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a b s t r a c t 

Least squares Monte Carlo (LSM) is a state-of-the-art approximate dynamic programming approach used 

in financial engineering and real options to value and manage options with early or multiple exercise 

opportunities. It is also applicable to capacity investment and inventory/production management prob- 

lems with demand/supply forecast updates arising in operations and hydropower-reservoir management. 

LSM has two variants, referred to as regress-now/later (LSMN/L), which compute continuation/value 

function approximations (C/VFAs). We provide novel numerical evidence for the relative performance of 

these methods applied to energy swing and storage options, two typical real options, using a common 

price evolution model. LSMN/L estimate C/VFAs that yield equally accurate (near optimal) and precise 

lower and dual (upper) bounds on the value of these real options. Estimating the LSMN/L C/VFAs and 

their associated lower bounds takes similar computational effort. In contrast, the estimation of a dual 

bound using the LSML VFA instead of the LSMN CFA takes seconds rather than minutes or hours. 

This finding suggests the use of LSML in lieu of LSMN when estimating dual bounds on the value of 

early or multiple exercise options, as well as of related capacity investment and inventory/production 

policies. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The valuation and management of options with early or multi-

ple exercise opportunities is a fundamental problem in financial

engineering and real options ( Detemple, 2006; Dixit & Pindyck,

1994; Glasserman, 2004; Guthrie, 2009; Shreve, 2004; Trigeorgis,

1996 ). A variety of standard and customized stock, interest rate,

commodity, energy, and weather options are traded on both orga-

nized exchanges and over-the-counter markets ( Hull, 2014 ). When

these options give their holders the ability to exercise them one

or more times before expiration, the optimization of an exercise

policy in the presence of market uncertainty is a key aspect of

the valuation and management of these options ( Detemple, 2006;

Glasserman, 2004; Shreve, 2004 ). Real options are models of op-

erational flexibility embedded in managerial activities performed

in the face of market or operational uncertainty ( Dixit & Pindyck,

1994; Guthrie, 2009; Trigeorgis, 1996 ). Typical applications are
∗ Corresponding author. Tel.: +1 312 355 2774, +1 4126921061. 
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he timing of capacity/technology/product investment or divest-

ent decisions, and the switching among inputs or outputs or

roduction modes of manufacturing processes. Common sources

f uncertainty include the market value of a completed develop-

ent project or the levels of input and output prices. The op-

imization of capacity investment and inventory/production man-

gement policies under supply or demand forecast uncertainty

 Graves, Meal, Dasu, & Qiu, 1986; Heath & Jackson, 1994; Iida &

ipkin, 2006 ), possibly combined with market uncertainty ( Goel

 Gutierrez, 2011; Kouvelis, Chambers, & Wong, 2006 ), is a criti-

al concern in both operations management ( Porteus, 2002; Zipkin,

0 0 0 ) and hydropower-reservoir management ( Nandalal & Bogardi,

007; Zhao, Cao, & Yang, 2011; Zhao, Zhao, Yang, & Wang, 2013 ).

he modeling of these operational problems shares salient features

ith the modeling of options with early or multiple exercise op-

ortunities. 

Our focus in this paper is on real options, in particular en-

rgy real options. Applications include process innovations ( Khansa

 Liginlal, 2009 ), manufacturing flexibility ( Fontes, 2008; Triantis

 Hodder, 1990 ), capital budgeting ( Gamba, 2003 ), renewable en-

rgy investments ( Boomsma, Meade, & Fleten, 2012 ), and com-

odity and energy acquisition, disposal, processing, production,

http://dx.doi.org/10.1016/j.ejor.2016.06.020
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torage, and swing assets ( Adkins and Paxson, 2011; Barbieri and

arman, 1996; Boogert and De Jong, 2008 ; 2011/12 ; Brandão, Dyer,

nd Hahn, 2005; Carmona and Ludkovski, 2010; Chandramouli

nd Haugh, 2012; Cortazar, Gravet, and Urzua, 2008; Devalkar,

nupindi, and Sinha, 2011; Enders, Scheller-Wolf, and Secomandi,

010; Felix and Weber, 2012; Hahn and Dyer, 2008; 2011; Jail-

et, Ronn, and Tompaidis, 2004; Lai, Margot, and Secomandi, 2010;

aragos, 2002; Secomandi, 2010; Smith, 2005; Smith and McCar-

le, 1998; 1999; Thompson, 2012; 2013; Thompson, Davison, and

asmussen, 2004; Wang and Dyer, 2010, Arvesen, Medbø, Fleten,

omasgard, and Westgaard, 2013; Denault, Simonato, and Stentoft,

013; Mazières and Boogert, 2013; Wu, Wang, and Qin, 2012, Sec-

mandi and Seppi, 2014 , Chapters 5–7, Bäuerle & Riess, 2016;

yurkó, Hambly, & Witte, 2015; Nadarajah, Margot, & Secomandi,

015 ). 

The modeling of early and multiple exercise options and related

perational problems generally gives rise to intractable Markov de-

ision problems (MDPs) with states containing both endogenous

nd exogenous components. The endogenous part of the MDP state

epresents the status of the option or the operational system. It

s determined by exercise or operational decisions and is low di-

ensional in several of the discussed applications. The exoge-

ous part of the MDP state is a term structure, such as a com-

odity or energy forward (futures) curve, a yield curve, or a de-

and/supply forecast curve. The stochastic dynamics of this term

tructure are assumed unaffected by option-exercise or operational

ecisions, and are represented using high dimensional models that

hare a common mathematical structure ( Blanco, Soronow, & Ste-

szyn, 2002; Clewlow & Strickland, 20 0 0; Cortazar & Schwartz,

994; Graves et al., 1986; Heath & Jackson, 1994; Ho & Lee, 1986;

eronesi, 2010 ). The MDP intractability is thus typically due to two

urses of dimensionality: (i) The high dimensionality of the exoge-

ous part of the state space and (ii) the inability to exactly com-

ute expectations of future exogenous state components ( Powell,

011 , Section 4.1). 

The least squares Monte Carlo (LSM) approach, pioneered by

arriere (1996) , Longstaff and Schwartz (2001) , and Tsitsiklis and

an Roy (2001) , is a prominent approximate dynamic program-

ing (ADP) methodology ( Powell, 2011 , p. 307) for the valuation

nd management of early and multiple exercise options ( Arvesen

t al., 2013; Bäuerle and Riess, 2016; Boogert and De Jong, 2008 ;

011/12 ; Boomsma et al., 2012; Carmona & Ludkovski, 2010; Car-

iere, 1996; Cortazar et al., 2008; Denault et al., 2013; Desai, Farias,

 Moallemi, 2012; Gyurkó et al., 2015; Longstaff & Schwartz, 2001;

mith, 2005; Tsitsiklis & Van Roy, 2001 ). Similar techniques have

een developed for inventory and hydropower-reservoir manage-

ent problems ( Iida & Zipkin, 2006; Wang, Atasu, & Kurtulu ̧s ,

012; Zhao et al., 2011; Zhao et al., 2013 ), and can be applied to

apacity investment and production management settings. 

The standard LSM method, known as regress-now L SM (L SMN),

ddresses the two stated curses of dimensionality by approximat-

ng via a linear combination of basis functions the continuation

unction of the MDP formulated as a stochastic dynamic program

SDP). The weights of the basis functions are fitted through least-

quares regression on Monte Carlo samples of the exogenous part

f the state in a backward recursive fashion. Although convenient

or lower bound estimation based on its continuation function ap-

roximation (CFA), this method requires executing potentially time

onsuming nested simulations and optimization when estimating a

ual (upper) bound ( Glasserman, 2004 , Section 8.7, Brown, Smith,

 Sun, 2010 ). A nonstandard LSM variant, proposed by Glasserman

nd Yu (2004) and known as regress-later L SM (L SML), uses a lin-

ar combination of basis functions to approximate the SDP value

unction rather than its continuation function. In this case specify-

ng a value function approximation (VFA) by choosing basis func-

ions of which expectations can be computed in essentially closed
orm allows avoiding the nested simulations and optimizations

hat must be performed when estimating a dual bound based on

 CFA. Such basis functions include polynomials of term struc-

ure elements and prices of call and put options on such ele-

ents ( Boogert and De Jong, 2008 ; 2011/12 ; Boomsma et al., 2012;

roadie and Cao, 2008; Cortazar et al., 2008; Desai et al., 2012;

ongstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 2001 , Gyurkó

t al., 2015 ). 

Despite its appeal, LSML has gone largely unnoticed in the liter-

ture. Broadie and Cao (2008) exemplify in passing its application

o estimate lower bounds on the prices of multiple exercise (specif-

cally Bermudan max) options. We are not aware of research that

ompares the performance of LSML and LSMN, or even uses LSML,

o value and manage real options. 

In this paper we compare L SML and L SMN applied to energy

wing and storage options modeled using a common futures term

tructure model. We use realistic instances to numerically contrast

he performance of LSMN/L when obtaining C/VFAs, the compu-

ational effort required to estimate lower and dual bounds based

n these C/VFAs, and the quality of these bounds. The LSMN/L

/VFAs lead to similarly accurate (near optimal) and precise lower

nd dual bound estimates. LSMN/L exert comparable effort to ob-

ain their respective C/VFAs and estimate their associated lower

ounds. In contrast, estimating the dual bounds using the LSML

FAs instead of the LSMN CFAs takes seconds rather than minutes

r hours. This difference is attributable to the nested simulations

nd the optimizations that must be carried out when using the

SMN CFA to estimate these bounds, but are instead avoided when

mploying the LSML VFA. 

Our findings suggest the use of LSML rather than LSMN when

stimating a dual bound on the value of energy swing and storage

ptions. In particular, it may be useful to include the estimation of

SML-based dual bounds as a feature in commercial software pack-

ges that use LSMN to obtain lower bounds on the value of operat-

ng policies for these options (see, e.g., EnergyQuants, 2016; KYOS,

013; Matlab, 2015 ). Potentially, the relevance of our research ex-

ends to other options with early or multiple exercise opportu-

ities and capacity investment and inventory/production manage-

ent models with demand/supply forecast updates. 

In Section 2 we formulate our MDP, apply it to energy swing

nd storage options, and discuss the two curses of dimensional-

ty that arise when attempting to solve this MDP. In Section 3 we

resent LSMN and LSML and conceptually contrast these methods.

n Section 4 we explain how to use their C/VFAs to estimate lower

nd dual bounds on a real option value. We conduct our numeri-

al study in Section 5 . We conclude in Section 6 . An online supple-

ent includes Supporting material. 

. MDP, energy applications, and curses of dimensionality 

We describe our MDP in Section 2.1 . We apply this model to en-

rgy swing and storage options in Section 2.2 . In Section 2.3 we

iscuss the two curses of dimensionality that typically make solv-

ng this MDP intractable. 

.1. MDP 

There are N exercise dates, each denoted as T i , i ∈ I :=
 0 , . . . , N − 1 } . The set I is the stage set. The state of our MDP at

tage i is partitioned into endogenous and exogenous components.

he endogenous component is the scalar x i . It belongs to the fi-

ite set X i that represents information about the number of re-

aining exercise rights at stage i . The exogenous component is the

ector F i ∈ R 

N−i that represents the option underlying term struc-

ure (F i,i , F i,i +1 , . . . , F i,N−1 ) , where each F i , j , j ≥ i , is the element of

he term structure associated with date T j at time T i . We define
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c  
F N := 0. In commodity and energy applications, F i is a forward

curve, F i , i is the time T i spot price, and F i , j is the date T i futures

price with maturity at time T j . 

At stage i and state ( x i , F i ), the decision maker chooses an ex-

ercise action a from the finite set A i (x i ) and receives the reward

r i (a, F i ) : A i (x i ) × R 

N−i → R . Subsequently, the transition function

f i ( x i , a ) specifies the stage i + 1 endogenous part of the state f i ( x i ,

a ). The exogenous part of the state evolves from F i to F i +1 accord-

ing to a known stochastic process independently of x i and a . 

A policy π is the collection of decision functions { A 

π
0 

, . . . , A 

π
N−1 

} ,
where A 

π
i 
(x i , F i ) : X i × R 

N−i → A i (x i ) for each i ∈ I . We let � be

the set of all feasible policies. Let E denote expectation under the

risk-neutral probability measure ( Shreve, 2004 ) for the term struc-

ture stochastic process. We denote by δ ∈ (0, 1] the risk-free dis-

count factor from each time T i back to time T i −1 , i ∈ I \ { 0 } . That

is, the discount factor is constant across stages, an assumption that

can be relaxed in a straightforward manner. Let ( x 0 , F 0 ) be the time

T 0 state. Computing the real option value and an optimal exercise

policy entails solving 

max 
π∈ �

∑ 

i ∈I 
δi 

E 

[
r i (A 

π
i (x πi , F i ) , F i ) | x 0 , F 0 

]
, (1)

where x π
i 

is the random endogenous part of the state at stage i

when using policy π . 

To simplify our notation, for the most part in the rest of this

paper we omit the sets that index a tuple. For example, we write

( i , x i , F i , a ) in lieu of (i, x i , F i , a ) ∈ I × X i × R 

N−i × A i (x i ) . In addition,

we write (·) −(i ) to indicate that i is excluded from I in the tuple

ground set. 

2.2. Energy applications 

We present the two applications that are the focus of our nu-

merical study in Section 5 . 

2.2.1. Energy swing option 

Swing options are common in the energy industry ( Barbieri &

Garman, 1996; Jaillet et al., 2004 ). We focus on a purchase swing

option. This option could be used, for example, by a producer of

ethylene that requires an amount q i of crude oil as input to a ther-

mal cracking process at each time T i . The contract has two parts:

A purchase part that involves buying the quantity q i at price K i on

date T i ; and a swing part that endows the producer with n ≤ N

swing rights to increase or decrease each purchase amount q i by a

fixed constant Q i ∈ (0, q i ] at price K i at each stage i . At most one

swing right can be exercised at a given stage i . 

The incentive to exercise this swing option at stage i stems from

the producer’s ability to transact in the spot market at the pre-

vailing spot price F i , i . If K i > F i,i the producer has the incentive to

acquire an amount q i − Q i from the swing contract at price K i and

purchase a quantity Q i from the spot market at price F i , i . This com-

bined trade results in a gain of Q i (K i − F i,i ) relative to procuring

q i at price K i . Similarly, if K i < F i,i , the producer has the incentive

to buy an amount q i + Q i from the swing contract at price K i and

sell a quantity Q i into the spot market at price F i , i , for a gain of

Q i (F i,i − K i ) . 

The value of the purchase part of this contract is − ∑ 

i δ
i F 0 ,i q i .

The valuation of the swing part of this contract can be modeled

using our MDP by defining the endogenous state variable x i to be

the number of swing rights available at stage i . The set X i is thus

{ max { 0 , n − i } , . . . , n } . The feasible action set A i (x i ) is {0, 1} if x i >

0, and {0} if x i = 0 . The endogenous state transition function f i ( x i ,

a ) equals x i − a, because the number of exercise rights remains the

same if the no-exercise action is taken, and decreases by one if the

exercise action is chosen. The stage i reward function r i ( a , F i ) is

Q i · | K i − F i,i | · a . 
.2.2. Energy storage option 

Consider a finite-term lease contract on a portion of the space

nd capacity of an energy (e.g., natural gas) storage facility (see

aragos, 2002 for details). At each of a given number of dates, the

ontract owner can buy energy from the wholesale spot market

nd inject it into this facility, withdraw previously purchased and

njected energy and sell it into the wholesale spot market, or do

othing. 

The endogenous state x i is the inventory in storage at stage i .

he maximum amount of inventory in storage is denoted by the

calar x̄ . At each stage i , the feasible inventory interval is [0 , ̄x ] . At

tage i , the action a indicates the inventory change between times

 i and T i +1 . A positive action is an energy withdrawal-and-sell de-

ision, a negative action is an energy purchase-and-inject decision,

nd zero is the do-nothing decision. The inventory transition func-

ion f i ( x i , a ) is x i − a . The storage contract withdrawal and injection

apacities are the scalars a and a , which satisfy 0 ≤ a , and a ≤ x̄ .

he sets of feasible injections, withdrawals, and overall actions are

 

max {−a , (x i − x̄ ) } , 0 ] , [0, min { x i , a }], and the union of the lat-

er two sets, respectively. These feasible inventory and action sets

re intervals. By Lemma 1 in Secomandi, Lai, Margot, Scheller-Wolf,

nd Seppi (2015) , they can be optimally discretized if a , a , and x̄

re integer multiples of some common scalar, which we assume to

e the case in this paper. The sets X i and A i (x i ) are thus defined

ccordingly (see, Secomandi et al., 2015 ). Let the coefficients αW ∈
0, 1] and αI ≥ 1 model energy losses associated with energy with-

rawals and injections, respectively, and the coefficients ς 

W and

 

I represent withdrawal and injection marginal costs, respectively.

he immediate reward function r i ( a , F i ) is (αI F i,i + ς 

I ) a if a ∈ R −,

nd (αW F i,i − ς 

W ) a if a ∈ R + (it thus equals zero if a = 0 ). 

.3. Curses of dimensionality 

In theory, an optimal policy to the MDP (1) can be obtained by

tochastic dynamic programming. We formulate two SDPs for this

urpose: The value function SDP and the continuation function SDP.

he LSM methods discussed in Section 3 approximate these SDPs. 

The value function SDP for each ( i , x i , F i ) is 

 i (x i , F i ) = max 
a ∈A i (x i ) 

r i (a, F i ) + δE [ V i +1 ( f i (x i , a ) , F i +1 ) | F i ] , (2)

ith boundary conditions V N ( x N , F N ) := 0 for each x N ∈ X N , and

 i ( x i , F i ) the optimal value function at stage i and state ( x i , F i ). The

eal option value is V 0 ( x 0 , F 0 ). 

The continuation function is defined as 

 i (x i +1 , F i ) := δE [ V i +1 ( x i +1 , F i +1 ) | F i ] (3)

or each (i, x i +1 , F i ) with i < N − 1 , and C N−1 (x N , F N−1 ) := 0 for each

(x N , F N−1 ) . The continuation function SDP for each (i, x i +1 , F i ) is 

 i (x i +1 , F i ) = δE 

[ 
max 

a ∈A i +1 (x i +1 ) 
r i +1 (a, F i +1 ) 

+ C i +1 ( f i +1 (x i +1 , a ) , F i +1 ) | F i 
] 
. (4)

n this case, the real option value V 0 ( x 0 , F 0 ) is

ax a ∈A 0 (x 0 ) 
r 0 (a, F 0 ) + C 0 ( f 0 (x 0 , a ) , F 0 ) . The SDP (4) can be de-

ived by replacing V i +1 ( x i +1 , F i +1 ) in (3) with the right hand side

f (2) expressed for i + 1 . 

Solving the SDPs (2) and (4) is typically intractable due to two

urses of dimensionality: (i) The high dimensionality of the exoge-

ous components (term structures) of their states; (ii) the inabil-

ty to evaluate exactly the expectations in these SDPs when using

ommon term structure models (see Section 3 ). 

. LSMN and LSML 

L SMN and L SML, presented in Sections 3.1 and 3.2 , address the

urses of dimensionality discussed in Section 2.3 by computing
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FAs and VFAs, respectively, which can be used to estimate lower

nd dual bounds and obtain an exercise policy in the manner dis-

ussed in Section 4 . In Section 3.3 we briefly contrast these meth-

ds. 

.1. LSMN 

We define a stage i CFA for each endogenous part of the stage

 + 1 state as a linear combination of a number B i of basis func-

ions of the exogenous part of the stage i state. Such CFAs are

ommonly used in the ADP literature (e.g., see Glasserman, 2004 ,

. 430; Bertsekas, 2007 , Section 6.1.1; Powell, 2011 , p. 326). Let

 i , b denote the b -th CFA basis function at stage i . The weight as-

ociated with this basis function for the stage i + 1 endogenous

tate x i +1 is θi,x i +1 ,b 
. The corresponding CFA is 

∑ 

b ψ i,b (F i ) θi,x i +1 ,b 
.

etermining this CFA reduces to estimating the vector of weights

i,x i +1 
:= (θi,x i +1 , 1 

, . . . , θi,x i +1 ,B i 
) . 

Algorithm 1: LSMN. 

Inputs: Number of regression sample paths P and set of basis 

function vectors { ψ i , i −(N−1) } . 
Initialization: Generate the set of P term structure regression 

sample paths { F p 
i 

, (i, p) } ; ˆ θN−1 ,x N 
:= 0 for each x N . 

For each i = N − 2 to 0 do : For each x i +1 do : 

(i) For each p do : Compute the CFA estimate 

c i (x i +1 , F 
p 

i 
) : = δ

[
max 

a 
r i +1 (a, F p 

i +1 
) 

+ 

∑ 

b 

ψ i +1 ,b (F p 
i +1 

) ̂  θi +1 , f i +1 (x i +1 ,a ) ,b 

]
. 

(ii) Perform a two-norm regression on the CFA estimates in set 

{ c i (x i +1 , F 
p 

i 
) , p} to determine the vector of CFA weights 

ˆ θi,x i +1 
. 

Algorithm 1 summarizes LSMN by extending the presentation

f this method by Tsitsiklis and Van Roy (2001) for American op-

ions. For each stage i −(N−1) , we define the vector of CFA basis

unctions as ψ i := (ψ i, 1 , . . . , ψ i,B i 
) . LSMN begins by generating P

erm structure Monte Carlo regression sample paths and initializ-

ng the stage N − 1 weight vector ˆ θN−1 ,x N 
for each x N to a vector of

eros. At each stage i , starting from stage N − 2 and moving back-

ard to stage 0, and each stage i + 1 endogenous state x i +1 this

ethod performs steps (i) and (ii). In step (i) LSMN computes esti-

ates c i (x i +1 , F 
p 

i 
) of the CFA by replacing the stage i + 1 continua-

ion function C i +1 ( f i +1 (x i +1 , a ) , F i +1 ) in the SDP (4) with the known

tage i + 1 CFA 

∑ 

b ψ i +1 ,b (F i +1 ) θi +1 , f i +1 (x i +1 ,a ) ,b 
, and approximating

he expectation 

E 

[ 

max 
a 

r i +1 (a, F i +1 ) + 

∑ 

b 

ψ i +1 ,b (F i +1 ) ̂  θi +1 , f i +1 (x i +1 ,a ) ,b | F p i 

] 

(5) 

y the sample average, based only on the p -th sample path, [ 

max 
a 

r i +1 (a, F p 
i +1 

) + 

∑ 

b 

ψ i +1 ,b (F p 
i +1 

) ̂  θi +1 , f i +1 (x i +1 ,a ) ,b 

] 

. (6) 

n step (ii) LSMN performs a two-norm regression on these CFA

stimates to determine the vector of CFA weights ˆ θi,x i +1 
. 

.2. LSML 

We define a VFA for each stage i and state in this stage as a

inear combination of B basis functions of the exogenous part of
i 
his state. Let φi , b be the b -th VFA basis function at stage i . The

eight associated with this basis function for the endogenous part

f the state x i is βi,x i ,b 
. The VFA at stage i and state ( x i , F i ) is

 

b φi,b (F i ) βi,x i ,b 
. Obtaining this VFA entails estimating the vector

f weights βi,x i 
:= (βi,x i , 1 

, . . . , βi,x i ,B i 
) . 

LSML computes a VFA by approximating the value function SDP

2) , which requires evaluating expectations of next stage VFAs, that

s, the term E [ 
∑ 

b φi +1 ,b (F i +1 ) βi +1 ,x i +1 ,b 
| F i ] for each stage i and term

tructure F i . LSML is appealing if it is possible to choose basis func-

ions, in the context of a given term structure model, to avoid ap-

roximating these expectations. Our LSML presentation is based on

hoosing each basis function φi +1 ,b (F i +1 ) such that the expectation

 [ φi +1 ,b (F i +1 ) | F i ] is a function of the term structure F i that can be

omputed in essentially closed form, that is, 

 [ φi +1 ,b (F i +1 ) | F i ] = φi,i +1 ,b (F i ) (7) 

or some known function φi,i +1 ,b (F i ) . The closed-form condition

7) generalizes the martingale condition (C3) in Glasserman and 

u (2004) . We comment on the practicality of (7) after presenting

SML. 

Algorithm 2: LSML. 

Inputs: Number of regression sample paths P and set of basis 

function vectors { φi , i −(0) } that satisfy (7) . 

Initialization: Generate the set of P term structure regression 

sample paths { F p 
i 

, (i, p) } ; ˆ βN,x N 
:= 0 for each x N . 

For each i = N − 1 to 1 do : 

For each x i do : 

(i) For each p do : Compute the VFA estimate 

v i (x i , F 
p 

i 
) := max 

a 
r i (a, F p 

i 
) + δ

∑ 

b 

φi,i +1 ,b (F p 
i 
) ̂  βi +1 , f i (x i ,a ) ,b . 

(ii) Perform a two-norm regression on the VFA estimates in set 

{ v i (x i , F 
p 

i 
) , p} to determine the vector of VFA weights ˆ βi,x i 

. 

Algorithm 2 summarizes the LSML steps by modifying the

escription of this method for American options by Glasserman

nd Yu (2004) and replacing their martingale condition with our

losed-form condition (7) . Let φi := (φi, 1 , . . . , φi,B i 
) . The inputs to

SML are the number of sample paths and a set of vectors of VFA

asis functions that satisfy (7) . LSML starts by generating a set of

 term structure Monte Carlo regression sample paths and initial-

zing the stage N weight vector ˆ βN,x N 
to zero for each x N . At each

tage i , starting from stage N − 1 and moving backward to stage

, and for each endogenous state x i it executes steps (i) and (ii).

n step (i) LSML computes estimates v i (x i , F 
p 

i 
) of the stage i VFA

or each sample path p by replacing the stage i + 1 value function

 i +1 ( f i (x i , a ) , F i +1 ) on the right hand side of (2) by the known stage

 + 1 VFA 

∑ 

b φi +1 ,b (F i +1 ) βi +1 , f i (x i ,a ) ,b 
and exploiting (7) . In step (ii)

SML performs a two-norm regression on these estimates to deter-

ine the vector of VFA weights ˆ βi,x i 
. 

The closed-form condition (7) is satisfied by certain functions of

he exogenous state component when using term structure models

hat are widespread in commodity, energy, fixed income, and op-

rations and hydro-power reservoir management applications both

n practice and in the academic literature ( Clewlow & Strickland,

0 0 0; Cortazar & Schwartz, 1994; Eydeland & Wolyniec, 2003;

raves et al., 1986; Heath & Jackson, 1994; Ho & Lee, 1986; Mara-

os, 20 02; Nandalal & Bogardi, 20 07; Veronesi, 2010; Zhao et al.,

011; Zhao et al., 2013 ). In these models, which we use in our nu-

erical study discussed in §5 , the term structure evolution is gov-

rned by a multidimensional diffusion model. In this continuous

ime setting, we denote by F ( t , T j ) the value of the element of the
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term structure at time t ∈ [ T 0 , T j ] with maturity at time T j , j ∈ I .

Hence, if t = T i , i ∈ I, and j > i , then F ( t , T j ) ≡ F i , j . Given a fixed

number K of stochastic factors, the evolution of F ( t , T j ) is governed

by the stochastic differential equations 

dF (t, T j ) 

F (t, T j ) 
= 

K ∑ 

k =1 

σ j,k (t) dW k (t) , ∀ j ∈ I \ { 0 } , t ∈ (T 0 , T j ] , (8)

d W k (t) d W k ′ (t) = 0 , ∀ k, k ′ ∈ { 1 , . . . , K} , k 
 = k ′ , (9)

where σ j , k ( t ) is the time t loading coefficient on the Brownian mo-

tion W k for the term structure element F ( t , T j ). This model captures

seasonality in the changes in the term structure elements because

the loading factors are time dependent. Seasonality in the term

structure levels is embedded in the initial (time T 0 ) term structure.

Under models (8) and (9) , it is possible to compute (sometimes

approximate) conditional expectations of certain classes of func-

tions of future term structure elements as essentially closed-form

functions of current term structure elements, that is, φi,i +1 ,b (F i ) in

(7) . We provide two examples of such classes of functions (see

Haug, 2006 for a catalog): 

1. All polynomials of term structure elements. For example, when

i ′ > i , we can use the property E [ F i ′ , j | F i, j ] = F i, j to compute ex-

pectations of functions that are linear in the term structure ele-

ments, and the property E [ F 2 
i ′ , j 

| F i, j ] = F 2 
i, j 

exp ( 
∑ 

k ∈K 
∫ T 

i ′ 
T i 

σ 2 
j,k 

(t ) dt )

to compute expectations of quadratic functions of such ele-

ments (these properties are easy to verify). 

2. Prices of call and put options on the term structure elements:

E [ max (0 , F i ′ , j − K ) | F i, j ] and E [ max (0 , K − F i ′ , j ) | F i, j ] , where i ′ > i

and K ∈ R (see Section 1.1.3 of Haug, 2006 for explicit formulas

for these prices). 

These two types of basis functions are commonly used to rep-

resent a CFA ( Boogert & De Jong, 2008; Cortazar et al., 2008;

Longstaff & Schwartz, 2001 ). 

3.3. Contrast between LSMN and LSML 

L SMN and L SML approximate the continuation function SDP

(4) and the value function SDP (2) , respectively. Basis functions are

one layer of approximation in both of these methods. In addition,

LSMN embeds one more approximation layer because it obtains

CFA estimates in step (i) of Algorithm 1 by replacing the expec-

tation in (5) with the single sample path, and hence potentially

high variance, sample average (6) . In contrast, LSML has no ad-

ditional approximation layer when condition (7) holds. Therefore,

when using the same basis functions and number of regression

sample paths, we intuitively expect the deviations of the LSML VFA

from the exact value function to be smaller than the deviations of

the LSMN CFA from the exact continuation function. We provide

some theoretical support for this intuition in Online Supplement

A. In other words, although we anticipate that for a sufficiently

large number of regression sample paths LSMN/L yield essentially

equivalent C/VFAs in terms of the accuracy and precision of their

corresponding bounds (see Section 4 ), we expect that LSMN will

need more such sample paths than LSML to achieve comparable

bounds. Because Algorithms 1 and 2 require a similar number of

operations, we predict that attaining such bounding performance

will be faster with LSML than LSMN. 

4. Bounding the real option value 

In this section we discuss how to use the C/VFAs computed

by LSMN/L to estimate lower and dual bounds on a real option

value. This material is in part based on Glasserman (2004 , Chapter

8), Bertsekas (2007 , Section 6.1.1), Brown et al. (2010) , and Powell

(2011 , Chapter 6). 
To estimate a lower bound on a real option value one gener-

tes a set of H term structure evaluation Monte Carlo sample paths

 F h 
i 

, (i, h ) } , starting from the term structure F 0 at time T 0 , and sim-

lates the policy induced by the LSML/N V/CFA as now discussed.

hen using the LSML VFA, we compute the action associated with

his policy at stage i and state ( x i , F i ) by solving the optimization

odel 

ax 
a 

r i (a, F i ) + δ
∑ 

b 

φi,i +1 ,b (F i ) ̂  βi +1 , f i (x i ,a ) ,b , (10)

hich is analogous to the optimization executed by LSML in its

tep (i). When using the LSMN CFA, such an action is obtained by

olving the optimization model 

ax 
a 

r i (a, F i ) + 

∑ 

b 

ψ i,b (F i ) ̂  θi, f i (x i ,a ) ,b , (11)

hich is related to the optimization performed by LSML in its

tep (i). A lower bound on the real option value V 0 ( x 0 , F 0 ) is es-

imated by averaging the sums of the time T 0 discounted rewards

ained from executing the actions obtained, according to (10) or

11) , along each sample path. We expect roughly equal computa-

ional effort f or estimating a lower bound using the LSML/N V/CFAs

or a given number of evaluation sample paths and employing the

ame basis functions. 

The quality of an estimated lower bound can be assessed by

stimating a dual bound using the information relaxation and du-

lity framework (see Brown et al., 2010 , and references therein).

his approach relies on feasible dual penalties p i ( f i (x i , a ) , F i +1 , F i )

hat penalize knowledge of the future information F i +1 when per-

orming action a in state ( x i , F i ) at stage i : The feasibility require-

ent is E [ p i ( f i (x i , a ) , F i +1 , F i ) | F i ] ≤ 0 ( Brown et al., 2010 ). Consider

he same set of H term structure sample paths used to estimate a

ower bound. Feasible dual penalties are used to formulate the fol-

owing deterministic dynamic program for the h -th term structure

ample path with stage i value function U 

h 
i 
(·) : 

 

h 
i (x i ) = max 

a 
r i (a, F h i ) 

− p i ( f i (x i , a ) , F 
h 

i +1 , F i 
h ) + δU 

h 
i +1 ( f i (x i , a )) , (12)

or each pair ( i , x i ) with boundary conditions U 

h 
N 
(x N ) := 0 for each

 N . A dual bound estimate on the sought real option value is the

ample average 
∑ 

h U 

h 
0 
(x 0 ) /H. 

As shown by Brown et al. (2010) , ideal, but unknown, dual

enalties that would lead to a tight dual bound are 

{ V i +1 ( f i (x i , a ) , F i +1 ) − E [ V i +1 ( f i (x i , a ) , F i +1 ) | F i ] } . (13)

eplacing the value functions in (13) with their corresponding

FAs ( Brown et al., 2010 ), using (7) , and ignoring the discount fac-

or for simplicity yields the feasible dual penalties 
 

b 

φi +1 ,b (F i +1 ) ̂  βi +1 , f i (x i ,a ) ,b −
∑ 

b 

φi,i +1 ,b (F i ) ̂  βi +1 , f i (x i ,a ) ,b . (14)

hen using the LSMN CFA a feasible dual penalty analogous to

14) is 

ax 
a 

r i +1 (a, F i +1 ) + 

∑ 

b 

ψ i +1 ,b (F i +1 ) ̂  θi +1 , f i +1 (x i +1 ,a ) ,b 

− E 

[ 

max 
a 

r i +1 (a, F i +1 ) + 

∑ 

b 

ψ i +1 ,b (F i +1 ) ̂  θi +1 , f i +1 (x i +1 ,a ) ,b | F i 
] 

. (15)

btaining the first term in (15) requires solving an optimization

odel. In general the second term in (15) cannot be computed ex-

ctly because of the presence of the maximization inside the ex-

ectation. It is standard ( Andersen and Broadie, 2004, Glasserman,

004 , Section 8.7, Haugh & Kogan, 2007 ) to replace this expecta-

ion by a sample average approximation, which requires perform-

ng an additional inner Monte Carlo simulation and corresponding
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ptimizations. In contrast, evaluating (14) is free of this simulation

nd these optimizations. Thus, given the same number of evalua-

ion sample paths and basis functions, we expect that estimating

 dual bound based on (15) be more computationally demanding

han doing so based on (14) . 

. Numerical study 

In this section we compare both the quality of the lower and

ual bounds estimated using the LSMN/L C/VFAs and the associ-

ted computational effort on crude oil swing option and natural

as storage option instances. In Section 5.1 we discuss a specific

nergy futures term structure model and its calibration. We de-

cribe our instances in Section 5.2 . In Section 5.3 we present the

asis functions that we use to specify our C/VFAs. In Section 5.4 we

iscuss our results. 

.1. Forward curve model and its calibration 

In our application, the term structure is an energy forward

urve. We used models (8) and (9) to represent its dynamics. We

hoose each function σ m , k ( ·) in this model to be right continu-

us and piecewise constant on each interval [ T i , T i +1 ) ( Blanco et al.,

002; Secomandi et al., 2015 ). That is, we set σ j , k ( t ) equal to the

onstant σ j , k , i when t belongs to the interval [ T i , T i +1 ) . Under this

pecification, we can equivalently rewrite models (8) and (9) as 

 (t ′ , T j ) = F (t, T j ) exp 

[ 

−1 

2 

(t ′ − t) 
K ∑ 

k =1 

σ 2 
j,k,i + 

√ 

t ′ − t 

K ∑ 

k =1 

σ j,k,i Z k 

] 

,

(16)

or each i ∈ I, j ∈ { i + 1 , . . . , N − 1 } , t ∈ [ T i , T i +1 ) , and t ′ ∈ (T i , T i +1 ]

ith t ′ > t , where (Z k , k = 1 , . . . , K) is a vector of K independent

tandard normal random variables. We generate forward curve

ample paths by Monte Carlo simulation based on (16) . 

We use ten years of NYMEX crude oil and natural gas futures

rices, observed from 1997 to 2006, to estimate sample variance-

ovariance matrices of the daily log futures price returns for each

onth for both commodities. We perform a principal compo-

ent analysis of these matrices to estimate the loading coefficients

j , k , i (see Blanco et al., 2002 ; Secomandi et al., 2015 , Section 5 for

ore details). We choose the number of factors K equal to 3 and 7

or crude oil and natural gas, respectively, as they are the smallest

umbers of factors explaining more than 99 percent of the total

bserved variance in each of our monthly data sets. 

.2. Instances 

We set the number of stages I equal to twenty four. Each time

nterval [ T i , T i +1 ] represents one month. We create four price in-

tances for both crude oil and natural gas by including in the time

 0 forward curve, F 0 , the first twenty four elements of the respec-

ive forward curve for these energy sources observed on the first

rading date of January, April, July, and October 2006, respectively.

e take these months as representative of Winter, Spring, Sum-

er, and Fall. Following Lai et al. (2010) , we use risk free interest

ates equal to 4 . 87 percent, 4 . 74 percent, 5 . 05 percent, and 5 . 01

ercent for the Winter, Spring, Summer, and Fall price instances,

espectively. 

We generate our swing option instances by adding to each

rude oil price-instance the number of swing rights n , which we

ary between 1 and 10 in increments of 1, and setting each base

oad capacity q i equal to 1, each swing capacity Q i equal to 0.2,

nd each price K i equal to the price at time T 0 of the futures with

aturity at time T . We thus obtain forty swing option instances. 
i 
Our storage option instances are based on our natural gas price-

nstances. Their operational parameters are specified following Lai

t al. (2010) . In particular, we add to each such price-instance a

ormalized maximum storage space x̄ equal to 1, an initial inven-

ory x 0 equal to 0, and high, moderate, and low injection and with-

rawal capacity pairs as defined in Lai et al. (2010) . This process

esults in twelve natural gas storage instances. 

.3. Basis functions 

We use CFAs and VFAs based on the same basis functions. For

ur swing option instances, we use as basis functions polynomi-

ls of the forward prices, which are standard in the LSM litera-

ure ( Boogert & De Jong, 2008; Cortazar et al., 2008; Longstaff &

chwartz, 2001 ), and call and put options. The use of these option

rices as basis functions is based on the observation that the re-

ard function and the exact value function when the number of

wing rights equals the number of exercise dates ( n = N) can be

odeled using pairs of these prices. The polynomial basis func-

ions are 1, F i , j , and F 2 
i, j 

for j ∈ { i, . . . , N − 1 } , and F i, j F i, j ′ for j, j ′ ∈
 i, . . . , min { i + 4 , N − 1 }} , j ′ > j . The call option and put option

rice basis functions, respectively, are E [ max (0 , F j, j − F 0 , j ) | F i, j ] and

 [ max (0 , F 0 , j − F j, j ) | F i, j ] for j ∈ { i, . . . , N − 1 } . Thus, as discussed in

ection 3.2 , our chosen basis functions satisfy the closed-form con-

ition (7) . For our storage option instances, we use only the poly-

omials just described as basis functions. 

.4. Results 

We estimate our lower and dual bounds using H = 10 0,0 0 0

valuation sample paths. We present all our estimated bounds as

atios of the dual bounds estimated using the LSML VFA for P

quals to 10 0 0, because, as discussed below, they are essentially

ight on all our instances; that is, they are essentially equal to the

est estimated lower bounds on all our instances. We label these

ual bound estimates as reference dual bound estimates. Our cho-

en number of evaluation sample paths ensures that the standard

rrors of all our estimated bounds are less than 0 . 5 percent of their

espective reference dual bound estimates. When estimating dual

ounds using the penalties (15) , which rely on the LSMN CFA, we

pproximate expectations by sample averages based on 100 inner

amples. 

Fig. 1 displays the LSML/N-based dual bound estimates as per-

entages of the reference dual bound estimates on the January and

pril swing option instances with three exercise rights ( n = 3 ). The

esults for the July and October swing option instances are sim-

lar and can be found in Online Supplement B. Our findings for

he instances with more exercise rights are analogous and are not

eported here for brevity. Fig. 2 presents the LSML/N-based dual

ound estimates as percentages of the reference dual bound es-

imates on the January and April storage option instances with a

igh capacity restriction. The results for the January and April in-

tances with medium and low capacity restrictions are comparable

nd are presented in Online Supplement B. Our findings for the

uly and October instances agree with the ones discussed here and

re omitted for conciseness. Figs. 1 and 2 include the standard er-

ors of our dual bound estimates expressed as ratios of the refer-

nce dual bound estimates, but they are not visible for most values

f P because they are close to zero. 

The accuracy and precision of the LSML-based dual bound

stimates are insensitive to the number of samples used to

btain a VFA, that is, these bounds converge when P equals

0 0 0. This insensitivity does not extend to the LSMN-based dual

ound estimates, which however become comparable to the LSML-

ased ones for sufficiently large P ; 10,0 0 0 on our instances. This
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Fig. 1. Convergence of the LSML/N-based dual bound estimates as percentages of the reference dual bound estimates on the January and April swing option instances with 

three exercise rights ( n = 3 ). 

Fig. 2. Convergence of the LSML/N-based dual bound estimates as percentages of the reference dual bound estimates on the January and April storage option instances with 

a high capacity restriction. 

Table 1 

Average CPU seconds needed for computing V/CFAs and estimating lower and dual bounds on a subset of the swing option instances and on the storage option instances 

(the LSML VFA and LSMN CFA are estimated with P equal to 10 0 0 and 10,0 0 0, respectively). 

Swing option 

n V/CFA Lower bound Dual bound 

LSML LSMN LSML VFA LSMN CFA LSML VFA LSMN CFA 

1 0.5 6.4 15.1 13.5 14.1 1,699 

10 0.6 7.1 16.4 14.5 16.8 2,424 

Storage option 

Capacity LSML LSMN LSML VFA LSMN CFA LSML VFA LSMN CFA 

High 0.5 5.5 3.5 2.3 13.6 20,149 

Moderate 0.7 8.2 4.2 3.3 22.4 56,550 

Low 0.9 10.0 4.7 4.1 27.6 87,828 
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observed convergence difference is consistent with our discussion

in Section 3.3 . 

The LSML/N-based lower bound estimates exhibit a conver-

gence pattern similar to the one discussed for the dual bound es-

timates. We thus omit a detailed discussion of this behavior here

for brevity (Online Supplement B contains figures displaying these

bounds). We only state that with sufficiently many regression sam-

ple paths the LSMN-based lower bound estimates become essen-

tially equal to the analogous LSML-based estimates, which is ex-

pected given what we pointed out in Section 3.3 . Specifically, the

respective percentage ratios of these lower bound estimates and

their corresponding reference dual bound estimates are at least

99 . 5 percent and 98 . 5 percent across our swing and storage option

instances. Moreover, the standard errors of these lower bound esti-

mates are no larger than 0 . 39 percent of their respective reference
ual bound estimates. Thus, the LSML/N-based lower bound esti-

ates are essentially equal to the exact swing and storage option

alues on our instances, and our dual reference bound estimates

re essentially tight. 

Table 1 reports the average CPU times required to run LSML

nd LSMN with a number of regression samples equal to 10 0 0 and

0,0 0 0, respectively (LSMN needs more samples to converge, as

iscussed earlier), and estimate the lower and dual bounds based

n their V/CFAs for a subset of the swing option instances and for

he storage option instances. L SML and L SMN require from half to

ne CPU second and six to ten CPU seconds, respectively, to es-

imate VFAs and CFAs that lead to accurate and precise bounds.

hus, as expected given the discussion in Section 3.3 , achieving

his level of bounding performance with LSML is more compu-

ationally burdensome than doing so with LSMN. However, this
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omputational difference is small. Consistent with the discussion in

ection 4 , estimating the LSML/N-based lower bounds takes com-

arable effort. Specifically, between four and fifteen CPU seconds

or LSML and two and fifteen CPU seconds for LSMN. The total

PU effort exerted to compute the LSMN/L C/VFAs and estimate

heir corresponding lower bounds is thus roughly the same on our

nstances. In stark contrast, the LSML-based dual bounds can be es-

imated two to three orders of magnitude faster compared to the

SMN-based dual bounds: Between fourteen and twenty-eight CPU

econds versus between half and twenty four CPU hours . Although

e expect the estimation of a dual bound to be faster when using

 VFA rather than a CFA, as pointed out in Section 4 , this observed

ifference is both substantial and remarkable. 

. Conclusions 

We compare LSMN and LSML for the valuation and manage-

ent of crude oil swing and natural gas storage options using a

ommon energy term structure evolution model. Applied to realis-

ic instances of these real options, the C/VFA obtained by LSMN/L

ield similarly accurate and precise lower and dual bound esti-

ates. The computational efforts exerted to compute the LSMN/L

/VFAs and estimate their corresponding lower bounds are com-

arable. Instead, estimating dual bounds based on the LSML VFAs

nstead of the LSMN CFAs takes seconds rather than minutes or

ours. This difference occurs because with our chosen term struc-

ure models using the LSML VFAs allows bypassing the nested sim-

lations and the optimizations that are needed when employing

he LSMN CFAs. Our research thus brings to light LSML, a largely

nexplored LSM variant, as a more appealing method than LSMN

o obtain the inputs required for estimating dual bounds on the

alues of energy swing and storage options, two common real op-

ions, when using typical futures term structure models. Beyond

hese real options, our findings have potential relevance for the

omputation of dual bounds on the values of other early or multi-

le exercise options, as well as of optimal policies for capacity in-

estment and inventory/production management models with sup-

ly/demand forecast updates. 
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