologies such as photovoltaics (PV) and wind,
decentralized systems are now, in many cases, a lower cost solution to
rural electricity service provision than extension of the electricity grid
(Szabó et al., 2011; Blum et al., 2013). One such decentralized solution
is microgrids, community-scale electricity networks with local, often re-
newable, power generation. However, a barrier for both centralized and
decentralized electrification programs has been a scarcity of capital
from public sources and the donor community. As a result, the pace of
ed by Elsevier Inc. All rights reserved
progress towards meeting ambitious energy access goals has been slow.
Governments have looked to the private sector for investment, but high
perceived risk has been a deterrent to investors' participation in improv-
ing energy access via microgrids (Williams et al., 2015). While a range of
organizations – including development aid agencies (African Develop-
ment Bank; Deutsche Gesellschaft für Internationale Zusammenarbeit),
private foundations (Rockefeller Foundation), private capital facilities
(Microgrid Investment Accelerator (MIA)), and private enterprises
(Odyssey Energy Solutions) – are investing large sums in developing
microgrid business models and best practices, investor risk remains
largely unquantified.

The need for increased investment and high perceived investment
risk has been noted in the literature. Gujba et al. (2012) surveyed poten-
tial sources of finance to fund energy access using low carbon technolo-
gies in Africa. Risks identified include poor investment climate and
uncertain fiscal policy, political risk and fuel price volatility for biomass.
Schmidt et al. (2013) identified four board categories of risk facing in-
vestors in energy access in Indonesia: energy market risk, institutional/
licensing risk, technology risk and financial risk. Using a survey based
approach, Wagemann and Manetsgruber (2016) identified political
risk, payment risk and energy resource price variability as major drivers
.
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Fig. 1. General microgrid technical configuration in STEMM.
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of operational risk for rural microgrids. Hazelton et al. (2015) breaks
project risk down into performance, commercial and pragmatic risks.
While a number of authors have qualitatively assessed risks faced by in-
vestors inmicrogrid projects, there has been littlework to quantify these
risks and assess their relative importance.

We seek to address this critical gap; in this paper, we develop the Sto-
chastic Techno-Economic Microgrid Model (STEMM) to quantitatively
compare the drivers of risk in microgrid utilities. With particular consid-
eration of the uncertainty inherent in many critical microgrid inputs,
STEMM enables examination of how different business models and tech-
nologies affect the potential for these projects to attract finance and scale
up deployment. The primary contributions of this paper are threefold:

• Description of the Stochastic Techno-Economic Microgrid Model
(STEMM), which enables assessment of the effect of technical design
decisions as well as financial conditions on the financial viability of a
project from an investment perspective.

• Identification of key drivers of risk in microgrid investments and their
relative weight.

• Quantitative comparison of the effects of businessmodel and technol-
ogy decisions on risk to both debt and equity investors. In particular,
we consider a range of scenarios including different electricity supply
technologies and tariffs independent of and linked to diesel prices.

Methods

STEMMmodels microgrid utilities as ring-fenced corporate entities.
The model consists of two primary components: a technical model and
a financial model. These models are linked to simulate connections be-
tween technical design and performance and financial outcomes.
STEMM is designed from an investor's perspective; therefore, primary
model outputs are financial indicatorsmeant to shed light on the attrac-
tiveness of the microgrid as an investment opportunity to equity inves-
tors and lenders. The core strength of STEMM is its ability to compute
these metrics probabilistically so as to account for risk and uncertainty.
Debt Service Coverage Ratio (DSCR) measures the “bankability” of the
project. Lenders use theDSCR to determinewhether or not the expected
project cash flows will be sufficient to repay a loan on schedule. The
DSCR is the ratio of cash available to repay debt to the debt payment
owed in a period. A DSCR of less than one indicates that the project
cannot pay its debt from internally generated revenues. Similarly, the
net present value (NPV) of projected equity cash flowsmeasures the at-
tractiveness of the project to equity investors. The equity NPV is the net
present value of equity cash flows discounted by a target return on
equity. An equity NPV greater than or equal to zero means that the pro-
ject meets or exceeds the target return or cost of equity.

The model is implemented in Analytica (Lumina Decision Systems,
2015), aflexiblemodeling tool inwhich any input can bemodeled as un-
certain (as a distribution) or deterministic (as a point value). This pro-
vides the user flexibility in determining which uncertainties to model
explicitly as distributions or parametrically. STEMM explicitly models a
few inputs, including fuel price, exchange rates, electricity demand,
and solar resource as uncertain. The model propagates uncertainties
using Monte Carlo simulation. In this paper, we use a 10-year model ho-
rizon, based on the assumption of a 10-year debt tenor and that equity
investors will take a relatively short view, given long-term risks that
are more difficult to quantify such as grid encroachment. While the life-
time of themicrogrid itself will exceed this period, it is unlikely investors
will take such a long-term view when evaluating these projects.

Technical model

The technicalmodule in STEMMsimulatesmicrogrid performance at
an hourly resolution over the model horizon. It is currently capable of
modeling multiple AC loads, a solar photovoltaic generator, multiple
diesel generators, and battery-based energy storage. Fig. 1 depicts the
general system configuration of STEMM. Key outputs of the technical
model that feed into the financial model include satisfied and unsatis-
fied customer demand, fuel consumption, and microgrid component
runtimes.

STEMM allows the use of multiple diesel generators while aggregat-
ing all photovoltaic generation into a single array. STEMM operates
under the assumption that diesel generators are available to supply
power at any time step at load factors between a user specified mini-
mum and 100%. The case studies in this paper assume a typical mini-
mum load factor of 30%. The diesel generator's fuel consumption is
linearly related to electrical output with a non-zero, no-load fuel
consumption of the form

Ftot ¼ Fmarg ∙Pgen þ Fnl

where Ftot is the total fuel consumption at each time step, Fmarg is the
marginal fuel consumption per kW of generator output at each time
step (Pgen), and Fnl is the no-load fuel consumption at each time step.

The PV generator module in STEMM relies on equations that esti-
mate PVmodule fill factor, and therefore assumes the PV array operates
at maximum power point (MMP). The outputs of the model include
hourly AC and DC maximum PV power availability, which feed into
the dispatch model to determine the schedule for meeting demand
and charging the batteries. Uncertainty in the PVmodel results fromun-
certainty in meteorological data as well as uncertain loss and module
degradation inputs. The case studies in this paper use hourly solar re-
source data from the HelioClim-3 database and include temperature
corrections and uncertainty, as described in the Supplementary Infor-
mation (SI). In addition, STEMM includes a storagemodel that simulates
the performance of a lead-acid battery bank using a version of the kinet-
ic battery model (KiBaM) (Manwell and McGowan, 1993) and a capac-
ity fade model to estimate battery lifetime and capacity degradation
(Hittinger et al., 2015), also described in more detail in the SI.

Demand on themicrogrid can bemodeled as a single load or asmul-
tiple loads that can be controlled independently. This allows the STEMM
user to prioritize certain loads over others in the case of a shortfall in
supply, and/or to implement different tariff structures for each load. Ex-
pected load profiles are user-defined on an hourly basis for each month
of the year. Because electricity demand is usually a key uncertainty for
microgrids, STEMM accounts for uncertainty in the load profiles, as de-
scribed in more detail in the SI. In addition, STEMM can model tariffs
changing in real terms over time (for example, if tariffs move with the
price of diesel fuel), in which case the model relies on a constant price
elasticity of demand to adjust customer demand. Finally, STEMM has
the ability to account for demand growth over time as an annual growth
rate. Demand growth in newly electrified communities is poorly studied
and inputs are difficult to estimate. Furthermore, accurate modeling of
demand growth should include decisions to expand generating capacity
on the grid over time. In the future, such functionality will be added
to STEMM. This paper, however, only includes case studies in which
there is a single aggregate load without prioritization between
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Fig. 3. Comparison of load shedding algorithms. In the shed by load scenario, any load that
cannot be met completely is shed; while in the shed by customer scenario, partially loads
can be supplied. The lighter colors in the figure represent loads shed.
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customers and without demand growth. The paper also includes cases
with tariffs both fixed in real terms and linked to fuel prices.

The core of the technical module in STEMM is the dispatch model,
which determines how generation and storage resources operate to
meet demand and charge the battery bank. In the case of a shortfall
in generation capacity, it also determines which loads to serve and
which loads to shed. The manner in which load-shedding occurs
depends on the technology deployed in the grid. Fig. 2 provides an over-
view of the data flows between other technical models and the dispatch
model. The details of the dispatch algorithm are available in the SI. It is
alsoworth noting that STEMMmodels the distribution systemas having
technical and non-technical losses equal to a percentage of the total en-
ergy delivered on the system. Strictly speaking, non-technical losses are
not losses due to the distribution system, as they represent electricity
theft and uncollected revenue; however, both losses represent load
that does not generate revenue.

The dispatch algorithm in STEMM currently provides two load-
shedding algorithm options for cases when supply is not sufficient to
satisfy demand. The algorithms depend on the level of control the grid
operator can exert on demand. In the simplest case, the operator is
only able to shed entire circuits on the grid, represented in the model
as loads. Deployment of smart meters can enable microgrid operators
to control demand on a finer scale. In the case where operators are
able to disconnect individual customers, the system is able to serve par-
tial loads. Fig. 3 illustrates the load-shed algorithms available in STEMM.
For this paper we use the shed by load algorithm with a single load.

Financial model

The primary outputs of the technical model that feed into the finan-
cial model are revenue generating demand, fuel consumption, genera-
tor runtimes, battery capacity fade, and, in cases where a penalty is
applied to unmet demand, the amount of load shed due to insufficient
generating capacity. The STEMM financial model simulates cash flows
over the model horizon, on a monthly resolution, using these technical
model outputs and financial inputs. Because most of the financial pa-
rameters (described in detail in the SI) are decision variables, STEMM
currently treats most of these input parameters (with the exception of
fuel costs, price indices and exchange rates) as deterministic values. It
is, however, possible to model these probabilistically if desired.

Cash flows in STEMM include capital costs, operating costs, reve-
nues, income tax, and debt payments. Microgrid assets can have differ-
ent lifetimes. To account for this, STEMMmodels not only initial capital
costs but also calculates timings for replacement of capital assets
through the relevant time horizon (in this case, 10 years). The SI in-
cludes a detailed description of themethods used to account for such re-
placement costs.We also note that themodel currently assumes there is
no salvage value to the assets. There are two reasons for this assump-
tion: 1. The period used for the financial analysis from the investor's
point of view (in this case, 10 years) is shorter than the life of the
microgrid; 2. Salvage values for these assets are likely to be negligible
compared to the cost of accessing and transporting equipment from
typically remote sites. Operating costs, also described in more detail in
the SI, include fixed operating costs, fuel costs, PV operation and
Fig. 2. Technical model influence diagram.
maintenance (O&M), battery O&M, diesel generator O&M, and unmet
demand penalties.With the exception of fuel costs, the current assump-
tion is that costs are fixed in real terms. As manymicrogrid projects are
financed in hard currency such as dollars and euros, the model allows
for the use of two currencies, one local and one foreign. Consumer
price indices and foreign exchange rates are simulated using a version
of the Wilkie Investment Model (Wilkie, 1993). Because fuel price un-
certainty is a key driver of risk in microgrids with significant amounts
of fossil fuel-based generation, STEMMmodels real fuel price uncertain-
ty using a geometric Brownian motion (GBM) model, described in the
SI. In this paper, we rely on fuel price volatility from a long term study
of US oil prices (Pindyck, 1999). Globally, petroleumproducts are traded
in US dollars so the fuel price is modeled in US dollars and converted to
local currency at the prevailing exchange rate at each time step.

STEMM accounts for three different types of revenue: energy
consumption-based tariffs, fixed monthly service charges, and connec-
tion fees. The case studies in this paper use only consumption-based
tariffs.Whilemanymicrogrid entrepreneurs are experimentingwith al-
ternative revenue models, there is not sufficient knowledge about con-
sumer behavior in these situations to model these scenarios. STEMM
also accounts for corporate income taxes payable on microgrid profits,
as described in the SI. Finally, the financing model assumes that
microgrid capital costs are financed with a combination of debt and eq-
uity. Key inputs include the percentage of capital financed by debt, the
cost of debt and equity, and the debt tenor. These parameters are
fixed for all capital expenses. Loan repayments are calculated based
on a constant monthly payment method. The cost of debt and equity
can be specified as either real or nominal. Nominal rates are fixed
whereas real rates move with the rate of inflation modeled with the
Wilkie Investment Model.

Risk assessment methods and case study inputs

The risk assessment presented in this paper relies on two different
sensitivity analysis methods to analyze the relative importance of key
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Fig. 4. Average load profile for a typical load center from REG electricity master plan.

Table 2
Uncertain inputs considered in sensitivity analysis.

Input Distribution Parameters

Mean daily demand (kWh) Normal Mean: REG profile
Rel. std. dev.: 10%

Fuel price (USD/liter) Geometric Brownian motion Drift: 0%
Volatility: 20%

Annual PV degradation Triangular Min: 0.2%
Mode: 0.5%
Max: 0.8%

DC PV losses Beta α: 12.8
β: 96.7

Generator life Triangular Min: 20,000 h
Mode: 25,000 h
Max: 30,000 h

Battery capacity fade rate Triangular Min: 0.017%/cycle
Mode: 0.023%/cycle
Max: 0.029%/cycle

Solar resource bias Normal Mean: 0.6%
Rel. std. dev.: 2.6%

Price elasticity of demand Triangular Min: −0.35
Mode: −0.25
Max: −0.15

Non-technical losses Triangular Min: 0%
Mode: 2%
Max: 4%

Exchange rate 1st order autoregressivea XA: 0.89
XV: 0.00038

a See Supplemental information for further details.
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uncertain inputs. In the first sensitivity analysis, we hold all variables
but one at their expected value; we then set the uncertain variable
being tested to their 5th and 95th percentile values based on estimated
probability distributions and repeat this process for each uncertain var-
iable of interest. We refer to this as a deterministic sensitivity analysis.
The result is a tornado chart describing the sensitivity of model outputs
(equity NPV and minimum DSCR) to each uncertain input. The second
method involves running aMonte Carlo simulation while holding a sin-
gle variable at its expected value for each uncertain input. This provides
an estimation of howmuch the uncertainty of outputs could be reduced
by eliminating the uncertainty of an individual variable. We refer to this
as a probabilistic sensitivity analysis.

For the sensitivity analyses in this paper, we rely on a case study in
rural Rwanda. The loadprofile used came fromplanning documentation
from the Rwandan electric utility, the Rwanda Energy Group (REG), and
represents a typical rural load center of 500 households described in
Fig. 4. Empirical data of load profiles for newly electrified rural cus-
tomers are sparse and were not available for this study. Such data
could be used in STEMM when available. While not ideal, the load
data we used has been used for system planning in Rwanda and is
thus representative for the kind of a priori data that are available to de-
velopers when performing feasibility studies. Finally, we included a
price elasticity of demand, as described in the SI, to account for the
price effects on demand for electricity.

To model the supply-side of the system, we built four generation
scenarios (described in Table 1). Such scenarios allow us to compare fi-
nancial outcome sensitivity to different technologies. The SI provides a
detailed description of the process we used to determine the generator
sizings of each scenario. We also determined an initial tariff for each
generation scenario such that equity NPV is approximately zero when
the model is run deterministically.

In addition to the generation technology scenarios, we also evaluate
cases with tariffs fixed in real terms and tariffs that are linked to diesel
prices. In the fixed tariffs case, we include an annual escalation factor,
equal to inflation, to the initial tariffs in Table 1. In the linked tariffs
case, only a portion of the tariff is escalated in addition to inflation.
This additional escalation rate is the same rate that real fuel prices
have increased/decreased in the preceding year. The portion of the tariff
that scales up/downwith fuel prices is equal to the average contribution
of diesel to the overall generation mix on the microgrid when running
STEMM in deterministic mode. Whether or not tariffs are fixed in prac-
tice depends on the local regulatory environment. On the grid, many
countries have fixed national tariffs. Kenya includes a fuel surcharge in
Table 1
Summary of generation technology scenarios.

Scenario Diesel Hybrid
(small PV)

Hybrid
(large PV)

Solar/battery

Diesel Gen 1 (kW) 50 50 50
Diesel Gen 2 (kW) 25 25 25
Diesel Gen 3 (kW) 25 25 25
PV array (kWp) 50 100 200
Inverter (kW) 50 50 75
Battery strings 1 4 22
Tariff (RWF/kWh) 1137 1137 1219 1665
Diesel weight 1 0.69 0.46 0
Initial capex (k$) 432.1 607.9 790.4 1297

1 USD is approx. 800 RWF.
their tariffs that link electricity prices to the cost of fuel. Table 2 summa-
rizes the uncertain inputs considered in the sensitivity analysis. The SI
provides a more detailed list of inputs. Finally, Table 3 summarizes the
finance structure assumptions.

Results

Figs. 5 and 6 present the results of the deterministic sensitivity anal-
ysis. Fig. 5 presents the case with tariffs fixed in real terms while Fig. 6
presents results with tariffs linked to diesel prices. The red bars repre-
sent the change of the equity NPV and minimum DSCR (the minimum
DSCR for a month over the model horizon) from their baseline value
with the corresponding variable set to its 5th percentile value based
on the distributions in Table 2. The orange bars represent the 95th per-
centile value. All other variables are fixed at their median values with
the exception of the load profile time series, which we allowed to vary
randomly around themedian load profile. The baseline value is the indi-
cator value with all variables fixed to their median values with the
aforementioned exception.

Figs. 5 and 6 show that, in all scenarios, both the equity NPV and
minimum DSCR are highly sensitive to mean daily electricity consump-
tion, price elasticity, and the exchange rate. In the scenarios incorporat-
ing diesel generation with fixed tariffs, the fuel price is also highly
influential. As expected, this sensitivity to diesel prices decreases with
increasing solar penetration as fuel consumption decreases. Linking tar-
iffs to fuel prices reduces the sensitivity of financial performance to fuel
price. In cases where tariffs depend on diesel prices, we can see that
both increases and decreases in diesel prices negatively affect NPV and
DSCR. This is due to lower tariffs that are collected when fuel prices
are low. Furthermore, lower tariffs result in higher demand, which
Table 3
Financing assumptions.

Input Value

Leverage (% of capital financed by debt) 50%
Debt tenor 10 years
Cost of debt (real) 10%
Cost of equity (real) 15%

Image of Fig. 4


Fig. 5. Deterministic sensitivity analysis results with fixed tariffs.
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may also lead to more load shedding and lost revenues. On the other
hand, higher fuel prices still have a larger negative effect because,
while price increases compensate for higher fuel prices, the higher tar-
iffs reduce demand for electricity. DSCR is particularly sensitive when
solar penetration is low. When tariffs are linked to fuel prices, solar
plays a less significant role as a risk-mitigant for equity (because tariff
increases are proportional to the contribution of diesel to the overall en-
ergy mix) but is still important to lenders. Whether or not microgrid
utilities can freely adjust their tariffs with fuel prices is amatter of policy
and regulation.

Image of Fig. 5


Fig. 6. Deterministic sensitivity analysis results with tariffs linked to diesel price.
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Price elasticity andmean daily consumption are both variables relat-
ed to the amount of electricity sold on the microgrid. As previously de-
scribed, the change in indicators due to variation in price elasticity
results from uncertainty in how demand estimated at a certain tariff
level, in this case grid tariffs, changeswith increased or decreased tariffs.
In this case study, because the cost of electricity on the microgrid is
higher than the regulated grid tariff, consumption would be lower
than itwould be on the grid. The importance of these variables increases
with solar penetration and the solar/battery scenario is the most sensi-
tive to the assumption about the elasticity. This is due to the high capital

Image of Fig. 6


Fig. 7. Probabilistic sensitivity analysis results with fixed tariffs.
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costs of solar panels and batteries, whichmay remain unused if demand
falls short of expectations.

The fourth dominant variable is the exchange rate between local
currency and the hard currency in which capital investments are
made. Here, the effect of moving from low capex (capital expense)/
high opex (operating expense) diesel to high capex/low opex solar is
different for the fixed and diesel-linked tariff scenarios. In the fixed tar-
iffs scenario, sensitivity of NPV to exchange rates is relatively constant
moving from the diesel to solar scenario, while DSCR sensitivity de-
creases. The trend is reversed in the linked tariffs cases. The DSCR

Image of Fig. 7


94 N.J. Williams et al. / Energy for Sustainable Development 42 (2018) 87–96
sensitivity does not change significantly with increasing solar penetra-
tion but NPV sensitivity increases. Exchange rates also affect fuel prices
because fuel prices are set globally in US dollars. When tariffs are fixed,
equity bears the foreign exchange risk not just for repayment of debt
denominated in foreign currency, but also for local fuel prices that are
Fig. 8. Probabilistic sensitivity analysis res
affected by exchange rates. When tariffs are linked to fuel prices, a por-
tion of foreign exchange risk is passed on to consumers. In this case, the
foreign exchange risk is due primarily to repayment of foreign currency
denominated debt, which affects capital intensive solar microgrids
more strongly. Lenders face greater riskwith fixed tariffs because higher
ults with tariffs linked to diesel price.

Image of Fig. 8
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fuel prices reduce cashflows available for debt service, thereby reducing
the DSCR. With fuel price-linked tariffs, higher fuel prices are partially
offset by increased electricity tariffs.

Other variables are of relatively minor importance. Non-technical
losses are most important in scenarios reliant on diesel because non-
revenue generating consumption incurs a fuel cost. Technical factors af-
fecting the performance of the solar array such as PV losses, PV array
degradation, and solar resource are relatively more important in solar
based hybrid scenarios but less important for the solar/battery scenario.
This is because in the solar/battery scenario, components are oversized
to ensure the high reliability that diesel generators supply in the hybrid
cases. Only in extreme cases do these losses result in capacity shortfall.
Battery capacity fade is strongest in the large solar hybrid scenario. The
battery bank in the small solar hybrid scenario is relatively small and
therefore does not represent as large of a capital expenditure as in the
large solar hybrid scenario with a larger battery bank. In the solar/
battery case, the battery bank is so large that the number of equivalent
full cycles completed is relatively small and therefore results in less ca-
pacity fade and less frequent replacements.

Figs. 7 and 8 present the results of the probabilistic sensitivity anal-
ysis. The upper panel provides results for simulations using tariffs fixed
in real terms and the lower panel gives results for tariffs linked to diesel
prices with equity NPV on the left and min. DSCR on the right. The
boxplots show the interquartile range of the indicators in the orange
box. The whiskers show the maximum and minimum values obtained
in the simulations. The median value is the dividing line between the
light and dark orange blocks within the box. A smaller distribution of
outcomes, as described by the boxplots, indicates higher sensitivity of
uncertainty to the corresponding variable. The dashed line in the
DSCR plot indicates a ratio of one.

The equity NPV probabilistic sensitivity results in Figs. 7 and 8 high-
light the same important variables as the deterministic sensitivity anal-
ysis: fuel price, exchange rates, mean daily electricity consumption, and
price elasticity. With fixed prices, fixing the fuel price significantly re-
duces downside risk with limited effect on the upside for diesel heavy
scenarios.When tariffs are linked to fuel prices, fuel price is not a strong
contributor to equity risk and in diesel heavy scenarios seems to even
slightly increase the upside.

In both tariff escalation scenarios, fixing exchange rates reduces up-
side potential more than it mitigates downside risk. The effect is stron-
ger with larger solar penetration because of the greater capital cost
incurred and repaid (for the debt financed portion) in hard currency.
Price elasticity and mean daily consumption also affects upside
disproportionally for diesel dependent scenarios whereas the solar/bat-
tery case sees significant risk reduction. Overall, with fixed tariffs, the
hybrid scenarios are less risky to equity compared to solar and diesel.
The solar and diesel scenarios have similar ranges from maximum to
minimum NPV but solar has a larger interquartile range. When tariffs
are linked to fuel prices, equity risk exposure is greatly reduced because
fuel price risks are passed on to consumers through tariff adjustments.
Thediesel and small solar hybrid scenarios then becomemore attractive.

Contrary the equity NPV, lenders face greater risk in diesel heavy
scenarios as seen in the DSCR results in the right panel of Figs. 7 and 8.
Particularlywithfixed tariffs, the fuel price is clearly themost significant
contributor to risk in diesel-based cases. Interestingly, fixingmean daily
consumption increases the minimum DSCR noticeably compared to
other variables when tariffs are fixed in diesel cases. In the solar case,
eliminating mean daily consumption uncertainty results in a minimum
DSCR across simulations that is greater than the benchmark value of
one. If reliable demand for electricity can be secured, solar/battery
microgrids appear to be safe investments for lenders.

Discussion and conclusion

Microgrid utilities hold great potential to accelerate the roll-out of
electricity services to rural areas in sub-Saharan Africa. If this potential
is to be realized, barriers need to be overcome to unlock the capital re-
quired to scale up deployment. Due to the risk associated with these
projects, it is important to understand the sources of these risks and
how to mitigate them. The risk assessment presented in this paper has
identified four important uncertain variables in microgrid utility busi-
ness models that contribute significantly to project risk. These variables
are fuel price, foreign exchange rates, demand for electricity, and price
elasticity of demand. The relative importance of these factors varies be-
tween technologies and tariff structures. Allowing tariffs to vary with
fuel price in an unregulated environmentmitigates fuel price risk for eq-
uity investors. Linking tariffs to fuel prices is also effective in mitigating
risk to debt providers, but to a lesser extent. Introducing solar genera-
tors into a diesel powered microgrid further reduces lenders' exposure
to fuel price risk.

Price elasticity andmean electricity consumption risk are both related
to the level of electricity demand on the microgrid. These variables are
more critical to solar andhighpenetration solar/diesel hybridmicrogrids.
These systems have high capital costs that will be either underused if de-
mand for electricity falls short of expectations or unreliable if demand ex-
ceeds design specifications. Diesel-dominated systems require less
capital investment and their operating costs are linked to revenue via
fuel consumption. Because most microgrids being deployed in Africa
are financed with hard currency but collect revenue in local currency,
microgrid investors are exposed to significant foreign exchange risk.

There are various ways to mitigate these risks that merit further in-
vestigation. Fuel subsidies could mitigate fuel price risk but they are
controversial, costly, and inefficient (Whitley and van der Burg, 2015).
Introducing or increasing solar penetration into diesel powered
microgrids is effective in mitigating fuel price risk exposure (Williams
et al., 2016). Securing reliable anchor customers could reduce uncer-
tainty of electricity demand and price elasticity (Williams et al., 2015).
Further research is also needed to better understand consumer behavior
in these settings. The case studies presented in this paper assume
energy-based tariffs but entrepreneurs in the field have experimented
with other tariff structures to reduce revenue uncertainty. Introducing
fixed monthly charges that come with credit for a certain number of
kWhs partially decouples electricity consumption from revenue. These
scenarios are currently difficult tomodel as it is unclear how consumers
respond to different tariff structures. Exchange rate exposure can de-
crease by sourcing local capital. However, this is often in short supply.
There are hedging products available to address foreign exchange risk.

Microgrids have enormous potential to accelerate access to electric-
ity in rural areas of Africa and, through the integration of renewable en-
ergy technologies, set the region on a cleaner energy pathway. In order
to scale up their deployment, microgrid companies will need access to
large amounts of capital. Understanding and mitigating investment
risk is essential. This paper has identified key contributors to investment
risk to both debt and equity such as fuel prices, electricity demand, price
elasticity, and foreign exchange. This knowledge should then be applied
in further research to identify strategies to mitigate these risks and im-
prove access to finance for microgrid companies.
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