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Thesis Statement: Develop robust methods to obtain the steady-state operating point of the 

transmission and distribution power grid independently or jointly using equivalent circuit approach 

and circuit simulation methods  



 
v Abstract 

1. Abstract 

A robust framework for steady-state analysis (power flow and three-phase power flow 

problem) of transmission as well as distribution networks is essential for operation and planning 

of the electric power grid.  The critical nature of this analysis has led to this problem being one of 

the most actively researched topics in the energy field in the last few decades. This has produced 

significant advances in the related technologies; however, the present state-of-the-art methods 

still lack the general robustness needed to securely and reliably operate as well as plan for the 

ever-changing power grid. The reasons for this are manifold, but the most important ones are: i) 

lack of general assurance toward convergence of power flow and three-phase power flow 

problems to the correct physical solution when a good initial state is not available; ii) the use of 

disparate formulation and modeling frameworks for transmission and distribution steady-state 

analyses that has led to the two analyses being modeled and simulated separately.  

This thesis addresses the existing limitations in steady-state analysis of power grids to enable 

a more secure and reliable environment for power grid operation and planning. To that effect, we 

develop a generic framework based on equivalent circuit formulation that can model both the 

positive sequence network of the transmission grid and the three-phase network of the 

distribution grid without loss of generality. Furthermore, we demonstrate that when combined 

with novel as well as adapted circuit simulation techniques, the framework can robustly solve for 

the steady-state solution for both these network models (positive sequence and three-phase) by 

constraining the developed models in their physical space independent of the choice of initial 

conditions. Importantly, the developed framework treats the transmission grid no differently 

than the distribution grid and, therefore, allows for any further advances in the field to be directly 

applicable to the analysis of both. One of which is the ability to jointly simulate the positive 

sequence network of the transmission grid and three-phase network of the distribution grid 

robustly.  
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To validate the applicability of our equivalent circuit formulation to realistic industry sized 

systems as well to demonstrate the robustness of the developed methods, we simulate large 

positive-sequence and three-phase networks individually and jointly from arbitrary initial 

conditions and show convergence to correct physical solution. Examples for positive sequence 

transmission networks include 75k+ nodes US Eastern Interconnection test cases and for three-

phase networks include 8k+ nodes taxonomy distribution test cases.  
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2. Contributions 

The primary contributions of this thesis are as follows: 

I. This thesis develops a generic framework based on equivalent circuit formulation that can model 

the positive sequence transmission network and three-phase distribution network without loss of 

generality. 

II. Furthermore, it adapts and further develops novel circuit simulation methods for the field of power 

system analysis that can ensure robust convergence for positive-sequence power flow and three-

phase power flow problems from arbitrary initial conditions. 

III. Finally, the developed equivalent circuit framework with circuit simulation methods is extended 

to model the joint transmission and distribution network while ensuring same robust convergence 

as in the case of power flow and three-phase power flow problems.  
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15 Introduction and Motivation 

3. Introduction and Motivation 

An interconnected electric grid is a network of synchronized power providers and consumers 

that are connected via transmission and distribution lines and operated by one of multiple entities. 

Secure and reliable operation of this electric grid is of the utmost importance to a country’s 

economy and the well-being of its citizens. In the U.S., the electricity based services are considered 

as an essential service [1], lack of which can result in significant societal chaos [2]. The grid that 

has remained mostly untouched since its early inception has begun to experience changes in the 

last decade or so, some of which include [1]: i) changing generation mix due to electricity 

generation shift from few large central plants, mostly fossil-fueled, to smaller and often variable 

renewable generators, ii) changing demand loads in retail electricity markets resulting from 

demographic and economic changes, iii) integration of smart grid technologies and iv) increasing 

threats due to adversarial attacks or aging infrastructure. To navigate the grid through these 

changes while maintaining its reliability and security requires investment toward modern 

infrastructure, adequate policy and state-of-the-art simulation tools. The underlying work in this 

thesis will be directed toward developing better power grid simulation tools and analysis 

methods.  

 At present, numerous methods exist for simulating and analyzing the electric grid. These can 

be broadly categorized into one of the following categories: i) steady-state analysis in frequency 

domain (power flow, three phase power flow, and harmonic analyses), ii) transient and steady-

state analysis in time domain, iii) state-estimation, iv) analysis for optimal dispatch of resources, 

and v) other market dispatch-based analyses. Among these analyses, the two that are primarily 

used for day-to-day operation and planning of the grid are the steady-state analysis in the 

frequency domain (power flow and three-phase power flow) to obtain the system frequency 

voltage and current phasors and the transient analysis in time domain to obtain time domain 

voltages and currents following a given event. Generally, for system operation and planning, 

power flow and three-phase power flow runs are first performed on all relevant cases followed 

by more computational heavy transient analysis for specific cases to gain more insight into the 
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steady-state results. This pattern of analysis is generally driven by inconsistencies between power 

flow and transient analysis, wherein steady-state obtained from transient analysis is considered 

more accurate. This inconsistency between the steady state solution obtained from the transient 

analysis and the steady-state solution obtained from the power flow analysis is a cause of concern 

and is conceptually addressed in Appendix B of this thesis. The focus of this thesis, however, is 

toward developing a better steady-state solver for robust convergence of positive sequence and 

three-phase power flow problems to the correct physical solution.    

The classical power grid has evolved over time such that there existed an invisible divide 

between the transmission network and distribution network. The flow of power was 

unidirectional and always moved from the transmission network into the distribution network. 

This in the past has allowed for the two networks to be studied separately resulting in disparate 

solution methods and modeling frameworks for analyzing the two. For instance, the steady-state 

solution of the transmission system is obtained via positive sequence or balanced alternating 

current (AC) power flow analysis, whereas the steady-state operating point for the distribution 

system is obtained via three-phase AC power flow analysis. The industry standard for solving 

the positive sequence power flow problem is the ‘PQV’ formulation [3], wherein nonlinear power 

mismatch equations are solved for bus voltage magnitude and angle state variables that further 

define the steady-state operating point of the system. On the other hand, two distinct analysis 

methods: i) backward-forward sweep method [4] and ii) current injection method (CIM) [5] are 

primarily used interchangeably for obtaining the steady-state solution of the three-phase power 

flow problem. In the grid of tomorrow, however, this invisible divide between the transmission 

and distribution system is bound to disappear, thereby requiring solution methods and a 

modeling framework that can model and simulate both the transmission and distribution 

networks whether independently or jointly. The need for which was unequivocally highlighted 

by one of the speakers in an ARPA-E workshop to identify paths to large-scale deployment of 

renewable energy resources: “tools are not graceful in considering penetration levels at which 

much of the thermal fleet could get de-committed,” and that “studies do not co-simulate impact 

of renewable injection into receiving AC systems” [6]. This thesis will address these concerns by 
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developing a generic framework for modeling both the transmission network and distribution 

network that can further simulate them independently or jointly. 

In general, all of the existing methods for solving the positive sequence power flow problem 

and the three-phase power flow problem suffer from lack of robustness [9]-[10] in terms of 

convergence for the nonlinear problem formulation. The ‘PQV’ based formulation for the positive 

sequence power flow problem is known to diverge or converge to non-physical solutions for ill-

conditioned [4] and large scale (>50k buses) systems. Similarly, the backward-forward sweep 

method that was proposed to solve the radial and weakly meshed distribution systems with high 

R/X ratios [4] has difficulties converging for heavily meshed test cases with more than a single 

source [11] in the network. On the other hand, the CIM method based on Dommel’s work in 1970 

[8] has challenges with incorporating multiple PV buses in the system [12]-[13]. Broadly speaking, 

of the many known challenges in both the power flow and three-phase power flow problem that 

are contributing toward lack of robustness, the two that are the most detrimental are: i) 

convergence to non-physical or unacceptable solution [30] and ii) divergence [9].  

The factors that are the most fundamental toward making these problems challenging are: i) 

the use of non-physical macro-models for modeling the power grid components, and ii) in the 

case of ‘PQV’ formulation, the use of power mismatch equations with real and reactive power as 

system state variables to formulate the problem. The non-physical representations of the system 

equipment may not capture the true behavior of the model in the entire range of system operation. 

For example, an approximated macro-model for a generator that is represented via positive 

sequence or three-phase PV model can result in convergence to a low-voltage solution or 

divergence due to its quadratic voltage characteristics. Similarly, the inherent non-linearities in 

the ‘PQV’ formulation almost always cause divergence for large (>50k) and ill-conditioned test 

cases [35] when solved from an arbitrary set of initial conditions. This lack of a physics-based 

formulation, along with the methods that can constrain the non-physics abased models in their 

physical space, is what renders the existing power flow and three-phase power flow problem and 

solution approaches to be “non-robust.”   
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To develop a robust solver for the steady-state solution of the power grid it is imperative that 

the solver can efficiently and effectively navigate through these challenges while converging to a 

solution that is both meaningful and correct. Most importantly, as previously discussed, the 

developed framework should be able to model both the transmission and distribution network 

without loss of generality. Intuitionally and physically, both the transmission and distribution 

electric grid correspond to an electric circuit. Therefore, our approach toward solving the power 

flow and three-phase power flow problem is to treat them as such and solve both analyses using 

circuit simulation fundamentals. To achieve this we propose a two pronged approach: i) the use 

of equivalent circuit formulation with true state variables of currents and voltages [31]-[33] to 

model both the transmission and distribution power grid networks (Chapter 5), and ii) the use of 

circuit simulation methods [34]-[35] to ensure robust convergence to correct physical solutions 

(Chapter 6). Furthermore, the ability to model both transmission and distribution power grids as 

equivalent circuits allows us to combine the two without loss of generality and to solve the 

transmission and distribution networks jointly (Chapter 7). In the appendices of this thesis we 

explore the physics-based approach to modeling the aggregated load in the system and 

conceptually demonstrate consistent results between the steady-state obtained from transient 

analysis as well as steady-state obtained from power flow analysis via unification of the two 

analyses. 
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LIST OF SYMBOLS 
 

𝒩 
Set of buses in the system. Each bus in three-phase power flow problem 

further consist of three distinct phases. 

𝒢 Set of generators in the system. 

ℒ Set of loads in the system. 

𝒯𝑋 Set of transmission lines in the system. 

𝑥𝑓𝑚𝑟𝑠 Set of transformers in the system. 

ϩ Set of slack buses in the system. 

𝑖, 𝑙 {1, 2, 3, . . 𝒩} 

𝐺 {1, 2, 3, . . 𝒢} 

𝐿 {1, 2, 3, . . ℒ} 

𝐶 {𝑅, 𝐼} 

𝑅 Real part of the complex variable. 

𝐼 Imaginary part of the complex variable. 

𝑘 kth iteration of the Newton-Raphson. 

{A, a} Correspond to phase A. 

{B, b} Correspond to phase B. 

{C, c} Correspond to phase C. 

{N, n} Correspond to phase N. 

𝛺𝑠𝑒𝑡 {𝑎, 𝑏, 𝑐, 𝐴, 𝐵, 𝐶} 

𝛺, 𝑡 ∈  𝛺𝑠𝑒𝑡 

𝑃𝐺
𝑖 +  𝑗𝑄𝐺

𝑖  Connected complex power generation at bus 𝑖. 
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𝑃𝐿
𝑖 +  𝑗𝑄𝐿

𝑖 Connected complex power demand at bus 𝑖. 

𝐺𝑖𝑙
𝑌 + 𝑗𝐵𝑖𝑙

𝑌 Is the bus admittance between buses 𝑖 and 𝑙 in the positive sequence Y-matrix. 

𝑃𝐺
𝑚𝑎𝑥, 𝑃𝐺

𝑚𝑖𝑛 Maximum and minimum allowable real power generation for generator 𝐺. 

𝑄𝐺
𝑚𝑎𝑥, 𝑄𝐺

𝑚𝑖𝑛 
Maximum and minimum allowable reactive power generation for generator 

𝐺. 

𝜿 Vector of participation factors for generators participating in AGC or droop 

control. 

𝜃𝑖𝑙 Is the voltage angle between buses 𝑖 and 𝑙. 

𝑉̃𝑖 Complex voltage at bus 𝑖. 

𝑉𝑅𝑖, 𝑉𝐼𝑖 Real and Imaginary part of the complex voltage at bus 𝑖. 

𝐼𝑅𝑖, 𝐼𝐼𝑖  
Real and Imaginary part of the complex current flowing in a branch 

connected to bus 𝑖. 

𝑉𝑅𝑖
𝛺 , 𝑉𝐼𝑖

𝛺 Real and Imaginary part of the complex voltage of the phase Ω at bus 𝑖. 

𝒪 Node in the system with a voltage controlling devices connected to it. 

ℛ Remote node controlled by a voltage controlling device on node 𝒪. 

𝒲 Controlled node where 𝒲 ∈  {𝒪, ℛ}. 

(𝑃𝑖
𝑠𝑝

+ 𝑗 𝑄𝑖
𝑠𝑝

)
𝛺

 Specified active and reactive power at bus 𝑖 for the given phase 𝛺. 

𝑡𝑟 Transformer turns ratio. 

𝛩 Transformer phase shift. 

𝜑 Firing angle for the FACTS device. 

{𝑍𝑃
𝛺 , 𝐼𝑃

𝛺 , 𝑆𝑃
𝛺 , 

𝑍𝑄
𝛺 , 𝐼𝑄

𝛺 , 𝑆𝑄
𝛺} 

ZIP load parameters for the phase Ω. 

{𝐺𝐵𝐼𝐺 , 𝐵𝐵𝐼𝐺 , 𝛼𝑅
𝐵𝐼𝐺 , 𝛼𝐼

𝐵𝐼𝐺} BIG load model parameters. 

ℵ Represents a series element between buses 𝑖 and 𝑙. 

𝑠ℎ Represents a shunt element connected at node 𝑖. 

𝐺𝛺𝑡
ℵ + 𝑗𝐵𝛺𝑡

ℵ  Self and mutual admittance of the line between phases 𝑡 and 𝛺. 
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𝐺𝑖
𝑠ℎ + 𝑗𝐵𝑖

𝑠ℎ Shunt admittance connected to node 𝑖. 

𝜍 Variable limiting factor. 

𝜆 Homotopy factor for Tx Stepping Method. Lies in the closed set [0, 1]. 

𝛾 Scaling factor for Tx Stepping Method. 

{𝑉𝐶
0, 𝑉𝐶

1, 𝑉𝐶
2} Represents the zero, positive, and negative sequence voltages for the set C. 

{𝐼𝐶
0, 𝐼𝐶

1, 𝐼𝐶
2} Represents the zero, positive, and negative sequence currents for the set 𝐶 

𝐽 Jacobian of the positive sequence or three-phase power flow solution matrix. 

𝑐 
Continuous curve for the homotopy methods in the domain of homotopy 

factor 𝜆. 

{𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡} Internal nodes real and imaginary voltages vector for the sub-circuit. 

{𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡} External nodes real and imaginary voltages vector for the sub-circuit. 

N-2 Loss of two equipment in the system. 

N-3 Loss of three equipment in the system. 

𝑇 Sub-circuit in the joint T&D system representing the transmission grid. 

𝐷𝑥 
Sub-circuit in the joint T&D system representing the distribution grid  
𝑥 amongst the set of distribution grids.  

ℱ𝑇 System equations for the transmission grid within the joint T&D problem. 

ℱ𝐷𝑥 System equations for the distribution grid 𝑥 within the joint T&D problem. 

ℱ𝐶 
System equations for the coupling network between the transmission and 

distribution grid in the joint T&D problem. 
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4. Background and Literature Review 

4.1 Positive Sequence and Three-Phase Power Flow Formulations 

A power grid in its simplest form can be represented by a set of 𝒩 buses, where a set of 

generators  𝒢  and load demands ℒ are subsets of 𝒩, which are further connected by a set of line 

elements, 𝒯X and a set of transformers xfmrs. Furthermore, there is a set of slack buses represented 

by ϩ. In addition to these, the power grid may contain other elements, such as shunts, flexible 

alternating current transmission system (FACTS), etc. The aim of steady-state analysis of the 

power grid is to model the fundamental frequency component of the power grid and further solve 

for the complex voltages at its buses. The high voltage transmission network of the grid generally 

operates under balanced conditions, and therefore, the steady-state solution of the transmission 

network is obtained via positive sequence power flow model and analysis. In contrast, the 

distribution network of the power grid can operate under unbalanced conditions, therefore for it 

we use three-phase power flow network model and associated analysis to find the steady-state 

solution. In the following sub-sections, we discuss the current state of the art methods used for 

steady-state analysis of transmission and distribution networks and highlight their limitations. 

4.1.1 ‘PQV’ based Formulation for Positive Sequence Power Flow Problem 

The ‘PQV’ based power flow formulation is the industry standard for solving for the steady-

state solution of the high voltage transmission network. In this formulation, a set of 2(𝒩 − |ϩ|) −

 |𝒢| power mismatch equations are solved for unknown complex voltage magnitudes and angles 

of the system using the Newton Raphson (NR) method. The set of power mismatch equations is 

defined [3] as follows: 

𝑃𝐺
𝑖 − 𝑃𝐿

𝑖 = |𝑉𝑖| ∑|𝑉𝑘|(𝐺𝑖𝑙
𝑌 𝑐𝑜𝑠 𝜃𝑖𝑙 + 𝐵𝑖𝑙

𝑌 𝑠𝑖𝑛 𝜃𝑖𝑙)

𝒩

𝑙=1

 (1) 
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𝑄𝐺
𝑖 − 𝑄𝐿

𝑖 = |𝑉𝑖| ∑|𝑉𝑙|(𝐺𝑖𝑙
𝑌 𝑠𝑖𝑛 𝜃𝑖𝑙 − 𝐵𝑖𝑙

𝑌 𝑐𝑜𝑠 𝜃𝑖𝑙)

𝒩

𝑙=1

 (2) 

In order to solve for unknown complex voltages 𝑉̃𝑖  in the system, the real and reactive power 

mismatch equations given by (1)-(2) are solved for the set of (𝒩 − |ϩ| − |𝒢| ) buses in the system, 

whereas only real mismatch equations (1) are solved for the set of buses with generators 𝒢 

connected to it. 

The ‘PQV’ formulation is inherently non-linear, since the set of network constraints result in 

non-linear power mismatch equations independent of physics of the models used. For example, 

in the ‘PQV’ formulation, a linear network consisting of linear models for slack bus, transmission 

lines and shunts would correspond to a non-linear set of power mismatch equations, a feature 

that can result in convergence difficulties for systems even trivial in size. 

4.1.2 Current Injection Method for Three-Phase Power Flow Problem 

The current injection method (CIM) for the three-phase power flow problem [5] was proposed 

to address challenges associated with the ‘PQV’ formulation and the backward-forward sweep 

method. In the CIM formulation, the non-linear current mismatch equations for the system buses 

are solved via the NR method for each individual phase with complex rectangular real and 

imaginary voltages as the unknown variables. The current mismatch equations for the three-

phase power flow problem are defined as follows [5]: 

𝛥𝐼𝑅𝑖
𝛺 =

(𝑃𝑖
𝑠𝑝

)
𝛺
𝑉𝑅𝑖

𝛺 + (𝑄𝑖
𝑠𝑝

)
𝛺
𝑉𝐼𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 − ∑ ∑ (𝐺𝑖𝑙

𝛺𝑡𝑉𝑅𝑖
𝑡 − 𝐵𝑖𝑙

𝛺𝑡𝑉𝐼𝑖
𝑡)

𝑡𝜖𝛺𝑠𝑒𝑡

𝒩

𝑙=1

 (3) 

𝛥𝐼𝐼𝑖
𝛺 =

(𝑃𝑖
𝑠𝑝

)
𝛺
𝑉𝐼𝑖

𝛺 − (𝑄𝑖
𝑠𝑝

)
𝛺
𝑉𝑅𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 − ∑ ∑ (𝐺𝑖𝑙

𝛺𝑡𝑉𝐼𝑖
𝑡 + 𝐵𝑖𝑙

𝛺𝑡𝑉𝑅𝑖
𝑡 )

𝑡𝜖𝛺𝑠𝑒𝑡

𝒩

𝑙=1

 (4) 

Although, the CIM method is known to improve the convergence properties for the heavily 

and weakly meshed three-phase radial distribution systems with high R/X ratio, the method is 

known to diverge for test-cases with high penetration of PV buses [12]. Traditionally, this was 

not a problem as the number of PV buses in the distribution system were limited to a small 
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number; however, with the advent of large-scale installation of distributed energy resources 

(DERs) and voltage control devices in the distribution system, this is no longer true. Therefore, it 

is essential that a standard three-phase power flow formulation can robustly handle high 

penetration of PV buses (any bus with voltage control) in the system. 

4.1.3 Backward-Forward Sweep Method 

The backward-forward sweep method was initially introduced in [4] to overcome the 

drawbacks of ‘PQV’ formulation-based NR method for three-phase radial systems with wide 

ranging line resistances and reactances. This method starts by breaking the interconnected grid 

into a radial grid by introducing breakpoints and then solving this radial system efficiently via 

Kirchhoff’s voltage and current laws. To compensate for the currents at the breakpoints, this 

method introduces current injections at the cut-set nodes. The magnitudes of these currents are 

calculated by iterative compensation methods [4], [18] that include a backward and a forward 

sweep step. Although, the method is known to work well with radial systems, it is prone to 

diverge for test cases that are highly meshed or have multiple sources [11].  

4.1.4 Holomorphic embedding load flow method 

Holomorphic embedding load flow (HELM) formulation [14] is a direct non-iterative method 

for solving the power flow problem. The method works by embedding the non-analytic power 

mismatch equations into the larger analytic set of equations. Convergence of this method is 

guaranteed [14] by applying an analytic continuation technique to the analytic set of equations. 

However, this method as originally presented in [14] lacks the ability to model PV buses and 

works exclusively for systems with PQ buses. Additional work toward extending the HELM 

formulation to incorporate PV buses is known to suffer from numerical issues [16]-[17].  

Furthermore, in practical applications of the HELM method for the power flow problem, singular 

solution matrix is often encountered, and no theoretical guarantees have yet been provided to 

counter this challenge, thereby making this solution method non-robust. 

4.1.5 Continuation Power Flow Method 

The continuation power flow method is another approach used to evaluate the steady-state 

operating point of the power grid [19]. This algorithm has been primarily used for assessing the 

https://en.wikipedia.org/wiki/Holomorphic_embedding_load_flow_method
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voltage stability of the grid and to trace the maximum available transfer capability curve of the 

grid. The continuation power flow method involves iteratively evaluating the steady-state 

operating points of the grid using a two-step predictor and corrector algorithm until the critical 

operating point is obtained. The algorithm adds an additional state variable: the continuation 

factor and a corresponding equation to the formulation. In the beginning of this algorithm, 

conventional NR is used to obtain the base case solution for the analysis. The predictor step is 

then performed to obtain the new approximated solution for the complex voltages of the system 

and the continuation parameter variable. A modified NR is then performed to obtain the exact 

solution from the approximated solution in the corrector step. This iterative process is repeated 

until the critical point is found. The critical point is the point where the tangent vector for the 

continuation factor is zero, and it represents an infeasible or collapsed grid state [20]. The analysis 

methodology is quite useful in assessing the critical point of the electric grid and in general can 

solve for test grids operating close to the tip of the nose curve. However, the method requires a 

solved base case to start with, which itself can be quite challenging to solve for in case of hard-to-

solve ill-conditioned and large test cases. 

4.2 Circuit Simulation Methods 

A standard circuit simulator tool (e.g. SPICE) models an integrated circuit using a set of linear 

and non-linear equations and generally employs the use of the damped Newton-Raphson (NR) 

method to find the solution to these equations. This iterative NR algorithm is guaranteed to have 

convergence with quadratic speed, if the following conditions are satisfied [21]: 

i. The functions represented by the set of non-linear equations, which in their real 

domain ℝ𝑛 must be continuous and smooth. 

ii. The solution for the set of non-linear equations from the iterative algorithm must be 

isolated. 

iii. The initial guess for the NR algorithm must be “sufficiently close” to the final solution. 

For the purposes of circuit simulation, the first two are usually easily satisfied. Circuit models 

are generally created such that the underlying functions are continuous and smooth. To satisfy 

the second condition, non-isolated solutions must be avoided. The source of non-isolated 
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solutions in the field of circuit simulation can be generally attributed to floating nodes or loops 

that are formed with components that act as short-circuits at DC condition (for example, voltage 

sources or inductors). All circuit simulator input files are usually sanitized or pre-processed to 

flag such network configurations, thereby eliminating the likelihood of non-isolated solutions. 

The real challenge then lies in finding an initial guess that is “sufficiently close” to the final 

solution. If the initial guess is not sufficiently close to the final solution, then a large step during 

an iteration of NR, could easily result in divergence or numerical overflow problems. Often with 

the use of the limiting methods in Section 4.2.1, some of these problems can be rectified, albeit at 

the cost of quadratic speed. However, for hard to solve highly non-linear circuit models, limiting 

methods by themselves are insufficient to ensure convergence. In such cases, homotopy methods 

such as those described in Section 4.2.2 are generally used to achieve convergence. With 

homotopy methods, an original problem is broken down into a sequence of sub-problems, 

wherein the solution to each prior sub-problem is used as the initial guess for subsequent sub-

problem. Importantly, the first sub-problem solved within the homotopy algorithm is guaranteed 

to have an initial guess that is trivial and sufficiently close to the final solution of the modified 

problem thereby satisfying the third condition for convergence of NR algorithm. In the rest of 

this section, we will discuss some of the commonly used limiting and homotopy methods in state-

of-the-art circuit simulators. 

4.2.1 Limiting methods  

Limiting methods were first developed in [23]-[24] for simulation of diodes in the early 1970s. 

The purpose of these methods was to ensure that a large NR step does not lead to numerical 

overflow problems in the simulator due to the exponential nature of the diode IV curve. The 

“limiting” was performed on the diode state variables between the (𝑘 + 1)𝑡ℎ and 𝑘𝑡ℎ iteration of 

NR to prevent overflow problems. In its simplest form, the implemented logic limited the diode 

voltage for the (𝑘 + 1)𝑡ℎ NR iteration to 𝑉̂𝑘+1 via expressions developed as a function of thermal 

voltage (𝑉𝑡). The choice of limiting factors of 2𝑉𝑡 and 10𝑉𝑡 in the original SPICE tool was made 

from empirical observation [24], and is shown below: 
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Condition Action 

|𝑉𝑘+1 − 𝑉𝑘| ≤  2𝑉𝑡 𝑉̂𝑘+1 = 𝑉𝑘+1 

𝑉𝑘+1 > 𝑉𝐶𝑅𝐼𝑇 𝑉̂𝑘+1 = 𝑉𝑘+1 

𝑉𝑘+1 < 𝑉𝑘  & 10𝑉𝑡 < 𝑉𝑘 𝑉̂𝑘+1 = 𝑉𝑘+1 − 2𝑉𝑡 

𝑉𝑘 < 𝑉𝑘+1 & 10𝑉𝑡 < 𝑉𝑘+1 𝑉̂𝑘+1 = max(10𝑉𝑡,  𝑉𝑘 + 2𝑉𝑡) 

Another limiting technique for NR algorithm for diodes that is based upon alternating bases 

was proposed by Colon and implemented by Kao [22]. This algorithm was further modified by 

Nagel. In this algorithm, a current iteration is performed during NR instead of voltage iteration, 

if the diode conductance for the new iterate has a slope greater than a pre-specified slope. The 

slope itself is directly related to the voltage across the diode, and therefore a critical 

voltage (𝑉𝐶𝑅𝐼𝑇) can be pre-defined and used as a boundary condition. Nagel [24] found that a near 

optimal value of 𝑉𝐶𝑅𝐼𝑇 is obtained when the voltage has minimum radius of convergence, given 

as: 

𝑉𝐶𝑅𝐼𝑇 = 𝑉𝑡 𝑙𝑛 (
𝑉𝑡

√2𝐼𝑠
) (5) 

where 𝐼𝑠 is the diode saturation current. This algorithm has the following logic [22]: 

Condition Action 

𝑉𝑘+1 ≤ 𝑉𝐶𝑅𝐼𝑇 𝑉̂𝑘+1 = 𝑉𝑘+1 

𝑉𝑘+1 > 𝑉𝐶𝑅𝐼𝑇 𝑉̂𝑘+1 = 𝑉𝑘+1 + 𝑉𝑡 ln (
𝑉𝑘+1 − 𝑉𝑘

𝑉𝑡
+ 1.0) 

4.2.2 Homotopy Methods 

Homotopy methods are generally applied when limiting methods fail to ensure convergence. 

Many such homotopy methods are included in the state-of-the-art circuit simulators, amongst 

which, the two that are most commonly used are described below. 
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4.2.2.1 Gmin stepping 

Gmin stepping is a combined algorithm and implementation itself comes from a combined 

logic of multiple sources [28]. The method requires the addition of a variable conductance to each 

node in the system and can be easily explained by the following sequence of steps: 

i. To solve for the DC solution of an integrated circuit, first a large conductance (Gmin) 

is connected from every node in the system to ground. This essentially “swamps” any 

larger resistances in the system and ensures that the circuit solution at 0𝑡ℎ iteration 

has circuit node voltages very close to the value of zero. The solution to this modified 

system is trivial and can be found by solving the NR loop with initial system voltages 

set to 0. 

ii. The value of Gmin is then gradually stepped down in subsequent sub-problems until 

a value close to zero for Gmin is achieved. The initial condition to each subsequent 

sub-problem is obtained from the final solution of the prior sub-problem thereby 

resulting in an ever-so slight change in the solution between subsequent sub-problems. 

iii. The final solution obtained at Gmin value of zero is the DC solution of the original 

circuit. 

4.2.2.2 Source Stepping 

An alternate homotopy technique that can be applied to circuits that have independent sources 

is called source stepping. The algorithm for source stepping is described in the following steps: 

i. Initially all the independent sources in the systems are turned off, thereby resulting in 

a trivial solution for the modified problem, wherein all the system voltage and current 

magnitudes are zero. 

ii. The independent sources are then gradually turned back on to their original values in 

small incremental steps resulting in a sequence of sub-problems. As in the case of 

Gmin stepping, the initial condition for each subsequent sub-problem is obtained from 

the final solution of the prior sub-problem. 

iii. The final solution, which is the DC solution for the circuit, is obtained when all 

independent sources in the system are scaled all the way up to their original value. 
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Unfortunately, this method is known to not work well with all kinds of circuit simulation 

problems. Simulation of a digital circuit is an example for that, wherein the turn-on of a digital 

transistor circuit due to a small change in voltage can cause a sudden change in circuit state, 

thereby resulting in convergence issues [28]. 

Other heuristics used to ensure robust convergence of circuit simulations are well documented 

in [21]-[27]. 
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5. Equivalent Circuit Approach 

We proposed the equivalent circuit approach [31]-[35] for steady-state analysis of the power 

grid to tackle the challenges exhibited by the existing formulations. This approach for generalized 

modeling of the power system in steady-state (i.e. power flow and three-phase power flow) 

represents both the transmission and distribution power grid in terms of equivalent circuit 

elements without loss of generality. It was shown that each of the power system components 

(including constant power models, i.e. PQ and PV buses) can be directly mapped to an equivalent 

circuit model based on the underlying relationship between current and voltage state variables. 

Importantly, this formulation can represent any physics based load model or measurement based 

semi-empirical models as a sub-circuit, as shown in [42]-[45], and these models can be combined 

hierarchically with other circuit abstractions to build larger aggregated models. In addition, by 

modeling both the transmission and distribution system equivalently using circuit fundamentals, 

the equivalent circuit approach allows for the joint simulation of transmission and distribution 

systems, a framework intractable with existing solution methods due to the use of disparate 

formulations and models for analysis of transmission and distribution systems. In the following 

sub-sections, we derive the equivalent circuit models for the most common network elements 

used in the positive sequence power flow and three-phase power flow problem. Then, in Section 

5.5, we develop equivalent circuit models from physics based fundamental principles using the 

three-phase induction motor (IM) as an example. Appendix A introduces a new empirical load 

model for aggregated load in the grid that can capture the true sensitivity of the modeled load 

and can be fitted with available measurement data. 

5.1 Split-Circuit Formulation due to Non-Analyticity of Power Flow Equations 

In the equivalent circuit approach, we represent the equivalent circuit models for different 

power grid components in the network using the current and voltage state variables. For positive 

sequence power flow and three-phase power flow analyses this translates to linear and non-linear 

functions of complex voltage and complex current state variables. 
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The grid components that are represented by linear functions of complex voltages and 

complex currents are directly mapped into an equivalent circuit using basic circuit elements such 

as the conductance, susceptance, independent and controlled sources. However, in case of non-

linear representations of grid components, the equivalent circuit models are constructed by first 

linearizing the set of non-linear equations using Taylor’s expansion and then representing them 

using a fundamental set of circuit elements. Importantly, Taylor expansion of these non-linear 

representations require the computation of their first-order derivative that is not possible for 

complex terms with conjugate operator, such as the ones observed in PV and PQ node 

fundamental constraints. This is due to the non-analyticity of these terms, because of which, they 

are not differentiable. Therefore, to circumvent this challenge of non-analyticity, the derived 

equivalent circuit models for power flow and three-phase power flow problem are split into two 

coupled circuits: one real, and one imaginary [31], both of which are analytic and differentiable. 

 

Figure 5-1: Simple three-bus power flow network and its corresponding equivalent circuit. 

For example, consider a simple three-bus power flow network given in the left of the Figure 

5-1. To represent the equivalent circuit model for this network, we derive the corresponding real 

and imaginary equivalent circuits, as shown in the right hand of Figure 5-1. In the following 

subsections, we will derive the real and imaginary equivalent circuit models for the most common 

power flow and three-phase power flow models, a methodology that can be easily extended to 

derive an equivalent circuit for any future grid component. 
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5.2 Equivalent Circuit Models for the Positive Sequence Power Flow Problem 

5.2.1 PV Bus 

The PV bus model in the positive sequence power flow problem is used to represent the 

aggregated characteristics of a generator that is required to hold its real power and voltage 

magnitude constant, as described here in terms of rectangular current-voltage state variables: 

𝑃𝐺 = 𝑉𝑅𝐺𝐼𝑅𝐺 + 𝑉𝐼𝐺𝐼𝐼𝐺 (6) 

|𝑉𝐺|2 = 𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (7) 

In order to derive the equivalent circuit model representing the PV bus behavior described by 

(6)-(7), we have a choice to model the PV node as a complex voltage source (as functions of 

complex current) [31] or a complex current source (as functions of complex voltage) [33]. The 

equations that represent the generator PV bus as a set of complex voltages sources are given by: 

𝑉𝑅𝐺 =
𝑃𝐺𝐼𝑅𝐺 ± 𝐼𝐼𝐺√𝑉𝐺

2(𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2 ) − 𝑃𝐺
2

𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2  
(8) 

𝑉𝐼𝐺 =
𝑃𝐺𝐼𝐼𝐺 ± 𝐼𝑅𝐺√𝑉𝐺

2(𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2 ) − 𝑃𝐺
2

𝐼𝑅𝐺
2 + 𝐼𝐼𝐺

2  
(9) 

This model for PV nodes is known to have convergence issues [33] due to the existence of the 

square root term in equations (8)-(9) that can result in non-real values for derived complex voltage 

sources, if a negative term within the square root term is encountered. To address this problem, 

we instead model the PV node as complex current sources to mimic the characteristic behavior of 

equations (6)-(7). This offers superior convergence when applying NR iterations to the resulting 

equation system [33].  

The split real and imaginary equations for complex current sources for a PV node are given 

by: 
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𝐼𝑅𝐺 =
𝑃𝐺𝑉𝑅𝐺 + 𝑄𝐺𝑉𝐼𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (10) 

𝐼𝐼𝐺 =
𝑃𝐺𝑉𝐼𝐺 − 𝑄𝐺𝑉𝑅𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (11) 

In addition to producing real power constrained generator currents, the PV node also controls 

the voltage magnitude either at its own node or any other remote node in the system if its reactive 

power output is within the limits. We represent this constraint by a control circuit, as shown in 

the following subsection. The reactive power  𝑄𝐺  of the generator is controllable and acts as the 

additional unknown variable for the additional constraint that is introduced due to voltage 

control. 

To derive the equivalent circuit of the PV node, the first order terms of the Taylor expansions 

for (10)-(11) are used to linearize the functions, as shown in Figure 5-2. Linearization of the real 

generator current results in the following terms: 

𝐼𝑅𝐺
𝑘+1 =

𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘+1) +  

𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘+1) +

𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘+1) + 𝐼𝑅𝐺

𝑘  

 −  
𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘) −  

𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘 ) −

𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘 ) 

(12) 

Similarly, linearization by Taylor’s expansion of imaginary current results in:  

𝐼𝐼𝐺
𝑘+1 =

𝜕𝐼𝐼𝐺
𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘+1) +  

𝜕𝐼𝐼𝐺
𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘+1) +

𝜕𝐼𝐼𝐺
𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘+1) + 𝐼𝐼𝐺

𝑘  

 −  
𝜕𝐼𝐼𝐺
𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘) −  

𝜕𝐼𝐼𝐺
𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘 ) −

𝜕𝐼𝐼𝐺
𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘 ) 

(13) 

The terms in (12) represent the basic elements of the real circuit of PV node. The first term in 

(12) represents a current source that is a function of the reactive power; the second term represents 

a conductance, since the real current is proportional to the real voltage; the third term represents 

a voltage-controlled current source, since the real current is proportional to the imaginary voltage. 

The remaining terms are all dependent on known values from the previous iteration, so they can 

be lumped together and represented as an independent current source.   
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Similarly, the terms in (13) represent the basic circuit elements for the imaginary circuit of the 

PV node. The first term in (13) represents a current source that is a function of reactive power; the 

second term represents a voltage-controlled current source, since the imaginary current is 

proportional to the real voltage; the third term represents a conductance, since the imaginary 

current is proportional to the imaginary voltage. The remaining terms are all dependent on 

known values from the previous iteration, so they can be lumped together and be represented as 

an independent current source as in the case of real circuit. 

Figure 5-2 represents the derived real and imaginary circuits for complex current source 

representing the PV node. 

 

Figure 5-2: Equivalent Circuit Model for PV 

generator model. 

 

Figure 5-3: Voltage magnitude constraint 

control equivalent circuit. 

5.2.2 Voltage Regulation of the Bus 

Numerous power grid elements such as generators, FACTS devices, transformers, shunts, etc., 

can control a voltage magnitude at a given node in the system. Moreover, they can control the 

voltage magnitude at either their own node (𝒪) or a remote node (ℛ) in the system. In the 

equivalent circuit formulation, the control of the voltage magnitude by a control circuit (Figure 

5-3) is governed by:  

𝐹𝒲 ≡ 𝑉𝑠𝑒𝑡
2 − 𝑉𝑅𝒲 

2 − 𝑉𝐼𝒲 
2 = 0, 𝑤ℎ𝑒𝑟𝑒 𝒲 ∈ 𝒪, ℛ (14) 

The circuit in Figure 5-3 is derived from the linearized version of (14). It is stamped into the 

matrix equations for each node 𝒲  in the system whose voltage is being controlled such that there 

Real Circuit 

+

_

𝑉𝑅𝐺
𝑘+1

𝐼𝑅𝐺
𝑘+1

Imaginary Circuit 

+

_

𝑉𝐼𝐺
𝑘+1

𝐼𝐼𝐺
𝑘+1
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exists at least one path between the node 𝒲 and the equipment’s node 𝒪 that is controlling it. The 

additional unknown variable for this additional constraint is dependent on the power system 

device that is controlling the voltage magnitude. For example, the additional unknown variable 

for a generator is its reactive power 𝑄𝐺 , whereas in the case of transformers, it is the transformer 

turns ratio 𝑡𝑟, and for FACTS devices it is the firing angle 𝜑. The previous section showed how 

the additional unknown variable for PV buses is integrated in its respective equivalent circuit. 

5.2.2.1 Reactive power limits of a PV generator model 

The PV model for the generator derived in Section 5.2.1 does not account for reactive power 

limits for the modeled voltage control equipment. The general practice in the industry and 

academia today is to apply the reactive power limits via the use of discontinuous piecewise linear 

models (PV-PQ switching). In this approach, the voltage control equipment has two discrete 

modes of operation: i) voltage control mode – reactive power of the voltage equipment is within 

its limits and the active set of equations include (14) ii) set reactive power mode – reactive power 

is either set to its maximum or minimum value and the active set of constraints include (15)-(16).  

𝑖𝑓 𝑄̂𝐺 > 𝑄𝑀𝐴𝑋 𝑡ℎ𝑒𝑛, 𝑄𝐺 = 𝑄𝑀𝐴𝑋 (15) 

𝑖𝑓 𝑄̂𝐺 < 𝑄𝑀𝐼𝑁  𝑡ℎ𝑒𝑛, 𝑄𝐺 = 𝑄𝑀𝐼𝑁 (16) 

To apply reactive power limits for the PV model in the power flow analyses, the model is 

switched between the voltage control mode and set reactive power mode in the outer loop of the 

NR iterations depending on the obtained value of reactive power (𝑄̂𝐺) in the inner loop of the NR 

algorithm. This methodology generally tends to work well for small cases. However, a necessary 

condition for convergence of system with discontinuous piecewise models is that only one 

element/model is switched to different piecewise linear segment at a time [37]-[38], an intractable 

approach while solving a larger system wherein a significant number of voltage control 

equipment violate their limits. Therefore, due to this practical consideration, the existing state-of-

the-art tools limit a larger number of generators at once. This approach can result in oscillations 

during NR that could further prevent convergence of the overall system. The following example 

demonstrates this behavior. 
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In this example, positive-sequence power flow simulation is run on a test case representing a 

real electric network in Africa [39]. Upon convergence of the inner NR loop, several generators 

violated their limits. Upon applying PV-PQ switching in the outer loop oscillatory behavior is 

observed as seen in the Figure 5-4. The vertical axis of the figure shows the number of generators 

that are limited in the outer loop of NR iterations, and the horizontal axis represents the outer 

loop count for the power flow analyses. As seen in the figure, due to the observed oscillatory 

behavior, convergence is prevented in this test case. 

To address this limitation wherein oscillatory behavior is observed during PV-PQ switching, 

we propose two distinct approaches: 

i. Setting a pre-determined parameter that is the maximum allowable count of generator 

switching (between PV and PQ mode), after which each generator is set permanently 

to its Q limit value that it encountered last. 

ii. The use of a continuous and twice differentiable model for the generator voltage 

control. 

 

Figure 5-4: Oscillations observed during PV-PQ switching in the outer loop of NR. 

The first approach is briefly discussed prior to introducing the continuous twice differentiable 

generator model. In this approach, a fixed pre-determined parameter (integer number) is 

inputted by the user that is applied in the algorithm to prevent the generator oscillations between 
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different discontinuous piecewise segments. The algorithm is implemented to count the number 

of times each generator back-offs during the simulation. In case this number is greater than the 

specified parameter, the generator is no longer allowed to back-off and its reactive power 𝑄𝐺 is 

limited to either 𝑄𝑀𝐴𝑋 or 𝑄𝑀𝐼𝑁 for rest of the simulation, hence preventing any further oscillations 

between different segments. Even though this approach has been shown to prevent oscillations 

in many test instances, convergence is not always guaranteed. This is primarily due to the 

shrinking of the solution space once the generator is permanently limited, which can often lead 

to divergence due to the lack of solution in the reduced solution space. Furthermore, this can 

cause non-physical behavior of the generator model resulting in a final solution that contains a 

scenario where either: 

i. A generator’s reactive power 𝑄𝐺 is set to its lower reactive power limit (𝑄𝑀𝐼𝑁) while 

the magnitude of voltage at the controlled node is lower than the set voltage, or 

ii. A generator’s reactive power 𝑄𝐺 is set to its higher reactive power limit (𝑄𝑀𝐴𝑋) while 

the magnitude of the voltage at the controlled node is higher than the set voltage.  

Hence, to prevent the generator oscillations during PV-PQ switching while ensuring that the 

physical behavior of the generator is preserved, we propose the use of the following continuous 

generator model. 

5.2.3 Continuous Model for a Generator/PV Bus 

5.2.3.1 General Introduction 

To address the limitations of the discontinuous piecewise generator model, we propose a 

continuous and twice differentiable generator model [36]. In this model, we model the generator 

voltage constraint using a non-linear sigmoid function that can control the voltage of the 

controlled node when the reactive power of the generator is within its limits and can limit the 

generator reactive power when one of its limits are violated. Importantly this model is continuous 

and twice differentiable and does not require discontinuous switching between piece-wise 

sections thereby preventing oscillations that otherwise can be detrimental for system convergence. 

Importantly, the proposed continuous model allows for the use of robust methods for NR 



 
38 Equivalent Circuit Approach 

convergence such as homotopy methods (as discussed later in the thesis) that require the set of 

network models to be continuous. 

5.2.3.2 Description of Models 

The proposed continuous model for the PV node models its complex currents as a function of 

complex voltages, as in the case of the discontinuous piecewise model for the PV node as shown 

in (10)-(11). However, this model replaces the voltage constraint given by (14) with a sigmoid 

function given in (17). Importantly, the model equations for the proposed model are both 

continuous and twice differentiable and include the reactive power limits for the generator 

inherently. 

 

Figure 5-5: Voltage constraint behavior for continuous generator model. 

𝑄𝐺 =
𝑄𝑀𝐴𝑋 −  𝑄𝑀𝐼𝑁

1 + exp (λ𝑆 ∗ [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝑄𝑀𝐼𝑁 
(17) 

The sigmoid function in (17) mimics the behavior of the PV node during both the “voltage 

control behavior” mode and “set reactive power behavior” mode. In case, the reactive power 

needed to control the voltage of the controlled node is within its limits, the model operates in the 

steep slope part of the curve in Figure 5-5 thereby maintaining the controlled node voltage to its 
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set value. In case, the reactive power needed to control the controlled node’s voltage is outside 

its limits, the model saturates the reactive power output thereby no longer controlling the 

controlled node’s voltage.  Importantly, the smoothing parameter (λ𝑆) in (17) controls the slope 

of the generator model voltage characteristics as shown in Figure 5-5. A higher value for this 

parameter tends to better mimic the behavior of the piecewise discontinuous generator model at 

the cost of more rigid non-linear behavior. In contrast, reducing the magnitude of this parameter 

relaxes the function non-linearities while approximating the voltage control behavior of the 

existing generator model. Due to the highly non-linear nature of this behavior, convergence 

difficulties can be observed when this model is used. Therefore, in the following section we 

discuss techniques that are used to achieve robust convergence for the network equations with 

the use of a proposed continuous generator model. 

5.2.3.3 Aid to Convergence 

We propose two homotopy based approaches to achieve robust convergence with systems 

containing the continuous generator model. Homotopy methods for general application to robust 

convergence of power flow and three-phase power flow analysis are discussed in depth in Section 

6.2. However, due to the applicability of these methods to continuous generator model 

convergence, they are briefly discussed here: 

5.2.3.3.1 Relaxation of generator convergence parameter to enable robust convergence 

To ensure the robust convergence for the continuous generator model, in the first approach, 

we embed a generator convergence parameter 𝜆𝐺 in the continuous generator model i.e.:  

𝑄𝐺 =
𝜆𝐺(𝑄𝑀𝐴𝑋 −  𝑄𝑀𝐼𝑁)

1 + 𝑒𝑥𝑝 (λ𝑆 ∗ [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝜆𝐺𝑄𝑀𝐼𝑁 
(18) 

To use the properties of homotopy methods to achieve robust convergence, we first need to 

obtain the value of 𝜆𝐺  that will result in a trivial solution for the generator continuous model. This 

is achieved by calculating the initial value of generator convergence parameter 𝜆𝐺
𝑖𝑛𝑖𝑡  via solving 

the inner loop of the power flow problem with generator models that have unbounded reactive 

power limits and choosing its value such that: 
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 𝜆𝐺
𝑖𝑛𝑖𝑡 = 

{
 

 
𝑄𝐺

𝑄𝑀𝐴𝑋
, 𝑖𝑓 𝑄𝐺 > 𝑄𝑀𝐴𝑋  

𝑄𝐺

𝑄𝑀𝐼𝑁
, 𝑖𝑓 𝑄𝐺 < 𝑄𝑀𝐼𝑁  

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

Once we have obtained an initial value (𝜆𝐺
𝑖𝑛𝑖𝑡) for the parameter that results in the trivial 

solution for the continuous generator model, we vary the parameter in small increments until the 

original problem is solved. As always with the use of homotopy methods, the final solution of 

the previous sub-problem is chosen as the initial guess for each subsequent sub-problem.  

 

Algorithm 5-1: Flowchart for dynamic handling of generator convergence parameter for 

better convergence 

Algorithm 5-1 describes the general flow of this homotopy method. First, for all generators in 

the network, generator convergence parameter 𝜆𝐺
𝑖𝑛𝑖𝑡 is initialized via (19). Following which, for 

each successful convergence of the inner loop of NR, the generator convergence parameter is 

incrementally varied until the value of unity is achieved for all 𝝀𝑮 . The range of generator 
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convergence parameter 𝜆𝐺  is given by [1,  ) . Figure 5-6 graphically demonstrates this 

methodology. 

 

Figure 5-6: Generator characteristics as a function of generator convergence parameter 

5.2.3.3.2 Relaxation of generator smoothing parameter for achieving robust convergence 

In this approach, generator smoothness parameter (λ𝑆) in (17) is adjusted if convergence 

difficulties are encountered due to the rigid non-linearities in the continuous model. The highly 

non-linear nature of the continuous generator model voltage constraint in the region around 

𝑄𝑀𝐴𝑋 and 𝑄𝑀𝐼𝑁 is due to the steep change in the gradient of the function. To relax these non-

linearities to enable smoother convergence requires adjustment of the generator smoothness 

factor, as shown in Figure 5-7. 

 

Figure 5-7: Generator characteristics as a function of generator smoothness parameter 

Reducing the magnitude of the generator smoothness parameter relaxes the non-linearities in 

generator model, whereas increasing the magnitude mimics the piecewise behavior of 

conventional generator model. Therefore, if convergence difficulties are encountered in the inner 

loop of NR, then the generator smoothness parameter is first relaxed until convergence for the 

continuous model is achieved (representing the trivial problem within the homotopy method). 
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The parameter is then gradually scaled back up until the original model is solved as in the case 

of any homotopy method. The Algorithm 5-2 depicts the flow of this approach. 

 

Algorithm 5-2: Flowchart for dynamic handling of generator smoothness parameter for better 

convergence. 

5.2.3.4 Results for the Continuous Generator 

5.2.3.4.1 Experiment 1 

The purpose of this experiment is to demonstrate that the use of the continuous generator 

model can eliminate the limitations of the piecewise discontinuous generator model as shown in 

Section 5.2.2.1. In this experiment, we consider the test grid for a realistic grid in Africa that was 

previously discussed in Section 5.2.2.1. This case when solved with the discontinuous piecewise 

generator model resulted in oscillations during PV-PQ switching in the outer loop of the power 

flow solver as shown in Figure 5-4 and hence, the solution for the test case could not be obtained. 

However, with the use of a continuous generator model along with methods that aids its 

convergence, oscillations are easily prevented with successful convergence for the example test 

case. 
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5.2.4 Slack Bus 

Slack bus model is used in power flow analysis for two primary purposes. First, it provides the 

reference angle for the power grid circuit and second, it absorbs or produces any slack (power 

losses and load-generation mismatch in the system) in the system. In its most basic form, the 

model is the easiest bus type to model. In the real circuit, it appears as an independent voltage 

source of value |𝑉𝑖| 𝑐𝑜𝑠 𝜃𝑖, and in the imaginary circuit it appears as a voltage source of value 

|𝑉𝑖| 𝑠𝑖𝑛 𝜃𝑖. When the phase 𝜃 is 0° the imaginary component appears as a short to ground. 

In real life, however, no single generator covers the complete slack in the system. Generally, all 

the generators change their real-power set-points based on the primary droop control and 

furthermore a subset of them adjust their set-points based on the secondary control i.e. automatic 

generation control (AGC) signal. Therefore, it is important that the steady-state analysis, which 

is trying to mimic the true behavior of the grid during normal or contingency operation, is able 

to model the distributed slack behavior of the grid. We incorporate this approach within our 

formulation using continuous analytical models for droop control as well as for AGC [36]. 

Although, droop control and AGC represent two distinct phenomena within the grid operation, 

their models for power flow problem can be achieved via same set of equations. We achieve this 

by adding an additional variable delta P (Δ𝑃𝐺) to generators that are participating in either droop 

control or AGC. These variables in turn share the slack in the grid based on the pre-defined vector 

of participation factors 𝜿, which in turn can be pre-calculated based on either the size of the 

generator or the inertia of the machine. The equations for the distributed slack operation are as 

follows: 

𝑃𝑠𝑙𝑎𝑐𝑘 + Δ𝑃𝑠𝑙𝑎𝑐𝑘 = 𝑉𝑠𝑙𝑎𝑐𝑘
𝑅 𝐼𝑠𝑙𝑎𝑐𝑘

𝑅 + 𝑉𝑠𝑙𝑎𝑐𝑘
𝐼 𝐼𝑠𝑙𝑎𝑐𝑘

𝐼  (20) 

𝚫𝑷𝑮 = 𝜿𝑻𝚫𝑷𝒔𝒍𝒂𝒄𝒌  𝑮 ∈ {𝐴𝐺𝐶/𝑑𝑟𝑜𝑜𝑝}  (21) 

𝑷𝑮
𝑴𝑰𝑵 < 𝑷𝑮 + 𝚫𝑷𝑮 < 𝑷𝑮

𝑴𝑨𝑿 (22) 

where 𝚫𝑷𝒔𝒍𝒂𝒄𝒌  is a diagonal matrix with each element as Δ𝑃𝑠𝑙𝑎𝑐𝑘  and 𝚫𝑷𝑮  is the vector of 

additional power produced by the generators participating in AGC or droop control.  
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Figure 5-8: Continuous analytical model for modeling the AGC and droop control of the 

generator based on participation factor. 

We represent the behavior given by (21) and (22) in our approach with the use of continuous 

analytical generator models for AGC or droop control as shown in Figure 5-8. The model consists 

of a set of functions that together consist of three linear segments (Region 1, 3, and 5 in the Figure 

5-8) patched with two quadratic segments (Region 2 and 4 in the Figure 5-8) to produce a net 

continuous differentiable function [36]. With the use of this model within our formulation, all or 

selected sub-set of the participating generators contribute toward the slack in the system until 

they hit their minimum or maximum limit. Importantly, the model is differentiable and 

continuous and hence can be directly included implicitly within the inner loop of NR solver thus 

utilizing all the circuit heuristics developed within this thesis to ensure robust convergence. This 

is a significant improvement over the existing methodologies that are used to model the AGC in 

the power flow tools that implement this feature using outer loop around the NR solver with 

discontinuous piecewise models.  

To demonstrate our approach for AGC and droop control we run a simple experiment on a 

sample 23-node (savnw) system. We first run the base case (pre-contingency) without AGC or 

droop control enabled and document the real power generation for different generators. We then 

perform a N-1 contingency on the base case by taking off-line a generator on bus 211 and further 

document the updated real power generation for different generators: i) with AGC and droop 

control enabled ii) without AGC and droop control enabled. As tabulated in Table 5-1, when the 
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generator contingency is performed with AGC disabled, the slack generator picks up all the real 

power generation mismatch due to the loss of generator on bus 211. However, in the case with 

AGC enabled, the real power generation is distributed amongst different generators (in AGC) 

based on the participation factors until they hit their limits, upon which the participating factors 

are re-distributed automatically, and remaining generators share the remaining slack. 

TABLE 5-1: RESULTS TO DEMONSTRATE AGC FUNCTIONALITY USING CONTINUOUS ANALYTICAL MODEL. 

Generator 

ID 

𝑃𝐺
𝑀𝐴𝑋 𝑃𝐺

𝑀𝐼𝑁 

𝜅 

Real Power Generation [MW] 

[MW] [MW] 
Pre-contingency Post-contingency 

AGC-Disabled AGC-Enabled AGC-Disabled 

101 810 0 0.23 750 810 750 

102 810 0 0.23 750 810 750 

206 900 0 0.25 800 900 800 

211* 616 0 0.18 600 0* 0* 

3011 900 0 0.08 257.74 635.22 864.39 

3018 117 0 0.03 100 117 100 
*Generator taken off-line during a contingency 

5.2.5 PQ Bus  

Like the PV bus, the constant power node (PQ bus) is also represented as an equivalent circuit 

via either a complex voltage source or a complex current source. It has been empirically 

determined that superior convergence is observed when the load bus is modeled as a complex 

current source. The two fundamental equations that represent the behavior of the PQ load model, 

are given by: 

𝑃𝐿 = 𝑉𝑅𝐿𝐼𝑅𝐿 + 𝑉𝐼𝐿𝐼𝐼𝐿 (23) 

𝑄𝐿 = 𝑉𝑅𝐿𝐼𝐼𝐿 − 𝑉𝐼𝐿𝐼𝑅𝐿 (24) 

The terms in equation (23)-(24) are re-arranged to derive the complex current sources of the 

PQ node as a function of complex voltage state variables:  

𝐼𝑅𝐿 =
𝑃𝐿𝑉𝑅𝐿 + 𝑄𝐿𝑉𝐼𝐿

𝑉𝑅𝐿
2 + 𝑉𝐼𝐿

2  (25) 
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𝐼𝐼𝐿 =
𝑃𝐿𝑉𝐼𝐿 − 𝑄𝐿𝑉𝑅𝐿

𝑉𝑅𝐿
2 + 𝑉𝐼𝐿

2  (26) 

Linearizing the load model in (25) and (26) as shown in (27)-(28) via Taylor expansion results in 

three elements in parallel for both real and imaginary circuits: a conductance, a voltage-controlled 

current source, and an independent current source. 

𝐼𝑅𝐿
𝑘+1 =  

𝜕𝐼𝑅𝐿

𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
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𝑘+1) +
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𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘+1) + 𝐼𝑅𝐿

𝑘 −  
𝜕𝐼𝑅𝐿

𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘 )

−
𝜕𝐼𝑅𝐿
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|
𝑄𝐿

𝑘,𝑉𝑅𝐿
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𝑘) 

(27) 

𝐼𝐼𝐿
𝑘+1 =  

𝜕𝐼𝐼𝐿
𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘+1) +

𝜕𝐼𝐼𝐿
𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘+1) + 𝐼𝐼𝐿

𝑘  −  
𝜕𝐼𝐼𝐿
𝜕𝑉𝑅𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝑅𝐿
𝑘 )

−
𝜕𝐼𝐼𝐿
𝜕𝑉𝐼𝐿

|
𝑄𝐿

𝑘,𝑉𝑅𝐿
𝑘 ,𝑉𝐼𝐿

𝑘 (𝑉𝐼𝐿
𝑘) 

(28) 

The linearized elements in (27)-(28) are represented in Figure 5-9 to represent the split 

equivalent circuit for the PQ load model. 

  

Figure 5-9: Equivalent split-circuit PQ load model. 

5.2.6 ZIP Model 

The currents consumed by the PQ load model are insensitive to voltage magnitude at its 

terminal. This can result in inaccurate results for the power flow analysis where the system 

solution has either visibly high or low voltages. Therefore, a more comprehensive load model 

such as the ZIP load model is needed to capture the voltage sensitive nature of the aggregated 

load. The ZIP load model models the aggregated load in the system as a mix of constant 

+

_

+

_

𝐼𝑅𝐿
𝑘+1

𝑉𝑅𝐿
𝑘+1

𝐼𝐼𝐿
𝑘+1

𝑉𝐼𝐿
𝑘+1

Real Circuit Imaginary Circuit 
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impedance, constant current, and constant power load models that can be mathematically 

represented as follows: 

𝑃𝑖
𝑍𝐼𝑃 =  𝑍𝑃(|𝑉𝑖|) 

2 +  𝐼𝑃(|𝑉𝑖|) + 𝑆𝑃 (29) 

𝑄𝑖
𝑍𝐼𝑃 =  𝑍𝑄(|𝑉𝑖|) 

2 + 𝐼𝑄(|𝑉𝑖|) + 𝑆𝑄 (30) 

In the equivalent circuit approach, the equations for the ZIP load model can be re-written as: 

𝐼𝑅𝑖
𝑍𝐼𝑃 = 𝑍𝑃𝑉𝑅𝑖 − 𝑍𝑄𝑉𝐼𝑖 +

𝑆𝑃𝑉𝑅𝑖 + 𝑆𝑄𝑉𝐼𝑖

(𝑉𝑅𝑖)
2 + (𝑉𝐼𝑖)

2
+ (√𝐼𝑃

2 + 𝐼𝑄
2) . 𝑐𝑜𝑠(𝐼𝑝𝑓 + 𝑖) (31) 

𝐼𝐼𝑖
𝑍𝐼𝑃 = 𝑍𝑃𝑉𝐼𝑖 + 𝑍𝑄𝑉𝑅𝑖 +

𝑆𝑃𝑉𝐼𝑖 − 𝑆𝑄𝑉𝑅𝑖

(𝑉𝑅𝑖)
2 + (𝑉𝐼𝑖)

2
+ (√𝐼𝑃

2 + 𝐼𝑄
2) . 𝑠𝑖𝑛(𝐼𝑝𝑓 + 𝑖) (32) 

where: 

𝐼𝑝𝑓 =  𝑡𝑎𝑛−1 (
𝐼𝑄
𝐼𝑃

) (33) 

𝑖 =  𝑡𝑎𝑛−1 (
𝑉𝐼𝑖

𝑉𝑅𝑖
) (34) 

For the load model given in (31) through (34), the constant impedance part of the load is linear, 

whereas the constant current and constant power part of the aggregated load is nonlinear. 

Linearizing the set of equations using Taylor expansion results in the following expressions: 

𝐼𝑅𝑖
𝑍𝐼𝑃𝑘+1

= 𝐼𝑅𝑖
𝑍𝐼𝑃𝑘

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝑅𝑖
𝑘+1 − 𝑉𝑅𝑖

𝑘) + (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝐼𝑖
𝑘+1 − 𝑉𝐼𝑖

𝑘) (35) 

𝐼𝐼𝑖
𝑍𝐼𝑃𝑘+1

= 𝐼𝐼𝑖
𝑍𝐼𝑃𝑘

+ (
𝜕𝐼𝐼𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝑅𝑖
𝑘+1 − 𝑉𝑅𝑖

𝑘) + (
𝜕𝐼𝐼𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)(𝑉𝐼𝑖
𝑘+1 − 𝑉𝐼𝑖

𝑘) (36) 
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Figure 5-10: Real and Imaginary Equivalent Circuit for the ZIP load model. 

The linearized set of equations can then be mapped into the equivalent circuit and is shown in 

Figure 5-10.  

5.2.7 BIG Model 

The BIG aggregated load model introduced in [44]-[46] (Figure 5-11) was shown to more 

accurately capture the true load behavior when compared against the traditional non-linear PQ 

load model, and was demonstrated as comparable to the more comprehensive non-linear ZIP 

load model. Importantly, the BIG load model can be easily fitted with real-time measurement 

data and is linear in our equivalent circuit formulation while capturing the true sensitivities of 

the aggregated load. Hence it results in linear equality constraints for the load bus in the positive 

sequence power-flow analysis. This load model is defined by a combination of constant current 

source (𝛼𝑅
𝐵𝐼𝐺 + 𝑗𝛼𝐼

𝐵𝐼𝐺), a conductance (𝐺𝐵𝐼𝐺) and a susceptance (𝐵𝐵𝐼𝐺) whose real and imaginary 

currents are given by: 

𝐼𝑅
𝐵𝐼𝐺 + 𝑗𝐼𝐼

𝐵𝐼𝐺 = 𝛼𝑅
𝐵𝐼𝐺 + 𝑗𝛼𝐼

𝐵𝐼𝐺 + (𝑉𝑅
𝐵𝐼𝐺 + 𝑗𝑉𝐼

𝐵𝐼𝐺)(𝐺𝐵𝐼𝐺 + 𝐵𝐵𝐼𝐺) (37) 

 

Figure 5-11: Equivalent circuit of a BIG load model. 

+

_

+

_

𝐼𝑅
𝑍𝐼𝑃𝑘+1

Real Circuit Imaginary Circuit 
𝐼𝐼
𝑍𝐼𝑃𝑘+1

𝑉𝑅
𝑍𝐼𝑃𝑘+1 𝑉𝐼

𝑍𝐼𝑃𝑘+1

Real Circuit 

+

_

𝑉𝑅
𝐵𝐼𝐺

𝐼𝑅
𝐵𝐼𝐺

𝐺𝐵𝐼𝐺 −𝐵𝐵𝐼𝐺 𝛼𝑅
𝐵𝐼𝐺

Imaginary Circuit 

+

_

𝑉𝐼
𝐵𝐼𝐺

𝐼𝐼
𝐵𝐼𝐺

𝐺𝐵𝐼𝐺 𝐵𝐵𝐼𝐺 𝛼𝐼
𝐵𝐼𝐺



 
49 Equivalent Circuit Approach 

The appendix A of this thesis delves deeper into the proposed BIG load model and discusses 

its advantages over other existing aggregated load models in detail. It also refers to machine 

learning methods that have been developed within our group to fit the BIG load model to capture 

the true sensitivities of the load currents. 

5.2.8 Transformer 

Transformers are an integral part of the electric grid and are used to step-up or step-down the 

grid voltages. In addition to this, some transformers contain a built-in phase shifter and have a 

capability to introduce phase shifts between the buses to which they are connected. We derive 

the equivalent circuit of the transformer with the transformer impedance modeled on the 

secondary of the transformer as shown in Figure 5-12.  

  

Figure 5-12: Equivalent circuit for a transformer. 

To derive the split circuit equivalent model of the transformer, we begin by relating the 

primary and secondary voltages (𝑉̃𝑖 and 𝑉̃𝑙) by the turns ratio 𝑡𝑟 and the phase angle 𝛩: 

𝑉̃𝑖

𝑉̃𝑙

= 𝑡𝑟. 𝑒𝑗𝛩  
𝑉𝑅

𝑖 + 𝑗𝑉𝐼
𝑖

𝑉𝑅
𝑙 + 𝑗𝑉𝐼

𝑙 = 𝑡𝑟(𝑐𝑜𝑠 𝛩 + 𝑗 𝑠𝑖𝑛 𝛩) (38) 

Representing the primary transformer voltages as functions of secondary transformer voltages 

by splitting them into real and imaginary parts result in: 

𝑉𝑅
𝑖 = 𝑡𝑟(𝑉𝑅

𝑙 cos𝛩 − 𝑉𝐼
𝑙 sin𝛩) (39) 

𝑉𝐼
𝑖 = 𝑡𝑟(𝑉𝐼

𝑙 cos𝛩 + 𝑉𝑅
𝑙 sin𝛩) (40) 

The first term of (39) represents a voltage-controlled voltage source, where the controlling 

voltage is the secondary side voltage in the real circuit. The second term is a voltage-controlled 

𝑅𝑖𝑙 + 𝑗 𝑖𝑙𝑖 𝑙 

−𝑡𝑟. 𝑒𝑗 𝐼 𝑖𝑡𝑟. 𝑒𝑗 𝑉̃𝑙

𝐼 𝑖 𝑉̃𝑙𝑙
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voltage source, but here the controlling voltage is the secondary side voltage in the imaginary 

circuit. The equation (40) represents similar terms. These terms can be used to represent the 

primary side of transformer equivalent circuit as shown in Figure 5-13. 

Similarly, the real and imaginary equivalent circuit for the secondary of the transformer can 

be developed by the primary and secondary current relationship. The primary and secondary 

complex currents (𝐼 𝑖 and 𝐼 𝑙) in terms of the turns ratio are given by: 

𝐼 𝑙

𝐼 𝑖
= −𝑡𝑟. 𝑒−𝑗𝜃  

𝐼𝑅
𝑙 + 𝑗𝐼𝐼

𝑙

𝐼𝑅
𝑖 + 𝑗𝐼𝐼

𝑖
= −𝑡𝑟(𝑐𝑜𝑠 𝛩 − 𝑗 𝑠𝑖𝑛 𝛩) (41) 

We derive the currents for the secondary side of the transformer as a function of primary side 

currents and finally split them into respective real and imaginary terms: 

𝐼𝑅
𝑙 = −𝑡𝑟(𝐼𝑅

𝑖 cos𝛩 + 𝐼𝐼
𝑖 sin𝛩) (42) 

𝐼𝐼
𝑙 = −𝑡𝑟(𝐼𝐼

𝑖 cos𝛩 − 𝐼𝑅
𝑖 sin𝛩) (43) 

The first term of (42) represents a current-controlled current source, where the controlling 

current is the current which flows through the primary side in the real circuit. The second term 

represents a current-controlled current source, but here the controlling current is the current 

which flows through the primary side in the imaginary circuit. The equation (43) represents 

similar terms. These terms can be used to represent the secondary side of transformer equivalent 

circuit as shown in Figure 5-13 for the phase shifter value of 0. 

The leakage term of the transformer 𝑍𝑖𝑙 = 𝑅𝑖𝑙 + 𝑗 𝑖𝑙  is modeled on the secondary side. We 

model it using same approach as that of the transmission line given in Section 5.2.9 resulting in 

the following real and imaginary terms:  

𝐼𝑅
𝑙 = 𝑉𝑅

𝑙′𝑙𝐺𝑖𝑙 − 𝑉𝐼
𝑙′𝑙𝐵𝑖𝑙 (44) 

𝐼𝐼
𝑙 = 𝑉𝐼

𝑙′𝑙𝐺𝑖𝑙 + 𝑉𝑅
𝑙′𝑙𝐵𝑖𝑙 (45) 
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The first term of (44) is a conductance and the second term is a voltage-controlled current source; 

likewise for equation (45). A full equivalent circuit model for the transformer for phase shifter 

magnitude of 0° is shown in Figure 5-13. 

 

Figure 5-13: Real and Imaginary Circuit for a Transformer Model. 

5.2.8.1 Control of transformer taps 

Transformers with controllable taps can control the voltage at either its own node or another 

node in the system given by 𝒲. In the existing methodology, transformers taps are generally 

adjusted in the outer loop of the solver based on the system voltages obtained in the inner loop 

NR solution. However, this technique suffers from oscillations and convergence to non-physical 

solutions as described in the case of generators in Section 5.2.2.1. Therefore, to overcome these 

challenges, we propose the use of a continuous transformer model for the control of transformer 

taps in the system.  

In this continuous twice differential transformer model, a sigmoid curve is used to describe 

the relationship between the transformer turns ratio and the voltage at the controlled node. 

Within its limits, the transformer taps adjust its value to control the controlled node’s voltage.  

However, if the transformer taps hit its limit, the turns ratio value saturates and no longer controls 

the controlled node voltage.  

𝑉𝐼
𝑖

𝑉𝐼
𝑙′𝑉𝐼

𝑙

𝐵𝑖𝑙

𝐺𝑖𝑙

𝐼𝐼
𝑖 𝐼𝐼

𝑙

−𝑡𝑟. 𝐼𝐼
𝑖𝑡𝑟. 𝑉𝐼

𝑙

Imaginary Circuit

𝑉𝑅
𝑖 𝑉𝑅

𝑙′𝑉𝑅
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−𝐵𝑖𝑙

𝐺𝑖𝑙

𝐼𝑅
𝑖 𝐼𝑅

𝑙

−𝑡𝑟. 𝐼𝑅
𝑖𝑡𝑟. 𝑉𝑅
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Figure 5-14: Continuous transformer tap control schematic. 

Unlike the generator continuous model in Section 5.2.3, in the transformer continuous model 

a set of sigmoid curves are used to control the voltage of the controlled node 𝒲 as a function of 

turns ratio depending on the relative location of the controlled bus as shown in Figure 5-14. For 

instance, consider a bus connected to the primary side of the transformer whose voltage is being 

controlled. If the observed voltages on the controlled bus are lower than the set voltage, then the 

primary taps are increased to adjust the voltage toward the set voltage whereas if the observed 

voltages are higher than the set value then the primary taps are reduced to adjust the voltage. On 

the other hand, if the controlled bus 𝒲 is on the secondary side of the transformer, then the 

primary taps are reduced to increase the voltage of the controlled bus 𝒲 and increased to the 

reduce the voltage of the controlled bus on the secondary side. The voltage constraint 

characteristics for the controlled node 𝒲 whose relative location is on the primary side of the 

transformer is: 

𝑡𝑟 =
𝑡𝑟𝑀𝐴𝑋 −  𝑡𝑟𝑀𝐼𝑁

1 + exp (𝜆𝑆 ∗ [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝑡𝑟𝑀𝐼𝑁 
(46) 

In case the controlled node 𝒲′s relative location is on the secondary side of the transformer, 

then the voltage constraint characteristics are given by: 
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𝑡𝑟 =
𝑡𝑟𝑀𝐼𝑁  −  𝑡𝑟𝑀𝐴𝑋

1 + exp (𝜆𝑆 ∗ [√𝑉𝑅𝒲 
2 + 𝑉𝐼𝒲 

2  −  𝑉𝑠𝑒𝑡]

+  𝑡𝑟𝑀𝐴𝑋 
(47) 

In the continuous model for the transformer voltage control, the turns ratio parameter (𝑡𝑟) is 

an unknown variable (with continuous range) and requires additional stamps in the system 

Jacobian for incorporating the sensitivities of transformer currents to transformer turns ratio. 

Importantly, the voltage and current equations are no longer linear functions of unknown 

variables, and therefore, are linearized prior to being stamped in the Jacobian matrix. 

Importantly, the actual tap adjustment in the transformer is discrete, therefore, once the inner 

loop of NR is completed with the continuous model, the taps are snapped to their closest discrete 

value to obtain the final solution. In practice, it is rare that the snapping back action could result 

in system to diverge. However, theoretically it is possible due to two reasons: 

i. The modified system state due to the change in transformer tap magnitude from its 

continuous to discrete value could result in an infeasible network. 

ii. The set of non-linear equations representing the modified system state may diverge 

with prior solution as the initial condition. 

In our solver, we make use of continuation (like methodology in Section 5.2.3.3.1) and 

optimization-based methods [63] to address this rare occurring concern. In case the system is 

infeasible due to the change in transformer tap magnitude from its continuous to discrete value, 

the optimization-based methods can identify the system infeasibility and accordingly adjust the 

discrete elements values such that the system is feasible. In case, the divergence is due to the lack 

of good initial conditions for the snapped system state, continuation methods can be used to 

gradually modify the discrete elements parameters from their continuous value to discrete value 

until convergence is achieved. 

5.2.9 Transmission Line 

Positive-sequence power flow tends to use a simplified pi-model for the transmission line. The 

model is shown in Figure 5-15. In this model, both the series and the shunt impedances are 

approximated by a simplified lumped pi-model, which further is a linear model with branch 
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currents as linear functions of from and to node voltages. We derive the split circuits for this 

model trivially using Kirchhoff’s current law. In this derivation, for the sake of simplicity, the real 

and imaginary series and the shunt current terms for the transmission line are derived separately 

and then later combined to represent the whole model.  

  

Figure 5-15: Equivalent circuit of a pi-model of the transmission line. 

The series complex current for the transmission line between nodes 𝑖 and 𝑙 can be calculated 

from Ohm’s law: 

𝐼𝑅
𝑠 + 𝑗𝐼𝐼

𝑠 =
𝑉𝑅

𝑖𝑙 + 𝑗𝑉𝐼
𝑖𝑙

𝑅𝑖𝑙 + 𝑗 𝑖𝑙
 (48) 

The real and imaginary terms of (48) can be split into their respective equations: 

𝐼𝑅
𝑠 = 𝑉𝑅

𝑖𝑙
𝑅𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 + 𝑉𝐼
𝑖𝑙

 𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 (49) 

𝐼𝐼
𝑠 = 𝑉𝐼

𝑖𝑙
𝑅𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 − 𝑉𝑅
𝑖𝑙

 𝑖𝑙

𝑅𝑖𝑙
2 + 𝑗 𝑖𝑙

2 (50) 

Finally, the conductance (𝐺𝑖𝑙) and susceptance (𝐵𝑖𝑙) values can be used to simplify the derived 

terms, which can then be mapped into the equivalent circuit. 

𝐼𝑅
𝑠 = 𝑉𝑅

𝑖𝑙𝐺𝑖𝑙 − 𝑉𝐼
𝑖𝑙𝐵𝑖𝑙 (51) 

𝐼𝐼
𝑠 = 𝑉𝐼

𝑖𝑙𝐺𝑖𝑙 + 𝑉𝑅
𝑖𝑙𝐵𝑖𝑙 (52) 

𝑙
𝑅𝑖𝑙 + 𝑗 𝑖𝑙𝑖 𝐼 𝑠

𝐼 𝑠ℎ
𝑉̃𝑙𝑉̃𝑖
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Like series terms, the shunt terms for the line model can be calculated via Ohm’s law, that can 

then be split into their real and imaginary terms as given in (54)-(55). The series and shunt terms 

can then be combined and mapped into their equivalent circuits as shown in Figure 5-16. 

  

Figure 5-16: Real and Imaginary Circuit for the pi-model of Transmission Line. 

𝐼𝑅
𝑠ℎ + 𝑗𝐼𝐼

𝑠ℎ = (𝑉𝑅
𝑖 + 𝑗𝑉𝐼

𝑖)𝑗
𝐵𝑠ℎ

2
 (53) 

𝐼𝑅
𝑠ℎ = −𝑉𝐼

𝑖
𝐵𝑠ℎ

2
 (54) 

𝐼𝐼
𝑠ℎ = 𝑉𝑅

𝑖
𝐵𝑠ℎ

2
 (55) 

5.2.10 Preliminary Result for Positive Sequence Power Flow  

The purpose of this experiment is to validate the equivalent circuit approach for positive 

sequence power flow. To do so we simulate multiple cases from the flat start and document the 

results in Table 5-2. We report the case as converged if the solution obtained from our framework 

can be plugged into a commercial solver to result in the same solution. Additionally, we also 

document the number of iterations it took for the case to converge.  

TABLE 5-2: PRELIMINARY RESULTS FOR POSITIVE SEQUENCE POWER FLOW WITH EQUIVALENT CIRCUIT APPROACH 

Case Name Number of Nodes Reference Iteration Count Solution 

case14 14 IEEE 4 Converged 

case118 118 IEEE 5 Converged 

𝐺𝑖𝑙

−𝐵𝑖𝑙

𝑉𝑅
𝑖

𝐺𝑖𝑙

𝐵𝑖𝑙

𝑉𝑅
𝑙 𝑉𝐼

𝑖 𝑉𝐼
𝑙

Real Circuit Imaginary Circuit



 
56 Equivalent Circuit Approach 

case145 145 IEEE 14 Converged 

SouthCarolina500 500 ACTIVSg500 4 Converged 

Texas2000_June2016 2000 ICSEG 5 Converged 

case1354pegase 1354 PEGASE 5 Converged 

Case13659pegase 13659 PEGASE xx Diverged 

bench 1648 PSSE benchmark 7 Converged 

bench2 7917 PSSE benchmark xx Diverged 

Results in Table 5-2 demonstrate that the equivalent circuit approach can solve the positive 

sequence power problem for most of the test cases from flat start. However, as expected some of 

the cases diverge when simulated from the flat start. Therefore, in the rest of this thesis, we will 

develop methods that can ensure convergence for hard-to-solve ill conditioned and large test 

cases from arbitrary initial conditions. First, however, we extend the equivalent circuit 

formulation framework used here for positive-sequence power grid models to three-phase power 

grid models. 

5.3 Equivalent Circuit Models for Three-Phase Power Flow Problem 

Now we develop equivalent circuit models for some of the most commonly used elements in 

the distribution grid for three-phase power flow analysis. 

5.3.1 Slack Bus 

In the distribution system analysis, the transmission edge of the grid is usually modeled as an 

infinite bus, which is represented via a substation or infinite bus that generally feeds into but 

rarely absorbs power from the distribution system. Each phase of the infinite or the slack bus can 

be represented in the real circuit as an independent voltage source of value |𝑉𝑖
𝛺| 𝑐𝑜𝑠(𝜃𝑖

𝛺), and in 

the imaginary circuit (imaginary portion of the split circuit) as an independent voltage source of 

value |𝑉𝑖
𝛺| 𝑠𝑖𝑛(𝜃𝑖

𝛺). It should be noted that if the slack bus is connected in a wye configuration, 

its magnitude represents the line-to-neutral voltage, whereas if connected in delta configuration, 

it will represent the line-to-line voltage. The complete split circuit model for a 3-phase slack bus 

connected in grounded wye configuration is shown in Figure 5-17. Importantly, it should be 

noted that in future with presence of multiple large generation resources within the distributed 

grid, it is likely that the distribution grid will contribute toward slack power during primary and 

secondary control as in the case of transmission grid. This can be easily incorporated into our 
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framework using distributed slack framework following the methodology stipulated in Section 

5.2.4. 

  

Figure 5-17: Real and Imaginary circuits for Slack bus in three-phase power flow problem. 

5.3.2 ZIP Load Model 

Amongst all of the existing aggregated load models in distribution system analysis, the ZIP 

load model is the most comprehensive. It models the aggregated load in the system as a mix of 

constant impedance, constant current, and constant power load models, which can be 

mathematically represented for each phase as follows: 

(𝑃𝑖
𝑍𝐼𝑃)

𝛺
=  𝑍𝑃

𝛺(|𝑉𝑖
𝛺|) 2 +  𝐼𝑃

𝛺(|𝑉𝑖
𝛺|) + 𝑆𝑃

𝛺 (56) 

(𝑄𝑖
𝑍𝐼𝑃)

𝛺
=  𝑍𝑄

𝛺(|𝑉𝑖
𝛺|) 2 + 𝐼𝑄

𝛺(|𝑉𝑖
𝛺|) + 𝑆𝑄

𝛺 (57) 

In the equivalent circuit approach, the equations for the ZIP load model can be re-written as: 

(𝐼𝑅𝑖
𝑍𝐼𝑃)

𝛺
= 𝑍𝑃

𝛺𝑉𝑅𝑖
𝛺 − 𝑍𝑄

𝛺𝑉𝐼𝑖
𝛺 +

𝑆𝑃
𝛺𝑉𝑅𝑖

𝛺 + 𝑆𝑄
𝛺𝑉𝐼𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 + (√𝐼𝑃

𝛺2
+ 𝐼𝑄

𝛺2
) . 𝑐𝑜𝑠(𝐼𝑝𝑓

𝛺 + 𝛿𝑖
𝛺) (58) 

(𝐼𝐼𝑖
𝑍𝐼𝑃)

𝛺
= 𝑍𝑃

𝛺𝑉𝐼𝑖
𝛺 + 𝑍𝑄

𝛺𝑉𝑅𝑖
𝛺 +

𝑆𝑃
𝛺𝑉𝐼𝑖

𝛺 − 𝑆𝑄
𝛺𝑉𝑅𝑖

𝛺

(𝑉𝑅𝑖
𝛺)

2
+ (𝑉𝐼𝑖

𝛺)
2 + (√𝐼𝑃

𝛺2
+ 𝐼𝑄

𝛺2
) . 𝑠𝑖𝑛(𝐼𝑝𝑓

𝛺 + 𝛿𝑖
𝛺) (59) 

where: 

𝑉𝐴 cos (𝜃𝐴)

𝑉𝐵 cos (𝜃𝐵)

𝑉𝐶 cos (𝜃𝐶)

𝑉𝐴 sin (𝜃𝐴)

𝑉𝐵 sin (𝜃𝐵)

𝑉𝐶 sin (𝜃𝐶)

Real Circuit Imaginary Circuit 
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𝐼𝑝𝑓
𝛺 =  𝑡𝑎𝑛−1 (

𝐼𝑄
𝛺

𝐼𝑃
𝛺) (60) 

𝛿𝑖
𝛺 =  𝑡𝑎𝑛−1 (

𝑉𝐼𝑖
𝛺

𝑉𝑅𝑖
𝛺) (61) 

For the load model given in (58) through (61), the constant impedance part of the load is linear, 

whereas the constant current and constant power part of the aggregated load is nonlinear. 

Linearizing the set of equations using Taylor expansion results in the following expression for 

each phase 𝛺 in 𝛺𝑠𝑒𝑡: 

(𝐼𝑅𝑖
𝑍𝐼𝑃)

𝛺𝑘+1
= (𝐼𝑅𝑖

𝑍𝐼𝑃)
𝛺𝑘

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝑅𝑖
𝛺𝑘+1

− 𝑉𝑅𝑖
𝛺𝑘

)

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝐼𝑖
𝛺𝑘+1

− 𝑉𝐼𝑖
𝛺𝑘

) 

(62) 

(𝐼𝐼𝑖
𝑍𝐼𝑃)

𝛺𝑘+1
= (𝐼𝐼𝑖

𝑍𝐼𝑃)
𝛺𝑘

+ (
𝜕𝐼𝑅𝑖

𝑍𝐼𝑃

𝜕𝑉𝑅𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝑅𝑖
𝛺𝑘+1

− 𝑉𝑅𝑖
𝛺𝑘

)

+ (
𝜕𝐼𝐼𝑖

𝑍𝐼𝑃

𝜕𝑉𝐼𝑖
|
𝑉𝑅𝑖

𝑘 ,𝑉𝐼𝑖
𝑘

)

𝛺

(𝑉𝐼𝑖
𝛺𝑘+1

− 𝑉𝐼𝑖
𝛺𝑘

) 

(63) 

The linearized set of equations can then be mapped into the equivalent three-phase model of the 

ZIP load either in wye (Y) or delta (D) formation, as shown in Figure 5-18.  

 

Figure 5-18: Real circuit for a) wye connected ZIP Load Model (on left) b) delta (D) connected 

ZIP load model (on right). 

+ _

+_
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It is important to note that the ZIP model results in non-linear network constraints for both the 

‘PQV’ and CIM formulations, which further adds to already existing non-linearities in the 

formulation. We propose to replace the non-linear ZIP model with a linear three-phase BIG model 

that provides comparable accuracy.  

5.3.3 Three-phase BIG load model 

The proposed linear positive sequence BIG load model in Section 5.2.7 is further extended to 

a linear three-phase aggregated load model that can be connected in either wye or delta 

connection as in the case of the ZIP load model. Refer to Appendix A for more detailed 

explanation of the BIG load model. 

5.3.4 Transmission Line 

The three main types of transmission lines in the distribution grid are the overhead line, 

underground cable, and the triplex cable. The overhead line generally consists of a 4-wire 

configuration with three phase conductors and one neutral conductor. The concentric 

underground cable, on the other hand, consists of a 7-wire configuration with three phase 

conductors, along with corresponding neutral conductors and an additional neutral conductor. 

The triplex cable consists of three wires with two hot conductors and one neutral conductor.  

The impedance matrix for the overhead, underground and triplex lines are of the order 4x4, 

7x7, and 3x3, respectively.  However, with the use of Kron’s reduction [32], we can eliminate 

neutral wires from the models resulting in 3x3, 3x3 and 2x2 impedance matrices for overhead 

lines, underground cables and triplex cables, respectively. Finally, admittance matrix ( ̃𝑙𝑖𝑛𝑒) for 

the line model can then be calculated by finding the inverse of the impedance matrix (𝑍𝑙𝑖𝑛𝑒): 

 ̃𝑙𝑖𝑛𝑒 = 𝑍𝑙𝑖𝑛𝑒
−1  (64) 

With the calculated admittance matrix, the transmission line branch currents can be 

represented by Ohm’s Law, where 𝑉̃𝐴𝑎, 𝑉̃𝐵𝑏 and 𝑉̃𝐶𝑐 are the voltage drops across the lines: 
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[

𝐼 𝐴
𝐼 𝐵
𝐼 𝐶

] =  [

 ̃𝑎𝑎  ̃𝑎𝑏  ̃𝑎𝑐

 ̃𝑏𝑎  ̃𝑏𝑏  ̃𝑏𝑐

 ̃𝑐𝑎  ̃𝑐𝑏  ̃𝑐𝑐

] [

𝑉̃𝐴𝑎

𝑉̃𝐵𝑏

𝑉̃𝐶𝑐

] (65) 

Since the series admittances 𝐺𝑖𝑙
ℵ + 𝑗𝐵𝑖𝑙

ℵ  of the branches have both real and imaginary components, 

the system from (65) can be split as: 

[
 
 
 
 
 
 
𝐼𝑅
𝐴

𝐼𝐼
𝐴

𝐼𝑅
𝐵

𝐼𝐼
𝐵

𝐼𝑅
𝐶

𝐼𝐼
𝐶]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝐺𝑎𝑎

ℵ −𝐵𝑎𝑎
ℵ 𝐺𝑎𝑏

ℵ

𝐵𝑎𝑎
ℵ 𝐺𝑎𝑎

ℵ 𝐵𝑎𝑏
ℵ

𝐺𝑏𝑎
ℵ −𝐵𝑏𝑎

ℵ 𝐺𝑏𝑏
ℵ

    

−𝐵𝑎𝑏
ℵ 𝐺𝑎𝑐

ℵ −𝐵𝑎𝑐
ℵ

𝐺𝑎𝑏
ℵ 𝐵𝑎𝑐

ℵ 𝐺𝑎𝑐
ℵ

−𝐵𝑏𝑏
ℵ 𝐺𝑏𝑐

ℵ −𝐵𝑏𝑐
ℵ

𝐵𝑏𝑎
ℵ 𝐺𝑏𝑎

ℵ 𝐵𝑏𝑏
ℵ

𝐺𝑐𝑎
ℵ −𝐵𝑐𝑎

ℵ 𝐺𝑐𝑏
ℵ

𝐵𝑐𝑎
ℵ 𝐺𝑐𝑎

ℵ 𝐵𝑐𝑏
ℵ

    

𝐺𝑏𝑏
ℵ 𝐵𝑏𝑐

ℵ 𝐺𝑏𝑐
ℵ

−𝐵𝑐𝑏
ℵ 𝐺𝑐𝑐

ℵ −𝐵𝑐𝑐
ℵ

𝐺𝑐𝑏
ℵ 𝐵𝑐𝑐

ℵ 𝐺𝑐𝑐
ℵ ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑉𝑅

𝐴𝑎

𝑉𝐼
𝐴𝑎

𝑉𝑅
𝐵𝑏

𝑉𝐼
𝐵𝑏

𝑉𝑅
𝐶𝑐

𝑉𝐼
𝐶𝑐 ]

 
 
 
 
 
 

 (66) 

Using the same approach, the transmission line shunt currents can be derived, where 𝑉̃𝐴, 𝑉̃𝐵 

and 𝑉̃𝐶 are the line-to-ground nodal voltages. Since the admittance of the shunt elements in the 

pi-model is purely imaginary ( ̃𝑖
𝑠ℎ = 𝑗𝐵𝑖

𝑠ℎ), we derive the following set of equations from Ohm’s 

law: 

[
 
 
 
 
 
 
 
 𝐼𝑅

𝐴𝑠ℎ

𝐼𝐼
𝐴𝑠ℎ

𝐼𝑅
𝐵𝑠ℎ

𝐼𝐼
𝐵𝑠ℎ

𝐼𝑅
𝐶𝑠ℎ

𝐼𝐼
𝐶𝑠ℎ

]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 

0 −𝐵𝑎𝑎
𝑠ℎ 0

𝐵𝑎𝑎
𝑠ℎ 0 𝐵𝑎𝑏

𝑠ℎ

0 −𝐵𝑏𝑎
𝑠ℎ 0

    

−𝐵𝑎𝑏
𝑠ℎ 0 −𝐵𝑎𝑐

𝑠ℎ

0 𝐵𝑎𝑐
𝑠ℎ 0

−𝐵𝑏𝑏
𝑠ℎ 0 −𝐵𝑏𝑐

𝑠ℎ

𝐵𝑏𝑎
𝑠ℎ 0 𝐵𝑏𝑏

𝑠ℎ

0 −𝐵𝑐𝑎
𝑠ℎ 0

𝐵𝑐𝑎
𝑠ℎ 0 𝐵𝑐𝑏

𝑠ℎ

    

0 𝐵𝑏𝑐
𝑠ℎ 0

−𝐵𝑐𝑏
𝑠ℎ 0 −𝐵𝑐𝑐

𝑠ℎ

0 𝐵𝑐𝑐
𝑠ℎ 0 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑉𝑅

𝐴

𝑉𝐼
𝐴

𝑉𝑅
𝐵

𝑉𝐼
𝐵

𝑉𝑅
𝐶

𝑉𝐼
𝐶]
 
 
 
 
 
 

 (67) 

Equations (66) and (67) for the transmission line are then mapped into an equivalent circuit 

given by linear resistors and voltage-controlled current sources. Figure 5-19 shows the real sub-

circuit for one of the phases of a transmission line. 
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Figure 5-19: Real circuit of a transmission line (Phase A). 

5.3.5 Three-Phase Transformers 

Three-phase transformers are used in the distribution grid to transform the voltages from 

transmission level to sub-transmission level and to divide three-phase circuits into single-phase 

circuits. Different configurations for the three-phase transformers are possible in the distribution 

system, some of which include: 

i. Grounded wye – grounded wye (grY – grY) 

ii. Delta – delta (D – D) 

iii. Wye – delta (wye – D) 

iv. Grounded wye – delta (grY – D) 

v. Delta – wye (D – wye) 

vi. Open wye – open delta 

In the next subsection we will derive the model for the grounded wye – grounded wye three-

phase transformer configuration. Following the same methodology, equivalent circuits for the 

other transformer configurations can also be derived. 
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Grounded wye – grounded wye (grY – grY) Configuration 

In the grounded wye – grounded wye configuration of the three-phase transformer, the 

relationship between the primary and secondary currents (𝐼 𝑝𝑟𝑖
𝛺 , 𝐼 𝑠𝑒𝑐

𝛺 ) and voltages (𝑉̃𝑝𝑟𝑖
𝛺 , 𝑉̃𝑠𝑒𝑐

𝛺 ) for 

each individual phase is as follows: 

𝑉̃𝑝𝑟𝑖
𝛺 = 𝑡𝑟𝑉̃𝑠𝑒𝑐

𝛺 𝑒𝑗𝛩𝛺
 (68) 

𝐼 𝑠𝑒𝑐
𝛺 = −𝑡𝑟𝐼 𝑝𝑟𝑖

𝛺 𝑒−𝑗𝛩𝛺
 (69) 

Splitting of these current and voltage equations into real and imaginary terms results in the 

following equations: 

𝑉𝑅
𝛺

𝑝𝑟𝑖
=  𝑡𝑟 (𝑉𝑅

𝛺
𝑠𝑒𝑐

𝑐𝑜𝑠𝛩𝛺 − 𝑉𝐼
𝛺

𝑠𝑒𝑐
𝑠𝑖𝑛𝛩𝛺) (70) 

𝑉𝐼
𝛺

𝑝𝑟𝑖
=  𝑡𝑟 (𝑉𝑅

𝛺
𝑠𝑒𝑐

𝑠𝑖𝑛𝛩𝛺 + 𝑉𝐼
𝛺

𝑠𝑒𝑐
𝑐𝑜𝑠𝛩𝛺) (71) 

𝐼𝑅
𝛺

𝑠𝑒𝑐
= −𝑡𝑟 (𝐼𝑅

𝛺
𝑝𝑟𝑖

𝑐𝑜𝑠𝛩𝛺 + 𝐼𝐼
𝛺

𝑠𝑒𝑐
𝑠𝑖𝑛𝛩𝛺) (72) 

𝐼𝐼
𝛺

𝑠𝑒𝑐
= −𝑡𝑟 (−𝐼𝑅

𝛺
𝑝𝑟𝑖

𝑠𝑖𝑛𝛩𝛺 + 𝐼𝐼
𝛺

𝑠𝑒𝑐
𝑐𝑜𝑠𝛩𝛺) (73) 

The equations (70) through (73) can be further mapped into the equivalent circuit model of the 

transformer by using controlled voltage and current sources. Furthermore, the transformer losses 

for each phase are modeled on the secondary of the transformer. The split equations for the 

transformer loss terms for each phase are given by the following set of equations: 

𝐼 𝑅
𝛺 = 𝐺𝑙𝑜𝑠𝑠𝑉̃𝑅

𝛺𝛺′
− 𝐵𝑙𝑜𝑠𝑠𝑉̃𝐼

𝛺𝛺′
 (74) 

𝐼 𝐼
𝛺 = 𝐺𝑙𝑜𝑠𝑠𝑉̃𝐼

𝛺𝛺′
+ 𝐵𝑙𝑜𝑠𝑠𝑉̃𝑅

𝛺𝛺′
 (75) 

Figure 5-20 shows the real circuit for the grounded wye – grounded wye transformer with 

zero phase shift. 
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Figure 5-20: Real circuit for the grounded wye – grounded wye transformer with no phase 

shift. 

Importantly, the three-phase transformer model has the ability to control the voltage either at 

the primary or secondary side for individual phases via the control of its turns ratio. The model 

of three-phase transformer can do so via a discontinuous piecewise model in the outer loop or 

via a continuous transformer tap model extended from one shown in Section 5.2.8.1 for a positive-

sequence model of the transformer. 

5.4 Preliminary results for Three-phase power flow  

In this section, we will demonstrate preliminary results for the three-phase power flow solver 

using the equivalent circuit approach. For the purposes of this experiment we choose a standard 

4-bus test case [29]. 

 

Figure 5-21: Standard 4-Bus Test Case System. 

The schematic of the standard 4-bus test case is shown in Figure 5-21. The preliminary results 

for this test case are shown for different transformer configurations in Table 5-3. The tabulated 

SB

1

2 2

3

4

1: Slack Generator 2: Transmission Line 3: Transformer

4. Load
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results represent the phase voltages for the load bus in Figure 5-21, which compare well against 

the results obtained from the standard reference [29]. 

TABLE 5-3: SUGAR THREE-PHASE RESULTS FOR 4-BUS TEST CASE 

Configuration Balanced Unbalanced 

SUGAR 3-Phase 

[V∠°] 

Results in [29] [V∠°] SUGAR 3-Phase [V∠°] Results in [29] [V∠°] 

Step-down grY-

grY 

VA:  

VB:  

VC:  

1918∠-9.1 

2061∠-128.3 

1981∠110.9 

VA:  

VB:  

VC:  

1918∠-9.1 

2061∠-128.3 

1981∠110.9 

VA:  

VB:  

VC:  

2175∠-4.1 

1930∠-126.8 

1833∠102.8 

VA:  

VB:  

VC:  

2175∠-4.1 

1930∠-126.8 

1833∠102.8 

Step-down D-D 

VAB:  

VBC:  

VCA:  

3442∠22.3 

3497∠-99.4 

3384∠140.7 

VAB:  

VBC:  

VCA:  

3442∠22.3 

3497∠-99.4 

3384∠140.7 

VAB:  

VBC:  

VCA:  

3431∠24.3 

3647∠-100.4 

3294∠138.6 

VAB:  

VBC:  

VCA:  

3431∠24.3 

3647∠-100.4 

3294∠138.6 

Step-down Y-D 

VAB:  

VBC:  

VCA: 

3437∠-7.8 

3497∠-129.3 

3388∠110.6 

VA:  

VB:  

VC:  

3437∠-7.8 

3497∠-129.3 

3388∠110.6 

VAB:  

VBC:  

VCA: 

3425∠-5.8 

3646∠-130.3 

3298∠108.6 

VA:  

VB:  

VC:  

3425∠-5.8 

3646∠-130.3 

3298∠108.6 

Step-up grY-grY 

VA:  

VB:  

VC: 

13630∠-3.5 
13681∠-123.5 

13665∠116.5 

VAB:  

VBC:  

VCA:  

13631∠-3.5 

13682∠-123.5 

13661∠116.5 

VA:  

VB:  

VC: 

13814∠-2.2 

13613∠-123.4 

13618∠114.9 

VAB:  

VBC:  

VCA:  

13815∠-2.2 

13614∠-123.4 

13615∠114.9 

Step-up D-D 

VAB:  

VBC:  

VCA:  

23658∠26.6 

23688∠-93.5 

23625∠146.5 

VAB:  

VBC:  

VCA:  

23657∠26.6 

23688∠-93.5 

23625∠146.5 

VAB:  

VBC:  

VCA:  

23611∠27.2 

24015∠-93.7 

23492∠145.9 

VAB:  

VBC:  

VCA:  

23610∠27.2 

24015∠-93.7 

23492∠145.9 

Step-up Y-D 

VAB:  

VBC:  

VCA: 

23682∠56.6 

23664∠-63.6 

23626∠176.5 

VAB:  

VBC:  

VCA: 

23681∠56.6 

23664∠-63.6 

23625∠176.5 

VAB:  

VBC:  

VCA: 

23638∠57.1 

23995∠-63.8 

23496∠175.9 

VAB:  

VBC:  

VCA: 

23637∠57.1 

23995∠-63.8 

23495∠175.9 

Similar to the case of the preliminary results for the positive-sequence power flow in Section 

5.2.10, we validate the equivalent circuit models for three-phase power flow elements. We 

compare the results obtained for the 4-bus test case with our tool against those reported in the 

literature. The results obtained from our tool match well with those reported in the literature 

thereby validating the models. 

However, in general, representing of the grid elements as equivalent circuit models by itself 

cannot ensure convergence for three-phase power flow test cases from arbitrary initial conditions. 

Therefore, the following chapters in the thesis will develop models and techniques that can 

ensure convergence to the correct physical solution for any three-phase test case from arbitrary 

initial conditions. 



 
65 Equivalent Circuit Approach 

5.5 Physics Based Models 

We have previously shown in [42] that any physics-based device model can be directly 

mapped into an equivalent circuit to be used in both the steady-state analysis (discussed here) as 

well as the transient analysis (see Appendix B). In general, physics-based models developed from 

fundamental principles are used for time-domain transient analysis [50].  However, in both the 

power flow and the three-phase power flow analyses, simplified, aggregated models are used 

often, resulting in less accurate and inconsistent results. Understandably, it is often necessary to 

use simplified aggregated models due to the lack of data pertaining to individual grid elements. 

However, this is not always the case, and more accurate estimation of the grid operating state 

with true voltage sensitivities can be obtained by using physics-based models in the power flow 

and three-phase power flow analyses.  

Existing frameworks often cannot directly incorporate physics-based models based on the 

current and voltage state variables into the problem formulation. In contrast, our equivalent 

circuit formulation can directly incorporate any physics-based model based on the current and 

voltage variables into the problem statement without loss of generality. To demonstrate this 

further, using an example of an induction motor, we derive an equivalent circuit model of the 

same from fundamental principles that is further used in power flow analysis. In Appendix B, we 

show that the same model can be used for time-domain transient analysis to result in consistent 

solution with the ones obtained in power flow and three-phase power flow analyses. 

5.5.1 Physics based model for Induction Motor (IM) 

Electric motors comprise roughly 45% of the total global electricity consumption [51], the 

majority of which can be attributed to IMs. Importantly, modeling these IMs in detail based on 

the true physics of the device can significantly improve the characterization of aggregated load 

in the grid. Often IMs are represented in the network model via PQ load or ZIP load models or 

are aggregated with other loads in the system that are further represented by the same. More 

advanced models for IMs that are based on the true physics of the device have been known to be 

used in three-phase power flow analysis [52]. However, these in-depth models tend to assume 

fixed speed operation (hence ignoring speed-flux non-linearities) thereby not capturing the true 
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characteristics of the IM. In this section we develop a physics-based model for IM that can be used 

in both the power flow and three-phase power flow analyses. Prior to deriving the model of IM, 

we briefly discuss DQ transformation required for further derivations. 

5.5.1.1 Direct-Quadrature (DQ) Transformation 

The flux generated by the three-phase IM in ABC frame has time varying coefficients in its 

voltage terms due to the sinusoidal nature of the mutual inductance. This makes the analysis of 

three phase IM cumbersome in the ABC reference frame. However, this undesirable feature can 

be eliminated by use of the DQ transformation. DQ transformation can be performed in one of 

the three reference frames: i) synchronous reference frame; ii) stationary reference frame; and iii) 

rotating reference frame. 

 

Figure 5-22: Superimposition of DQ-axis on 3-phase induction motor. 

The final response of the IM is independent of the chosen reference frame. However, each of 

the reference frames has its own advantages and disadvantages depending on the problem that 

is being investigated [53].  For the purposes of this derivation, we make use of the synchronously 

rotating reference frame where DQ transformation matrix 𝑃𝜃  for the stator variables is as follows: 

[𝑃𝜃] =
2

3
[

0.5 0.5 0.5
𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜃 − 𝜆) 𝑐𝑜𝑠(𝜃 + 𝜆)

𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜃 − 𝜆) 𝑠𝑖𝑛(𝜃 + 𝜆)
] (76) 

and, 

A axis

A axis

Q
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[𝐹0𝑑𝑞] = [𝑃𝜃]. [𝐹𝑎𝑏𝑐] (77) 

where function 𝐹 can represent either currents or voltages. 

For rotor variable transformation, θ is replaced with β in the equations above. For synchronous 

reference frame, the machine angle and speed variables are defined as follows: 

𝜔 = 𝑝𝜃 = 𝜔𝑠 (78) 

𝛽 = 𝜃 − 𝜃𝑟 = 𝜃𝑠 − 𝜃𝑟 (79) 

where  𝑝 is the differential operator. 𝜔𝑠 and  𝜔𝑟 are the synchronous and rotor speed of the motor, 

respectively, and 𝜃𝑠 and 𝜃𝑟 are the stator and rotor position, respectively.  

5.5.1.2 Motor Equations in Transient Domain 

As we have transformed the three-phase parameters of IM into the DQ-frame, we can further 

derive the model of an IM. The set of electrical equations that define the true behavior of the IM 

in time-domain are as follows [50]: 

𝑣𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 + 𝑝𝜓𝑑𝑠 − 𝜓𝑞𝑠𝑝𝜃 (80) 

𝑣𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 + 𝑝𝜓𝑞𝑠 + 𝜓𝑑𝑠𝑝𝜃 (81) 

𝑣𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 + 𝑝𝜓𝑑𝑟 − 𝜓𝑞𝑟𝑝𝛽 (82) 

𝑣𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 + 𝑝𝜓𝑞𝑟 + 𝜓𝑑𝑟𝑝𝛽 (83) 

The flux linkages of the IM are represented by the symbol 𝜓 and are calculated using the 

following formulas: 

𝜓𝑑𝑠 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑑𝑠 + 𝐿𝑚𝐼𝑑𝑟 (84) 

𝜓𝑑𝑟 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑑𝑟 + 𝐿𝑚𝐼𝑑𝑠 (85) 

𝜓𝑞𝑠 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑞𝑠 + 𝐿𝑚𝐼𝑞𝑟 (86) 
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𝜓𝑞𝑟 = (𝐿𝑙𝑠 + 𝐿𝑚)𝐼𝑞𝑟 + 𝐿𝑚𝐼𝑞𝑠 (87) 

where 𝐿𝑙𝑠 and 𝐿𝑙𝑟 represent the leakage-inductance of stator circuit and rotor circuit, respectively. 

𝐿𝑚 is the mutual inductance between the rotor and stator circuits.  𝑅𝑠 and 𝑅𝑟 are the stator and 

rotor resistance, respectively. The non-linearity in the electrical part of the IM is due to the speed 

voltage terms. 

In addition to the equations above, the mechanical part of the IM is defined by a single 

differential equation [50]: 

𝑝𝜔𝑟 =
(𝑇𝑒 − 𝑇𝐿 − 𝐷𝜔𝑟)

𝐽
 (88) 

where  

𝑇𝑒 =
3

4
𝐿𝑚𝑝𝑜𝑙𝑒𝑠(𝐼𝑑𝑟𝐼𝑞𝑠 − 𝐼𝑞𝑟𝐼𝑑𝑠) (89) 

and 𝑇𝑒  is the electrical torque of the IM in N.m and 𝐽 is the motor net inertia in kg.m2. 𝑝𝑜𝑙𝑒𝑠  

represents the number of poles in the induction motor. The load torque (𝑇𝐿) is generally described 

with a polynomial function of rotor speed. 

 

Figure 5-23: Equivalent circuit for 3-phase induction motor: (i) Electrical circuit; and (ii) 

Mechanical Circuit. 

+

+

+

s

+

s

where,
= +

= +
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The equations derived above map the time-domain behavior of a balanced three-phase 

squirrel cage IM into the mathematical form. This mathematical set of equations can be directly 

mapped into an equivalent circuit following the methods in [43], and is shown in Figure 5-23. 

5.5.2 Steady-State Fundamental Frequency Model 

To further use this model for positive sequence and three-phase power flow analysis, we zero 

out the time-derivative terms. Due to the use of the DQ-transformation, once the time-domain 

terms are nulled, we obtain a steady-state model in source frequency. Furthermore, an additional 

equation can be incorporated for three-phase power flow analysis to consider zero sequence 

terms in the case of unbalance voltages at the motor terminals. If the motor were to have negative 

torque it would have to be separately calculated and added to (89). 

To validate the IM model, we make use of a 20 hp, 460 volts three-phase single squirrel cage 

induction motor. The motor data is given in Table 5-4. 

TABLE 5-4: THREE-PHASE SQUIRREL CAGE INDUCTION MOTOR PARAMETERS 

 

 

 

For the validation, the IM model is connected to a slack bus via a transmission line. The IM is 

then simulated at mechanical load of 10 N.m at rated source voltage in pu. The results are 

documented in Table 5-5 and are converted to SI units from pu to compare with the steady-state 

results obtained from MATLAB SimscapePowerSystems for the same test case. The results are a 

exact match thereby validating the model. 

TABLE 5-5: IM RESULTS IN EQUIVALENT CIRCUIT FRAMEWORK FOR STEADY-STATE (POWER FLOW) AND TIME-

DOMAIN TRANSIENT ANALYSIS 

Parameter Unit 
Equivalent Circuit 

Framework 
SimScapePowerSystems 

Rotor Speed rad.s-1 375.01 375.01 

Electric Torque N.m 16.64 16.64 

VLL (Volts) f (Hz) Rs (Ω) Rr (Ω) Lls and Llr (mH) 

460 0.2761 0.2761 0.1645 2.191 

Lm (mH) poles J (kg.m2) D (N.m.s) TL (N.m) 

76.14 2 0.1 0.01771 10 
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Parameter Unit 
Equivalent Circuit 

Framework 
SimScapePowerSystems 

Stator direct-axis current Amps -11.36 -11.36 

Stator quadrature-axis 

current 
Amps 13.09 13.09 

Rotor direct-axis current Amps 11.56 11.56 

Rotor quadrature-axis 

current 
Amps -0.49 -0.49 
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6. Circuit Simulation Methods for Power 

System Analyses 

Decades of research in circuit simulation have demonstrated that circuit simulation methods 

can be applied for determining the DC state of highly non-linear circuits using NR. These 

techniques have been shown to make NR robust and practical for large-scale circuit problems [43], 

even those consisting of billions of nodes. Most notable is the ability to guarantee convergence to 

the correct physical solution (i.e. global convergence) and the capability of finding multiple 

operating points [48]. We propose analogous techniques for ensuring convergence to the correct 

physical solution for the power flow problem [34]-[35]. In this section, we provide a short 

overview of these techniques that can be applied to both positive sequence power flow and three-

phase power flow problems without loss of generality. Note that throughout this section, the 

symbol superscript 𝛺 in the mathematical expressions represents a phase from the set 𝛺𝑠𝑒𝑡  of 

three phases a, b and c for the three-phase problem and represents the positive sequence (p) 

component for the power flow problem. 

6.1 Limiting Methods 

6.1.1 Variable Limiting 

The solution space of the system node voltages in a power flow problem is well defined. While 

solving the power flow problem, a large NR step may step out of this solution space and result 

in either divergence or convergence to a non-physical solution. It is, therefore, important to limit 

the NR step before an invalid step out of the solution space is made. In [34] we proposed variable 

limiting to achieve the postulated goal. In this technique, the state variables that are most sensitive 

to initial guesses are damped when the NR algorithm takes a large step out of the pre-defined 

solution space. Note, however, that not all of the system variables are damped for the variable 

limiting technique, as is done for traditional damped NR. Circuit simulation research has shown 

that damping most sensitive variables provides superior convergence compared to damped NR 

in general [43]. 
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In the power flow and three-phase problem, the voltages on the PV node are highly sensitive 

to the reactive power (𝑄𝐺) value at that node. In the equivalent circuit formulation of the power 

flow and three-phase power flow problem each PV node augments the solution space by 

additional unknown variable 𝑄𝐺 for which initial guess must be assigned. However, unlike the 

node voltages, it is very hard to choose the appropriate initial guess for these 𝑄𝐺 variables, as they 

exhibit a large solution space. Therefore, with an arbitrary choice of these initial values, the power 

flow or three-phase power flow problem may diverge or converge to the wrong solution.  

To tackle this problem the voltages at the PV node are damped during the NR iterations 

whenever they make a large step out of the pre-defined solution space. Figure 6-1 can be used to 

demonstrate this graphically. The plot in Figure 6-1 shows results for a 2869 PEGASE bus test 

system that was represented in equivalent circuit formulation and simulations were run on it for 

six different initial guesses for unspecified 𝑄𝐺. The maximum bus voltage from the solution of 

the power flow problem for each initial guess was then plotted for two scenarios: without and 

with variable limiting technique enabled. The plots in the figure show that when variable limiting 

is not enabled, the voltage solution diverges to very high magnitudes (up to 104) and may not 

converge even in 100 iterations. However, when the variable limiting option is enabled, 

divergence is not observed, and the bounded bus voltages result in fast convergence. 

 

Figure 6-1: Voltage profile for maximum bus voltage in 2869 Bus System: a) w/o Variable 

Limiting b) with Variable Limiting. 

z
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To apply variable limiting in our prototype simulator, the mathematical expressions for the 

PV nodes in the system are modified as follows: 

𝐼𝐶𝐺
𝛺 𝑘+1

=   𝜍
𝜕𝐼𝐶𝐺

𝛺

𝜕𝑉𝑅𝐺
𝛺 (𝑉𝑅𝐺

𝛺 𝑘+1
− 𝑉𝑅𝐺

𝛺 𝑘
)⏟          

∆𝑉𝑅𝐺
𝛺

+ 𝐼𝐶𝐺
𝛺 𝑘

 + + 𝜍
𝜕𝐼𝐶𝐺

𝛺

𝜕𝑉𝐼𝐺
𝛺 (𝑉𝐼𝐺

𝛺𝑘+1
− 𝑉𝐼𝐺

𝛺𝑘
)⏟          

 ∆𝑉𝐼𝐺
𝛺

+
𝜕𝐼𝐶𝐺

𝛺

𝜕𝑄𝐺
𝛺 (𝑄𝐺

𝛺𝑘+1
− 𝑄𝐺

𝛺𝑘
)   

(90) 

where, 0 ≤ ς ≤ 1 . The magnitude of  ς  is dynamically varied through heuristics such that 

convergence to the correct physical solution is achieved in the most efficient manner. The 

heuristics depend on the largest delta voltage (∆𝑉𝑅𝐺
𝛺 , ∆𝑉𝐼𝐺

𝛺 ) step during subsequent NR iterations. 

If during subsequent NR iterations, a large step (∆𝑉𝑅𝐺
𝛺 , ∆𝑉𝐼𝐺

𝛺 ) is encountered, then the factor ς is 

decreased. The factor ς  is scaled back up if consecutive NR steps result in monotonically 

decreasing absolute values for the largest error. 

6.1.2 Voltage Limiting 

An equally simple, yet effective, technique is to limit the absolute value of the delta step that 

the real and imaginary voltage vectors can make during each NR iteration. This is analogous to 

the voltage limiting technique used for diodes in circuit simulation, wherein the maximum 

allowable voltage step during NR is limited to twice the thermal voltage of the diode [43]. 

Similarly, for the power flow and three-phase power flow analyses, a hard limit is enforced on 

the normalized real and imaginary voltages in the system. The mathematical implementation of 

voltage limiting in our formulation is as follows: 

(𝑉𝐶
𝛺)

𝑘+1
= 𝑚𝑖𝑛

𝑉𝐶
𝑚𝑖𝑛

𝑚𝑎𝑥
𝑉𝐶

𝑚𝑎𝑥
((𝑉𝐶

𝛺)
𝑘

+ 𝛿𝑆 𝑚𝑖𝑛 (|∆(𝑉𝐶
𝛺)

𝑘
| , ∆𝑉𝐶

𝑚𝑎𝑥))   

(91) 

𝑚𝑖𝑛
𝑉𝐶

𝑚𝑖𝑛
𝑚𝑎𝑥
𝑉𝐶

𝑚𝑎𝑥
= {

𝑉𝑐
𝑚𝑎𝑥, 𝑖𝑓 𝑥 >  𝑉𝑐

𝑚𝑎𝑥 

𝑉𝑐
𝑚𝑖𝑛, 𝑖𝑓 𝑥 <  𝑉𝑐

𝑚𝑖𝑛 
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 𝛿𝑆 = 𝑠𝑖𝑔𝑛 (∆(𝑉𝐶
Ω)

k
) and 𝐶 ∈ {𝑅, 𝐼} represents the placeholder for real and imaginary parts. 
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6.1.3 Limiting Methods for other System Variables 

Similar to limiting of voltages during power flow and three-phase power flow problem, other 

system variables are also limited to constrain the behavior of the network components in their 

physical space. In general, a good limiting technique is one that can exploit knowledge of system 

physics to well-define a narrow normal operating range within which the variable can be 

constrained. However, this is not always possible. For instance, the generator reactive power 

variable 𝑄𝐺  can have a wide range for its operating setpoint depending on the size of the 

generator. In such scenarios, the variables are limited by first mapping them into another variable 

for which we can define a better operating range. In case of generators, reactive power 𝑄𝐺 

variables are limited by first mapping the 𝑄𝐺 ′ s into calculated currents 𝐼𝐶
Ω + ∆(𝐼𝐶

Ω)
k+1

 at  

(𝑘 + 1)𝑡ℎ NR step, and then finding the new 𝑄𝐺  𝑘+1 from the inverse function (𝑓−1) of limited 

currents (𝐼𝐶
Ω + ∆(𝐼𝐶

Ω)
k+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅

). Similar approaches can also be used to limit other system variables in 

future. 

6.2 Homotopy Methods 

Limiting methods may fail to ensure convergence for certain ill-conditioned and large test 

systems when solved from an arbitrary set of initial guesses. To ensure convergence for these 

network models to the correct physical solutions independent of the choice of initial conditions, 

we propose the use of homotopy methods. 

6.2.1 Background  

Homotopy methods are not new to the field of power system simulation.  Homotopy methods 

in the past have been used to study the voltage collapse of a given network or to determine the 

maximum available transfer capability [19]-[20]. They have also been researched for locating all 

solutions to a power flow problem [41], [55]. However, their use for enabling convergence for 

hard to solve positive sequence and three-phase power flow problems has been limited. Of the 

proposed methods for providing better convergence [9], [40] most have suffered from 

convergence to low voltage solutions or divergence. On the other hand, some of them have been 

developed for formulations that do not apply to both positive sequence as well as three-phase 
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power flow [56] problems. Furthermore, none of the previously proposed homotopy methods are 

known to scale up to test systems that are of the size of the European or the US grids, and in 

general they are not extendable to the three-phase power flow problem.  

6.2.2 General Introduction 

In the homotopy approach, the original problem is replaced with a set of sub-problems that 

are sequentially solved. The set of sub-problems exhibit certain properties, namely, the first sub-

problem has a trivial solution and each subsequent sub-problem has a solution very close to the 

solution of the prior sub-problem. Mathematically this can be described via the following 

expression: 

ℋ(𝑥, 𝜆) = (1 − 𝜆)Ϝ(𝑥) +   𝜆𝒢(𝑥) (92) 

where 𝜆[0,1]. 

The method begins by replacing the original problem Ϝ(𝑥) = 0 with  ℋ(𝑥, 𝜆) = 0 . The 

equation set 𝒢(𝑥) is a representation of the system that has a trivial solution. The homotopy factor 

𝜆 has the value of 1 for the first sub-problem, and therefore, the initial solution for ℋ(𝑥, 𝜆) is 

equal to the trivial solution of  𝒢(𝑥). For the final sub-problem that corresponds to the original 

problem, the homotopy factor 𝜆 has the value of zero. To generate sequential sub-problems, the 

homotopy factor is dynamically decreased in small steps until it has reached the value of zero. 

In the following sections, we discuss two homotopy methods that are specifically developed 

for the power flow and three-phase power flow analyses i.e. Tx stepping and dynamic power 

stepping method. 

6.2.3 Tx Stepping 

We propose a new homotopy approach, “Tx Stepping,” that is specifically invented for the 

non-linearities observed in the power flow and three-phase power flow problems. 

6.2.3.1 General Approach  

In Tx stepping method, the series elements in the system (transmission lines, transformers etc.) 

are first “virtually” shorted to solve the initial problem that has a trivial solution.  Specifically, a 
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large conductance ( ≫ 𝐺𝑖𝑙 ) and a large susceptance ( ≫ 𝐵𝑖𝑙 ) are added in parallel to each 

transmission line and transformer model in the system. In case of three-phase power flow, a large 

self-impedance (≫  𝛺𝛺
𝑖𝑙 ) is added in parallel to each phase of the transmission line and transformer 

model. Furthermore, the shunts in the system, are open-circuited by modifying the original shunt 

conductance and susceptance values. Importantly, the solution to this initial problem results in 

high system voltages (magnitudes), as they are essentially driven by the slack bus complex 

voltages and the PV bus voltage magnitudes due to the low voltage drops in the lines and 

transformers (as expected with virtually shorted systems). Similarly, the solution for the bus 

voltage angles lies within an ϵ-small radius around the slack bus angle. Subsequently, like other 

continuation methods, the formulated system problem is then gradually relaxed to represent the 

original system by taking small increment steps of the homotopy factor (𝜆) until convergence to 

the solution of the original problem is achieved.  Mathematically, the line and transformer 

impedances during homotopy for the power flow is expressed by: 

𝑖𝑙 ∈  𝒯𝑋, 𝑥𝑓𝑚𝑟𝑠: 𝐺𝑖𝑙 + 𝑗𝐵̂𝑖𝑙 = (𝐺𝑖𝑙 + 𝑗𝐵𝑖𝑙)(1 + 𝜆𝛾) (93) 

and for the three-phase problem: 

[

 ̂𝑎𝑎
𝑖𝑙  ̂𝑎𝑏

𝑖𝑙  ̂𝑎𝑐
𝑖𝑙

 ̂𝑏𝑎
𝑖𝑙  ̂𝑏𝑏

𝑖𝑙  ̂𝑏𝑐
𝑖𝑙

 ̂𝑐𝑎
𝑖𝑙  ̂𝑐𝑏

𝑖𝑙  ̂𝑐𝑐
𝑖𝑙

] =  [

Y𝑎𝑎
𝑖𝑙 (1 + 𝛾𝜆) Y𝑎𝑏

𝑖𝑙 Y𝑎𝑐
𝑖𝑙

Y𝑏𝑎
𝑖𝑙 Y𝑏𝑏

𝑖𝑙 (1 + 𝛾𝜆) Y𝑏𝑐
𝑖𝑙

Y𝑐𝑎
𝑖𝑙 Y𝑐𝑏

𝑖𝑙 Y𝑐𝑐
𝑖𝑙 (1 + 𝛾𝜆)

] (94) 

where, 𝐺𝑖𝑙 ,  𝐵𝑖𝑙 , and  ΩΩ
𝑖𝑙  are the original system impedances and 𝐺𝑖𝑙 , 𝐵̂𝑖𝑙 , and  ̂ΩΩ

𝑖𝑙
 are the system 

impedances used while iterating from the trivial problem to the original problem. The parameter 

𝛾 is used as a scaling factor for the conductances and susceptances.  If the homotopy factor (𝜆) 

takes the value of one, the system has a trivial solution and if it takes the value zero, the original 

system is represented.   

Along with ensuring convergence for a problem, Tx stepping can avoid the undesirable low 

voltage solutions for the positive sequence power flow and three-phase power flow problem since 

the initial problem results in a solution with high system voltages, and each subsequent step of 
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the homotopy approach continues and deviates ever so slightly from this initial solution, thereby 

guaranteeing convergence to the high voltage solution for the original problem. 

6.2.3.2 Handling of Transformer Phase Shifters and Taps 

To “virtually short” a power system, we must also account for transformer taps 𝑡𝑟Ω and phase 

shifting angles 𝛩Ω. In a “virtually” shorted condition, all the nodes in the system must have 

complex voltages that are near the slack bus or PV bus complex voltages, which can be intuitively 

defined by a small epsilon norm ball around these voltages. Therefore, to achieve the following 

form, we must modify the transformer taps and phase shifter angles such that at  𝜆 = 1, their 

turns ratios and phase shift angles correspond to a magnitude of 1 pu  and 0° , respectively. 

Subsequently, the homotopy factor 𝜆 is varied such that the original problem is solved with 

original transformer tap and phase shifter settings. This can be mathematically expressed as 

follows: 

𝑖 ∈  𝑥𝑓𝑚𝑟𝑠 ∶ 𝑡𝑟̂𝑖
𝛺 = 𝑡𝑟𝑖

𝛺 + 𝜆(1 − 𝑡𝑟𝑖
𝛺) (95) 

𝑖 ∈  𝑥𝑓𝑚𝑟𝑠 ∶ 𝛩̂𝑖
𝛺 = 𝛩𝑖

𝛺 − 𝜆𝛩𝑖
𝛺 (96) 

6.2.3.3 Handling of Voltage Control for Remote Buses 

To achieve a trivial solution during the first step of Tx stepping it is essential that we also 

handle remote voltage control appropriately. Remote voltage control refers to a device on node 𝒪 

in the system controlling the voltage of another node 𝒲 in the system. This behavior is highly 

non-linear and if not handled correctly can result in divergence or convergence to a low voltage 

solution. Existing commercial tools for power flow and three-phase power flow analyses have 

difficulties dealing with this problem and suffer from lack of robust convergence when modeling 

remote voltage control in general. With Tx stepping we can handle this problem efficiently and 

effectively. We first incorporate a “virtually short path” between the controlling node (𝒪) and the 

controlled node (𝒲) at  𝜆 = 1, such that the device at the controlling node can easily supply the 

current needed for node 𝒲 to control its voltage. Then following the homotopy progression, we 

gradually relax the system such that the additional line connecting the controlling node (𝒪) and 

controlled node (𝒲) is open at 𝜆 = 0. 
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6.2.3.4 Implementation of Tx Stepping in Equivalent Circuit Formulation 

Unlike traditional implementations of homotopy methods, in equivalent circuit formulation 

we do not directly modify the non-linear set of mathematical equations, but instead embed a 

homotopy factor in each of the equivalent circuit models for the power grid components. In doing 

so we allow for incorporation of any power system equipment into the Tx stepping approach 

within the equivalent circuit formulation framework, without loss of generality. Furthermore, we 

ensure, that the physics of the system is preserved while modifying it for the homotopy method. 

Figure 6-2 and Figure 6-3 demonstrates how the homotopy factor is embedded into the equivalent 

circuit of the transmission line and transformer, respectively. 

 

Figure 6-2: Homotopy factor embedded in transmission line equivalent circuit. 

 

Figure 6-3: Homotopy factor embedded in transformer equivalent circuit. 

6.2.3.5 Notes on convergence 

The proposed Tx stepping method is within the subset of homotopy methods and to ensure 

convergence (i.e. be globally convergent) for any homotopy method the following conditions 

must be met [62]: 

i. Defined path for the homotopy method i.e. 𝑐(𝜆)  ∈  ℋ−1(0) with (𝑥, 𝜆) ∈ 𝑟𝑎𝑛𝑔𝑒(𝑐) 

must be smooth and should exist. 

ii. If a curve 𝑐 exists, then it should intersect the final solution at 𝜆 = 0. 
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The first condition can be met through implicit function theorem and requires that the Jacobian 

(ℋ (𝜆)) of the homotopy function is of full rank for all values of λ along the curve.  In the power 

flow or three-phase flow problem this corresponds to the Jacobian (𝐽) matrix of the network 

constraints that in the case of equivalent circuit formulation are the Kirchhoff’s current laws. 

Based on domain knowledge of power systems, it is understood that the network Jacobian matrix 

is singular if the system is operating at its limits (tip of the nose curve) [49] or beyond (infeasible 

system). This is an unlikely case from the physics perspective for any well-conditioned system 

over the range of λ, and therefore, the Jacobian (𝐽) is generally full rank over the complete range 

of λ. In rare cases, the network Jacobian (ℋ  (𝜆)) defined for λ value on the curve (i.e. 𝑐(𝜆), 𝜆 ∈

[1, 0]) can be singular. This is either because the system in infeasible such that no further power 

transfer is possible or that the system is highly ill-conditioned and is operating at the tip of the 

nose curve. For such infeasible or highly ill-conditioned networks, it is possible that a rank 

deficient Jacobian may be encountered along the homotopy curve. To achieve robust convergence 

for such networks that are either infeasible or highly ill-conditioned, optimization-based methods 

[63] or techniques for structural perturbations are used [64]. An example of the optimization-

based method is addition of current sources to all system nodes during Tx-stepping while 

minimizing their value [63], whereas an example for structural perturbation includes adding and 

removing transmission lines to the network dynamically during the homotopy path. In the 

optimization-based method shown in [63], the network is guaranteed to have a feasible solution 

for some value of complex current sources, thereby asserting the existence of a full rank Jacobian 

matrix. Similarly, a full rank Jacobian matrix can also be ensured for ill-conditioned systems by 

structurally relaxing the weak part of the grid by adding more lines at the start and gradually 

removing them for the original problem. 

The second condition is more easily met and is linked to existence theorems in non-linear 

analyses [62]. If some boundary condition exists that prevents the curve from extending to infinity 

prior to intersecting the solution at 𝜆 = 0, then this condition is met. In our formulation, different 

limiting techniques ensure that the solution at any point on the curve 𝑐 does not diverge and 

extend to infinity. 
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6.2.4 Dynamic Power Stepping 

Another homotopy technique that can ensure robust convergence for systems that have a low 

percentage of constant voltage nodes in the system is the dynamic power stepping method. 

Existing distribution systems and small transmission systems tend to belong to this class of 

systems and, therefore, dynamic power stepping can be applied to robustly obtain the steady-

solution by solving either the power flow or the three-phase power flow problem. This method 

has been described for the positive-sequence power flow and three-phase power flow problem in 

[34], [65] and is analogous to the source stepping and Gmin stepping approaches in standard 

circuit simulation solvers. 

In the dynamic power stepping method, the system loads and generation are scaled back by a 

factor of  𝛽 until the convergence is achieved. If these loads and generations are scaled down all 

the way to zero, then the constraints for the PQ buses in the system result in linear network 

constraints. Similarly, current source non-linearities of the PV buses that are due to the constant 

real power are also eliminated. Therefore, by applying the power stepping factor, the non-

linearities in the system are greatly eased and convergence is easily achieved. Upon convergence, 

the factor is gradually scaled back up to unity to solve the original problem. In this method, as in 

all continuation methods, the solution from the prior step is used as the initial condition for the 

next step. The mathematical representation of dynamic power stepping for the three-phase power 

flow and positive sequence power flow problem is as follows: 

𝐺 ∈  𝑃𝑉: 𝑃̂𝐺
Ω = 𝛽𝑃𝐺

Ω (97) 

𝐿 ∈  𝑃𝑄: 𝑃̂𝐿
Ω = 𝛽𝑃𝐿

Ω 𝑎𝑛𝑑 𝑄̂𝐿
Ω = 𝛽𝑄𝐿

Ω (98) 

where, PQ are all load nodes and PV are all generator nodes. 

6.3 Algorithm 

In this sub-section we describe the algorithm for the equivalent circuit framework when used 

in conjunction with circuit simulation methods. The algorithm is implemented in our tool: 

SUGAR (Simulation with Unified Grid Analyses and Renewables) and can be used to solve any 
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positive-sequence power flow problem or three-phase power flow problem without the loss of 

generality. 

 

Algorithm 6-1: SUGAR algorithm for solving positive sequence and three-phase power flow 

problems. 

The described Algorithm 6-1 shows the recipe for solving the positive-sequence as well as 

three-phase power flow problem in the equivalent circuit approach with the use of circuit 

simulation methods. The developed solver begins with parsing the input file and gauging if the 

input data are for the positive sequence or three-phase power flow problem. Based on the type of 

data (i.e. power flow or three-phase power flow data), it starts with building the system models. 

Input Test Case

Initialize  𝑖𝑛𝑡 , 𝜆, 𝜍, 𝜆𝑆 & 𝛿

No

Re-stamp  𝑁𝐿

Stamp Linear  𝐿

Solve for  𝑖𝑛𝑡
𝑘+1( 𝑅)

NO

Is shunt and 

xfmr control 
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Complete?
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homotopy   
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Change in 𝜆

No change in 𝜆

Build three-phase 

models

Find  ̂𝑖𝑛𝑡
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Apply Limiting
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 𝒢,        
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Update gen.

param ?
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Stop
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An empty Jacobian matrix structure is initialized based on the size of the system and non-

changing linear models ( 𝐿 , 𝐽𝐿) are first stamped in it.  These stamps remain constant throughout 

the NR iterations. Input state variables and other continuation parameters (𝑥0, 𝛿, 𝜁, 𝜆,  𝜆𝑠) are then 

initialized following which the non-linear models are stamped ( 𝑁𝐿, 𝐽𝑁𝐿) and NR is applied with 

limiting methods enabled to calculate the next iterate for the voltages, the generator reactive 

powers and any other continuous control variables ( ̂𝑘+1). In the solver, from the practical point 

of view, the available initial conditions in the input file are first used as the initial conditions. The 

use of the proposed limiting methods generally solves the system within 7 to 10 iterations with 

these initial conditions. However, in cases where the system is ill-conditioned or lacking a good 

initial guess, the solver begins to gradually increase the homotopy factor (𝜆)  until a trivial 

solution is found (this method does not require a good initial guess as homotopy methods have 

trivial solution for the first step). Once trivial solution is found, homotopy factors and other 

continuation factors for generators are dynamically updated (in this case decreased), and 

homotopy models (  , 𝐽 )  are stamped or re-stamped to ensure convergence to the correct 

physical solution for the original problem at (𝜆 = 0 ). Upon convergence of the inner loop, 

remaining controllable switched shunts and transformer taps are adjusted and the inner loop is 

repeated until the final solution is achieved. In cases, where continuous models are used for the 

control of discrete shunts and discrete transformer taps, a final loop is implemented to snap them 

to their closest discrete values. 

6.4 Results 

In this section we will report the results obtained via the use of the equivalent circuit 

framework with the use of circuit simulation methods. To run the test cases and validate our 

approach, we integrated these methods into our tool SUGAR. The results from SUGAR will 

demonstrate the ability of our framework to solve ill-conditioned, large real-life, and in general 

hard-to-solve positive-sequence and three-phase power flow test cases from arbitrary initial 

conditions. The following result section is divided into positive-sequence power flow results sub-

section and three-phase power flow results sub-section. 
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6.4.1 Positive Sequence Power Flow Results 

Following few sub-sections discuss results from the positive sequence power flow analysis. 

The set of results include ill-conditioned and hard to solve test cases as well as large test cases. 

However, first we demonstrate the efficacy of circuit simulation methods. 

6.4.1.1 Efficacy of Circuit Simulation Methods 

We use the first set of results to demonstrate that the use of circuit simulation methods 

developed within this section can significantly improve the robustness of convergence within the 

equivalent circuit framework. The section shows how the results obtained in the equivalent 

circuit framework with the use of circuit simulation methods fare against those obtained in the 

equivalent circuit framework without the use of circuit simulation methods.  

6.4.1.1.1 Experiment 1 

 

Figure 6-4: Solution of Bus 3 voltage for IEEE 14 bus test system with increasing loading 

factors with and without circuit simulation methods. 

In this experiment, positive-sequence power flow simulations are run on the IEEE 14 bus test 

system (from flat start) in steps of increasing loading factors (up to 4x) for the following four 

scenarios: 1) both power stepping and variable limiting option disabled, 2) with power stepping 

option enabled and variable limiting disabled, 3) with variable limiting option enabled and power 

stepping disabled, and 4) both power stepping and variable limiting option enabled. The 
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solutions for the bus 3 voltage magnitude at the end of each simulation are then plotted in Figure 

6-4. The plot shows that convergence to the correct physical solution is achieved for each 

simulation instance when either variable limiting, or power stepping option is enabled. However, 

without these options enabled in SUGAR, the solution in many simulation instances has either 

converged to the wrong solution or diverged altogether. 

6.4.1.1.2 Experiment 2 

In this experiment, power flow simulations are run on the 2869 PEGASE test system and 9241 

PEGASE test system for 20 different initial guesses of 𝑸𝑮 values that are uniformly distributed in 

the range of -10 pu and 10 pu. All 20 simulations are run for each of these solver settings under 

the same four scenarios as were used in the case for Experiment 1. The convergence results plotted 

in Figure 6-5 show that without the use of circuit simulation techniques, most of the test case 

instances either diverge or converge to the wrong solution. Convergence to the correct physical 

solution is only observed when both variable limiting and power stepping are enabled. 

 

Figure 6-5: Power flow results for 2869 bus and 9241 bus test systems with and without circuit 

simulation techniques. 
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6.4.1.1.3 Experiment 3 

To show the efficacy of circuit simulation methods in this experiment, contingencies were 

simulated on two hard to solve test-cases that represent different operating conditions for a real 

sub-network within the US power grid network models. The base cases for both test systems are 

first solved via the Tx-stepping method whose solutions are then used as initial conditions for the 

set of contingencies that were further run for two settings i) without the use of circuit simulation 

methods in SUGAR ii) with the use of circuit simulation methods in SUGAR. The contingencies 

in the contingency set include the loss of the largest 10% of the online generators and loss of 10% 

of the highest capacity lines and transformers taken off-line one at a time from the base case to 

create a single contingency instance within the contingency set.  

The results in the Table 6-1 validate that the use of circuit simulation methods when applied 

to equivalent circuit formulation can significantly increase the robustness of the power flow 

solver as in the case when circuit simulation methods were disabled, we were able to ensure 

convergence to the correct physical solution for far fewer contingency instances. 

TABLE 6-1: COMPARISON OF SUGAR WITH AND WITHOUT CIRCUIT SIMULATION TECHNIQUES 

Case Id # Bus 
# Total 

Cases 

SUGAR w/o Circuit 

Simulation Methods 

SUGAR with Circuit 

Simulation Methods 

Converge 
Diverge 

/Infeasible 
Converge 

Diverge 

/Infeasible 

Case 1 5944 754 735 19 750 4 

Case 2 7029 801 706 95 793 8 

6.4.1.2 Ill-Conditioned Test Cases 

In this sub-section, we demonstrate results of our approach when applied to ill-conditioned 

test cases. A large condition number for a given matrix indicates that the matrix and the system 

corresponding to that matrix are ill-conditioned. In the power flow problem, the matrix of interest 

is the Jacobian that is used to calculate the updated system state variables at each NR step. If the 

condition number of the Jacobian matrix is large at the solution point, then the system is assumed 

to be ill-conditioned.  
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The following set of results are generated from SUGAR with circuit simulation methods 

enabled and are compared against those produced by the standard commercial tools used in the 

industry today. 

6.4.1.2.1 Experiment 1: Ill-conditioned test cases in literature  

The 11-bus, 13-bus, and 43-bus test cases from the power system literature [49] are considered 

to be ill-conditioned systems. However, it is systematically shown in [49] that out of these three 

systems, the 11-bus system is the only genuine ill-conditioned system with a maximum loading 

of 99.82 %.  The 13-bus system is not an ill-conditioned system and can easily be solved via any 

power flow method, and the 43-bus test case has a maximum loading of 58%, for which there is 

no feasible solution for the base loading.  

Table 6-2 shows the comparison of the results for a modified 11 bus ill-conditioned test case at 

99.82% loading for different set of initial conditions. Using standard commercial tools, for most 

initial conditions the system is likely to converge to a low voltage solution or diverge. The 

commercial solver can only converge to the correct physical solution if the initial condition 

supplied is the solution itself. However, SUGAR can converge to the correct physical solution 

from arbitrary initial conditions when Tx Stepping is applied.  

TABLE 6-2: COMPARISON OF RESULTS FOR MODIFIED 11 BUS TEST CASE 

Initial Condition Ill Conditioned 11 Bus Test Case 

Vmag (pu) Vang (°) Standard Commercial Tool2 SUGAR1 

1 0 Low Voltage High Voltage 

0.76 23 Low Voltage High Voltage 

0.71 45 Low Voltage High Voltage 

High Voltage High Voltage High Voltage High Voltage 

1. Tx Stepping was enabled while running simulations in SUGAR 

2. Full Newton Raphson was the solver used in Standard Commercial Tool 

6.4.1.2.2 Experiment 2: A large ill-condition system at operating point 

Another notable case with a higher condition number at the operating point is the 13659-bus 

system from the PEGASE test cases. At the solution point, the approximate condition number of 

the system Jacobian is 1.7e8. Figure 6-6 shows convergence results for this test case from ten 
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arbitrary initial conditions for a standard commercial tool and SUGAR. The ten initial conditions 

were chosen uniformly from the set of: 

𝑉𝑅   [0.6, 1.1 ], 𝑉𝐼   =  {𝑥  ℝ𝑛 | 𝑥 =  1 – 𝑉𝑟} (99) 

From the set of 10 initial conditions, the standard commercial tool converged to the correct 

physical solution once, diverged 8 times, and converged to the angular unstable solution one time. 

SUGAR, however, with variable limiting and voltage limiting enabled was able to converge to 

the correct physical solution for all ten initial guesses. 

  

Figure 6-6: Results for 13659 buses PEGASE system. 

6.4.1.3 Large Test Cases 

In this experiment we demonstrate that SUGAR can robustly solve large test cases and that it 

ensures convergence to thecorrect physical solution from arbitrary initial conditions independent 

of the scale or conditioning of the system. Figure 6-7 shows the results for six distinct test systems 

that represent the eastern interconnection network of the US power grid under different loading 

conditions (Summer/Winter) and time periods (2017, 2018, 2021, 2026 etc.). The simulations were 

run on these systems from a set of different initial conditions that were uniformly chosen from 

the sets of: 
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𝑉𝑎𝑛𝑔  [−50, 50] , 𝑉𝑚𝑎𝑔  [0.6, 1] (100) 

The vertical and horizontal axes of the figure represent the set of initial conditions (𝑉𝑎𝑛𝑔, 𝑉𝑚𝑎𝑔) 

for a given case, respectively and box within each sub-graph represent the numbers of nodes in 

the test system. If the case converged to a correct physical solution, it is marked via a green mark; 

whereas if the case diverged then it is marked via a red mark. The figure indicates that SUGAR 

was able to achieve convergence for all the six large eastern interconnection systems independent 

of the choice of initial conditions. The run-time per iteration for the eastern interconnection test 

cases in SUGAR is comparable to other available commercial tools (less than 0.4s per iteration). 

The total simulation time for the test cases is dependent on the choice of initial conditions. 

 

 

Figure 6-7: Convergence sweep of large cases that represent Eastern Interconnection from 

range of initial conditions (number of nodes for each test system given in the legend box) 

We also repeated the same experiment on the publicly available SythenticUSA and 

ACTIVgs70k test cases [66] that demonstrated the same robust convergence as in the case of 

Eastern Interconnection test cases, as shown in Figure 6-8. 
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Figure 6-8: Convergence Plot for ACTIVgs70k (left) and SyntheticUSA (right) testcases. 

We performed a similar experiment to compare the robustness of SUGAR tool against a 

standard commercial tool. To conduct the experiment, we ran three real and two synthetic [66] 

eastern interconnection sized systems for 15 different initial conditions in both the SUGAR tool 

and the standard commercial tool. The set of initial conditions for this experiment for all buses 

were identical and were uniformly sampled from: 

𝑉𝑎𝑛𝑔  ∈  [−40, 40] , 𝑉𝑚𝑎𝑔  ∈  [0.9, 1.1]. (101) 

The results in Table 6-3 show that from any of the 15 different initial conditions, the standard 

commercial tool was unable to solve the system, whereas SUGAR with Tx stepping enabled was 

able to converge to the correct physical solution in all cases.   

TABLE 6-3: CONVERGENCE PERFORMANCE FOR LARGE EASTERN INTERCONNECTION TEST CASES 

Case Name # Nodes 
Standard Tool SUGAR 

# Converge # Diverge # Converge # Diverge 

Case 1 80778 0 15 15 0 

Case 2 76228 0 15 15 0 

Case 3 81904 0 15 15 0 

SyntheticUSA 82000 0 15 15 0 

ACTIVSg70k 70000 0 15 15 0 
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6.4.1.4 Contingency Analysis 

To further demonstrate the robustness of our approach, we consider a set of scenarios wherein 

we plan a realistic contingency on large test cases and other hard to solve test cases. We compare 

the obtained results from SUGAR tool against those produced by the standard commercial tool. 

6.4.1.4.1 Experiment 1: Contingency on Eastern Interconnection Test Cases 

In this first experiment, we run contingency analysis on test cases that represent different 

operating and loading conditions for the U.S. eastern interconnection network. The contingencies 

in these cases are defined by loss of either two (N-2) or three (N-3) generators in the system. To 

obtain and further compare the results, we solve these contingency instances with both the 

standard commercial tool and the SUGAR tool. The initial conditions for all the cases are chosen 

to be the solution state prior to the contingency i.e. base case (thereby suggesting that the system 

is close to its operating state post-contingency).  

TABLE 6-4: CONTINGENCY ANALYSIS FOR LARGE TEST CASES 

Case 
Contingency 

Type 

No. of 
Buses 

Standard 
Commercial Tool 

SUGAR 

Case 1 N-2 75456 Diverged Converged 

Case 2 N-2 78021 Diverged Converged 

Case 3 N-3 80293 Diverged Converged 

Case 4 N-3 81238 Diverged Converged 

The results in Table 6-4 demonstrate that while SUGAR was able to converge for all the 

contingency instances, whereas the standard commercial tool diverged for all thereby further 

strengthening the argument for robustness of our framework. Importantly, robustness of our tool 

toward solving contingencies can be extremely vital to grid operation and planning engineers 

who are required by NERC to evaluate each failed N-1 contingency [67]. 

6.4.1.4.2 Experiment 2: Contingency of hard-to-solve real life test cases 

In this experiment, to demonstrate the robustness of SUGAR while performing contingency 

analysis, we consider a yet another real-life test grid that represents a sub-set of the US grid. This 

cases was known to be hard-to-solve. For this experiment, we perform N-1 contingency analysis 

on this test system. The set of contingencies includes loss of 10% of the highest capacity links 
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(transformers and branches) and 10% of the largest online generators taken off-lines one at a time 

from the base case run to create a single contingency instance. This results in total number of 

contingency instances within the contingency set to be 774. To run the contingency analysis, we 

first solve the base case with the use of the Tx-stepping method. With the solution of the base case 

as the initial condition, we run the contingency simulation instances in SUGAR. The standard 

commercial tool was unable to solve the base case, and therefore, we were not able to perform 

the contingency simulation instances on those.  Table 6-5 documents the results from SUGAR 

contingency runs and it shows that SUGAR was able to solve the base case as well as all 

contingency instances robustly. 

TABLE 6-5: N-1 CONTINGENCY ANALYSIS ON SET OF CRITICAL EQUIPMENT. 

Solver Number of Contingencies 

System Convergence 

Converged  Infeasible 

SUGAR 774 774 0 

Standard Commercial Tool 774 NA NA 

6.4.1.5 N-1+1 Analysis (Contingency Analysis + Corrective Action) 

In this experiment we simulated an another real-life test case that represents an electric grid 

from Africa that it is pushed to its limits. For this experiment, we first perform N-1 contingency 

analysis on this system and based on the results we recommend a corrective action methodology 

that we refer to as N-1+1 analysis. In the set of contingencies for this analysis, we consider all the 

transformers, lines and generators dropped one at a time that resulted in a total of 717 

contingency instances. Of these 717 contingency instances, 684 were found to be feasible whereas 

33 instances were found to be infeasible. The 33 of them were confirmed to be infeasible based on 

the methodology documented in [63]. Furthermore, from the results gathered from the 

contingency analysis, it was found that akin to the base case, a significant number of simulation 

instances resulted in very high voltages as shown in Figure 6-9. 
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Figure 6-9: Maximum bus voltage range for contingency analysis. 

Therefore, as a corrective action to improve the voltages in this system, we propose N-1+1 

analysis. The algorithm for this analysis is as follows: 

N-1+1 Algorithm 

1. procedure: 

2. run  − 1 contingency 

3. identify all regions (𝑅𝑖𝑛𝑓) with abnormal bus voltages in the system 

4. for  𝑅𝑖𝑛𝑓: 

a. add reactive power compensating device to every bus in 𝑅𝑖𝑛𝑓 ( + 1 scenario) 

b. redo    − 1 , find number of infeasible cases ( 𝑖𝑛𝑓 ) and range of voltages 

(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) 

5. choose,  + 1 scenario, with fewest infeasible cases ( 𝑖𝑛𝑓) and lowest spread of system 

voltages. 

Based on the algorithm, we added a reactive power compensating device to the most sensitive 

bus in the system and were able to reduce the system voltages for the base case and the 

contingency cases while resulting in fewer infeasible cases. The maximum bus voltage range pre- 

and post- corrective action is shown in Figure 6-10. 
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Figure 6-10: System bus voltage pre and post corrective action. 

6.4.2 Three-Phase Power Flow Results 

In the following section, we discuss results for three-phase power flow analysis. Akin to 

positive sequence power flow analysis, we first demonstrate the efficacy of circuit simulation 

methods toward robust convergence of distribution grid test cases. 

6.4.2.1 Efficacy of Circuit Simulation Methods  

In this experiment we demonstrate that the use of circuit simulation methods for three-phase 

power flow can ensure convergence for hard-to-solve three-phase test cases that were otherwise 

found unsolvable. To demonstrate one such example, we extended the standard 145 node 

transmission system model into a balanced three-phase network model. Figure 6-11 plots the 

convergence results for this test case with and without the use of the dynamic power stepping 

technique. It is shown that without the use of dynamic power stepping, the test system did not 

converge within the maximum number of allowable iterations; however, with the use of dynamic 

power stepping, the system robustly converged to the correct physical solution. 
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Figure 6-11: Convergence of 145 bus test case for three-phase power flow with (middle) and 

without (top) power stepping. For the power stepping case, the green dotted line represents 

the change in continuation factor λ whose evolution is shown in the bottom plot. 

6.4.2.2 Taxonomical Test Cases and other Large Test Cases 

Table 6-6 documents the results obtained from the SUGAR three-phase solver for standard 

taxonomical cases and three large meshed test cases. The standard taxonomical cases include both 

balanced and unbalanced three-phase test cases. The first two of the meshed test cases are the 

342-Node Low Voltage Network Test Systems [68] that represent high density urban meshed low 

voltage networks. The third meshed test system is a high voltage 9241 node PEGASE transmission 

system that was extended to a balanced three-phase model from the positive sequence model. All 

these cases were simulated in SUGAR three-phase solver to validate the solver accuracy by 

comparing the obtained results against those produced from standard distribution power flow 

tool GridLAB-D. Slight differences (less than 1e-2) in the results were observed for cases between 

SUGAR and GridLAB-D and can be attributed to the default values used for unspecified 

parameters (e.g. neutral conductor resistance) in GridLAB-D.  

TABLE 6-6: SUGAR THREE-PHASE RESULTS FOR TAXONOMICAL AND LARGE CASES 

Cases #Nodes Iter. Count 
Deviation from GridLAB-D 

Max. ΔVmag [pu] Max. ΔVang [°] 

GC-12.47-1 36 3 9.10E-06 6.6E-04 

R1-12.47-1 2455 5 8.73E-04 9.94E-03 

R2-12.47-3 2311 5 6.56E-04 1.32E-02 
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R3-12.47-3 7096 5 1.94E-03 3.89E-02 

R4-12.47-1 2157 5 6.81E-04 9.61E-03 

R5-12.47-5 2216 5 5.44E-05 4.20E-03 

Network Model 1 1420 3 3.38E-03 2.14E-03 

Network Model 2 1420 3 3.83E-03 6.00E-03 

case9241pegase* 12528 5 NA# NA# 
* 9241 bus PEGASE transmission test case was extended to three-phase model 
#The following case did not run in GridLAB-D 
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7.  Joint Transmission and Distribution 

Simulation 

There is a growing adoption of variable and intermittent sources of generation especially wind 

and solar in the power systems across the globe. This high levels of penetration of renewables 

will result in much narrower operational margin than what’s available today, thereby 

significantly affecting the reliability of the grid. To ensure that the reliability of the grid is not 

affected, interdependencies between the transmission grid and distribution grid (wherein a 

significant fraction of solar is likely to be installed) will have to be clearly understood while 

enabling control based on the knowledge of the operating state for both the transmission as well 

as the distribution grid. This was apparent when a transmission system operator in PJM 

coordinated with the Sturgis, Michigan distribution grid to avoid a blackout by utilizing 6 MW 

of distributed generation back in 2013 [69]. To securely and reliably enable control actions such 

as this, the operators and planners of the grid may require new simulation capabilities that will 

navigate through the invisible boundaries that exists today between the transmission and 

distribution grid analyses and solution methodologies. The existing simulation framework for 

power system analyses is incapable of capturing these interdependencies between the 

transmission and distribution grids. No standard tool exists in the industry today that can jointly 

model the transmission and distribution grids while ensuring robust steady-state solution for the 

same. This lack of simulation capability was highlighted in an ARPA-E workshop to identify 

paths to large-scale deployment of renewable energy resources, where one speaker noted that the 

“tools are not graceful in considering penetration levels at which much of the thermal fleet could 

get de-committed,” and that “studies do not co-simulate impact of renewable injection into 

receiving AC systems” [6]. Another speaker noted that the tools for simulating increasingly 

coupled transmission and distribution systems “are not well integrated” [7].  

In this chapter we demonstrate that our equivalent circuit framework can jointly model the 

transmission and distribution (T&D) grid without loss of generality and ensure robust 
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convergence for the same. Moreover, as shown in Section 6, the circuit simulation techniques 

developed within this thesis are directly applicable to both the power flow and the three-phase 

power flow problem, thereby allowing us to extend the same to be used in the case of joint 

transmission and distribution analyses for robust convergence. 

7.1 Background 

The existing research literature in the field of joint transmission and distribution simulation is 

limited primarily due to the use of disparate methods for the transmission and distribution 

formulation and algorithms [57]-[60]. Amongst these, the most common methodology for joint 

T&D simulation is to model the transmission network via positive sequence model and the 

distribution network via three-phase network and to couple the two. The assumption here is that 

the three-phases of the transmission network are balanced at the point of interconnection (POI). 

In general, most of these methods tend to couple the transmission and distribution systems via 

an interface and then solve the two via disparate methods [58]-[60]. For instance, [58] models the 

transmission grid via PowerWorld and the distribution grid via GridLab-D. The integrated 

simulation is then performed by running individual sub-circuits in their respective tools and then 

by exchanging variables via a communication port. Similar approaches are also used in [59]-[60]. 

Such approaches result in inheritance of legacy robustness issues from the positive sequence as 

well as the three-phase solvers, wherein a failure of either tool to solve a sub-circuit (transmission 

or distribution test case) results in complete breakdown of the framework. Moreover, due to the 

use of disparate tools/methods for solving the individual transmission and distribution test cases, 

it is difficult to develop methods that are generic and can guarantee convergence for both 

transmission and distribution systems. A more novel master-slave approach toward solving the 

joint simulation is proposed in [57], wherein the joint problem is solved in a distributed way. In 

this method, the problem is split into a transmission power flow and several distribution power 

flow sub-problems that are then solved via different power flow algorithms to capture the 

different features of transmission and distribution grids.  However, the methodology has mostly 

been tested on unrealistically small sized systems with no claims of robust convergence for the 

individual sub-systems.  
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Another approach for joint simulation of transmission and distribution systems is to model 

the complete three-phase network for the transmission system and then coupling the same with 

three-phase networks of the distribution systems [61]. This approach does not require a balanced 

operation assumption of the transmission grid, and thus allows for modeling of unbalanced 

conditions. However, the primary limitations to this approach is the general lack of three-phase 

data for the transmission network, and the lack of research toward ensuring robustness for 

convergence of three-phase transmission networks. 

7.2 General Methodology 

To robustly solve for the joint transmission and distribution network, we make use of the 

equivalent circuit approach discussed in Section 5. In this approach, we represent the coupled 

transmission and distribution grid as an aggregated equivalent circuit and we use NR methods 

to solve for the set of non-linear equations defined by that aggregated circuit. The aggregated 

equivalent circuit for the transmission system is the positive sequence network of the same and 

assumes balanced operation of the grid, whereas the equivalent circuit of the distribution system 

models each phase of the distribution grid individually, thereby allowing for analysis of 

unbalanced operation of the grid. In the equivalent circuit approach, we can easily couple the two 

systems (transmission and distribution) to jointly simulate them and solve for the two. As the 

entire grid can be thought of as a circuit, coupling of the two circuits for joint simulation is 

fundamental to the circuit analysis domain. We model the positive sequence currents consumed 

by the distribution grid with current controlled current sources connected to the edge of the 

transmission system. Similarly, we model the three-phase voltages at the sub-station level of the 

distribution system by voltage-controlled voltage sources that are functions of the voltages at the 

transmission edge of the system. 

7.3 Coupling port for transmission and distribution equivalent circuit 

First, we develop the port that is used to couple the transmission and distribution sub-circuits 

for joint transmission and distribution simulations. The positive sequence transmission network 
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and three-phase distribution network are coupled at the POI to run joint simulation via the circuit 

shown in Figure 7-1.  

  

Figure 7-1: Coupling port for joint transmission and distribution analysis. 

To derive the positive sequence currents (𝐼𝑅
𝑝
, 𝐼𝐼

𝑝
)  and three-phase voltages 

(𝑉𝑅
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𝑐) required to model the port we make use of symmetrical components [54]. 

The positive sequence power flow problem for the transmission grid is assumed to have balanced 

operation, and therefore, the zero and negative sequence components of voltages and currents 

are ignored in the calculation of distribution grid currents consumed by the transmission grid. To 

calculate the transmission grid currents from three-phase distribution grid currents, (102) is used.  
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Similarly, the distribution end voltages as a function of transmission POI voltages are 

calculated via: 
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 (103) 

Importantly, if unbalanced operation is expected at the high voltage transmission system level, 

then one must construct the three-phase equivalent circuit with of the transmission system and 

couple it directly with the three-phase equivalent circuit of the distribution system at the POI. 

This can be done via an equivalent circuit approach by following the formulation set forth in this 

thesis and in [31]-[35]. However, the analysis of an unbalanced three-phase transmission network 

is beyond the scope for this thesis work. 

We explore two approaches for joint simulation of transmission and distribution (T&D) grids 

in this thesis: 

i. Joint T&D simulation on a single machine. 

ii. Joint T&D simulation on distributed cores with parallel computing. 

7.4 Joint T&D simulation on a single machine 

In this approach, we couple the transmission and distribution system using the coupling port 

network described in the previous section. We develop the aggregated equivalent circuit for the 

same and stamp the system matrix for each element in the coupled network. We then solve for 

the system matrix using NR. Figure 7-2 shows the coupled network for a single transmission and 

distribution network. 
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Figure 7-2: General framework for performing joint transmission and distribution simulation 

using equivalent circuit approach. 

Here, we discuss some results from the simulations of joint T&D network on a single machine 

and demonstrate how our approach can overcome the challenges of the existing methods. 

7.4.1.1 Experiment 1 

In the first experiment, a 9241 node PEGASE test system is used to model the transmission 

grid, which is then coupled to a distribution grid modeled by a taxonomical feeder test case (R5-

35.00-1) at the point of interconnection (POI). For the purposes of this experiment, the original 

distribution test case is modified to include distributed energy resources (DERs) in roughly 20 % 

of the system nodes that contain electrical loads. The net capacity of DERs at each node is kept 

variable and is modified throughout the experiment. 

The goal of this experiment is two-fold: 

i. To demonstrate that higher capacity of distribution loads can be supplied with higher 

penetration of DERs. 

ii. To demonstrate that more resilient grid voltages can be obtained by higher 

penetration of DERs during both normal and contingency operation. 
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Figure 7-3: POI voltages under normal and contingency operation with changing distribution 

load. 

To obtain the base maximum loading for the joint T&D system, we first develop the PV curve 

for the voltages at the POI by varying the loading factor of the distribution feeder, as shown in 

Figure 7-3. We repeat this analysis on the system with a loss of a generator on the transmission 

grid that is in close vicinity of the POI. As seen in the Figure 7-3, for the base case with no DERs, 

the voltages after the contingency has occurred are below 0.75 pu for majority of the loading 

factors and the likelihood of a system collapse is higher with increasing loading of the distribution 

feeder. 

 

Figure 7-4: POI voltages under normal and contingency operation with changing distribution 

load and with DERs in the system. 
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To supply the full load in the distribution feeder such that the POI voltages remain above 0.75 

pu, we scale up the penetration of DERs in the system. We simulate the contingency and normal 

cases again and show the results in Figure 7-4. With the penetration of DERs in the system, the 

voltages are above 0.75 pu under normal as well as contingency scenarios for all loading factors 

up to 1.4x while being able to supply greater than rated load of the distribution feeder without 

system collapse. 

7.4.1.2 Experiment 2 

A similar experiment is performed with a larger more realistic test case. In this experiment, 

the 78k+ nodes eastern interconnection of the U.S. is modeled via positive sequence transmission 

network. The 8000+ nodes taxonomical three-phase test system is then coupled to a weak point 

in the transmission grid for which voltages are highly sensitive to load currents. The primary goal 

of this experiment is to evaluate the minimum penetration of DERs needed to supply the full load 

of the distributed grid while ensuring that the sub-station voltage at the POI remains above 

0.75 pu. 

 

Figure 7-5: Voltage in pu at the point of interconnection with increasing loading factor of the 

distribution feeder. 

To first evaluate the maximum transfer capacity at the POI prior to voltage collapse, we 

gradually increase the loading factor of the distribution feeder until the system collapses. As seen 
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in Figure 7-5, the system can only supply a fraction of the rated capacity (0.7 loading factor) prior 

to voltage collapse without any penetration of DERs. 

As a remedial action, the penetration of DERs in the system is increased until the transmission 

grid can supply the full load of the distribution system while keeping the voltages at the POI 

above 0.75 pu. As in the prior experiment, the DERs in the system are added to roughly 20 % of 

the total system nodes that contain electric loads. A scaling factor is used to increase the 

penetration of DERs in the simulation. Figure 7-6 shows that with 20% penetration of distribution 

generation in the distribution grid, the transmission network can supply the full load while 

maintaining grid voltages above 0.75 at the interconnection sub-station. 

 

Figure 7-6: Voltage in pu at the point of interconnection with increasing loading factor of the 

distribution feeder i) with DERs and ii) without DERs. 

7.4.1.3 Experiment 3 

In this experiment the joint T&D framework is used to demonstrate the flow of power from 

the distribution network into the transmission network; i.e., reverse flow of power. This reverse 

flow of power is achieved by gradually increasing the penetration of DERs in the distribution 

feeder until the power flow direction is reversed. The results for the experiment are shown in 

Figure 7-7. The left vertical axis in the figure shows the active power transfer across the POI 

whereas the horizontal axis shows the penetration of DERs in the system as a function of its 
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scaling factor. It is shown that as the net penetration of DERs increase in the distributed feeder, 

the net active power transfer across the POI decreases. At around >1.2 times the rated capacity of 

DERs, the direction of flow of power is reversed with power flowing from the distribution feeder 

into the transmission network. On the right vertical axis of the figure, the voltage in pu for the 

POI is shown as a function of the variable DERs in the distribution feeder. As expected, the net 

increase in DERs result in a voltage magnitude increase at the POI. Akin to prior experiments, 

DERs are added to roughly 20 % of the distribution feeder nodes that carry electric load. 

 

Figure 7-7: Reverse power flow observed during increasing DERs in the distribution feeder. 

7.5 Joint T&D simulation on distributed cores with parallel computation 

The experiments in the prior sub-section detail the equivalent circuit approach for joint T&D 

analysis on a single machine. However, while solving large joint T&D systems with hundreds of 

distribution networks connected to a single transmission network, the computational capacity 

and the system memory of a single machine may not be sufficient. Beyond a certain sized 

integrated system, the joint T&D simulation becomes computationally impractical on a single 

machine due to the large size of the solution matrix. Therefore, to address this limitation, we 

explore the use of a parallel simulation framework with the use of distributed cores or machines. 

In the proposed approach, the large integrated equivalent circuit with multiple transmission and 

distribution networks are “torn” into multiple sub-circuits using the theory of diakoptics [70], 
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first proposed by Kron. In the past, significant research has been carried out [71]-[73] for solving 

large circuits in parallel for solution matrices that have a special bordered block diagonal (BBD) 

structure.  Interestingly, the solution matrix of the joint T&D simulation due to the hierarchical 

nature of the coupling between the various networks is inherently in BBD form, and therefore, 

the developed theory for parallel simulation in circuit simulation domain can be directly applied 

to our problem. One must note that the primary purpose of the following discussion within this 

section is not to develop parallel methods for power system simulation, but rather to introduce 

fundamental concepts and simple examples corresponding to the proposed equivalent circuit 

framework that in future may garner interest and further enable the available research in parallel 

circuit simulation to be applied directly to this problem [74], [78] and [81].  

In the following sections, we discuss the “tearing” of large joint T&D system into multiple sub-

circuits through domain-based decomposition [78]. We then briefly introduce the Gauss Seidel 

Newton (GSN) algorithm that can be used to solve a joint T&D problem in a parallel framework.  

Importantly, one of the key prerequisites for a robust parallel simulation framework of a large 

T&D circuit is the ability to solve each individual sub-circuit robustly. In our case, this relates to 

solving the power flow and three-power flow equivalent circuits robustly. In a large simulation 

problem wherein, we may have hundreds, or even thousands of distribution networks connected 

to a single transmission network, it is of utmost importance that we can ensure robust 

convergence to a correct physical solution for each of the individual networks. Otherwise, it may 

cause severe bottlenecks in the overall problem convergence leading to divergence or even 

convergence to erroneous results. Our equivalent circuit framework with circuit simulation 

methods can ensure robust convergence for both the power flow and three power flow circuits, 

thereby extending the same robust properties to the parallel simulation framework. 

7.5.1 Background 

There has been extensive research towards the use of parallel simulation techniques for 

obtaining the DC and transient solution of very large integrated circuits [71]-[78]. The theory of 

diakoptics [70] and bordered block diagonal matrices [72] are integral to these solution 

methodologies and are developed within that work. We briefly discuss these key concepts in 
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following sub-sections and demonstrate how they can be extended to solve joint T&D problems 

in an equivalent circuit framework. 

7.5.2 Diakoptics 

Diakoptics, or the “methods for tearing” [70], involves taking a large problem and dividing it 

into the set of sub problems, which can then be solved independently prior to being coupled 

together again to provide an exact solution. The aim of this technique is to tear the network either 

through domain-based decomposition [78] prior to the construction of the solution matrix or 

through the direct partitioning of the solution matrix with no prior domain knowledge. In the 

joint T&D problem, the distribution feeders are known to be weakly coupled to the transmission 

network often at a single point of interconnection. This allows for the application of domain-

based decomposition to “tear” the integrated T&D network into a set of sub-networks with POIs 

being the cut-set branches as shown in Figure 7-9. To numerically demonstrate the following, 

consider an aggregated T&D network with the following function form: 

ℱ(𝑽𝑅 , 𝑽𝐼) = 0 (104) 

This large T&D network is torn into 𝑚 independent sub-circuits that consist of the internal 

variables (𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡) that are only function of circuit elements within the sub-circuit and the 

external variables (𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡) that are functions of circuit element in the other sub-circuits [71]. 

The decomposed sub-circuits have the following function form: 

ℱ𝑖𝑛𝑡(𝑽𝑅
𝑖𝑛𝑡, 𝑽𝐼

𝑖𝑛𝑡, 𝑽𝑅
𝑒𝑥𝑡, 𝑽𝐼

𝑒𝑥𝑡) = 0 (105) 

ℱ𝑒𝑥𝑡(𝑽𝑅
1 , 𝑽𝐼

1, … , 𝑽𝑅
𝑚, 𝑽𝐼

𝑚, 𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡) = 0 (106) 

for 𝑖𝑛𝑡 = 1, … , 𝑚,  and {𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡} ∈ ℝ𝑛𝑖 are internal nodal voltages of sub-circuits, and 

{𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡} ∈ ℝ𝑛𝑒 are external nodal voltages. 

7.5.3 Bordered Block Diagonal (BBD) Matrix Structure 

In many fields of engineering and science, block bordered structured matrix-based problems 

arise. In the circuit simulation field, BBD matrix structure is common for representing the system 
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matrix for the VLSI circuits, wherein in the past partitioning (through node tearing or branch 

tearing) of the circuit is beneficial for parallel analyses.  The ability to represent these large 

circuit’s solution matrices in the BBD form allows for the use of vastly researched parallel sparse 

solver techniques [78] to obtain the system solution. The hierarchically structured joint T&D 

network, wherein a limited number of transmission networks supply bulk power to numerous 

local distribution feeders, is inherently representable in BBD form. For instance, consider Figure 

7-8 in which three distribution networks are connected to a large transmission network. There 

exists a natural weak coupling between the different networks in the figure shown via the flow 

of current. 

 

Figure 7-8: Weakly coupled transmission and distribution network. 

This integrated network can be divided into a set of sub-systems ( ) by the branch tearing 

technique at the coupling points between the transmission and distribution network, as shown 

in Figure 7-9. 

Transmission 
System

Distribution 
System - A

Distribution 
System - B

Distribution 
System - C
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Figure 7-9: “Torn” transmission and distribution sub-systems. 

The decomposed network is further representable in BBD form, as shown in Figure 7-10. The 

block diagonal terms in the matrix (𝑇, 𝐷𝐴, 𝐷𝐵, 𝐷𝐶) represent the system Jacobian elements for the 

decomposed sub-circuits ( = {ℱ𝑇 , ℱ𝐷𝐴
, ℱ𝐷𝐵

, ℱ𝐷𝐶
} ) that are functions of sub-circuit’s internal 

parameters {𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡}  whereas off-diagonal terms in the vertical right of the matrix i.e. 

(𝑡𝑡′, 𝑡𝑑𝑎 , 𝑡𝑑𝑏 , 𝑡𝑑𝑐)  are system Jacobian elements that are functions of sub-circuit’s circuit external 

variables {𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡}. Remaining elements in the bottom of the matrix represent the Jacobian 

elements of the coupling sub-circuit (representing the port circuit equations) with respect to sub-

circuits internal and external variables. Mathematically, these elements are given by: 

𝑇 = {
𝜕ℱ𝑇

𝜕𝑽𝑅
𝑖,𝑖𝑛𝑡

,
𝜕ℱ𝑇

𝜕𝑽𝐼
𝑖,𝑖𝑛𝑡

} , 𝑖 = 1, … , 𝑠𝑖𝑧𝑒(𝑇) (107) 

𝑡𝑡′ = {
𝜕ℱ𝑇

𝜕𝑽𝑅
𝑖,𝑒𝑥𝑡

,
𝜕ℱ𝑇

𝜕𝑽𝐼
𝑖,𝑒𝑥𝑡

} , 𝑖 = 1,… , 𝑠𝑖𝑧𝑒(𝑇) (108) 

𝑇𝑇′ = {
𝜕ℱ𝐶

𝜕𝑽𝑅
𝑖,𝑒𝑥𝑡

,
𝜕ℱ𝐶

𝜕𝑽𝐼
𝑖,𝑒𝑥𝑡

} , 𝑖 = 1,… , 𝑠𝑖𝑧𝑒( 𝐶) (109) 

𝐷𝑥 = {
𝜕ℱ𝐷𝑥

𝜕𝑽𝑅
𝑖𝑛𝑡

,
𝜕ℱ𝐷𝑥

𝜕𝑽𝐼
𝑖𝑛𝑡

} , 𝑖 = 1, … , 𝑠𝑖𝑧𝑒(𝐷𝑥) & 𝑥 = {𝐴, 𝐵, 𝐶} (110) 

𝑡𝑑𝑥 = {
𝜕ℱ𝐷𝑥

𝜕𝑽𝑅
𝑒𝑥𝑡 ,

𝜕ℱ𝐷𝑥

𝜕𝑽𝐼
𝑒𝑥𝑡} , 𝑖 = 1, … , 𝑠𝑖𝑧𝑒(𝐷𝑥)  & 𝑥 = {𝐴, 𝐵, 𝐶} (111) 
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𝑇𝐷𝑥 = {
𝜕ℱ𝐶

𝜕𝑽𝑅
𝑖,𝑒𝑥𝑡

,
𝜕ℱ𝐶

𝜕𝑽𝐼
𝑖,𝑒𝑥𝑡

} , 𝑖 = 1, … , 𝑠𝑖𝑧𝑒( 𝐶) & 𝑥 = {𝐴, 𝐵, 𝐶} (112) 

where set {𝐴, 𝐵, 𝐶} represents different sub-circuits for the distribution system. In the following 

section we discuss one of the techniques, i.e. Gauss Seidel Newton (GSN) method, for solving the 

BBD form joint T&D parallel problem.  

 

Figure 7-10: Bordered Block Diagonal structure for joint transmission and distribution 

system. 

7.5.4 Gauss-Seidel-Newton Approach 

We make use of the Gauss-Seidel-Newton (GSN) method [75], [80] to solve the set of sub-

systems given by decomposed joint T&D sub-circuits. The subsystems are chosen such that the 

set of internal nodes (𝒙𝑖𝑛𝑡) for each sub system are far larger than the number of external coupling 

nodes (𝒙𝑒𝑥𝑡). In this algorithm, within the inner loop, the set of independent sub-systems ( ) are 

solved in parallel using block NR algorithm until convergence or for a limited number of 

iterations. In this inner loop, the external coupling variables (𝑽𝑅
𝑒𝑥𝑡 , 𝑽𝐼

𝑒𝑥𝑡) are kept constant for each 

sub-circuit, whereas the internal variables (𝑽𝑅
𝑖𝑛𝑡 , 𝑽𝐼

𝑖𝑛𝑡) are solved for iteratively. In the outer loop, 

the external coupling variables from each sub-system are then fan out to other sub-systems via a 

Gauss step and the inner loop of NRs are performed again. This iterative algorithm is then 

repeated until the error of external coupling variables communicated between the consecutive 
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outer loops (𝑒𝑝𝑜𝑐ℎ𝑠)  are within a certain tolerance. This algorithm is graphically shown in 

Algorithm 7-1. 

 

Algorithm 7-1: Parallel joint transmission and distribution using Gauss-Seidel-Newton 

method. 

7.5.5 Validation 

To validate the distributed parallel simulation framework for joint T&D problems, we 

compare the results obtained from the parallel algorithm using GSN on multiple cores against 

those produced by direct NR algorithm on a single core as described in Section 7.4. To setup the 

comparison, we couple an ~8000-node taxonomical distribution system [76] with a 9241 PEGASE 
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test case at  the transmission node 2519. We then simulate the coupled system for different loading 

factors of the distribution network with the following algorithms: 

i. The coupled network solved at once on a single core using direct NR algorithm 

ii. The coupled network decomposed and solved in parallel on multiple cores using GSN 

algorithm 

Figure 7-11 shows that the results obtained from the single core NR setup compare well with 

those obtained from the parallel simulation setup using GSN.  

 

Figure 7-11: Comparison of joint T&D simulation algorithms: i) Single machine setup using 

NR (in blue), ii) Parallel simulation on distributed cores using GSN (in red). 

7.5.6 Joint transmission and distribution analysis on a large system 

To perform this experiment, 50 distribution feeders, each representing roughly 8000 nodes, 

were coupled to a large realistic transmission network at different locations. The eastern 

interconnection test case with roughly 85k+ nodes is used to represent the transmission network, 

and the set of distribution systems are represented via open-source taxonomical feeder test cases 

[76].  This problem represents a solution matrix size of roughly 3 million rank with a total of 

~3x4,00,000 distribution nodes and ~85000 transmission nodes. We simulated the case using GSN 

until completion. In the final solution, the POI voltages were all found to be within the acceptable 

range of 0.8-1.2 pu and the complete simulation took less than a couple of minutes to converge 
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with Tx-stepping method enabled. The Figure 7-12 represents the evolution of the sub-station 

voltages at the POI during the Gauss-step in the outer loop of the parallel joint T&D simulation. 

 

Figure 7-12: Voltages at the POI in the outer loop of GSN. 

7.6 Notes on Convergence 

Suppose that the system of non-linear equations that represents the large joint interconnected 

transmission and distribution network is given by: 

𝐽𝑉 = 𝐼 (113) 

where matrix 𝐽 has the form given in Figure 7-10. To further explore the convergence properties, 

this matrix 𝐽 can be split into two components given by: 

𝐽 = 𝑀 −   (114) 

In general, for the Gauss-Seidal-Newton (GSN) algorithm to guarantee convergence for the 

decomposed matrix 𝐽 the spectral radius of the iteration matrix (𝜌(𝑀−1 )) needs to be less than 
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1. However, a less strict condition that requires the solution matrix to be point-wise strictly 

diagonal dominant is often sufficient i.e. 

∑ |𝑎𝑖𝑗|
𝑛

𝑖≠𝑗
≤ |𝑎𝑖𝑖|, for all 𝑖 (115) 

where 𝑎𝑖𝑗 is a value in the matrix for 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. 

Due to the reason that the solution matrix 𝐽 is representable in BBDF form, a much milder 

condition can guarantee convergence for the partitioned system. If the joint system is represented 

as an aggregated equivalent circuit and is partitioned into sub-circuits at multiple “tearing” nodes, 

then the existence of a capacitance at sub-set of these “tearing” nodes with a large enough value 

can guarantee convergence for the partitioned system via GSN algorithm [81]. This is a much 

milder sufficient condition for convergence when compared against the strict diagonal 

dominance condition for a general matrix that requires a large value capacitor from each node in 

the system to ground. However, modifications (adding a high value capacitance from the “tearing” 

node to ground) such as these are often unwarranted as they change the inherent structure of the 

problem, and therefore, other convergence techniques should be explored. 

One such method is presented in [82] and ensures convergence for the power flow network-

based problems via GSN by partitioning the matrix into BBDF such that the spectral radius of the 

iteration matrix corresponding to the partitioned system is ensured to be less than one. The work 

in [82] partitions the solution matrix 𝐽 into 𝑀 and   such that 𝐽 = 𝑀 −  , where 𝑀 is a block 

diagonal matrix capturing the interactions between the internal variables of each block sub-circuit 

and   is the off-diagonal matrix that captures the communication between the variables of other 

sub-circuits. To ensure convergence by GSN, the method introduces a diagonal matrix 𝐸̅, such 

that the matrices M and N are modified as follows: 

𝑀 = 𝐷 + 𝛼𝐸̅ (116) 

 = 𝛼𝐸̅ − 𝐸 (117) 
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where, 𝐽 = 𝐷 + 𝐸. It is shown in [82] that by choosing the value of 𝛼 =
1

2
, the algorithm can ensure 

convergence for the partitioned system. 

Furthermore, it should be noted that other methods such as the use of distributed Schur’s 

complement [85] can also be used to extract the exact solution of the linearized matrix 𝐽𝑙  for 𝐽𝑙𝑉 =

𝐼𝐿 at each step of NR given that the linearized matrix  𝐽𝑙 is in BBDF. 
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8. Conclusions and Future Work 

The U.S. Department of Energy’s Quadrennial Technology Review [79] underscores the need 

for “high-fidelity planning models, tools, and simulators and a common framework for modeling, 

including databases” for the future grid of tomorrow. Towards the direction of the common goal 

set forth in that report, this thesis developed a generic framework for modeling both the 

transmission as well as the distribution grid including novel methods that can solve robustly for 

the steady-state operating point of these network models. This is a significant advancement over 

state-of-art tools used today that use disparate tools and methods for transmission and 

distribution grid analysis and often require a good initial guess for obtaining the steady-state 

operating point of the grid. Within the scope of this thesis, to demonstrate the efficacy of the 

proposed framework while also validating the methodology, we developed a power system 

analyses tool SUGAR (Simulation with Unified Grid Analyses and Renewables) that can solve for 

the steady-state operating point of any transmission or distribution network from arbitrary initial 

conditions.  

The different chapters of this thesis were devoted to different pieces of the complete puzzle; 

i.e., the robust steady-state analysis of the power grid. Chapter 5 introduced the concept of the 

equivalent circuit framework for power flow and three-phase power flow analyses. It developed 

models for some of the most common transmission as well as distribution network elements. 

Furthermore, it illustrated that any physics-based or measurement-based model derived in terms 

of current and voltage state variables can be directly incorporated into the equivalent circuit 

framework. Importantly, the developed framework treated the transmission grid positive-

sequence models no differently than the distribution grid three-phase models, and as such 

allowed for methods to be developed in the Chapter 6 that can ensure convergence for these 

network models to correct physical solutions. 

Chapter 6 extended and further developed new circuit simulation methods for the field of 

power system analyses, specifically for the power flow and the three-phase power flow analyses. 
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The first part of the chapter extended with modifications existing limiting methods used in the 

field of circuit simulation to power flow and three-phase power flow analyses. For hard-to-solve 

ill conditioned and large test cases, where these preliminary methods fail to ensure convergence 

to correct physical solutions, the chapter developed novel homotopy methods namely the Tx 

stepping method and dynamic power stepping method to ensure convergence to correct physical 

solutions. The results section of this chapter combined the equivalent circuit framework with 

developed circuit simulation methods to solve ill-conditioned as well as large networks for both 

power flow and three-phase power flow problems independent of the choice of initial conditions. 

Chapter 7 addressed another key challenge within existing approaches for steady-state 

analysis of the power grid; i.e., a robust joint transmission and distribution (T&D) analysis 

framework. The existing use of disparate algorithms and solution methodologies for transmission 

power flow and distribution three-phase power flow problems has made it all but impossible to 

robustly solve the joint T&D system. As underscored previously, the proposed equivalent circuit 

approach in Chapter 5 treated the transmission grid equivalent circuits no different from the 

distribution grid equivalent circuits and as such can combine the two networks without loss of 

generality, while also broadly applying the developed circuit simulation methods to ensure 

robust convergence to correct physical solutions for the steady-state analysis of joint T&D system. 

Two approaches to solving the joint problem were proposed in this chapter. The first approach 

combined the transmission grid equivalent circuit with the distribution grid equivalent circuit at 

the point of interconnection and solved the combined system on a single machine as one problem 

using NR. For larger joint T&D systems with hundreds of distribution networks connected to a 

large realistic meshed transmission network, we proposed another approach. In this approach, a 

parallel distributed simulation framework for solving the joint T&D problem was briefly 

explored. The bordered block diagonal structure of the joint T&D problem is exploited to apply 

previously developed parallel simulation methods in the circuit simulation field directly to this 

problem. As an example, the Gauss-Seidel-Newton method was used to solve a large joint T&D 

system to ensure convergence to the correct physical solution. 
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Importantly circuit simulation techniques for power system analysis that were developed and 

discussed within this thesis are by no means exhaustive. Future work toward extending these 

techniques will include application of these methods or some modifications of it to other power 

system analysis such as in the case of optimal power flow and probabilistic power flow analysis. 

In general, these homotopy and limiting methods work by capturing the physics of the power 

grid network equations to simplify a complex problem and solve it. Therefore, in the future, any 

problem that requires to solve the power grid network equations within its framework can 

directly use these methods without loss of generality to ensure robust convergence. 

Given that these methods were primarily designed to ensure robust convergence, much less 

rigor was spent within the scope of this thesis on optimizing these methods for computational 

speed. Even though it has been demonstrated that our tool SUGAR compares well in terms of 

speed against other state-of-art tools used in the industry today, we plan to adapt these methods 

to optimize for computational speed as well. This is pertinent to run computationally intensive 

simulations, such as the contingency analysis and probabilistic analysis, for time-critical 

operations of the power grid. 

In Chapter 7, this thesis briefly explored the use of parallel simulation methods for solving the 

joint T&D problem. In the future, we plan to build on this fundamental concept by further 

probing into the theoretical guarantees for convergence of different parallel simulation 

algorithms that are available for the BBDF structured problems. This will necessitate the future 

exploration of other methods, such as the multi-level newton methods [71]-[77], within our 

framework for the parallel joint T&D simulation. 

  



Appendix A.  BIG Model: Linear Model 

for Aggregated Load in the Power Grid 

A.1 Background 

In traditional power flow and three-phase power flow analyses, non-linear models are used to 

characterize the aggregated electric load behavior.  These models are often insensitive to system 

voltages (as in the case of PQ load model) and introduce strong non-linearities in the formulation 

(as in the case of ZIP load model). Interestingly, some of the challenges in terms of solution 

accuracy and convergence for both these analyses are often due to these models that are used to 

mimic the behavior of aggregated electric load in the system. For instance, consider the B.C. 

Hydro system wherein it was shown that decreasing the substation voltage by 1% decreased the 

active and reactive power demand by 1.5% and 3.4%, respectively [83]. PQ load models that make 

up the bulk of the aggregated load models used today are purely based on constant power 

variables and are independent of the complex voltage magnitude or angle at the connected node 

and therefore cannot replicate this behavior. Improvements to the PQ load models (e.g. ZIP model, 

exponential) can better characterize the voltage sensitive load behavior by incorporating the 

voltage magnitude dependency; however, like in the case of the PQ load model, they introduce 

significant non-linearities in the formulation. Furthermore, ZIP and exponential load models 

cannot characterize load characteristics on a constant voltage node in the system (e.g. load 

connected to a generator node) as the load magnitudes for these load models are independent of 

the voltage angle information at the connected node. To address these drawbacks, we developed 

a linear load model [44]-[47] that can capture the true voltage sensitivities for the aggregated load 

in the system.  

To develop a load model to better characterize the true physics of the grid, we began with 

understanding the electric load behavior by observing the measurement data for a randomly 

chosen 48-hour period for the Carnegie Mellon University (CMU) campus as shown in Figure A-



 

1. We can infer from the figure that the load current variation (𝐼𝑅 and 𝐼𝐼) can be attributed to two 

factors: 1) system voltage variation and 2) variation in actual load demand (i.e. devices turning 

on and off).  

 

Figure A-1: CMU Dataset - current (real and imaginary), and voltage over time (2 days). 

Therefore, to accurately capture the load behavior, the developed load model template needs 

to characterize the base load as well as the voltage sensitivities of the base load correctly. We 

developed a circuit theoretic model called BIG load model in [44]-[45] to achieve exactly that.  

Furthermore in [46]-[47], we explored the use of machine learning algorithms for fitting this BIG 

load model template. In the following sub-section, we will document and briefly discuss the 

development of this circuit theoretic load model, following which we explore the major 

contributions of the proposed BIG load model. 

A.2 Circuit Theoretic BIG Load Model 

A first-order impedance model can be used to represent any phase and magnitude relationship 

between current and voltage phasors at a single frequency as shown in Figure A-2. This first-

order load impedance can be represented as an equivalent circuit model via a conductance (G) 

and susceptance (B) in series or parallel, and as such, would capture the load behavior wherein 

the current flowing into the load bus is directly proportional to the voltage across it. However, 

the aggregated loads can sometimes behave contrary to this behavior; for example, consider an 

aggregated load with a large percentage of induction motors that run to maintain a constant 

mechanical torque. Such loads are likely to exhibit a behavior wherein the current flowing into 

the load bus is inversely proportional to the applied voltage. This behavior is like that of a 



 

constant PQ load model, where the increase in voltage has no influence on the constant power P 

and would conceptually correspond to a decrease in current. 

 

Figure A-2: First-Order Load Model. 

To begin from a circuit modeling perspective, we consider a load model for a generalized 

aggregated load in the system that could capture both positive and negative voltage sensitivities 

for the load current.  

First, we derive the circuit to capture negative sensitivities of load currents to system voltages. 

To do so let us consider the governing equation for the PQ load model: 

𝐼𝑅
𝑃𝑄 + 𝑗𝐼𝐼

𝑃𝑄 =
𝑃𝑉𝑅 + 𝑄𝑉𝐼

𝑉𝑅
2 + 𝑉𝐼

2 + 𝑗
𝑃𝑉𝐼 − 𝑄𝑉𝑅

𝑉𝑅
2 + 𝑉𝐼

2  (118) 

We can split the complex current function in (118) and linearize it to obtain the real and 

imaginary terms: 

𝐼𝑅
𝑃𝑄𝑘+1

= 2𝐼𝑅
𝑃𝑄𝑘

+
𝜕𝐼𝑅

𝑃𝑄

𝜕𝑉𝑅
𝑉𝑅

𝑘+1 +
𝜕𝐼𝑅

𝑃𝑄

𝜕𝑉𝐼
𝑉𝐼

𝑘+1 (119) 

𝐼𝐼
𝑃𝑄𝑘+1

= 2𝐼𝐼
𝑃𝑄𝑘

+
𝜕𝐼𝐼

𝑃𝑄

𝜕𝑉𝑅
𝑉𝑅

𝑘+1 +
𝜕𝐼𝐼

𝑃𝑄

𝜕𝑉𝐼
𝑉𝐼

𝑘+1 (120) 

where the constant terms represent the values of real and imaginary currents known from 𝑘𝑡ℎ 

iteration and are represented by a constant current source. Note that partial derivatives for which 

the real and imaginary currents are directly proportional to the voltages across the respective 

split circuit models, i.e. real and imaginary, are represented as a conductance (G), while the partial 



 

derivatives for which real and imaginary currents are directly proportional to the voltages of 

other sub circuits are represented by a voltage controlled current source (B).   

Furthermore, it can be shown that the respective partial derivatives defined in (119) and (120) 

have the following properties representing negative sensitivities: 

𝜕𝐼𝑅
𝑃𝑄

𝜕𝑉𝑅
=

𝜕𝐼𝐼
𝑃𝑄

𝜕𝑉𝐼
≡ 𝐺 < 0 (121) 

|
𝜕𝐼𝑅

𝑃𝑄

𝜕𝑉𝐼
| = |

𝜕𝐼𝐼
𝑃𝑄

𝜕𝑉𝑅
| ≡ 𝐵 (122) 

From (119) and (120) we can observe that the governing equations of a PQ load model, i.e. 

(118), can be translated to an equivalent circuit corresponding to a constant current source in 

parallel with the susceptance and a negative conductance that compensates for the inverse 

relationship between the current and voltage of the load. With this model, as the voltage across 

the load increases, the current will decrease and vice versa. This model is now extended to even 

capture positive sensitivities of the load current to voltage sensitivities. 

To capture both load type sensitivities with respect to voltage, we consider the complex 

governing equation of the generalized load current that is given by: 

𝐼𝑅 + 𝑗𝐼𝐼 = 𝛼𝑅 + 𝑗𝛼𝐼 + (𝑉𝑅 + 𝑗𝑉𝐼)(𝐺 + 𝑗𝐵) (123) 

where the complex admittance (𝐺 + 𝑗𝐵) with positive 𝐺 captures the constant impedance load 

behavior and is directly proportional to the voltage across the load, and the combined 

impedances capture the voltage sensitivities. Specifically, a negative conductance in conjunction 

with complex current (𝛼𝑅 + 𝑗𝛼𝐼) will mimic the inverse current/voltage sensitivity relationship 

and positive conductance will represent the other. Both the positive and negative impedances 

capture the change in load with voltage with respect to the portion of the load that is modeled by 

the current source. 



 

The complex equivalent circuit and the split-circuit of the proposed susceptance (B), current 

source (I), and conductance (G) load model, BIG, defined by equations (124)-(125), is shown in 

Figure A-3. 

𝐼𝑅 = 𝛼𝑅 + 𝑉𝑅𝐺 − 𝑉𝐼𝐵 (124) 

𝐼𝐼 = 𝛼𝐼 + 𝑉𝐼𝐺 + 𝑉𝑅𝐵 (125) 

It is worth noting that the BIG model is equivalent to the ZIP load model with the real power 

coefficient set to zero and a different “fixed complex current” term. Most importantly, the BIG 

load model is linear in a current/voltage formulation, while the ZIP model is nonlinear in both 

current/voltage and traditional PQV formulations. In addition, the BIG model can capture 

dependency of load with respect to the voltage angle. 

 

Figure A-3: BIG Load Model. 

A.3 Contributions of BIG Load Models 

The BIG load model has many benefits over existing aggregated load models. Among these, 

the four that are most important are as follows: 

A.3.1 Linearity 

The BIG load model is a linear load model as shown in [44] and results in linear network 

constraints for the network in the equivalent circuit approach. This contrasts with non-linear PQ 
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and ZIP load models. The use of the BIG load model significantly reduces the non-linearities in 

our equivalent circuit framework thereby significantly reducing the probability of the solver to 

result in divergence or convergence to an erroneous solution. Importantly the BIG load model 

still results in non-linear network constraints with the use of the ‘PQV’ formulation and therefore 

does not extend the same benefits as it does in the case of the equivalent circuit framework. 

A.3.2 Captures voltage sensitivities 

The BIG load model when parameterized using real measurement data captures the true 

sensitivities of the load currents (as a function of system voltage) at the given operating point. 

This further enables the use of linearized equivalent circuits for any further analysis around the 

operating point. Accurate analysis with a linearized system requires the system sensitivities to be 

accurately defined as is done via the BIG load model. Figure A-4 shows the measured real and 

imaginary currents for the Carnegie Mellon campus and the constructed currents using the BIG 

load model segments [47]. In the figure, the BIG model load model is shown to capture the true 

sensitivity of the measured load currents in the system. This contrasts with all existing aggregated 

load models in the literature. 

 

Figure A-4: BIG load model is shown to capture the voltage sensitivities if the measured 

CMU system load [84]. 

Another experiment that demonstrates the ability of the BIG load model to capture true voltage 

sensitivities is performed. In this experiment, a synthetic test grid is setup with incorporation of 
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physics-based load models for IMs, resistive heater load, and capacitors banks. Synthetic 

measurement data is then generated for days for a range of voltage inputs. The BIG load model 

and PQ load model parameters are then fitted based on the synthetic measurement data using 

the same methods as described in [46]-[47]. Now to evaluate and further validate the sensitivity 

of the fitted load model to the system voltages, the source voltages are decreased and increased 

by 5 % respectively, and new synthetic measurements are produced from the test grid. As it is 

seen in Figure A-5, the previously fitted BIG load models can still capture the load characteristics 

accurately with perturbed voltages whereas the PQ load model results in erroneous currents. 

 

Figure A-5: Fitted BIG versus PQ load model with perturbed system voltages [84]. 

A.3.3 Captures voltage angle information 

Unlike PQ and ZIP load models that are either fixed in magnitude or voltage magnitude 

dependent only, the BIG load models consider sensitivity to both the voltage magnitude and 

voltage angle. This allows for modeling of complex voltage sensitive aggregated load that is 

connected to constant voltage magnitude (PV buses) nodes in the system whose behavior would 

be like the one represented in Figure A-6. The figure illustrates complex voltage characteristics of 

a PV node in a power flow case study where the real power load connected to the PV node is 

varied from 100 MW to 650 MW. The graph shows that the real power absorbed by the PV node 

is independent of the voltage magnitude at that node and can be represented as a function of 

voltage angle (with respect to the reference) only. Therefore, existing load models such constant 



 

PQ and voltage magnitude dependent ZIP model will fail to model this behavior, whereas the 

proposed BIG load model can capture it. 

 

Figure A-6: Complex voltage profile on PV node with variable real power injection. 

A.3.4 Generic Model for both power flow and transient analysis 

Importantly, BIG load model unlike ZIP and PQ load model can be used for both transient 

analysis as well as power flow and three-phase power flow analysis without any modification; 

hence enabling the unification of the two analysis as discussed in Appendix B. PQ and ZIP load 

models cannot be directly used for time-domain transient analysis due to the existence of time-

average power terms. 

  



 

Appendix B. Unified Power System 

Analyses and Models 

B.1 Introduction 

One of the key underlying challenges in the existing power system analyses is the lack of 

consistent solutions between the steady-state analysis (power flow and three-phase power flow) 

and the steady state obtained from time-domain transient analysis. In general, the expectation is 

for the final steady state of the transient response to match exactly the balanced power flow 

solution or the three-phase power flow solution. However, this is generally not the case in the 

existing framework for power system analysis where the nonuse of standardized modeling and 

solution methods between the steady-state and the transient analyses result in inconsistent and 

often erroneous results. This contrasts with what’s observed in the field of circuit simulation [43], 

wherein standardization of models and algorithms guarantees consistent solutions between the 

steady state and time-domain transient analyses for electronic circuits with billion plus nodes. 

The most notable cause for inconsistent solutions between the steady-state and the transient 

analyses is the use of disparate models for aggregated loads and generators in the two analyses. 

In steady-state power flow and three-phase power flow analyses, power variables with time 

average magnitudes and phasor relationship are used to model the aggregated loads as well as 

the generators (PV/PQ models). These models are inherently incompatible with time domain 

analysis, where instead physics-based models or some form of approximation of the constant 

power models (e.g. constant impedance) are used to represent the same resulting in inconsistent 

solutions between the two analyses. To enable consistent solutions between the two analyses 

requires that either the network models are derived from the true physics of the equipment or are 

aggregated such that they can be represented in terms of voltages and currents in both time-

domain and frequency-domain without loss of generality. 



 

In the past, the use of real and reactive power variables to model the aggregated load and 

generation for positive sequence and three-phase power flow was necessary due to the inability 

of the exiting frameworks to include physics-based models directly and due to the lack of real 

synchronized measurement data for the power grid that could characterize the load behavior in 

terms of currents and voltages. However, the advent of phasor measurement units (PMUs) with 

time stamped voltage and current measurements has allowed for aggregated load 

characterization using real measurement data with voltage and current as unknown variables as 

shown in the case of the BIG load model in the previous Appendix A. In this appendix as an 

alternative approach, we explore the use of physics-based models that can be generically used in 

both the power flow as well as the time-domain transient analyses. Importantly, both these 

approaches: i) measurement-based empirical modeling (in Appendix A) and physics-based 

modeling (discussed within this appendix) are generically applicable to both the steady-state as 

well as time-domain transient analyses and hence result in consistent solutions between the two. 

To demonstrate the use of physics-based models in the equivalent circuit approach for both 

the time-domain analysis and power flow analysis we consider a simple model of a three-phase 

squirrel cage induction motor (IM) developed in Section 5.5. This model is used to create a simple 

example test network and is used to demonstrate consistent solution between the transient and 

steady-state analyses. The trivial network used for the following results includes an IM model 

connected to a independent voltage source through a transmission line. 

B.2 Validation of IM model  

To first validate the physics-based model of the IM that is developed in Section 5.5, we run a 

time-domain analysis on the test network, which simulates IM’s starting characteristics from 

stand still to rated speed.  We simulate this in our prototype SUGAR transient analysis tool and 

compare the produced results against those produced by the same IM model in MATLAB 

SimscapePowerSystems (SPS).  Figure B-1 shows the response of IM’s critical parameters during 

motor start-up and past that into the steady-state region for both the simulation tools.  The 

evolution of motor state variables over time exhibit similar form and shape when simulated with 



 

both the SimscapePowerSystems and the SUGAR thus validating the developed model for IM for 

both transient and stead-state operating region. 

 

Figure B-1: Electrical Torque and Rotor Speed comparison between SimscapePowerSystems 

(SPS) and SUGAR with SUGAR restricted to maximum of one N-R iteration. 

B.3 Solution consistency between the steady-state and transient analysis 

Next, we demonstrate that the derived IM model results in consistent solutions for both the 

steady-state from the transient analysis as well as the steady-state from the power flow analysis. 

For this experiment, the power flow model of IM developed in Section 5.5 is used. To run power 

flow analysis, the source frequency of the IM steady-state model is set to system frequency. The 

results from the steady state solver are then compared against the one obtained from the transient 

solver for the same IM. The time-domain transient analysis is run from t=0 to an approximate 

steady state condition at t=1.5 seconds as shown in Figure B-1. The comparison of results is 

documented in Table B-1 and are a perfect match between the two analyses to at least three 

significant digits.  



 

TABLE B-1: IM RESULTS IN EQUIVALENT CIRCUIT FRAMEWORK FOR STEADY-STATE (POWER FLOW) AND TIME-

DOMAIN TRANSIENT ANALYSIS 

Parameter Unit Steady State Transient @ t=1.5 sec 

Rotor Speed rad.s-1 375.01 375.01 

Electric Torque N.m 16.64 16.64 

Stator direct-axis current Amps -11.36 -11.36 

Stator quadrature-axis current Amps 13.09 13.09 

Rotor direct-axis current Amps 11.56 11.56 

Rotor quadrature-axis current Amps -0.49 -0.49 
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