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Hundreds of organizations and analysts use energy projections,
such as those contained in the US Energy Information Adminis-
tration (EIA)’s Annual Energy Outlook (AEO), for investment and
policy decisions. Retrospective analyses of past AEO projections
have shown that observed values can differ from the projection
by several hundred percent, and thus a thorough treatment of
uncertainty is essential. We evaluate the out-of-sample forecast-
ing performance of several empirical density forecasting methods,
using the continuous ranked probability score (CRPS). The analy-
sis confirms that a Gaussian density, estimated on past forecasting
errors, gives comparatively accurate uncertainty estimates over a
variety of energy quantities in the AEO, in particular outperform-
ing scenario projections provided in the AEO. We report proba-
bilistic uncertainties for 18 core quantities of the AEO 2016 pro-
jections. Our work frames how to produce, evaluate, and rank
probabilistic forecasts in this setting. We propose a log trans-
formation of forecast errors for price projections and a modified
nonparametric empirical density forecasting method. Our findings
give guidance on how to evaluate and communicate uncertainty
in future energy outlooks.

forecast uncertainty | density forecasts | scenarios | continuous ranked
probability score | fan chart

Projections of quantities such as electricity and fuel demands,
commodity prices, and specific energy consumption and pro-

duction rates are widely used to inform private and public invest-
ment decisions, long-term strategies, and policy analysis (1–3).
Policy analysts and decision makers often use modeled projec-
tions as forecasts with little or no discussion about the associated
uncertainty (2, 4, 5). [Energy outlooks are often referred to as
projections because they refrain from incorporating future policy
changes into the reference scenario. In contrast, the term fore-
cast denotes a best estimate allowing for all changes of the state
of the world (6). While we are aware of this difference, our analy-
sis treats the reference scenario as the best estimate forecast. We
use the terms forecast and projection interchangeably.] Here we
are concerned with national-scale forecasts in the energy indus-
try that span a range from years to decades. Two of the most
influential sets of energy projections are those of the US Energy
Information Administration (EIA) and the International Energy
Agency (IEA), complemented by those made by private oil and
gas companies, such as Shell, ExxonMobil, and Statoil. When
assessed retrospectively, such energy projections have sometimes
shown very large deviations from the realized values (7–9). Pro-
viding information on the likely uncertainty associated with such
projections would help individuals and organizations use them in
a more informed manner (10–12).

All of the energy outlooks mentioned above provide point pro-
jections without a probabilistic treatment of uncertainty. Often,
point forecasts are labeled as a “reference scenario” and are
accompanied by alternative scenarios. While scenarios may be
used to bound a range of possible outcomes, they can easily
be misinterpreted (13) and are typically not intended to reflect
any treatment of probability. The fact that most projections in

the energy space do not report probability distributions around
predicted values, or an expected variance, is a problem that
has been frequently noted in the literature (13–17). Shlyakhter
et al. (14) criticize the EIA for not treating uncertainty in the
Annual Energy Outlook (AEO). Density forecasting is increas-
ingly becoming the standard (16, 18) in a variety of disciplines
ranging from forecasts of inflation rates (19–21), financial risk
management, and trading operations (22, 23) to demographics
(24), peak electricity demand (25), and wind power generation
(26, 27). There are a number of procedures for probabilistic fore-
casting (22). Most of these methods take an integrated approach
to forecast the whole distribution, including the best estimate.
The empirical methods we use here instead allow analysts or
forecast users to attach an uncertainty distribution to a preex-
isting point forecast.

The importance of density forecast evaluation has been dis-
cussed by several authors (17, 28–30). When methods are cho-
sen to generate probabilistic energy forecasts, such evaluation is
often omitted. Our work is a step toward making energy density
forecasting more feasible and robust by framing how to evaluate
a probabilistic forecast in this setting.

Choosing a Density Forecasting Method. We compare different
methods by testing how accurately they estimate the uncertainty
of data that were not used to train the methods.

We argue that if a forecaster is choosing between different
methods, this should be the central criterion, even though others
such as usability and ease of explanation might also be relevant.
Adopting a frequentist’s approach, we view a future observation
as a random event around the given forecast. A density predic-
tion is best if it equals the probability density function (PDF)
from which this future observation is drawn.

Density forecasts are evaluated by their calibration and their
sharpness subject to calibration (29). By sharpness we mean that
narrower PDFs are preferable. Calibration, as a core concept of
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Table 1. Empirical density forecasting methods compared

Median
Method Parametric Based on centered

NP1: nonparametric EPI No Forecast errors No
NP2: nonparametric No Forecast errors Yes

centered EPI
G1: Gaussian distribution Yes Forecast errors Yes
G2: Gaussian distribution Yes Historical deviations Yes

Details can be found in Materials and Methods.

forecast evaluation, refers to the predictive density representing
correctly the true PDF of the observation. Measuring calibration
requires the availability of unknown observations. This can be
simulated by using an early portion of the time series to train the
density prediction and using later actual values as the test obser-
vations. This procedure is referred to as out-of-sample forecast
evaluation. Dividing the data into these two sets requires a long
enough record of historical data and forecasts to draw statisti-
cally significant conclusions. While the AEO sample size is small,
we see no viable alternative to this procedure and find that even
small sample results can provide useful insights.

As it is a measure of both calibration and sharpness, we use the
continuous ranked probability score (CRPS) (30–32) to compare
density forecasts. For point forecast evaluation we work with
the average prediction error, here the mean absolute percentage
error (MAPE), and the transformed mean absolute logarithmic
error (MALE) for prices (Materials and Methods).

Empirical Density Prediction Methods. We compare four differ-
ent data-driven parametric and nonparametric estimates of fore-
cast uncertainty in the form of PDFs (Table 1 and Materials
and Methods). A simple method of empirical prediction intervals
(EPIs), first published by Williams and Goodman (33), uses the
distribution of past forecast errors to create a probability den-
sity forecast around an existing point forecast. It relies on the
assumption that past errors are a good estimator of the fore-
caster’s current ability to predict the future. EPIs are an estab-
lished approach and have been used in a number of fields such as
meteorology (34), including the creation of the classic “cone of
uncertainty” now routinely produced for likely hurricane tracks
(35), future commodity prices (36), and the values of macro-
economic variables such as inflation (20). There is a continu-
ing interest in the method from researchers in applied math-
ematics and statistics (18, 37, 38). We introduce a second
nonparametric EPI, which is a modification of Williams and
Goodman’s EPI, with a centered error distribution. For a third,
parametric, prediction method we use the forecasting errors to
estimate a Gaussian density forecast. A parametric PDF has the
advantage of greater ease of use. We use the volatility of the
time series of historical values to inform a fourth probabilistic
forecast, which is valuable in cases where the forecasting record
is short.

We apply the four different methods to 18 quantities in
EIA’s AEO (39), which are chosen based on EIA’s Retrospec-
tive Review (40) (Materials and Methods). The AEO forecast-
ing record spans more than 30 years. Unfortunately, in the con-
text of forecast evaluation a sample size of ∼30 data points is
very small. In addition, because of modifications that EIA makes
to its models, and changes in technology, market conditions,
and regulations, errors are not likely to be stationary. Because
stationarity of past forecasting errors is an essential require-
ment for good performance of EPIs (38), we test the extent
to which PDFs estimated using this procedure provide robust
probabilistic forecasts. Previous work has analyzed the forecast
errors of EIA’s AEO (1–3, 7, 41, 42) and the projections by the
IEA (8). Generally, authors have focused on a mean percentage

error and directional consistency of errors, also termed bias.
Shlyakhter et al. (14) constructed a parametric density forecast
with the retrospective errors of AEOs, similar to what we test in
this paper. However, they did not assess the calibration of their
prediction intervals.

We begin by evaluating the point forecast performance of the
AEO reference case over our test range of AEO 2003–2014.
Using the same out-of-sample AEOs and historical observations,
we then compare the calibration and sharpness of the four dif-
ferent density forecasts. The prediction intervals are also com-
pared with the scenarios published in the AEO. We find that
over the test range a normal distribution based on past forecast-
ing errors clearly outperformed uncertainties based on the sce-
narios in the AEO. This conclusion is for the diverse set of all
quantities, but depending upon the quantity, in some cases other
methods showed better results. We conclude the paper with a
comparative discussion of the methods and their applicability to
energy forecasting.

Results
We evaluate the predictive performance of four uncertainty esti-
mation methods (Table 1) over the test range of AEO 2003–
2014 and observations of 2002–2015, using 1985–2002 as the
training range. The test range excludes AEO 2009, which did
not provide scenarios for the updated reference case. We deter-
mine the number of quantities for which a method performed
best. We find that Gaussian densities informed by retrospec-
tive errors (G1) or based on the variability of the historical val-
ues (G2) performed best for the most quantities. The original
nonparametric method, as in ref. 33 (NP1), performed best in
very few cases. The centered nonparametric distribution (NP2),
which gives the largest weight to the AEO reference case pro-
jection instead of the bias, performed better over the test range
than NP1. The respective best empirical uncertainty estima-
tion methods had significantly better calibration than methods
based on the AEO scenarios with 95% confidence. In fact, G1

significantly outperformed the scenarios for all quantities and
provided a valid general approach to estimate the uncertainty
in the AEO.

While we have performed analysis for 18 quantities forecasted
in the AEO, we use 2 of the quantities, natural gas wellhead
price in nominal dollars per 1,000 cubic feet (hereafter natu-
ral gas price) and total electricity sales in billion kilowatt hours
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Fig. 1. Density forecasts for natural gas prices in nominal dollars. (A) Non-
parametric EPI based on forecast errors (NP1). (B) Gaussian density forecast
based on the variability of historical values (G2), which tested to be the bet-
ter estimate. Historical values are indicated by black circles, the AEO 2016
reference case by green diamonds, and the density forecast by blue shaded
areas. The different shades correspond to the percentiles 2, 10, 20, 30, ...,
80, 90, 98. The outermost dashed lines report the minimum and maximum
value of the error samples. AEO 2016 envelope scenarios are in green. Note
that in A the median of the predictive distribution (dashed red line) does
not coincide with the reference case.
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Fig. 2. Density forecasts for electricity sales based on AEO 2016. (A) For the
median-centered nonparametric EPI (NP2), the median or bias now coincides
with the AEO reference case. (B) The Gaussian density forecast based on the
SD of the errors (G1) was the best forecast over the test range. The envelope
scenarios are narrower.

(hereafter electricity sales), for illustration purposes (Figs. 1 and
2). Results for all 18 quantities can be found in SI Appendix.

Error Metric and Transformation for Price Quantities. All forecast
evaluation scores are computed on the basis of the deviations
of the forecasts ŷ from historical values y , referred to as error.
We found it useful to work with the percentage error, or rela-
tive error, εrel = ŷ−y

y
= ŷ

y
−1. Percentage errors allow us to com-

pare different quantities and they are independent of changes
in the currency value. We can conduct the analysis in a similar
way with absolute errors. Since the error distributions of price
quantities are asymmetric, as prices are typically log-normally
distributed (43), we modify the error for price quantities. Draw-
ing an analogy to logarithmic returns, a concept from financial
theory, we modify εrel to yield the logarithmic error εlog = ln(1+

εrel)= ln
(

ŷ
y

)
= ln ŷ− ln y . For prices we compute the compar-

ative statistics and additional transformations, such as centering
of the PDF, in εlog (SI Appendix).

The structure of the relative errors as a function of forecast
year and forecast horizon is shown in Fig. 3. The horizon H
refers to the number of time steps, or years, into the future that
the forecast is made. Uncertainty increases with H . AEO pro-
jections reflect uncertainty in past values; e.g., for AEO 2016 we
therefore refer to 2015 as H =0 and 2016 as H =1.

Retrospective Analysis Can Inform Density Forecasts. We illustrate
examples of the four probabilistic forecasting methods listed in
Table 1. Figs. 1 and 2 compare the nonparametric methods to the
methods that performed better for the two example quantities,
that is, the two Gaussian predictions.

A nonparametric distribution of the errors (NP1) results in the
EPI shown in Fig. 1A. Here the median of the errors is not exactly
zero, which is often referred to as bias. We see that this results
in a second point forecast or a best estimate forecast that is not
equal to the reference case scenario. If we can assume that the
forecasting errors are stationary, then past and future errors fol-
low the same PDF, and this bias should yield a better point fore-
cast than the reference case. However, we found this is not the
case for most quantities.

Modifying the nonparametric distribution in such way that it
places the greatest weight on the AEO reference case projection
is one approach to combat this problem (NP2). This centered
EPI for electricity sales is shown in Fig. 2A. In the percentage-
error space, we center by subtracting the median error mrel from
all errors in the distribution εrel,ctr = εrel − mrel . For the price
quantities, we transform the distribution in log-error space. We

define the log median mlog = median(εlog) = ln(1 +mrel). The
centered log errors are then εlog,ctr = εlog −mlog = ln

(
1+εrel
1+mrel

)
(SI Appendix).

These two nonparametric estimations are compared with two
parametric distributions, Gaussians with a mean of zero and
the variance of the errors (G1) (Fig. 2B) and with the variance
of historical values (G2) (Fig. 1B). When modeling normality,
we implicitly make assumptions about the nature of the errors.
Extreme errors, which can have large consequences for decision
making, occur frequently in energy forecasting (14). A Gaussian
PDF may not do an adequate job of representing heavier tails
and might underestimate the probability of extreme events. How-
ever, a parametric distribution will generate longer tails than a
nonparametric error PDF. Regarding usability, the simplicity of
a two-parameter specification prevails over nonparametric distri-
butions. A discussion of normality and correlation in the errors
is provided in SI Appendix.

Past Bias in the AEO Does Not Predict Future Bias. Recently, elec-
tricity sales have been flat. Can a forecast be better than a con-
stant prediction using the last observation, i.e., persistence? We
can assess the point forecasting skill of the AEO reference case
projections by comparing them with benchmark forecasts such
as persistence or simple linear regression. To compare differ-
ent point forecasts, we evaluate the MAPE and the MALE for
prices. MAPE and MALE are defined as the sum over the abso-
lute value of all observed errors for a given horizon (Materials
and Methods). A larger MAPE/MALE indicates that the forecast
has performed worse over the test range 2003–2014 (Fig. 4).

We find that persistence performed surprisingly well over the
test range of the last decade, outperforming the AEO for 10 of
the 18 quantities. This is due to the fact that the recent decade
has seen trend changes that are conducive to persistence fore-
casts. If the length of the fitted window is optimized for the test
range, a simple linear regression significantly outperforms the ref-
erence case for eight quantities with 95% confidence. Point fore-
cast comparison of the AEO reference case with the median of
the errors reveals that correcting for the bias is not a good strategy
in most cases. The AEO reference case was a better point fore-
cast than the bias for most of the quantities over the test range,
except for coal production and residential energy consumption.
We therefore anticipate that centering the nonparametric uncer-
tainty (NP2) is advised for most quantities except those.

Gaussian Density Forecasts Often Perform Well. Scoring rules, or
scores, provide a means for comparing the performance of differ-
ent probabilistic forecasts. We use the CRPS, which is a strictly
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Fig. 3. Forecast errors by AEO release year. Different colors correspond to
forecast horizons ranging from H = 0 in black to H = 21 in purple. All
forecast errors are untransformed. Note the different scale. No AEO was
released for 1988.
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Fig. 4. The mean absolute percentage or log error (MAPE/MALE) for the
test range 2003–2014. We see that for natural gas prices (in nominal dollars),
the median of NP1 performs similarly to the AEO reference case. For electric-
ity sales, the reference case outperforms the median for nearly every hori-
zon. For the test range, a persistence forecast has clearly been the best fore-
cast for electricity sales, which have recently experienced near zero growth.

proper score in this case (31). It assigns value not only to the pre-
dicted probability of an observation but also to the distance of
a predicted probability mass from an observation. It is therefore
relatively robust to specific functional forms of the density fore-
casts (30) and allows for comparison with point and ensemble
forecasts (31, 32) (Materials and Methods).

The results of the average CRPS over the test range for each
horizon in units of relative or log error are illustrated in Fig. 5.
A standalone value of the CRPS is not meaningful; it serves to
provide a comparison between different methods. As the CRPS
reduces to the MAPE/MALE for a point forecast, it is informa-
tive to compare the results to the MAPE/MALE of the AEO
reference case. In Fig. 5, we find that the scenarios (S) only
marginally improve the prediction with respect to the point fore-
cast. In addition, we see that for the natural gas price, NP1 is
larger than the MALE due to poor point forecast performance
of the EPI’s median.

To find the best density prediction method, we normalize the
CRPS of each method by the CRPS of the scenario ensemble (S)
for every horizon (Fig. 6). For every quantity, we then average
over a core range of horizons H = 2 to H = 9 and rank these
aggregated scores. The method with the lowest average rank is
considered the best density over the test range for a given quan-
tity. We find that the results barely change if more horizons, mod-
ifications to the test range, or an alternative ranking method are
considered (SI Appendix).

The ranking of all quantities shows that the two Gaussian
methods perform well for most quantities (Fig. 7). G1 counts as
the best method for 9 of the 18 quantities and G2 for 3 quanti-
ties. The performance of G2 is, however, often similar to that of
G1 and it is second best for 8 quantities. The fact that these para-
metric methods performed well over the test range is convenient,
because there are standard ways to use a normal distribution as
a model input. Besides these parametric methods, also NP2 per-
formed well. As expected, in the two cases of coal production
and residential energy consumption, including the bias with NP1

seemed the best approach over the test range. In the following
section, we analyze whether the empirical methods performed
significantly better than uncertainty estimates based on the
scenarios.

AEO Scenario Ranges Are Narrower Than Observed Uncertainties.
Every AEO includes a number of scenarios, intended as sen-
sitivity studies on the reference case under a small number of
varied input assumptions. No value is assigned to the probabil-
ity that a future outcome will lie within the scenario range. The
CRPS allows for comparison of a density forecast with an ensem-

ble forecast. It assigns every discrete scenario an equal point
probability mass (S). Because of the varying number of scenar-
ios in the AEO, we make a simplification and consider only the
reference case and the high- and low-envelope scenarios, which
do not correspond to a specific scenario in the AEO (Materials
and Methods). In addition, we discuss a Gaussian distribution
(SP1) and a uniform distribution (SP2) based on the envelope
scenarios.

The CRPS scores normalized by the score of S are shown in
Fig. 6. Fig. 6 also includes the scores for the sensitivity cases
SP1 and SP2. A normalized CRPS of an empirical method that
is <1.0 indicates an improvement over uncertainties based on
the scenarios (S). We can find at least one density forecasting
method for every quantity, which on average over the core hori-
zons performed better than the scenarios. In addition, we con-
duct a hypothesis test if we can reject that either S or SP1 was
the better probabilistic forecast over the test range. We find that
the best-ranked empirical method for a respective quantity was
significantly better than both S and SP1 with 95% confidence. In
fact, NP2, G1, and G2 all show significant improvements (Fig. 7).
These results are likely due to the fact that over the test range on
average the scenario range of all AEO quantities covered only
14% of the actual values (SI Appendix). The width between the
highest and the lowest scenario, however, changes greatly from
one AEO to another and is somewhat correlated to the number
of scenarios published.

Discussion and Conclusion
This analysis showed that empirical density prediction methods,
based on forecasting errors or historical deviations, provide valu-
able approaches for including an estimate of uncertainty with
a forecast. There are empirical methods available for estimat-
ing the uncertainty around the AEO reference case, which have
proved to be significantly more accurate over the past decade
than the scenarios of the AEO. We find that a Gaussian distribu-
tion based on past errors (G1) offers a method with convincing
ease of use and good performance over the different quantities
(Fig. 7). We therefore recommend that the EIA and others pro-
ducing energy forecasts include the SD of forecast errors in their
retrospective reports. We supply the values for AEO 2016 in SI
Appendix. A nonparametric distribution of the observed forecast
errors was the better density forecast only in a few cases, con-
firming that focusing on representing the exact error distribu-
tion does not need to provide the better out-of-sample forecast.
Point forecast evaluation illuminated that EIA’s forecast bias is
in most cases not consistent and that using a bias-corrected ref-
erence case does typically not lead to the better forecast.

As both the forecasting process and the energy system can be
nonstationary, there is no way to be sure that our results will be
applicable to future data. However, the way we evaluated and
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Fig. 5. The CRPS for the test range 2003–2014. A lower CRPS corresponds
to a better density or ensemble forecast.
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Fig. 6. Relative improvement of the methods with respect to the enve-
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corresponds to a better density forecast. SP1 corresponds to a normal distri-
bution with the scenario range as 1 SD, and SP2 is a uniform PDF between
the envelope scenarios.

chose a method is a robust procedure. Hence, in the absence
of other insights we recommend using one of the Gaussian
distributions.

Despite the advantages of probabilistic forecasts, scenarios
convey important information about the workings of energy pre-
dictions and allow users to better understand and compare the
assumptions. We emphasize that the combined use of a density
forecast and scenarios would be a fruitful approach to describe
the uncertainty of a forecast. Empirical density forecasts are eas-
ily reproducible, but other probabilistic methods such as a quan-
tile forecasting could also advance energy projections.

Materials and Methods
See SI Appendix for a detailed description of the materials and meth-
ods used.

Data. The dataset consists of AEOs 1982–2016 and historical values from
1985 to 2015. Historical data were taken from the EIA Retrospective Review
(40) and the AEOs (39), and conversions were applied where necessary.
All data are publicly available on the EIA website. Refer to SI Appendix:
Data Description for more detail. The data analysis was performed
in R (44).

List of Methods.
Point forecasting methods.

AEO reference case. We treat the AEO reference case as a point fore-
cast. The reference case is a projection of the current state of laws and
regulations and does not represent a best estimate forecast. Also the EIA
chooses the reference case as a best estimate when determining projection
errors (40).

Median errors (NP1). The median of the EPI with a nonparametric distri-
bution of the errors (NP1) is computed as the reference case adjusted by the
median of past forecasting errors.

Persistence. Persistence refers to a constant forecast equal to the last
observation. Here, we use the forecasted value at H = 0 as the last observa-
tion, since on the AEO release date this is the closest approximation to the
actual value.

Simple linear model. This benchmark is a simple linear regression with
time as the predictor. The quantity is regressed over a moving window of
the last seven historical observations. This size of window is the optimum
for the test range.
Density forecasting methods.

NP1. This method is an EPI with a nonparametric distribution of the fore-
casting errors and a median different from the reference case. This method
was originally published by ref. 33.

NP2. This method is an EPI with a nonparametric error distribution, which
is centered such that the median and ε= 0 align. This results in the AEO
reference case being the best estimate forecast.

G1. This method is a Gaussian distribution with the SD of the past errors
and a mean and median of ε= 0.

G2. This method is a Gaussian distribution with a SD based on a sample of
all relative deviations between two historical data points which are H steps
apart. Mean and median are ε= 0.

S. This ensemble forecast consists of the reference case and the highest
and lowest scenario projections in every year. These correspond to the enve-
lope of all scenarios by using only the highest and lowest projected values.

SP. Two parametric density predictions are based on the envelope sce-
narios in the AEO. We chose a Gaussian distribution with the distance to
the farthest scenario as 1 SD (SP1) and a uniform distribution between the
envelope scenarios (SP2).

MAPE. The MAPE is a measure for point forecast performance. This becomes
the MALE in the case of price forecasts with log errors. They are defined as

MAPEH =
1

nH

nH∑
t=1

|ξrel,H,t| =
1

nH

nH∑
t=1

∣∣∣∣ ŷH,t − yH,t

yH,t

∣∣∣∣ , [1]

and MALEH = 1
nH

∑nH
t=1 |ln ŷH, t − ln yH, t|, where there are nH errors for

a particular horizon H. ŷ refers to the forecast, while y is the actual
observation.

CRPS. The CPRS for every horizon, as we use it in this paper, is defined as

CRPSH(F, ε) =
1

nH

nH∑
t=1

∫ ∞
−∞

(Ft(εt)− I(εt ≥ ξt))
2dεt [2]

similar to ref. 31. εt is a point of the predictive error distribution, while
ξt is the forecast error of the observation. The CRPS compares the cumu-
lative distribution function (CDF) of the density forecast with the CDF
of an observation, a step function I(εt ≥ ξt). We compute the score in
the respective error metric. The CRPS for a nonparametric CDF is com-
puted like the CRPS for an ensemble forecast of discrete scenarios (32). For
ensemble forecasts, the CRPS can also be written as CRPSH(F, ε) = 1

nH

∑nH
t=1[

EF |εt − ξt| − 1
2 EF
∣∣εt − ε′t

∣∣] (31). In our case, the CRPSH reduces to the
MAPEH for a point forecast. In this case we have a single εt = 0, result-
ing in EF |εt − ξt| = |ξt| and EF

∣∣εt − ε′t
∣∣ = 0. The CRPS is a strictly proper

score here (31), which means that the expected score is maximized if the
observation is drawn from the predictive distribution and this maximum is
unique. The CRPS has different scales for different quantities or error mea-
sures, which is why we normalize the CRPSH by the CRPSS, H of the scenario
ensemble.

Improvement Testing. We perform a bootstrap on the single CRPS results
in a horizon sample, which then is used to compute the CRPSH and the
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Fig. 7. Graphical summary of the evaluation results. The methods are
ordered by the number of quantities they perform best for (listed in white).
The Gaussian based on errors (G1) performs best or second best for 14 of 18
and showed significant improvement over the scenarios for almost all quan-
tities. Improvement is more likely over S than over SP1. The nonparametric
biased EPI (NP1) performs worse than the nonparametric centered EPI (NP2)
and the Gaussian based on historical deviations (G2).
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aggregated CRPS average for the ranking. For each of the four methods,
we determine the portion of resampled results that indicates that S or SP1

is the better forecast. If this portion is smaller than 0.05, we speak of the
method as being a significant improvement over the scenarios.

Sensitivity Analysis On the Ranking Results. To test the sensitivity of the rank-
ing, we varied the default assumptions. Instead of first averaging the nor-
malized CRPS and then ranking that result, we alternatively first ranked the
CRPSH and then averaged over the horizons. We also averaged over the full
range of horizons H = 1 to H = 12 instead of the core range that included
large H with small sample sizes. In addition, we included AEO 2009 in the
test range. The respective best methods did not change with these vari-

ations. For some quantities, the performances of the best and second-best
methods were very similar to each other. This resulted in a sensitivity regard-
ing a change in the test range for three quantities.
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1. Data Description

All data come from the Annual Energy Outlook [1] and the
Retrospective Review [2] of the U.S. Energy Information Ad-
ministration (EIA). The data set consists of AEO 1982-2016,
with historical, or actual, values for 1985-2015. Historical
values are taken from the EIA’s Retrospective Reviews with
the exception of 2014 and 2015 which are taken from AEO
2016 [1]. Historical values for 2015 are the H = 0 projections
from AEO 2016, which might be updated in the following
AEO. Any missing values are linearly interpolated.

Before 1988, the AEO was released in the end of each
fiscal year and after 1988 in April of the following year. This
renaming decision led to the fact that there is no AEO 1988.
For reasons of simplicity, we will use naming conventions based
on the AEOs released after 1988. Horizons in our data set
range from H = 0 to H = 21. As the collection of historical
data is not complete when the forecasts are issued, AEOs
include estimates of the year before the release and a forecast
of the year of the release. AEO 2000 for example has estimates
for 1999 and 2000. We refer to these estimates as forecast
horizons H = 0 and H = 1 respectively. The number of
forecasting errors for each horizon varies from nH=0···3 = 31 to
nH=21 = 1. As sample sizes are decreasing with larger horizons
and the variance of errors is dependent on the sample size,
we chose a maximum horizon for the analysis of Hmax = 12,
where nH=12 = 19 and nH=13 = 16.

The AEO projections are based on the National Energy
Modeling System (NEMS). The EIA ensures that projections
match across its products. For shorter time horizons (up to two
years ahead), the EIA arranges that the NEMS outputs are
consistent with the forecasts in the Short-Term Energy Outlook
(STEO) [3]. The STEO is based on a different forecasting
system and contains forecasts as opposed to projections. This
does, however, not impact our analysis.

As the AEO projects a large number of quantities, we
restrict ourselves to eighteen select quantities of EIA’s Retro-
spective Review [2]. The quantity names used throughout the
paper correspond to the following AEO naming conventions:

1. Oil Price (nominal dollars): Imported refiner acquisition
cost of crude oil in nominal dollars per barrel; also crude
oil spot prices, crude oil prices, world oil price

2. Oil Price (constant dollars): Imported refiner acquisition
cost of crude oil in constant 2013 dollars per barrel; also
crude oil spot prices, crude oil prices, world oil price

3. Petroleum Cons.: Total petroleum consumption in million
barrels per day; also liquid fuels: primary supply, product
supplied: total product supplied, liquid fuel consump-
tion: total, refined petroleum products supplied: total,
petroleum product supplied

4. Oil Production: Domestic crude oil production in million
barrels per day; also liquid fuels: crude oil: domestic
production, domestic crude production, production: crude
oil, petroleum production: crude oil

5. Natural Gas Price (nom.): Natural gas wellhead prices in
nominal dollars per thousand cubic feet; also Henry Hub
spot price, average lower 48 wellhead price

6. Natural Gas Price (const.): Natural gas wellhead prices
in constant 2013 dollars per thousand cubic feet; also
Henry Hub spot price, average lower 48 wellhead price

7. Natural Gas Consumption: Total natural gas consumption
in trillion cubic feet; also natural gas: use by sector: total,
consumption by sector: total

8. Natural Gas Production: Natural gas production in trillion
cubic feet; also dry gas production

9. Coal Price (nom.): Coal prices to electric generating
plants in nominal dollars per million Btu; also delivered
prices: electric power

10. Coal Price (const.): Coal prices to electric generating
plants in constant 2013 dollars per million Btu; also de-
livered prices: electric power

11. Coal Consumption: Total coal consumption in million
short tons; also coal supply: use by sector: total, con-
sumption by sector: total, total consumption

12. Coal Production: Coal production in million short tons,
this includes waste coal supplied; also production: total
and waste coal supplied, production: total, coal produc-
tion

13. Electricity Price: Average electricity prices in nominal
cents per kilowatt-hour; also end-use prices: all sectors
average

14. Electricity Sales: Total electricity sales in billion kilowatt-
hours; also electricity sales by sector: total, generation by
fuel type: total electricity sales

15. Total Energy Cons.: Total energy consumption in
quadrillion Btu; also energy use: delivered: all sectors:
total, delivered energy consumption: all sectors: total,
primary energy consumption: total

16. Residential Energy Cons.: Total delivered residential en-
ergy consumption in quadrillion Btu; also energy use:
residential: delivered energy, residential: total

17. Commercial Energy Cons.: Total delivered commercial
energy consumption in quadrillion Btu; also energy use:
commercial: delivered energy, commercial: total

18. Transportation: Total delivered transportation energy
consumption in quadrillion Btu; also energy use: trans-
port: delivered energy, transportation: total

We excluded total delivered industrial energy consumption,
which is a quantity in the Retrospective Review, based on a
change in definition by the EIA which we could not correct
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for. We are able to generate probabilistic forecasts for total
energy related carbon dioxide emissions, but we excluded it
from the final analysis due to the shorter forecasting record.
The EIA only began to publish carbon dioxide emissions in
the AEO 1993.

We analyze each quantity to find the most general approach
to creating and evaluating the probabilistic forecasts. We use
two of the quantities for illustration purposes in the main ar-
ticle: As prices exhibit a larger degree of volatility than other
quantities, we chose to include one price forecast and one
other quantity. The natural gas wellhead price in nominal
dollars per 1000 cubic ft. (hereafter natural gas price) is an
important factor for investment decisions. The EIA Retrospec-
tive Reviews [2] note the large differences of natural gas price
projections and historical values. The Retrospective Review
published in 2014 describes that natural gas price predictions
influence gas consumption and electricity price forecasts, and
recently also coal consumption projections [2]. An example
with less volatile historical values are the total electricity
sales in billion kWhs. The EIA points out the large underesti-
mation of electricity sales in the nineties and the effect on the
coal consumption forecasts in its 2008 Retrospective Review
[2].

In Fig. S3 we see the historical actual data and the past
AEO reference case projections for the two quantities selected.
This figure also shows the historical values and forecasts for
coal prices in nominal dollars, which is an outlier quantity
regarding many aspects of the analysis.

Additional data adjustments. Some data required unit or defi-
nition adjustments to be consistent over the entire analyzed
time frame. Typically, these adjustments needed to be made
on reference case and scenario projections alike.

Constant dollar prices were converted to 2013 dollars for the
analysis. In some instances, nominal dollar price projections
needed to be converted using constant dollar price projections
or vice versa by EIA’s inflation rates, which were given in the
AEO reports or inferred from prices that were reported both
in constant and nominal dollars.

Since we analyze oil production and petroleum con-
sumption in million barrels per day, some of the projected
values had to be inferred from values provided in million barrels
per year.

Natural gas prices were initially reported as the average
lower 48 wellhead price in dollars per thousand cubic feet
(AEO 1982-2012). Later AEOs replaced this with Henry Hub
spot prices in dollars per million Btu. We converted million
Btu into thousand cubic feet with the heat content for dry
natural gas reported in the respective AEO. We did not take
data from the most recent Retrospective Review (released in
2015) for natural gas prices, since it lists natural gas prices to
electric generating plants instead of wellhead prices.

We work with coal prices in constant or nominal dollars
per million Btu. While most of the AEOs report coal prices
in these units, some of them in addition include projections in
a mass-based unit of dollars per short ton. AEOs 1983-1993
report coal prices in dollars per short ton. We use approximate
heat contents from the outlooks for conversion. Since heat
contents vary marginally, and we are not provided a factor
for every single forecasted year, we assign the heat content
from the nearest forecasted value, or interpolate if the year
is between two years with given heat content. We added the

waste coal supplied to coal production for the projections
of AEO 2007-2016. Waste coal was listed separately for these
outlooks, while it was included in coal production before. This
is consistent with the Retrospective Reviews, except for a
discrepancy for the AEO 2013. We chose to use the values
directly from in the AEO in this case.

AEO scenario data. Scenario values were taken from the AEO
reports. To compute the envelope scenarios, we found the
maximum and minimum of all scenarios in every forecasted
year and assigned those to what we called high and low scenar-
ios. These resulting envelope scenarios do not correspond to a
single projection of the AEO. The scenarios do not include the
early release reference cases, but for AEO 2016 we included
the "reference case without Clean Power Plan".

The AEO 2009 has been updated after it was published. We
work with this updated reference case to find the forecasting
errors. The scenarios however have not been updated. This
results in a general mismatch between the scenarios and the
reference case for AEO 2009, which is why we left it out of
the test set.

2. Error metrics

It is common to refer to the deviation of the forecast from the
actual value as error. The EIA for example uses this term in
its Retrospective Reviews [2]. We work with the relative error
for most quantities and transform the relative error for the
price quantities into a log-error, which results in a distribution
of price forecast errors that is closer to a normal distribution.
The analysis is conducted entirely in the relative and log-error
metric, but absolute errors could also be used.

Relative errors. We focus on the relative error or percent error
in this analysis, because it enables a comparison between
forecasts of different quantities. This choice of error however
comes with the typical scaling issues of the percentage metric.
It is defined as εrel = ŷ−y

y
= ŷ

y
− 1, where ŷ refers to the

forecast and y to the actual value, or observation. The relative
errors for all quantities considered in this analysis are displayed
in Fig. S4. This is the full set of error samples, also containing
the horizons we chose to exclude from the analysis because
of their lower sample size. The evolution of the errors over
the AEO release years, shown in this figure, makes it easy
to identify similarities between the quantities. We can for
example see, that electricity price forecast errors look very
similar to those of coal price forecasts. In this figure, a large
vertical spread indicates that those particular AEO years have
resulted in large errors across different horizons. Errors of a
similar magnitude over several AEO release years that give
the impression to be lined up are in most cases from the same
observed value, see for example coal consumption.

We view the forecast densities as a distribution of actual
values y around the AEO reference case forecast ŷ. Also
scenarios are treated in this metric. A scenario in our analysis
is expressed as the percent error of how much the reference
case deviates from that scenario yS , which is in the resulting
relative error metric εS,rel = ŷ−yS

yS
. This means that the errors

of high scenarios correspond to εS ≤ 0 and low scenarios to
εS ≥ 0. The value of an observation in the relative error metric
is computed as ξ = ŷ−yobs

yobs
.

We chose to work with the L1 loss and mean absolute
(percentage) errors instead of the L2 loss. This means we do
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not use the root mean square error (RMSE), which is the
risk function (or the expected value) of the L2 loss. This risk
is minimized by the mean. By squaring the errors, L2 loss
inflates the weight of errors that are larger, which is desired
if attention needs to be paid to outliers in the data. On the
contrary, here we wish to find an estimate of the central point
of the distribution that is robust to outliers, which the mean
is not. The risk function of the L1 loss is instead minimized by
the median. Especially when faced with a skewed distribution,
as it is the case for many of the error distributions in our
analysis, the median is a better estimator of central tendency
because it is less affected by outliers. In addition, the CRPS
reduces to the absolute error (the relative or log error in our
case) for a point forecasts, which makes both these metrics
compatible.

Log-errors. Prices are typically described as log-normally dis-
tributed [4]. In Q-Q-plots of historical AEO price quantities,
we found that the logarithm of the prices follows a normal
distribution closer than the untransformed prices. This sup-
ports the assumption that the prices, even though they are
given as an annual average, are approximately log-normally
distributed. We make the additional assumption that also the
price forecasts follow a log-normal distribution, and introduce
an error transformation.

For the transformation, we draw an analogy to logarithmic
returns, a concept from financial theory. The return is de-
fined as r = future value−present value

present value . If values are log-normally
distributed, the log return ln (1 + r) follows a normal distri-
bution1. To transform the relative errors for prices, we use
very similar arguments where instead of the return we work
with the relative error εrel = ŷ

y
− 1. This results in the log

error εlog = ln (1 + εrel) = ln
(
ŷ
y

)
= ln ŷ − ln y. We compute

all of the comparative statistics in εlog. We termed the mean
absolute log error MALE.

How the loss function changes if the absolute percentage
error APE is transformed into the absolute log error, ALE,
can be seen in Fig. S1. Here, we define the loss as APE or
ALE.
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Fig. S1. Comparison of the two types of errors we work with, with APE on the left and
ALE on the right. Loss is defined as the absolute error in the respective metric.

3. Summary statistics of the error samples

Normality of the error samples. Here we assess if the errors
are normally distributed. Since we use a Gaussian as a para-

1To see this, we start with the definition that if Z = log(X) is normally distributed, X is log
normally distributed. So, if FV ∼ N and PV ∼ N, and noted that log(1 + r) = log(1 +
FV−PV

PV ) = log( FV
PV ) = log(FV) − log(PV) and we know that the sum of normally

distributed variables is again a normally distributed variable, we find that ln (1 + r) ∼ N .

metric density forecast, it is of interest how closely a normal
distribution matches the error samples. In addition, we test if
the log-errors for the prices are normally distributed, which is
the goal of the transformation we apply to price quantities.

We test the assumption that the error samples are nor-
mally distributed. We use the Shapiro-Wilk normality test,
implemented in the R-package stats [5]. The Shapiro-Wilk test
is based on the null hypothesis that the sample is normally
distributed. The test has the highest power for small sample
sizes compared to other tests, even if though the power is fairly
low when the true distribution is a symmetric distribution [6].
In Fig. S5, we show the test results for the error samples for
two different significance levels, 95% and 99%. We see that for
most quantities we cannot reject the null that the errors come
from a normal distribution. However, there are some quan-
tities, which with 95% confidence do not have normal errors.
In particular, petroleum consumption, coal consumption and
total energy consumption exhibit deviations from the normal
distribution.

To test the assumption that we should transform the price
quantities, we also perform the Shapiro-Wilk normality test
on price quantities with transformed errors (Fig. S5). We
see that for almost all price quantities, the log-errors are
more likely to be normally distributed than untransformed
errors. In further analysis not shown here we found that
the log transformation has marginal effect on the production
and consumption quantities or makes them less Gaussian.
Coal price errors are an exception, which for many horizons
are bimodal and therefore clearly not Gaussian, even when
transformed to log errors. Electricity price errors behave
similarly, as electricity prices are correlated to coal prices. How
the distribution is adjusted by the log transformation is shown
with histograms in Fig. S5. We see that for the example of oil
prices, the distribution becomes more Gaussian, whereas the
bimodal distribution of coal price errors is largely unaffected
by the transformation. Coal prices have been overforecasted
for a long period, followed by a period of underforecasting
(Fig. S3). This resulted in the bimodal error distribution. We
also find that changing the confidence level for rejection of
the null hypothesis to 99% allows the error samples of many
quantities to appear Gaussian for almost all horizons, with
the exception of coal prices.

Autocorrelation. We find that autocorrelation of errors is dif-
ferent from quantity to quantity (Fig. S6). It is typically lower
for smaller horizons, larger horizons all show high correlation
that only disappears for long lags. Coal prices and electricity
prices have a large autocorrelation even for forecasts with small
horizons. This matches the pattern that can be observed for
coal prices, where we saw long alternating periods of over and
underforecasting, and therefore the errors are more correlated
(Fig. S3).

In Fig. S4, we can see the autocorrelation reflected in the
pattern of errors. This figure, as described above, shows the
magnitude of the errors over the release year of the AEO that
generated the projection. Where we observe a wave pattern, as
for example for coal prices, we find that errors of larger horizons
are highly correlated from one AEO to another. This pattern
is repeated in electricity prices and transportation energy
consumption. Quantities with less autocorrelated horizon
samples such as residential energy consumption do not exhibit
this pattern. In the case of oil production, we find a relatively

Kaack et al. "Empirical Prediction Intervals Improve Energy Forecasting" 3 of 18



large autocorrelation for small horizons, which can perhaps
be attributed to the recent oil and natural gas boom. The
observed values changed systematically and rapidly, which was
not picked up by many of the recent AEO projections. This is
reflected in the waterfall shape of errors for oil production in
Fig. S4. Since natural gas production errors were historically
larger and more volatile, we do not observe this pattern as
clearly here. The pattern of errors that appear lined up, as
mentioned in the previous section, does not generally indicate
autocorrelation, as this is a result of single outlier observations.

As much as the presence of autocorrelation is a problem
for viewing the error series as a random sample, it does not
impact the validity of comparing the mean CRPS among the
methods. However, for the significance test of improvement
of an empirical method over the scenarios, we use the sample
of single observation CRPS as a random sample. Here some
correlation is to be expected and large correlation could pose
a problem. This depends on the autocorrelation of observed
values and the AEO forecasts, as well as the similarity of
forecast densities from one observation to the other. It is
expected to have a similar or lower autocorrelation than the
error time series shown in Fig. S6. For our purpose, we assume
we can view this autocorrelation as negligible.

Grouping the Quantities. In Fig. S7, we plot the standard
deviation of the error samples against the autocorrelation
at a lag of 3yrs for every horizon separately. This allows
us to potentially identify groups of quantities with similar
characteristics. The characteristic form seen in the figure
does not change much for an autocorrelation coefficient of a
different lag. Most apparent is the large variance of errors
of the price quantities. We can identify prices with higher
autocorrelation (coal and electricity) and with lower (oil and
natural gas). This picture emphasizes that the prices form a
distinct group among the quantities. In addition, the standard
deviation of price errors has a large spread for the different
horizons. The electricity price is the most similar to the other
quantities outside this group.

The rest of the quantities has a much lower standard de-
viation, where zooming in on a section of the plot helps to
visualize potential differences. We see that the rest of the
quantities are fairly similar in these characteristics. Oil pro-
duction is somewhat different, in that it has a larger standard
deviation at a lower autocorrelation coefficient.

From this and the previous analysis we can conclude that
treating the price quantities and the other quantities as two
distinct groups, and applying the log transformation only to
price errors, seems a valuable approach.

4. Details on Density Forecasting Methods

We excluded any historically intractable approaches, i.e. meth-
ods, where it is impossible to trace back in retrospect how an
analyst would have estimated the uncertainty at the point of
decision. A common approach that would fall into that cate-
gory would be stakeholder elicitation, where the uncertainty
range is agreed upon by a number of stakeholders’ beliefs
about the future. As there is no means of determining how a
generic group of stakeholders would have decided at a particu-
lar moment in the past, validation and generalization of these
types of uncertainty estimates is virtually impossible.

Secondly, we considered but excluded very arbitrary esti-
mates. This could for example be the heuristic of choosing the
10th and 90th percentile as a ±20% error for the forecast five
years out. While to our anecdotal knowledge this approach
is not uncommon, we chose to exclude it due to the entirely
arbitrary nature and the vast number of heuristics that could
be employed (e.g., why use 20% and not 15%).

NP1: Non-parametric density forecasts by retrospective er-
rors. This is a detailed description of the empirical density
prediction method NP1 as introduced in [7]. Methods NP1,
NP2, and G1 are based on the assumption that the past fore-
cast errors are a good estimator for the future forecast errors.
Under this assumption, the distribution of past errors provides
a probabilistic estimate of a future actual value given a point
forecast by the same forecaster [8]. For this EPI (NP1), we
use a non-parametric distribution of the errors.

To respect the fact that forecasting gets more and more
difficult the further we look into the future, we group the
forecast errors by their horizon. For constructing the EPI, we
assume that a future forecast error is sampled from the same
distribution as past errors. In particular, it is the distribution
of all forecast errors with a particular horizon H that deter-
mines the uncertainty of the new forecast H years into the
future. With the error distributions for a number of consecu-
tive horizons, we obtain a measure for the uncertainty for a
time frame H = 1 · · ·Hmax years into the future. Anchoring
the error distribution with ε = 0 on the most recent forecast,
we obtain a density forecast.

When we create the density forecasts, we need to find
the appropriate reconstruction of the predictive density over
future real values. In the relative error metric, the statistics of
the distribution such as quantiles are reconstructed as actual
values y relative to the most recent forecast ŷ. This is εrel =
ŷ
y
− 1⇔ y = ŷ

εrel+1 . When constructing the density forecast
from log-errors, we need to use a different expression than
if we work with εrel. For log-errors, the density forecast is
constructed as

εlog = ln(ŷ)− ln(y) [1]
⇔ ln(y) = ln(ŷ)− εlog

y = exp[ln(ŷ)− εlog]
= ŷe−εlog .

NP2: Transforming the errors for the median-centered EPI.
For method NP2, we center the distribution of errors such
that the median of the distribution coincides with ε = 0. This
prevents the density prediction from creating a second point
forecast when bias is present in historical forecasts, as it is the
case with method NP1. Here, the goal is to give the largest
probability weight to the AEO reference case forecast.

The median-centering is done in percentage points of the
errors. This procedure is not based on physical rationale,
but it turns out to be a reasonable transformation for small
median errors. The centered relative errors are transformed
as ε′rel = εrel −mrel. We write εctr as ε′ for simplicity. The
price forecasts are median-centered in log-errors. Some price
quantities have large median errors. If they would be centered
in a relative error metric, ε′rel < −1 could occur, which is not
defined. The log-error metric prevents that situation from
occurring.
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Centering the error distribution in the log-error metric to
ε′log changes the relative error as follows below. We center
here with the median of the log errors mlog,

ε′log = εlog −mlog [2]
ln (1 + εrel′) = ln (1 + εrel)−mlog

1 + εrel′ = exp(ln (1 + εrel)−mlog)
1 + εrel′ = (1 + εrel)e−mlog

ε′rel = (1 + εrel)e−mlog − 1.

Centering in log-errors retains a crucial property of relative
errors, by ensuring that they are defined on the range−1 < εrel.
This can be seen by

εrel′ = (1 + εrel)e−mlog − 1 [3]
> (1− 1)e−mlog − 1
= −1.

How this change in centering changes the resulting width of
the uncertainty interval for a range of errors −1 < εrel < 7 is
shown in Fig. S2. We see here as well that centering in the
log error space prevents singularities, which can occur when
transforming back to the forecast uncertainty when centering
in the relative error space.
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Fig. S2. Comparison of centering in the two error metrics and the impact on calculating
the final uncertainty. To the left with a large negative median error and to the right with
a large positive median error. We see that the singularity, that occurs when centering
in the relative error space, does not occur for centering in the log error space. Median
errors are in units of relative and log error respectively.

G1: List of standard deviations for all quantities. In Table S1,
we give the standard deviations of the error samples, which
are necessary to implement method G1 for AEO 2016. We
list the standard deviations of the relative errors (or log-errors
for prices) for every horizon H = 0 to H = 12 computed with
AEOs 1982-2016.

G2: Finding the standard deviation of historical values.
Method G2 is a Gaussian uncertainty based on the deviations
in the time series of historical values. We find the standard
deviation by taking a pair of two historical observations, a
horizon H apart, and calculate the relative change of the later
value with respect to the earlier value. This is in analogy to
the relative error. We find all possible pairs over the time
series of historical values for a certain H. The standard de-
viation of this sample then is the standard deviation that is
used to construct the density forecast. For price quantities,
we determine the deviation as a log error and then find the
standard deviation of those log errors. There is no value for

H = 0, since H = 0 not a real forecast horizon. It corresponds
to the error that occurs when in a new AEO the past data
has been updated.

Alternative density forecasting methods. The most straight-
forward integrated approach to obtain a probabilistic forecast
is to propagate the uncertainty of both initial conditions and
model parameters, most commonly achieved using Monte Carlo
simulation. Sensitivity to initial conditions, a feature of many
nonlinear systems, is a particular challenge for example for nu-
merical weather prediction. One solution is ensemble weather
forecasting, whereby a separate scenario is simulated for each
initial condition [9]. These simulation approaches do not
consider model misspecification, where the model structure
is erroneous, and results depend on the modeler’s assump-
tions about the (future) distribution of input parameters. In
the particular case of the AEO projections and the NEMS
model, a report by the National Research Council (1992) [10]
has recommended the use of multiple probabilistic techniques
including Monte Carlo methods and closed-form statistical ap-
proaches. They emphasized the need of having reduced-form
modules available for shorter run times. The implementation
of those methods, however, is considered difficult and might
not be feasible. The EIA more recently published a working
paper about the use of dynamic stochastic general equilibrium
(DSGE) models [11], where the author writes "DSGE models
do explicitly incorporate uncertainty and are predominantly
forward looking. These models use rational expectations,
which imply that consumers are correct on average in forming
their expectations about the future values of variables. DSGE
models cannot be made very large due to the incorporation of
uncertainty, and this limits their usefulness in detailed policy
analysis. Their primary uses to date have been in the research
work at universities and central banks. Some recent progress
has been made in using DSGE models to forecast different
macroeconomic variables, but this is an emerging research
area."

Other probabilistic forecasting methods are generally very
different from the EIA’s current forecasting approach, but
could in principle give guidance to the AEO scenario selection.
Modeling time series data as a stochastic process and methods
related to vector autoregressive (VAR) models are common in
finance and economics [12]. VAR models might be more suit-
able for short-term forecasts in the EIA context [11]. There are
Bayesian methods that allow for probabilistic forecasting such
as Bayesian vector autoregression [13] or Bayesian hierarchical
models [14]. In general, many statistical and machine learning
methods, such as neural networks [15, 16], can generate den-
sity forecasts [17]. When subjective prediction is assessed by
expert elicitation, typically the entire predictive distribution is
elicited [18]. In principal, an expert elicitation protocol could
be modified to quantify the uncertainty around a given point
forecast.

5. Sensitivity of the method ranking

Normalizing the CRPS. We normalize the average CRPS for
every horizon by the average CRPS for every horizon of the
scenario ensemble. This is preferable over normalizing every
single observation first, since this would unnecessarily bias
the result. To illustrate this, we consider a sample of two in-
stances producing the scores for the alternative density forecast

Kaack et al. "Empirical Prediction Intervals Improve Energy Forecasting" 5 of 18



CRPSAlt = {1, 2} and the scenarios CRPSS = {2, 1}. We
would in this case like to have an average normalized score of
CRPSmean,norm = 1. By normalizing for every observation,
we would obtain CRPSmean,norm = mean({ 1

2 , 2}) = 1.25.
However, if we normalize the means, we get CRPSmean,norm =
mean({1, 2})/mean({2, 1}) = 1.

Main ranking method. To find the best density prediction
method for each quantity, we rank the average CRPS after
normalizing it by the average CRPSS of the scenario ensemble.
We refer to the scenario methods with the subscript S. For
every quantity we then average over a core range of horizons
H = 2 to H = 9, and rank these aggregated scores. The
method with the lowest average rank is considered the best
density over the test range for a given quantity.

We chose to exclude H = 0 and H = 1 from the core range
of horizons because for most forecast users only future values
are relevant. The number of observations per horizon in the
test range without AEO 2009 ranges from 11 (H = 0...2) over
5 (H = 9) to 2 (H = 12). We exclude the horizons with a
sample size smaller than 5 from the core range, which then is
H = 2 to H = 9.

Table S2 summarizes the ranking results for every quantity.
It compares the best and second best method of the main
ranking procedure, as well has the best method if we average
over the larger range H = 1 to H = 12, employ an alternative
ranking method detailed in the next section, or change the
test range. We find that the respective best methods do not
change much with this sensitivity analysis. Some quantities are
however very sensitive to changes in the range of observations
since for those quantities two or more methods have very
similar scores. For example for natural gas prices and natural
gas consumption, the best and second best methods switched
after we added the 2015 observation with publication of the
AEO 2016. The update of the 2014 observation in AEO 2016
did not have an effect. Those three quantities are an example
where the difference is very small. We also see sensitivity for
natural gas prices in constant dollars when we remove the first
test AEO 2003. The table also lists how much the average
normalized CRPS of the best method is lower, and therefore
better, than the second method.

Alternative ranking method. To explore the sensitivity of our
results for the best density prediction methods for each quan-
tity, we introduce an alternative ranking method. We rank the
average CRPS results for each forecasting horizon separately.
For every quantity we then average the rank of a method over
H = 0 to H = 9, which results in the final ranking score.
The method with the lowest average rank is considered the
best density forecasting method for a given quantity. This
approach is agnostic about how much the CRPS is improved
by a given method over the other. This is the reason why we
decided not to use this ranking procedure as the default.

We find that that the method rankings do not change much
with the choice of ranking method. The results are listed in
Table S2. The alternative ranking method ranks the second
best method differently to the main ranking method for only
one quantity.

6. Improvement over scenarios

In Fig. S9 we show that we can find a density forecasting
method that has a lower mean CRPS than the scenarios for

all of the quantities. The only partial exception is petroleum
consumption, where that is only true for lower horizons.

Hypothesis test with bootstrap. It is insufficient to know that
the aggregated mean CRPS, which we used to rank the meth-
ods, is smaller than the aggregated mean CRPS for the en-
semble scenarios. Even though a mean might indicate an
improvement, the improvement might come for a small frac-
tion of the analyzed observations.

We use a bootstrap method to test how robust, or signifi-
cant, the indicated improvement is. For each horizon, every
observation generates a single CRPS. We resample these scores
from the CRPS sample, which depending on the horizon can
contain up to 11 elements. We assume complete independence,
which means that we do not resample by observation year or
make other assumptions about correlation. Under the null
hypothesis we assume that the scenarios are the better fore-
cast, i.e. they have the lower aggregated mean CRPS. We test
this for every one of the four empirical methods and for every
quantity. We resample simultaneously the scores of both the
empirical method and the scenario method, which belong to
the same observation. We normalize the new mean CRPS
by the new mean CRPSS for every horizon. Averaged over
the core horizon range, we obtain a new aggregated normal-
ized mean CRPS. We repeat this a thousand times to find
the number of cases where the empirical method could be
qualified as worse than then ensemble scenarios, meaning the
normalized CRPS is larger than 1. We want this proportion
to be smaller than our confidence level of 0.05 to speak of
a significant improvement of the empirical method over the
ensemble scenarios for the test range.

For all of the quantities, the respective best method is
always significantly better than S. Besides performing the
hypothesis test for the best methods, we also compared each
of the single methods to S. We found that most performed
significantly better for all quantities with the exception of NP2
for constant oil prices which was better with a 92% confidence,
and NP1, which only performed significantly better for six of
the eighteen quantities.

We also compared the best methods with the SP1 method
(Gaussian based on scenarios), and found that we can be 95%
confident for almost all of the quantities that we found a
significantly better uncertainty estimation method for the test
range. The only exception is petroleum consumption, where
the best method is only better at 74% confidence.

Further analysis of the scenarios. To understand if the sce-
nario range is too narrow, we measure the coverage probability
of the range between the envelope scenarios. This corresponds
to the percentage of observations that were lower than the
highest and higher than the lowest scenario for test AEO
2003-2014, without AEO 2009 (Fig. S10). We find that the
coverage varies for different quantities and for different hori-
zons, but it is generally very low with an average of 13.7%.
This average is for the core horizon range and all quantities.
Typical prediction intervals are intended to cover for example
one or two standard deviations of a Gaussian distribution,
which correspond to about 68% and 95% respectively.

We note that EIA’s AEO scenarios are not intended to
have a certain coverage probability. They are sensitivity cases
on certain input assumptions. Since only one or very few
assumptions, such as the impact of a particular policy, are
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changed at a time, the side cases typically do not differ as much
from the reference case as they would if several assumptions
were changed simultaneously. If the scenario range would be
used for communicating the uncertainty, several assumptions
would need to be changed simultaneously and probabilities
would need to be attributed. Nevertheless, the EIA writes for
example in its most recent AEO 2017 [1] "EIA addresses the
uncertainty inherent in energy projections by developing side
cases with different assumptions of macroeconomic growth,
world oil prices, technological progress, and energy policies."
In our analysis, we use the SP1 method to account for a wider
uncertainty based on the scenarios. The method uses the
range to the widest envelope scenario (of both low and high)
as one standard deviation to fit a Gaussian distribution with
the reference case as the mean. In this case, the observation
is expected to be within that range only 68% of the times,
which is a lenient interpretation of the scenarios, particularly
considering that the scenario range is often asymmetric.

7. Point forecast comparison

We compare the mean absolute percentage/log error
(MAPE/MALE) of three alternative point forecasts with the
AEO reference case, similar to the CRPS significance test.
Point forecast comparison allows us to understand that even
though in some cases it is better to correct the best estimate
forecast with the bias of the EPI, in most cases the AEO and
therefore a centered error distribution performs better over the
test range AEO 2003-2014 without AEO 2009. We exclude
AEO 2009 to make the results consistent with the density
forecast. In Fig. S8, we show the results for all quantities.
From the fact that the reference case seemed to be the better
forecast than the median of NP1 for all quantities but two, we
could anticipate that NP1 would not create a good empirical
density forecasts. This was a reason to introduce the centering
technique of method NP2.

Point forecast results. The point forecast comparison is de-
signed to compare the median of the error distribution (bias)
to the AEO reference case. In addition, we compare the refer-
ence case to two benchmark forecasts. Persistence is the last
observation, or here the H = 0 forecast. Over the test range it
was better than the reference case for 10 of the 18 quantities.
This surprisingly good result is probably particular to the
recent historical evolution of many quantities. It remains to
be analyzed over other test ranges. Another point forecasting
method is an interpolation of a simple linear regression over a
fixed window. The length of the window has been optimized
for the test range, excluding AEO 2009. We tested a window
of 5 to 10 years and found that a window of 7 years shows
a better forecast for the largest number of quantities, which
is 8. This is based on an optimization both on the data pre
AEO 2016 and the data updated with AEO 2016. The optimal
window range does not change if AEO 2009 is included, but
the simple linear regression generally performs worse.

Significance of Point Forecast Performance. We use a similar
hypothesis test with bootstrap for the point forecast perfor-
mance, as described in the previous section for the density fore-
cast performance. Instead of the normalized CRPS, here we
normalize the MAPE/MALE as MAPEnorm = MAPEmethod

MAPEAEO
.

We test if this quantity is significantly below 1, which would

mean that the alternative method performed better over the
test range than the AEO reference case. As before, we re-
sample the absolute percentage error or log error samples for
every horizon, and then average to get a MAPE/MALE for
every horizon. We then normalize this average and determine
the mean over the core horizon range H = 2 to H = 9. If
less than 5% of the values are > 1, we speak of a significant
improvement of the method over the AEO reference case for
that particular quantity.

8. Analysis omitted in the final paper

To evaluate the calibration of the density forecasts, we also
produced probability integral transform (PIT) values [19]. The
PIT is defined as the value of the predictive CDF that an ob-
servation would have. A fundamental property of this variable
is that it has a standard uniform distribution, if the historical
value is sampled from a distribution that is equal to the density
forecast. To assess if the density forecast is well-calibrated
over all forecasts and all horizons we can determine if the PIT
are sampled from a standard uniform distribution and if they
are independent and identically distributed (iid) [19]. We used
the Kolmogorov-Smirnov test to compare the distribution of
PIT with the standard uniform distribution, and assessed the
autocorrelation of the PIT time series. While this procedure
was a good visual tool to understand the calibration of the
density prediction, it was however not an adequate option
to compare different methods quantitatively. We therefore
discarded this method in favor of the CRPS.

We have also tried uncertainty estimation methods that
weigh the errors depending on their expected relevance for
future errors, considering the non-stationary nature of the
error time series. We considered a nearest neighbor weighting
method and a method that identifies intervals between non-
stationarities and assigns weights accordingly. Those methods,
however, have only in some cases improved method NP1 and
did not perform as expected. We believe that this approach
could be more promising for forecasting problems with more
data.
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Table S1. Standard deviations of the forecast errors from AEO 1982-2016

Quantity H=0 H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8 H=9 H=10 H=11 H=12

Oil Price 0.029 0.227 0.357 0.423 0.530 0.577 0.668 0.754 0.823 0.893 0.965 1.003 0.988
Oil Price (const.) 0.060 0.229 0.352 0.408 0.505 0.545 0.628 0.703 0.754 0.808 0.865 0.893 0.874
Petroleum Cons. 0.009 0.022 0.038 0.053 0.060 0.070 0.079 0.092 0.105 0.120 0.131 0.139 0.144
Oil Production 0.016 0.050 0.086 0.113 0.131 0.136 0.135 0.133 0.125 0.132 0.144 0.160 0.167
Natural Gas Price 0.051 0.219 0.353 0.428 0.534 0.608 0.673 0.717 0.762 0.761 0.794 0.804 0.770
Natural Gas Price (const.) 0.065 0.218 0.348 0.418 0.518 0.586 0.645 0.679 0.712 0.705 0.725 0.730 0.701
Natural Gas Cons. 0.021 0.042 0.062 0.075 0.083 0.096 0.107 0.114 0.116 0.124 0.129 0.127 0.129
Natural Gas Prod. 0.019 0.040 0.061 0.075 0.090 0.104 0.116 0.124 0.127 0.132 0.129 0.126 0.116
Coal Price 0.060 0.076 0.133 0.187 0.246 0.303 0.362 0.421 0.481 0.535 0.585 0.624 0.641
Coal Price (const.) 0.037 0.076 0.125 0.169 0.220 0.268 0.317 0.365 0.410 0.451 0.486 0.514 0.525
Coal Consumption 0.020 0.045 0.062 0.078 0.097 0.123 0.146 0.162 0.174 0.188 0.190 0.197 0.207
Coal Production 0.019 0.039 0.054 0.059 0.068 0.081 0.092 0.102 0.107 0.117 0.116 0.121 0.130
Electricity Price 0.026 0.049 0.085 0.112 0.142 0.167 0.190 0.214 0.240 0.262 0.285 0.304 0.315
Electricity Sales 0.008 0.015 0.023 0.031 0.037 0.044 0.051 0.059 0.068 0.076 0.080 0.086 0.090
Total Energy Cons. 0.008 0.019 0.028 0.034 0.041 0.051 0.060 0.069 0.080 0.091 0.098 0.103 0.108
Residential Energy Cons. 0.025 0.042 0.039 0.038 0.040 0.048 0.056 0.057 0.064 0.073 0.074 0.076 0.078
Commercial Energy Cons. 0.021 0.033 0.042 0.052 0.056 0.059 0.069 0.078 0.087 0.100 0.103 0.109 0.108
Transportation 0.017 0.026 0.038 0.050 0.065 0.080 0.095 0.111 0.127 0.134 0.150 0.162 0.169

SD are given as εrel except for the price quantities, which are given as εlog . These can be used to construct a Gaussian density with quantile y
around a forecast ŷ, which is defined as y = ŷ

εrel+1 or y = ŷe−εlog for relative errors and log errors respectively. Values are subject to change as
historical values are updated or additional AEOs are released.

Table S2. Ranking results and sensitivity analysis for every quantity

Quantity best second best 2ndb.−best
best

with AEO 2009 H = 1 to 12 test AEO 2004-2014 no obs. 2015 alt. ranking

Oil Price (nominal $) G2 G1 0.8% G2 G2 G2 G2 G2
Oil Price (constant $) G2 G1 2.3 % G2 G2 G2 G2 G2
Petroleum Cons. G2 G1 1.8 % G2 G2 G2 G2 G2
Oil Production G1 NP2 4.1 % G1 G1 G1 G1 G1
Natural Gas Price (nom. $) G1 G2 0.8 % G1 G1 G1 G2 G1
Natural Gas Price (const. $) G1 G2 1.0% G1 G1 NP1 G2 G1
Natural Gas Consumption G1 G2 0.2 % G1 G1 G1 G2 G1
Natural Gas Production G1 NP1 2.9 % G1 G1 G1 G1 G1
Coal Price (nom. $) NP2 G1 6.5% NP2 NP2 NP2 NP2 NP2
Coal Price (const. $) NP2 G2 9.0% NP2 NP2 NP2 NP2 NP2
Coal Consumption G1 NP2 0.9% G1 G1 G1 G1 G1
Coal Production NP1 G2 12.7% NP1 NP1 NP1 NP1 NP1
Electricity Price NP2 G1 6.5% NP2 NP2 NP2 NP2 NP2
Electricity Sales G1 G2 2.1% G1 G1 G1 G1 G1
Total Energy Cons. NP2 G2 1.9% NP2 NP2 NP2 NP2 NP2
Residential Energy Cons. NP1 G2 7.2 % NP1 NP1 NP1 NP1 NP1
Commercial Energy Cons. G1 NP2 1.3% G1 G1 G1 G1 G1
Transportation G1 NP2 4.7 % G1 G1 G1 G1 G1

Ranking results and sensitivity. The improvement of the best forecasting method with respect to the second best is measured in percentage
difference of the normalized average CRPS. The best methods from various sensitivity analyses are listed to the right. We vary one assumption at
a time. Deviations from the default ranking results are indicated in blue. The default ranking is performed on AEOs 2003-2014 without AEO 2009,

observations 2002-2015, and over horizons H = 2 to H = 9.
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Fig. S3. The historical values and AEO projections for the example quantities natural gas wellhead prices and total electricity sales, and the outlier case coal prices to electric
generating plants. The black solid line indicates the historical yearly averages as listed in the EIA Retrospective Reviews. The annual projections from the AEOs 1982-2016 are
shown in blue dashed lines. The unusual coal price projection for 1992 in AEO 1993 is not an error in the data.
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Fig. S4. The relative errors in this data set for all quantities. Each color connected with a line corresponds to a horizon, ranging from H = 0 in black to H = 21 in purple. The
price forecast errors are untransformed.
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Fig. S5. The results of the Shapiro-Wilk Normality Test with the original relative errors (A) and the transformed errors for the price quantities (B). Red indicates that the sample
is not normally distributed with a certain confidence, while green corresponds to those samples where the null hypothesis of a normal distribution cannot be rejected. The
underlying larger square corresponds to rejection with confidence α = 0.05, and the smaller to α = 0.01. (C) Two example histograms of untransformed and transformed
errors with Gaussian fit, illustrating how the log error is much more normally distributed than the relative error for oil prices. The transformation has instead little effect on the
bimodal coal prices.
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Fig. S6. The correlograms indicating the autocorrelation in the time series of error samples. Every line shows how the error for a given horizon H is correlated to the error for
the same H from a previous AEO. Results for different horizons are summarized in the same plot for every quantity. The colors range from H = 0 in black to H = 12 in light
turquoise. The α = 0.05 confidence bands for autocorrelation are indicated in dashed blue lines, they vary for different samples sizes. The confidence region is larger for
larger H.
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Fig. S8. The results for the MAPE and MALE for all quantities. This is with the test range AEO 2003-2014, and excluding AEO 2009.
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Fig. S9. Relative improvement of the methods with respect to the highest and lowest scenarios for the test range AEO 2003-2014. Values are plotted as fraction of the CPRS of
the scenario ensemble (S). A value lower than 1.0 corresponds to a better density forecast. SP1 corresponds to a normal distribution with the scenario range as 1 SD, and SP2
is a normalized CRPS of a uniform PDF between the envelope scenarios.
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Scenario Coverage by Quantity
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Fig. S10. The coverage probability of the scenario range over the test range AEO 2003-2014 without AEO 2009. The coverage probability refers to the percentage of observed
values within the range between the envelope scenarios. The average is computed as the average over H = 2 to H = 9 for every quantity (shown in A) and then averaged
over the 18 quantities. The coverage for every horizon averaged over all 18 quantities is shown in (B).
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Fig. S11. Density forecasts with the best method for every quantity based on AEO 2016. The different shades correspond to the percentiles 2, 10, 20, 30, ..., 80, 90, 98. The
prediction interval can be very large, since it estimates that only 4% for a future value will fall outside of this interval. The red dashed line indicates the median if different from
the reference case. The scenario range (in green) changes greatly from one AEO to another and is somewhat correlated to the number of scenarios published, which is why
some AEO scenario ranges might be as wide as the empirical uncertainties. AEO 2016 has a large number of scenarios compared to other AEOs.
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