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Energy storage will play a critical role in providing flexibility to 
future power systems that rely on high penetrations of renew-
able energy1–4. Unlike typical generating resources that have 

long and, essentially, guaranteed lifetimes, electrochemical energy 
storage (EES) suffers from a range of degradation issues that vary 
as a function of EES type and application5,6. Although several 
studies have explored ways to account for the degradation cost in 
investment and operational decisions for applications such as elec-
tric vehicle charging/vehicle to grid7,8, microgrid management9,10, 
energy arbitrage/peak shaving6,11–15, frequency regulation11,14–16, 
multiservice6,11–15 and so on, a comprehensive and rigorous approach 
that optimally valuates and manages EES degradation over differ-
ent decision horizons is still, to our knowledge, undocumented. 
Developing such an approach is imperative to mitigate the risk of 
making operational decisions that greatly deviate from the optimal 
case in terms of profit maximization based on inappropriate consid-
eration for EES degradation. Additionally, the economic valuation 
of EES could be highly inaccurate if the profitability of EES is under-
estimated given these suboptimal operational decisions.

To take advantage of short-term forecasting information with 
reduced uncertainty, energy storage systems need to make short-
term scheduling decisions much like those for traditional gen-
erators. Day-ahead hourly bids may be offered to decentralized 
electricity markets or some short-term scheduling in coordination 
with other resources may be applied in the case of a microgrid17,18. 
Such a framework works well for traditional generators, as they 
have explicit short-term operating costs that are independent from 
past and future scheduling decisions. However, the marginal oper-
ating costs of EES systems are near zero, and, more importantly, 
the unavoidable degradation caused by their usage brings several 
intertemporal requirements for their operation. First, EES owners/
operators need to determine short-term usage rates according to 
different short-term benefit opportunities, so as to maximize the 
benefit per unit of degradation in the long term (life cycle), for 
example, to schedule a deeper cycle when the daily peak–valley  

price difference is larger, and to interrupt operation when the 
price difference is too small. Second, EES operators need to make 
a trade-off between short-term benefits and the value of lost bat-
tery life such that the total life-cycle benefit can be maximized6,14, 
as larger short-term benefits imply higher EES usage rates and, in 
turn, shorter EES functional lifetimes. These trade-offs imply that 
when the benefit opportunity is comparatively low, the EES opera-
tors should limit or hold their operation to minimize degradation 
and wait for a better opportunity. However, because of the calendar 
degradation associated with most common types of EES19,20 (espe-
cially lithium ion), the EES should not always keep waiting for the 
best short-term profit opportunity.

Two common existing methods incorporate EES degradation 
in short-term operational problems: the levelized cost of degra-
dation (LCOD) method and the degradation constraint method. 
The LCOD method implements the amortized capital cost7–9,13,16 
or replacement cost10–12 of EES into EES short-term operational 
decisions as the variable operating cost. The main weakness of 
the LCOD method is that it averages the depreciation cost over a 
long-term window, instead of considering a short-term marginal 
cost per unit of degradation, and implementing long-term average 
cost distorts the economic optimality of short-term schedules. In 
the degradation constraint method, constraints are set on the short-
term usage of EES to limit degradation6. This method usually fails 
to determine reasonably the value of the degradation limit and how 
it should vary across time. Mathematically, the optimization models 
of LCOD and degradation constraint methods can be transformed 
into each other equivalently21. Some other studies did attempt to 
develop models that optimize a life-cycle objective to manage short-
term EES usage14,15. However, assumptions that are oversimplified14 
(Supplementary Note 1) or without legitimate economic sense15 
are made on the objectives, and the time preference of EES own-
ers on revenues earned over different periods are not addressed 
appropriately. Although the aforementioned studies are imperfect 
in some respects, they did contribute to EES degradation modelling 
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and proved that to consider degradation is critical as it remarkably 
affects the decisions and the economic benefits of EES, in contrast 
to some related studies that did not consider degradation at all22–24.

In this work, we develop an intertemporal (integrated from short- 
to long-term timescales) framework that incorporates incremental 
EES degradation in both operating and planning problems and is gen-
erally applicable to most EES applications and chemistries that exhibit 
degradation as a function of use or time. We propose two metrics for 
operating and planning, namely the marginal benefit of usage (MBU) 
and the average benefit of usage (ABU). For operating decisions, we 
present how MBU should be determined and implemented through 
short- to long-term timescales to maximize the total life-cycle benefit 
of EES within the life-cycle degradation limit. Specifically, the MBU 
brings long-term information to short-term decisions and is proved 
to guarantee that the life-cycle benefit is maximized when short-term 
decisions are made. For planning and valuation, we present how ABU 
can be utilized to assess the economics of different EES applications 
and to estimate the required subsidies to make EES economically 
viable. Through case studies, we demonstrate the effectiveness of our 
framework and its favourable performance compared to the com-
mon LCOD method. Our framework aims to facilitate EES owners to 
make better operational decisions with higher total life-cycle benefits, 
and help investors and policymakers assess the values of EES more 
accurately in investment and policy decisions.

the existing LCOD method
The LCOD method is the most commonly used method to monetize 
the EES degradation cost in short-term scheduling. It assumes an 
amortized proportion of initial capital cost7–9,13,16 or future replace-
ment cost10–12 to represent the degradation cost, and that any degra-
dation in the short term will incur a degradation cost proportional 
to the amount of degradation (equation (1) along with an example 
in Methods).

There are three drawbacks to the LCOD method. First, using the 
average capital/replacement cost per unit of usage/degradation to 
determine the short-term marginal cost is counterintuitive in eco-
nomics (average cost and marginal cost are different conceptually25 
and, usually, numerically), and will almost certainly deviate from 
the optimal decision in terms of benefit maximization.

Second, decisions based on any ‘sunk’ (decided and incurred) cost, 
which cannot be recovered practically, are suboptimal. The LCOD 
derived from the capital cost is not only an average cost but also a 
sunk one, and should, thus, not affect any operational decisions. The 
future replacement cost that will not occur during the operational 
decision horizon, moreover, should not affect the operational deci-
sions of the current EES system if the revenue streams of the cur-
rent system are independent of the potential new EES system. This is 
because the objective of operational decisions should be to maximize 
the total benefits over the life cycle of the current system, whereas the 
future replacement decision is another planning problem.

Third, it does not reflect the time preference of the EES owner 
on benefits earned in different scheduling periods using the time-
invariant LCOD as the marginal cost per unit of degradation. It is 
preferable to earn the same amount of money sooner than later, and, 
therefore, if the total available system energy throughput before the 
EES life ends is fixed, it is desirable to utilize the EES sooner than 
later. With a marginal operational cost invariant over the EES life, 
however, the operational decision criteria—characterized by set-
ting the marginal revenues equal to the marginal operational cost to 
maximize benefit—do not change over time. Hence, there is no time 
preference in EES utilization in the LCOD method.

An intertemporal decision framework
The cost associated with degradation is literally an opportunity cost 
that results from the loss of future benefit opportunities. Based on 
classic intertemporal choice theory in microeconomics25, we propose 

an intertemporal decision framework, which, first, coordinates short-
term, mid-term and long-term EES scheduling to optimize the life-
cycle benefit considering EES degradation, and, second, uses the 
estimated operational revenue to facilitate investment and subsidy 
decisions at the planning stage (Fig. 1). For simplicity, we assume that 
the EES earns benefits from electricity markets and is a price taker, 
which implies that the actions of the EES have little impact on the 
market prices. The benefits of EES can also include generation-cost 
saving, social welfare, risk premium and so on, and also the bidding 
strategy of EES can affect market prices when implementing the pro-
posed framework. The optimality proof of the framework in terms of 
life-cycle benefit and detailed formulations are presented in Methods.

In the short term, typically the day-ahead horizon, the EES oper-
ator determines the optimal short-term outputs and bids accord-
ingly in various markets to maximize the short-term/daily benefits, 
based on the discounted MBU (DMBU) determined in the mid term 
and the forecasted short-term market prices, as shown in Fig. 1a.  
The DMBU determines the marginal benefit per unit of usage for 
the optimal EES scheduling strategy, and thus plays the role of 
short-term marginal cost, but it is independent of the capital or 
replacement cost.

For the mid term, typically a time frame between a month and 
a year, the EES operator calculates the DMBU as the product of a 
discounting factor and the life-cycle MBU, which is determined in 
the long term.

For the long term, the EES operator determines the optimal life-
cycle MBU to maximize the life-cycle benefit, which is the sum of 
the discounted short-/mid-term benefits in each year, subject to 
EES degradation constraints over the EES life.

For the planning stage, dividing both the life-cycle revenue and 
the initial capital cost by the life-cycle energy throughput defines 
the ABU and the average cost of degradation (ACD), respectively. 
Investment and replacement decisions and subsidy policies can be 
informed by comparing the ABU with the ACD.

When practicing the framework, the planning, long-term and 
short-term decisions should be made sequentially. Investors should 
first decide whether to invest on and construct an EES system based 
on cost–benefit analysis. After the EES is constructed, the opera-
tional decisions begin. The EES operator should first determine 
the long-term optimal life-cycle MBU, and then update the DMBU. 
Last, the EES outputs for each short-term scheduling periods should 
be determined.

The preceding decisions require the simulations of later deci-
sions. Therefore, the simulation order is inverse to the decision 
order. To make a long-term decision (determining the life-cycle 
MBU), the EES operator should simulate short-term operation for 
all the values of MBU in a reasonable set based on future price pro-
jections and aggregate the maximum short-/mid-term benefits of 
each period to compute the life-cycle benefit, as shown in Fig. 1b. 
These short-/mid-term benefits do not have to be equal to the actual 
benefits earned in each period—they are just simulated values that 
reflect the expected future benefit opportunities to facilitate long-
term decisions. After the optimal life-cycle MBU and correspond-
ing maximum life-cycle benefit are determined, the ABU can be 
calculated, and the planning decision can be made.

The major assumption in this framework is that EES degrada-
tion is a Markov process throughout its lifetime—the degradation 
incurred during a certain period only depends on the state of EES at 
the beginning of the period and the operational decisions made in 
this period—which implies that we can linearly aggregate the deg-
radations over different periods to compute the total degradation. 
This assumption is generally valid in electrochemistry and is also 
adopted in other methods used to consider EES degradation, for 
example, the LCOD method.

The required information in the framework includes the short-
term price forecasts over the EES life. At present, perfect price 
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forecasts are impossible in any markets, and imperfect forecasts inev-
itably cause errors on the revenue estimation results presented in this 
paper. We have not conducted price forecasts to ascertain quantita-
tively the effect, as it is beyond the focus of this paper. The forecast-
ing error, however, only affects our method by the mean forecasting 
error; this can, in turn, be relatively small, depending on the fore-
casting tool26,27. The projected life-cycle revenue and corresponding 
MBU will change as our expectations on the future electricity market 
prices change—similar to the fluctuations of stock market values. 
Our framework aims to produce the optimal decisions in terms of 
the maximization of life-cycle benefit under both degradation esti-
mation and price forecasting uncertainties. In Supplementary Note 
2, we prove that price uncertainty has little effect on the compara-
tive advantage of our proposed framework over existing methods in 
terms of the maximization of the expected life-cycle revenue.

Application of energy arbitrage
A power system with a high solar penetration creates significant 
arbitrage opportunities for EES systems, characterized by pilot and 

scaled installations in California and South Australia28. The EES 
charges/buys energy when the sun shines and load demand is low, 
and then it discharges and sells energy when the sun goes down. 
Here we examine our MBU method and compare it with the LCOD 
method in an energy-arbitrage application.

We optimize the operating strategies and calculate the market 
revenues of a lithium-ion EES system in California that is rated at 
50 MW/200 MWh. We use energy throughput (charging plus discharg-
ing) in megawatt hours as the measure of EES utilization and degrada-
tion, converted into full-cycle equivalent (Methods, equation (16)). 
The more energy throughput the EES processes, the more degradation 
the EES goes through29–32. As the degradation mechanism is complex 
and stochastic, there is uncertainty in the degradation estimation. To 
analyse the impact of this uncertainty, we evaluate three cases with 
zero, positive and negative degradation estimation biases. We use day-
ahead energy market prices of 2016 from the California Independent 
System Operator (CAISO) as representative price scenarios.

Figure 2 depicts how the revenues and degradations of the 
EES vary with the MBU, from the long-term perspective, and 
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how the optimal life-cycle MBU is determined as the long-term 
decision. In the case of no degradation estimation bias (the esti-
mation error mean is zero), the life-cycle revenue reaches the maxi-
mum, US$8.3 million, at a MBU of US$5 per MWh throughput 
(US$5 MWh throughput–1), as shown in Fig. 2a. This implies that, 
in the real operation, we should set the short-term marginal revenue 
per unit degradation (energy throughput) in the first year at approx-
imately US$5 MWh throughput–1 and adjust it by a discounting 
factor in the following years to achieve the maximum life-cycle rev-
enue. As the life-cycle MBU increases, we utilize the EES less every 
year, so the total revenue in a single year decreases and the annual 
degradation also decreases, as shown in Fig. 2b, which indicates that 
the EES life increases. In this sense, varying MBU reflects a trade-off 
between short-term benefits and the EES lifetime. In some circum-
stances, for example, when the peak–valley price difference is small, 
the EES should save its life and wait for a better benefit opportunity, 
whereas in some cases its capacity should be utilized fully to capture 
the opportunity. The criterion to identify benefit opportunity is the 
long-term optimized and discounted MBU.

The unit-capacity capital cost of the lithium-ion EES system 
could range from US$200 kWh–1 to US$300 kWh–1 at the utility 
level, according to future price projections33,34. Assuming also that 
degradation is uniformly allocated throughout its 15-year lifetime 
and that the ratio of total depreciation to capital cost is 30% (equal 
to the capacity loss at the end of the EES lifetime), then the EES 

LCOD ranges between US$17 and US$25 MWh throughput–1. If we 
use this range as the marginal degradation cost to make EES opera-
tional decisions, however, the life-cycle revenue will be no more than 
US$1.9 million, barely 23% of the maximum (Fig. 2a). The signifi-
cant revenue loss is because the LCOD method does not maximize 
the life-cycle revenue. Instead, it requires the EES to operate only 
when the potential marginal benefit is high enough to compensate 
fully for the average unit degradation cost, and to halt operation 
and wait for a better benefit opportunity otherwise, ignoring that 
the EES has a calendar life—you cannot wait for a great opportunity 
indefinitely, for example, a century from now.

Setting the MBU to 0—no constraint for degradation/usage—is 
equivalent to not considering EES degradation in short-term opera-
tional decisions. Besides the remarkable revenue loss in this case 
of not considering degradation compared to the MBU method, we 
can also see from Fig. 2a that the life-cycle revenues produced by 
the LCOD method are even lower, which implies that a problematic 
modelling of degradation can be worse than doing nothing.

If the degradation estimator is biased, which means the estima-
tion error has a positive/negative mean, then the life-cycle revenues 
and corresponding life-cycle MBUs produced by the MBU method 
are as shown by the yellow and blue triangles in Fig. 2a. The life-
cycle MBUs we choose will deviate a bit from the optimal because 
of our estimation bias. If the bias is positive, the EES will degrade 
slower than we expect, so the estimated life-cycle revenue will be 
lower than the actual (lower dashed line in Fig. 2a), and vice versa. 
We can see that there are negative impacts on the life-cycle revenues 
from the biased degradation estimation, but they are very small 
compared to the losses from not considering the degradation or 
from using the LCOD method, even if the bias (estimation error 
mean) is as high as 20% of the true value.

When the MBU increases, there are less qualified benefit oppor-
tunities (which have a marginal benefit higher than the MBU) for 
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year of operation using the MBU method.
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an EES in a year, so the EES operates less frequently. As the short-
term scheduling applies a DMBU, which increases every year, the 
annual degradation and revenues decrease from year 1 to year 11 
(the end of the EES lifetime), as shown in Fig. 3. The time prefer-
ence of the EES owner/operator, which is to utilize the EES and 
earn revenues sooner than later, ignored by the LCOD method, 
is indicated in this outcome of decreasing annual EES utilization  
and revenues.

Figure 4 illustrates the aforementioned time preference by com-
paring the optimal short-term (daily) schedules between year 1 
and year 11. Though the daily prices are assumed to be the same 
for the two years, year 1 earns almost twice the revenues and pro-
cesses more than twice the energy of year 11, because its DMBU is 
much lower. The implication is that the EES should be used more 
frequently (more days in operating status) and intensively (deeper 
cycle) in the early years of its lifetime, and vice versa.
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The ABU in this case is approximately US$7 MWh throughput–1, 
much lower than the lower-bound ACD of US$33 MWh through-
put–1 (US$200 kWh–1 capital cost). This indicates that if there is no 
subsidy and the peak–valley price difference does not increase dra-
matically, EES arbitraging in California will not be an economically 
feasible application. The break-even capital cost is approximately 
US$40 kWh–1, and the minimum required subsidy to make EES 
economically viable in this case is US$26 MWh throughput–1, the 
difference between ACD and ABU.

Application of energy arbitrage and frequency regulation
Combining different applications, if enabled by policy, can enrich 
the value stream of EES and enhance the economic viability substan-
tially3. The proposed decision framework can also be applied read-
ily to such combined applications with multiple revenue streams. 
Here we examine a combined application of energy arbitrage and 
frequency regulation, which is a common type of ancillary service in 
power systems, for the same lithium-ion EES. In addition to energy 
market prices, we use regulation capacity and mileage prices and 
real-time regulation mileages from CAISO in 2016 in the simulation.

The optimal MBU is US$25 MWh throughput–1 for this com-
bined application, as shown in Fig. 5. This optimal MBU is much 
higher than that in the single application of energy arbitrage, 
because the benefit opportunity in the frequency regulation market 
is much greater, despite the market size being comparatively small. 
We should expect every unit of degradation to make more benefit 
through setting a higher MBU. The life-cycle revenue is also greater 
in this case, and with an ABU of US$35 MWh throughput–1, no sub-
sidy is required for the EES to be economically viable. The outcomes 
of the LCOD method are dominated by that of the MBU method, 
with a 12% revenue loss at minimum. The life-cycle revenue loss 
due to the degradation estimation bias (20% of the true value) is also 
comparatively small in this case.

Discussion
A valid decision framework is critical to estimating accurately 
and maximizing the values of EES, and therefore to allowing the 
EES greater potential to play a more significant role in decarbon-
izing energy sector at a limited cost. In this work, we propose an 
intertemporal framework that implements the MBU to coordinate 
EES degradation through short- to long-term timescales. This 
approach achieves the maximum life-cycle revenue of EES given 
valid price projections. Regardless of the EES investment viability 
(that is, whether or not a subsidy policy should be in place), the 
comparison outcomes of both single and combined applications 
indicate that our MBU method substantially outperforms the exist-
ing LCOD method in terms of revenue maximization or subsidy 

minimization. We conclude that it is not optimal to use the sunk 
capital cost or the future replacement cost, both of which are average 
cost rather than marginal cost, to determine short-term operational  
decisions directly.

The framework could be the foundation for decision-making in 
EES operation for all potential applications with either explicit (for 
example, market revenue) or implicit (for example, social welfare) 
benefits. It informs the industry that a marginal value should be 
used as the short-term variable cost to determine EES schedules and 
it provides an effective way to incorporate into scheduling decisions 
the time preference of the EES owner on revenues. As the frame-
work can be applied not only to new EESs, but also to existing EESs 
that have been operating for some years, the projected ABU for the 
remaining lifetime of an EES could be a critical value indicator for 
EES ownership trading.

The framework can identify the true investment attractiveness 
and relative competitiveness of various EES chemistries in diverse 
applications for policymakers and investors, which is also part of 
our ongoing work. The unit usage/degradation metrics, ABU and 
ACD, proposed in the framework provide a different perspective for 
EES technology learning studies, in addition to the commonly used 
unit-capacity metrics33,35.

Based on the analysis made possible by our framework, subsidy 
policy can be designed to compensate the difference in the optimal 
MBUs between the cases that consider environmental externality 
and those that do not. Moreover, the framework can be applied to 
analyse which EES characteristics are the most critical and how to 
make trade-offs among them for certain EES applications to indi-
cate the research and development path.

Methods
LCOD method. Similar to the levelized cost of electricity calculation, the 
degradation cost in the LCOD method is given by equation (1):

∑
γ

δ
= × = ×

d
d

dDC LCOD
CAPEX

(1)t t
t t t

t

where DCt is the degradation cost at time t (US$), dt is the EES degradation during 
time t (MWh throughput or capacity loss (%)), CAPEX is the initial capital cost 
of the EES (US$), γ is the ratio of the total degradation/depreciation cost to the 
total capital cost and δt is the discounting factor for time t. In the case study of this 
paper, the discounting factor takes the form of a typical exponential discounting, 
δt =  (1 +  s)−t, where s is the discount rate. The degradation dt is usually projected  
on an annual timescale assuming a uniform annual degradation rate over the  
EES life cycle.

For example, if the total degradation/depreciation cost of an EES is 
US$1 million, and the EES can do 3,000 full cycles in 15 years, then the short-term 
degradation cost for 1 full cycle of charging and discharging is about US$550, 
given a discount rate of 7%. As such, in this case, the EES owner/operator aims to 
optimize the short-term schedule by comparing the direct and/or indirect benefits 
brought by the full cycle to US$550 in each scheduling period or, put simply, 
assumes that the short-term marginal cost equals US$550 per cycle.

The intuition behind this method is to assume that every unit of degradation 
incurs a corresponding degradation cost, whose present value is equal to a fraction 
of the capital cost. The objective in the short-term scheduling problem is to 
maximize the benefits minus the degradation cost.

MBU method. The objective is to maximize the present value of the EES life-cycle 
benefit as the sum of the present values of all short-term benefits over the EES 
lifetime, subject to degradation constraints, as described in equations (2)–(4):

∑ δ λ= =
≤

dLB max LB max SB ( , ) (2)d d
t T

t t t tmax
t t

∑ ≤
≤

d Dsubject to (3)
t T

t

≥d C (4)t t

where LB represents the life-cycle benefit of EES (US$); SBt is the maximum short-
term benefit at time t (US$) as a function of the EES degradation and market prices 
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Fig. 5 | Life-cycle revenues of a lithium-ion EES for energy arbitrage and 
frequency regulation.
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(or other benefit rates, usually US$ MWh–1 or US$ MW–1) at time t, denoted by 
dt and λt, respectively; the degradation dt could be estimated based on the direct 
usage of EES in energy services, for example, energy arbitrage and/or the expected 
usage in capacity services, such as reserve and frequency regulation; D is the 
degradation (MWh throughput or capacity loss (%)) limit over the EES lifetime or 
the remaining energy throughput for an old EES; T is the length of the EES lifetime 
(year) determined by the EES degradation rates dt and the degradation limit D; Ct is 
the calendar degradation rate at time t (MWh throughput or capacity loss (%) per 
unit of time). Calendar degradation comprises all degradation processes that are 
independent of EES cycling or usage and is dependent on temperature and the state 
of charge (SOC) of the EES20,36–38.

Given price projections λt, the decision variable of the long-term optimization 
model (2)–(4) is dt, the EES degradation at each time t. Equation (2) describes the 
problem objective mentioned earlier. Equation (3) expresses that the total energy 
throughput over the EES life has a limit, determined by some certain end-of-life 
criterion. Equation (4) counts in the calendar degradation of the EES system.

The Lagrangian function of the long-term optimization model (2)–(4) is:

∑ ∑ ∑δ μ αλ= + − + −
≤ ≤ ≤












L d D d d CSB ( , ) ( ) (5)

t T
t t t t

t T
t

t T
t t t

where μ and αt are Lagrangian multipliers. If SBt(dt,λt) is differentiable and concave 
over dt ≥  Ct, then the first-order Karush–Kuhn–Tucker (KKT) conditions are 
equations (3), (4) and (6)–(10):
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From equations (6) and (7), we can observe that if dt >  Ct, which indicates the 
EES is operating at time t, we have:

λ μ
δ

∂
∂

=
d
d

SB ( , )
(11)t t t

t t

We designate μ as the life-cycle MBU (US$ MWh throughput–1), and μ
δt

 as the 
DMBU. In the following we describe the decision procedures in our proposed 
framework, as shown in Fig. 1.

Short-term decision. We determine the charge/discharge schedules of EES given a 
DMBU by solving the optimization model of equation set (12):

μ
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where rt(Pt,λt) is the short-term benefit at time t (US$) as a function of the charge/
discharge schedules at time t (denoted as Pt (MW)) and the market prices; F is 
the feasible operating set of the EES, typically convex, and usually consists of 
the physical operational constraints of the EES. The EES degradation at time t, 
dt, can also be expressed as a function of the charge/discharge schedules Pt. If 
there exists no feasible solution to equation (12), the short-term decision and the 
corresponding degradation and revenue are:

=
=

=
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t

Mid-term update. We calculate DMBU, μ
δt

, given a life-cycle MBU.

Long-term decision. We determine the value of the life-cycle MBU, μ, based on 
price projections by solving the optimization problem described by the equation 
set (14):

∑
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The KKT conditions indicate that as long as λ − μ
δ

r dP P( , ) ( )t t t t tt
 is concave  

(a subgradient method can be applied if this expression is not differentiable), 
we can achieve the maximum life-cycle benefit by following the above decision 
procedures21. rt(Pt,λt) is usually concave, if not linear, whereas dt(Pt) is convex 
when the total cycle number of the EES, NDOD, is a convex function of the depth of 
discharge (DOD):

=N g(DOD) (15)DOD

The function g is usually a power function7,14,17,20,32:

=N N DOD (16)k
DOD 0

where N0 is the total cycle number at 100% DOD and k is a parameter related to the 
EES chemistry. The DOD is determined by the power outputs of the EES, usually in 
a form of linear combinations of the elements of Pt. Therefore, k ≤  − 1 is a sufficient 
optimality condition in terms of EES life-cycle benefit. In the case studies of this 
paper, we set k =  − 1 for the studied lithium-ion EES32. This function is also used to 
convert the energy throughput of partial cycles into the equivalent throughput of 
full cycles.

Both the short-term and long-term decision models are convex in general, 
for which a global optimal solution could be achieved with common solving 
methods or commercial solvers. The MBU brings little additional computational 
complexity to the short-term optimization model, whatever form the model takes 
and algorithm it is solved by. Supplementary Note 3 contains more discussion of 
the computational complexity.

ABU method. The ABU (US$ MWh throughput–1) and the ACD (US$ MWh 
throughput–1) are calculated by equations (17) and (18):

=
D

ABU
LB

(17)max

=
D

ACD CAPEX
(18)

Energy arbitrage. In the application of energy arbitrage, the short-term decision 
problem is described as equation set (19)–(24):
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The objective function, as in equation (19), is the sum of revenues at each hour 
h within the time interval (t,t +  Δ t), minus the fixed operating and maintenance 
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(O&M) costs cfix (US$). Δ h denotes the time interval, which is 1 h in this paper. 
nt,DOD denotes the number of cycles at a certain DOD during (t,t +  Δ t), and is 
determined by the discharging and charging schedules, Ph

dis and Ph
cha (MW). 

Equation (21) estimates the EES degradation based on the cycle numbers at 
each DOD and calendar degradation12,16, where Et

max is the EES energy capacity 
during time t (MWh), and E2 t

max represents the energy throughput of a full cycle, 
which includes both charging and discharging. By assuming the temperature 
and the average SOC of the EES are constant, the calendar degradation rate can 
be regarded as a constant. For energy arbitrage, EES typically takes one or two 
cycles per day, and thus we can estimate the degradation by setting nt,DOD =  1 and 

= ∑ ∈ +Δ
+DOD h t t t

P P
E( , ) 2

h h
t

dis cha
max .

Equation (22) describes the charging/discharging process of the EES as a 
function of its SOC, where Eh is the SOC at hour h (MWh), ρ is the self-discharge 
rate (%) and ηt is the charge/discharge efficiency during time t (%). Equations (23) 
and (24) indicate the physical constraints of the power output and the SOC of the 
EES, where Pt

max is the EES power capacity (MW) during time t. Equations (21)–
(24) form the feasible set F in this application of energy arbitrage.

As described in Fig. 1, the planning decision should be made first by 
comparing the ABU and the ACD calculated by equations (17) and (18), and it 
requires both long-term and short-term simulations that solve equations (14) and 
(19)–(24). Then, the long-term decision is made by solving equations (14) and 
(19)–(24), based on projections on the future market prices. Finally, the short-term 
decisions are made rollingly by solving equations (19)–(24) repeatedly given the 
DMBU.

In the case study, we assume that the charge/discharge efficiency is 90% (ref. 39),  
and the remaining capacity decreases to 70% of the originally available (when 
bought and installed) after 3,000 charge–discharge cycles at the maximum DOD. 
For this EES system, 3,000 full cycles are equivalent to a throughput of 1.2 TWh 
if the system does not degrade. Moreover, assuming the life of EES ends when 
the capacity has decreased to 70% of the initial, 1.2 TWh of processed energy 
corresponds to a 30% capacity loss. Note that the energy throughput here and in 
the following is measured at full (100% DOD) cycles, and the throughputs of other 
partial cycles are converted equivalently into that of full cycles14,20. The calendar 
degradation of the EES, which represents the degradation independent of the 
number of cycles, is assumed to be equivalent to processing at 50 MWh throughput 
per day (about 0.5% capacity loss per year)36–38. A discount rate of 7%, as a typical 
value for private investment recommended by the Office of Management and 
Budget of the United States40, is applied for all results in this article. We do not 
account for taxation, salvage value and other lesser fixed O&M costs in the results, 
but these are easy to include for any additional analysis. The EES owner/operator is 
assumed to be a price taker with perfect price information.

Energy arbitrage and frequency regulation. The short-term scheduling model for 
the combined application of energy arbitrage and frequency regulation is described 
by the equation set (25)–(31):
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In equation (25), λh
ru and λh

rd represent the revenues per unit of power capacity 
(US$ MWh–1) in regulation-up and -down markets at hour h, after accounting 
for regulation capacity and mileage prices, mileage and performance score; and 
Ph

ru and Ph
rd represent the power capacities (MW) committed in regulation-up 

and -down markets, respectively. In equation (28), σh
ru and σh

rd are the expected 
net energy per unit of power capacity (MWh MW–1) for providing regulation-up 

and -down services. Equations (28)–(31) describe the constraints that the EES 
must hold enough power and energy capacities, in addition to energy arbitrage, 
to provide regulation services in response to the orders from the power-system 
operator. Equations (27)–(31) form the feasible set F in this combined application. 
To estimate the number of cycles at each DOD in this case, we referred to an 
existing cycle-number calculation method designed for frequency-regulation 
application14,41, in which the cycle number is statistically estimated as a function of 
the committed capacities in energy and regulation markets (Ph

dis,Ph
cha, Ph

ru and Ph
rd)  

based on historical regulation signals. The solving procedures are similar to those 
for the single application of energy arbitrage.

Data availability. The energy and regulation market price data of CAISO in 
2016 are available from the CAISO Open Access Same-time Information System 
(OASIS) site (http://oasis.caiso.com/mrioasis/logon.do).
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