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ABSTRACT 

 

“To measure is to know.” 

 – William Thomson, First Baron Kelvin 

 

This dissertation explores how decisions about the forecasting process can affect the evaluation 

of forecasting performance, in general and in the domain of residential electricity demand 

estimation.  Decisions of interest include those around data sourcing, sampling, clustering, 

temporal magnification, algorithm selection, testing approach, evaluation metrics, and others. 

Models of the forecasting process and analysis methods are formulated in terms of a three-tier 

decision taxonomy, by which decision effects are exposed through systematic enumeration of 

the techniques resulting from those decisions.  A computation platform based on the models is 

implemented to compute and visualize the effects.  The methods and computation platform are 

first demonstrated by applying them to 3,003 benchmark datasets to investigate various 

decisions, including those that could impact the relationship between data entropy and 

forecastability.  Then, they are used to study over 10,624 week-ahead and day-ahead 

residential electricity demand forecasting techniques, utilizing fine-resolution electricity usage 

data collected over 18 months on groups of 782 and 223 households by real smart electric grids 

in Ireland and Australia, respectively. 

The main finding from this research is that forecasting performance is highly sensitive to the 

interaction effects of many decisions.  Sampling is found to be an especially effective data 

strategy, clustering not so, temporal magnification mixed.  Other relationships between certain 

decisions and performance are surfaced, too.  While these findings are empirical and specific to 

one practically scoped investigation, they are potentially generalizable, with implications for 

residential electricity demand estimation, smart electric grid design, and electricity policy. 
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DISSERTATION IN THREE SENTENCES 

 

“If you can’t explain it simply, you don’t understand it well enough.” 

 – Albert Einstein 

 

We formulate methods and develop software to explore various ways of evaluating forecasting 

performance in the context of process-level decisions.  We then conduct about 800,000 

experiments using data from smart electric grids in Ireland and Australia, and from other 

sources.  We find several potentially generalizable relationships between decisions and 

performance, the primary one being that performance depends on the interaction effects of 

many decisions, not just a few. 
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1 INTRODUCTION 

 

“The beginning is the most important part of the work.” 

 – Plato 

 

Policies to address future electricity demand are informed by forecasting techniques involving 

statistical and more recently machine learning models derived from historical electricity usage, 

weather, and other data.  Now, the increasing availability of large-scale, stratified, fine-

resolution electricity usage data from smart electric grids that aligns regionally and temporally 

with weather data is enabling forecasting research based on detailed knowledge of actual 

electricity consumer behavior. 

In this dissertation, we are specifically interested in leveraging such smart electric grid data to 

explore how forecasting process decisions can affect the evaluation of forecasting performance, 

and how sensitive such evaluation is to various data strategies and data sources, especially in 

the domain of residential electricity demand estimation, and to better understand the 

implications for smart electric grid design and related electricity policies. 

This dissertation is organized into 7 chapters and appendices, as follows: 

Chapter 1:  Introduction  We introduce the research and lay out the dissertation organization. 

Chapter 2:  Models, Methods, and Computation Platform  We introduce domain-agnostic 

models of the forecasting process and associated analysis methods in terms of a three-tier 

decision taxonomy, with which we can explore the effects of forecasting process decisions on 

the evaluation of forecasting performance by systematically enumerating techniques to 

construct, score, and rank forecast distributions.  To practically realize the methods, we 

implement a corresponding computation platform to calculate and visualize these effects.  We 



2 
 

demonstrate the methods and computation platform by exploring effects around the M3 

Forecasting Competition datasets. 

Chapter 3:  Decisions and Data Entropy as a Predictor of Forecastability  We analyze the 

effects of forecasting process decisions on the evaluation of forecasting performance, and on 

the relationship between entropy and forecastability, using the M3 Forecasting Competition 

datasets.  We compare our results to those of some benchmark studies and propose 

quantitative relationships between entropy and forecastability. 

Chapter 4:  Technique Decisions and Residential Electricity Demand Estimation  We analyze 

the effects of forecasting process decisions on the evaluation of forecasting performance when 

forecasting week-ahead and day-ahead residential electricity demand using real smart electric 

grid data from Ireland.  We compare our results to those of some benchmark studies. 

Chapter 5:  Data Strategy Decisions and Residential Electricity Demand Estimation  We further 

analyze decision effects on residential electricity demand forecasting, leveraging earlier results 

and focusing on decisions for three specific data strategies: sampling, clustering, and temporal 

magnification. 

Chapter 6:  Robustness of Decision Effects and Residential Electricity Demand Estimation  We 

further analyze decision effects on residential electricity demand forecasting, leveraging earlier 

results and focusing on how the effects may generalize across multiple locations, as 

represented by multiple data sources, adding real smart electric grid data from Australia. 

Chapter 7:  Conclusion  We summarize our insights and suggest future research. 

Appendices  We provide primers on a few topics important to this research to supplement our 

discussions in the main body. 

To enhance readability, discussions are presented mostly uninterrupted by in-line tables and 

data visualizations, and rather reference table and data visualization compilations at the ends 

of the chapters.  Reference articles are referenced by number throughout and organized by 
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topic at the end of the document.  Certain specifications and other list-like portions of 

discussions are set out in gray boxes.  Key insights from our results are set out in double-border 

gray boxes.  Per popular usage, the term “data” is used in both singular and plural senses, 

distinguishable by context.  Similarly, the term “series” is used in both singular and plural 

senses, distinguishable by context. 
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2 MODELS, METHODS, AND COMPUTATION PLATFORM 

 

“A place for everything, everything in its place.” 

 – Benjamin Franklin 

 

2.1 Research Questions 

In this chapter, we address the following research questions: 

• What is the forecasting process and what decisions are involved? 

• How do forecasting process decisions affect forecasting performance? 

• How can forecasting performance be compared across studies? 

• How can data be sourced and structured for forecasting performance analysis? 

2.2 Literature Review 

Forecasting studies reported in the academic and professional literature over several decades 

have treated the forecasting process with more or less formality depending on the study focus.  

Various meta-studies have attempted to generalize the forecasting process in terms of decision 

environment, forecast object, forecast statement, forecast horizon, information set, 

complexity, or other dimensions. [3,26] 

Algorithm selection, indeed algorithm invention, and associated hyper-parameter selection 

account for a large portion, if not most, of the recent research on forecasting techniques (Table 

2-3, Table 2-4, Table 2-5). [14,17,25,37,40,74,75]  By algorithm, we mean that part of the 

forecasting process that constructs an engine that, in combination with other elements of a 

technique, can construct forecasts – an algorithm directly constructs an engine and thereby 

indirectly constructs forecasts.  By hyper-parameters, we mean those algorithm parameters 

outside of training data that influence engine construction, i.e., the parameters used to 
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configure algorithms.  In  many studies, some algorithm details are called out separately as 

transformation operators, which pre-process the training data or inputs (Table 2-6). [2]  

Two broad classes of algorithms have been studied extensively: statistical and machine 

learning.  Statistical algorithms take time series as inputs and output point forecasts.  They have 

been applied to general forecasting since at least the 1950s. [2,76]  In contrast, machine 

learning algorithms train on cross-sectional data to produce engines, which in turn take other 

cross-sectional data as inputs and output point forecasts.  Machine learning came into vogue 

for general forecasting by the 1980s. [42,76]   

More recently, research on extension rules has accelerated (Table 2-7). [43,44,45,46,47,48]  By 

extension rule, we mean the way in which point forecasts from engines are compiled into time 

series forecasts.  A “direct” extension rule assumes that an engine makes a point forecast, so a 

set of engines is required to produce a forecast covering a period, one engine for each time 

step in the time series.  A “recursive” extension rule assumes that an engine makes a point 

forecast one time step farther into the future, so the engine must be applied from successive 

time steps to produce a forecast covering a period.  In a recursive extension rule, each new 

point forecast is determined based partly on earlier point forecasts. 

Different training and testing rules can, in general, result in different forecasts.  By training and 

testing rule, we mean how data is apportioned to training and testing activities.  We find 

limited research on training and testing rules (Table 2-8). [49,50,51,52,53]  Rather, forecasting 

studies often adopt a conventional holdout training and testing rule where forecasts are 

evaluated with respect to the later part of available actual historical data that is treated as a 

perfect forecast.  The proportion of data reserved for testing may be based on rules of thumb, 

often 20% or 33%. [13,54]  Other research describes time series cross-validation training and 

testing rules. [49,50,51,52,53,54] 

An ever-increasing array of proposals for new ways to score forecast performance continues to 

inhere in the literature, with each metric purporting its suitability for various general or special 

cases (Table 2-9). [2,56,57,58,61,63,66]  Depending on the application, various studies have 
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used metrics from one or more classes: correlation metrics, relative error metrics, absolute 

error metrics, or penalty functions, which are essentially customizable metrics that value errors 

per their economic impact. 

[18,80,88,90,91,93,95,96,97,98,99,101,102,105,107,108,109,110,112,113,115,116,117,118] 

Among the many forecasting studies are analyses of forecasting competitions.  Notable general 

forecasting competitions include the Makridakis competitions (M, M2, M3, M4) and the Neural 

Networks Forecasting Competition (NN3). [134,135,136,141,154,156]  These competitions 

primarily pit algorithms against each other, constraining data strategy, extension rule, training 

and testing rule, metrics, and other aspects of the forecasting process to ensure uniform 

competition environments. 

We find potential application of research on relative importance, which quantifies how 

independent variables disproportionately account for variation in a dependent variable, to 

research about forecasting, but not well represented in the literature.  Several measures of 

relative importance are in use, perhaps LMG being the most common. [144,145,146,147] 

In summary, we find the following prevalent themes in forecasting research: 

Forecasting Process • There are many formalizations of the forecasting process. 

Forecasting Process 
Evaluation 

• Studies often evaluate forecasting performance in the context 
of one or two decisions at a time. 

2.3 Research Approach 

Our literature review motivates us to investigate the effects of many forecasting process 

decisions working in concert to better understand the impact of their interactions.  Our 

approach is to introduce explicit and exhaustive methods to analyze forecasting performance, 

based on models of the forecasting process that account for process-level decisions.  

Specifically, we formalize notions of “data source”, plus “data strategy”, “technique”, and 

“metric” as a three-tier decision taxonomy, with each level corresponding to a model of the 
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forecasting process that addresses a certain category of explicitly identified decisions.  A vector 

of all decisions then uniquely instantiates the model to a specific version of the overall 

forecasting process.  Potential decision combinations, expressed as vectors, are exhaustively 

enumerated by cycling through a set of allowed options over which the decisions can range.  

The set of vectors can then be used to construct and score forecasts, map data strategies and 

techniques to scores, and rank data strategies and techniques accordingly – in a 

computationally intensive exercise (Figure 2-1). 

 

Figure 2-1: Three-tier decision taxonomy. 

By data source, we mean a specific set of data with which to train for and test forecasts.  By 

data strategy, we mean a specific way in which a forecasting process model is instantiated by 

decisions about how data are gathered and organized.  By technique, we mean a specific way in 

which a forecasting process model is further instantiated by decisions about objectives, form, 

and training and testing.  By metric, we mean an operator used to quantify forecasting 

performance.  By forecasting performance, we mean an evaluation of the distribution of 

estimated forecast accuracy across the set of data strategies, techniques, and metrics. 

By accounting for the effects of many forecasting process decisions working in concert rather 

than in isolation, our methods are not restricted to making “apples to apples” comparisons of 

algorithm class, metric, or other single decision, but are empowered to make potentially more 

insightful “fruit baskets to fruit baskets” comparisons of whole forecasting processes. 
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2.4 Data Sources 

The data sources determine what data to use to train for and test forecasts.  Our model of the 

forecasting process that addresses data sources is straight-forward: data sources are treated as 

a given and reserved for later use by a forecasting process that addresses technique decisions. 

The data source includes the following. 

Reference data source A dataset on which models will be trained 
and forecasts evaluated. 

a data file which is or 
can be converted to a 
set of equal length 
time series, including 
datetime & aggregator 
information 

Predictor data sources A set of datasets on which models will be 
trained and forecasts evaluated. 

a set of data files, each 
of which is or can be 
converted to a set of 
equal length time 
series, including 
datetime & aggregator 
information 

 

2.5 Data Strategy Decisions 

Data strategy decisions determine the way in which data is gathered and organized.  

Specifically, they determine how data is transformed to a sample, a group of clusters, a 

temporal magnification, or other form, and how those transformations are sequenced. 

2.5.1 Strategic Forecasting Process Model 

We call the most general form of our model of the forecasting process, which exposes how data 

strategy decisions are handled, the strategic forecasting process model (Figure 2-2).  Per the 

three-tier decision taxonomy, the model assumes data sources have been provided.  It accounts 

for integration rules indicating in which ways sampling, clustering, temporal magnification, and 
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aggregation of data can be combined and sequenced.  Each of these data transformations can 

be applied singly or multiply in isolation or in combination, such that 132 unique sensible 

integration rules (paths) are possible (Table 2-10, Table 2-11, Table 2-12). 

 

 

Figure 2-2: Strategic forecasting process model.  Each path corresponds to a unique 
integration rule.  Yellow indicates tasks that operate on non-clustered data.  Blue 
indicates tasks that operate on clustered data. 

2.5.2 Decision Descriptions 

Data strategy decisions include the following.  These decisions are typically made by the 

forecasting practitioner. 
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Sampling rule A rule indicating how (if at all) 
datasets should be resampled.  Rules 
like bootstrapping and jackknife 
sampling provide control over the 
degree of randomness in the resulting 
resampled datasets. 

full population or 
bootstrap v1 or 
bootstrap v2 or 
bootstrap v3 or 
jackknife or 
other rule 

Sample size A count of the number of individual 
series aggregated into a sample.  Can 
correspond to, e.g., individual 
households up to neighborhoods, 
districts, or any arbitrary larger 
sample. 

a count 

Cluster similarity 
criteria 

An operator on two series used to 
judge their similarity. 

correlation or 
coherence or 
other operator 

Cluster count A number of clusters by which a 
population is partitioned. 

a count 

Time step size – 
pre-integration 

A period corresponding to the time 
step size used to construct forecasts 
before they are aggregated and 
evaluated.  It can be different than 
the reference series or predictor 
series time step sizes, such as when 
making hourly forecasts based on 
data collected semi-hourly. 

a period 

Integration rule An indication of the sequence in 
which data are sampled, clustered, 
temporally magnified, aggregated, 
and re-scaled. 

an integration rule index i 
in 1 ≤ i ≤ 132 

Other data strategy 
decisions … 

 

 

See more about sampling rules in Appendix A. 
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2.5.3 Primary Integration Rules 

Four specific integration rules instantiate the strategic forecasting process model in ways 

convenient for studying sampling, clustering, and temporal magnification separately.  We call 

these the primary integration rules (Figure 2-3). 

 

Figure 2-3: Strategic forecasting process instantiations per the four primary 
integration rules.   Yellow indicates tasks that operate on non-clustered data.  Blue 
indicates tasks that operate on clustered data. 
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Primary Integration Rule: Forecast Based on a Sample 

To forecast based on a sample, first select a data source to serve as the reference series.  From 

this population of series, take a sample of series per a sampling rule and aggregate them to 

produce a single sample aggregate series.  Next, informed by a technique, construct a single 

sample aggregate series forecast.  Then, re-scale this forecast in proportion to the whole 

population, such that the re-scaled forecast becomes a population series forecast, which can be 

evaluated against the actual population series. 

Summary:  Sample source, re-scale after forecasting. 

Primary Integration Rule: Forecast Based on a Group of Clusters 

To forecast based on a group of clusters, select a data source and partition it into a set of 

clusters per some measure of similarity.  For each cluster, aggregate its member series to 

produce a single cluster aggregate series reflecting the aggregate levels for the cluster, and so 

get a set of cluster aggregate series forecasts.  Next, for each cluster and a technique, construct 

a single cluster aggregate series forecast.  Then, aggregate the cluster aggregate series, and so 

get a population series forecast, which can be evaluated against the actual population series. 

Summary:  Partition source into clusters, forecast each cluster, aggregate forecasts. 

Primary Integration Rule: Forecast Based on Coarsening Temporal Magnification 

To forecast based on coarsening temporal magnification, select a data source and coarsen the 

time step size of each series, and so get a set comprising the same number of series that the 

data source does, but with each series shorter in proportion to how much it is coarsened (i.e., 

each series comprises fewer time steps, with each time step representing a longer duration).  

From this population of series, aggregate to produce a single population coarse-resolution 

aggregate series.  Next, informed by a technique, construct a single population coarse-
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resolution aggregate series forecast.  Then, refine the time step size of the forecast, which can 

be evaluated against the actual population fine-resolution series. 

Summary:  Forecast on coarse time step size, evaluate on fine time step size. 

Primary Integration Rule: Forecast Based on Refining Temporal Magnification 

To forecast based on refining temporal magnification, do the reverse of forecasting by 

coarsening, initially leaving the data source at a fine time step size, and later coarsen the 

forecasts to prepare them for evaluation against the actual population coarse-resolution series. 

Summary:  Forecast on fine time step size, evaluate on coarse time step size. 

2.6 Technique Decisions 

Technique decisions determine how forecasting engines and forecasts themselves are 

constructed. 

2.6.1 Basic Forecasting Process Model 

We call the part of our model of the forecasting process that exposes how technique decisions 

are handled the basic forecasting process model.  Per the three-tier decision taxonomy, this 

part assumes data sources and data strategies have been provided and are handled at higher 

levels, and contents itself as a sub-process nested within the strategic forecasting process 

model. 

In the basic forecasting process model, forecasting is accomplished in two phases: (1) an 

algorithm is used to construct a forecasting engine or engines, and (2) the forecasting engines 

are then used to ultimately construct a forecast (Figure 2-4).  
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Figure 2-4: Basic forecasting process model.  Part of the strategic forecasting process model. 

Forecasting Engine Construction Phase 

In the forecasting engine construction phase, forecasting objectives are established and time 

series data is acquired to train forecasting engines and test forecasts.  We call the data that 

compares to the forecasting engine output the reference series.  We call the data used as 

inputs to the forecasting engine the predictor series.  The reference series is often also a 

predictor series, but it need not be.  The reference and predictor series from their various 

sources may span different periods and be captured at different time step sizes, so they must 

be compiled into a data ensemble, such that start time, stop time, and time step size are 

aligned. 

A portion of the data ensemble is reserved for training and another portion for testing.  The 

training data could precede, follow, or be interspersed with the testing data.  We call the 

temporal relationship between training and testing data the holdout rule.  We call the portion 
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of data not reserved for training the holdout.  We call any portion of the holdout not used for 

testing the clip, which can be used to conveniently avoid testing on any particularly anomalous 

portion of data. 

A reference look-ahead, established earlier as a forecasting objective, and predictor look-backs 

and look-aheads instruct an algorithm how far ahead or behind an origin time step to forecast a 

data point or how to find predictor data points, respectively.  Look-backs and look-aheads are, 

in general, different for each predictor series.  Predictor look-aheads are functionally equivalent 

to negative look-backs, but may be more convenient to express.  Predictor look-aheads reflect 

perfect information about the future, and may or may not be appropriate to the forecasting 

objectives.  An algorithm will typically iterate through all valid origins within the training data to 

arrive at its preferred forecasting engine.  Valid origins position themselves temporally in the 

data to leave enough distance to find the predictor data points prescribed by the farthest look-

back and the reference data point prescribed by its look-ahead. 

Statistical algorithms for constructing forecasting engines can accept predictor series directly in 

time series form, but machine learning algorithms operate on cross-sectional data with no 

notion of temporal spacing between data points.  Hence, the data ensemble must be converted 

to cross-sectional form, explicitly coding temporal spacing between data points as extra 

features (dimensions) of the data points at all time steps at look-ahead distances and look-back 

distances from the origin.  This implies converting to cross-sectional form anew for each origin 

used to train a forecasting engine. 

An algorithm is instantiated by an algorithm class, set of hyper-parameters, and tuning rule.  It 

outputs a forecasting engine that takes as input the same predictor series used in training, and 

outputs a forecast for a single time step.  For forecasts that are longer than one time step, 

multiple forecasting engines may be necessary, each assuming a different reference look-

ahead. 
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Forecast Construction Phase 

In the forecast construction phase, a forecast covering a period is constructed by applying a 

forecasting engine or engines to predictor series within the testing data one time step at a time.  

The forecast assumes some valid origin.  Any valid origin could be used, but using the earliest 

one leaves the most room for testing forecasts covering long periods.     

There are several approaches available to construct a forecast covering some period from 

forecasts of single data points.  We call fixing the origin and using several different forecasting 

engines, each assuming a different reference look-ahead, a direct extension rule.  We call 

advancing the origin and using a single forecasting engine, which accepts as input data points 

previously forecasted, a recursive extension rule.  With either extension rule, the origin can be 

advanced periodically to the time step just beyond the last forecasted time step – we call this 

the update cycle.  At each origin advancement, or some integer multiple of origin 

advancements, the forecasting engines could potentially be re-constructed based on fresh, 

newly available training data – we call this the retrain cycle. 

See more about extension rules in Appendix B. 

To evaluate forecasting performance, forecasts are constructed over as many update cycles as 

are available in the testing data, and a metric is applied to the error of these forecasts with 

respect to the reference series.  Note that evaluation is treated as part of the forecasting 

process, not a separate subsequent process, because how a forecast will be evaluated partially 

determines how it is constructed. 

2.6.2 Decision Descriptions 

We find it useful to categorize technique decisions into objective, form, and training and testing 

subsets. 
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Objective Decisions 

Objective decisions serve the interests of the forecasting sponsor, but are not constrained to 

other particulars of the forecasting process.  They specify what phenomenon is to be forecasted 

and how far into the future the forecast is to be made.  In industry parlance, objective decisions 

are functional requirements, as distinguished from the engineering requirements.  The job of 

the forecasting practitioner is then to accept objective decisions from the forecasting sponsor 

and make decisions about the rest of the forecasting process to produce appropriate forecasts. 

Reference look-ahead A period indicating how far from the 
origin a forecast should start. 

a period 

Update cycle A period indicating how far the forecast 
should continue before the origin is 
advanced. 

a period 

Time step size A period corresponding to the time step 
size used in evaluating forecasts.  It can 
be different than the reference series or 
predictor series time step sizes, such as 
when making hourly forecasts based on 
data collected semi-hourly. 

a period 

Other objective decisions …   

 

Form Decisions 

Form decisions determine how to construct the algorithm that will be used in turn to construct 

forecasting engines.  They are typically made by the forecasting practitioner. 

Span Start and stop time stamps and the 
corresponding period indicating which 
contiguous subset of the reference and 
predictor series to use. 

a datetime (start) to 
a datetime (stop) 



18 
 

Algorithm class A functional form indicating how an 
algorithm uses hyper-parameters and 
cross-sectional data to construct 
forecasting models.  Think of it as the 
learning engine within the algorithm. 

A functional form

Hyper-parameters Settings for an algorithm's hyper-
parameters. 

depends on algorithm 
class 

Tuning rule An indication of whether hyper-
parameter setting selection is performed 
initially (static tuning) or deferred to 
forecast construction time (dynamic 
tuning).  In dynamic tuning, a hyper-
parameter selection criterion must be 
inferable. 

static tuning or 
dynamic tuning 

Reference data 
representation 

An indication of how the reference series 
is represented, useful for analyzing the 
effects of different representations, e.g., 
integer coding schemes versus dummy 
variable schemes. 

depends on reference 
data source  

Predictor data 
representations 

An indication of how predictor series are 
represented, useful for analyzing the 
effects of different representations, e.g., 
integer coding schemes versus dummy 
variable schemes. 

depends on predictor 
data sources 

Predictor look-backs A set of vectors of periods indicating how 
far back from the origin to use predictor 
series data points.  Each predictor series 
has its own vector of look-backs, which 
need not be the same length as those of 
other predictor series.  A zero-value look-
back refers to the origin.  For example, a 
forecasting model that takes as inputs the 
value of electricity usage “E” at present 
and seven days ago, and the value of 
temperature “T” one day ago means the 
look-backs would be indicated by the set 
( E= ( 0 days, 7 days ), T= ( 1 day ) ). 

a set of vectors of 
periods, one vector for 
each predictor series  
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Predictor look-aheads A set of vectors of periods indicating how 
far ahead of the origin to use predictor 
series data points.  Using these data 
points as inputs implies that they are 
treated as forecasts themselves.  Look-
aheads are treated as decisions separate 
from look-backs for convenience; they 
could equivalently be expressed as 
negative look-backs. 

a set of vectors of 
periods, one vector for 
each predictor series  

Extension rule An indication of whether a direct or 
recursive extension rule is used. 

direct or recurse 

Retrain cycle A period indicating how often forecasting 
models should be re-trained, useful for 
analyzing the effect of training data 
freshness. 

a period 

Other form decisions … 

 

Training and Testing Decisions 

Training and testing decisions are either prescribed by the forecasting sponsor or made by the 

forecasting practitioner. 

In-sample/out-of-
sample testing 

An indication of whether testing is 
performed on the training or testing 
portion of the reference series.  This 
allows for techniques that are 
properly tested on testing data to be 
compared to corresponding 
techniques improperly biased by 
training data to analyze the effects of 
potential overfitting. 

in sample or 
out of sample 

Holdout rule An indication of how a data ensemble 
is partitioned into training and testing 
data.  For example, a technique that 
reserves for testing the most recent 
25% of data collected Jan 1 to Dec 31 

holdout specific or 
holdout last or 
cross-validation or 
other rule 
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would be indicated by a “holdout last” 
rule, with boundaries Oct 1 to Dec 31, 
and portion 25%. 

Holdout boundaries 
 

Start and stop time stamps and the 
corresponding period indicating which 
contiguous subset of a data ensemble 
to not use as training data. 

a datetime (start) to 
a datetime (stop) 

Holdout 
 

A fraction of a data ensemble not 
used as training data. 

a fraction x in 0 < x < 1

Clip 
 

A fraction of the holdout not used as 
testing data.  This allows for additional 
control over which data to use for 
testing.  It is useful for analyzing the 
effect of temporal distance from the 
origin and to avoid anomalous data 
that may distort results.  For example, 
a technique that ignores the most 
recent 5% of data collected to expose 
the influence of that data, perhaps 
because that data reflects a one-time 
event not relevant to forecasting, 
would be indicated by a 5% clip. 

a fraction x in 0 ≤ x < 1

Other training and 
testing decisions … 

 

 

2.7 Metric Decisions 

Metric decisions determine the operator used to quantify forecasting performance. 

The part of the model of the forecasting process that addresses metric decisions is straight-

forward: an operator is applied to a forecast and corresponding reference series to produce a 

measure of error between the two.  Per the three-tier decision taxonomy, it assumes that data 

source, data strategy, and technique have been provided and are handled at higher levels, and 
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contents itself as a sub-process nested within the strategic and basic forecasting process 

models.    

We treat penalty functions as custom metrics that value differences between actual and 

forecasted series per their economic impact.  They can be defined to value such error 

asymmetrically, giving more or less weight to over-forecasted or under-forecasted levels.  

Further, they can take into account additional qualities, e.g., an implied reserve amount that 

limits economic damage caused by under-forecasting. 

Metrics are chosen to correspond to some characteristic of forecasts important to the 

forecasting sponsor.   They are prescribed by the forecasting sponsor or made by the 

forecasting practitioner. 

Metric (or penalty 
function) 

An operator on two time series used 
to score their difference.  One time 
series represents a portion of the 
actual reference series, the other 
represents the corresponding 
predicted portion of the reference 
series. The time series need not be the 
same length, provided they are 
temporally aligned and the operator 
can sensibly compare levels in one 
time series with null values in the 
other.   

an operator 

 

2.8 Methods 

With our models of the forecasting process in hand, we introduce methods to analyze 

forecasting process decision effects on forecasting performance. 
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2.8.1 General Method to Analyze Decisions 

Our method to analyze forecasting process decision effects, in its most general form, comprises 

five steps.  

1. Explicate decisions and decision options. 

2. Exhaustively vectorize all decision option combinations. 

3. Use the vectors to instantiate specific forecasting processes and construct forecasts. 

4. Apply metrics to score the forecasts. 

5. Map the scores back to the decisions to analyze their effects. 

2.8.2 Method Variation to Analyze Technique Decisions 

Our method variation to analyze technique decisions is a special case of the general method, 

and is based on the basic forecasting process model. 

1. Scope the analysis. 

a. Choose a set of forecasting process decisions that could potentially affect 

forecasting performance and are of interest to study. 

b. Choose a set of forecasting techniques to study by systematically instantiating 

the model over a range of options for each decision, such that each technique is 

uniquely specified by a vector of length equal to the number of decisions, and 

each vector element is equal to one decision option.  Restrict the range of 

options for each prescribed decision appropriately.  Choose a range of options 

for each flexible decision. 

c. Choose a set of metrics to study. 

2. Prepare the data. 

a. Gather data sources for the reference series and predictor series as indicated by 

the relevant decisions. 



23 
 

b. Pre-process the data sources.  Transform the data to representations indicated 

by the relevant decisions, if necessary.  Transform the data to time series form, if 

necessary. 

c. Aggregate the data.  Consolidate time series constituting the reference series by 

sum, mean, or other aggregator, as appropriate.  Similarly, consolidate time 

series constituting predictor series.  

d. Compile data ensembles, one ensemble for each set of techniques sharing span 

and time step size options.  Each data ensemble then comprises data describing 

the reference series and predictor series in time series form, aligned to the same 

start date, stop date, and time step size.  

3. Examine the data.  Note data characteristics of individual series and inter-series 

relationships. 

4. Construct forecasts and evaluations.  Systematically invoke techniques and metrics to 

construct forecasts and evaluate forecasting performance. 

5. Examine the results. 

a. Examine inter-metric relationships.  Specifically, examine how the distribution of 

scores as measured by one metric correlates with those of other metrics.  

Choose metrics on which to focus the remainder of the analysis. 

b. Examine metric score distributions and rank distributions – across all techniques.  

Rank techniques per their scores per one or more metrics using some ranking 

rule.  Note relationships within and among the distributions. 

c. Examine metric score distributions and rank distributions – across qualified 

techniques.  Choose qualification thresholds for one or more metrics, such that 

any technique is qualified only if its scores cross the thresholds for each of the 

metrics.  If no techniques are qualified per these thresholds, reconsider the 

choice of metrics and their qualification thresholds, accordingly.  Rank qualified 

techniques and note relationships within and among the distributions.  
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2.8.3 Method Variation to Analyze Data Strategy Decisions 

The method variation to analyze technique decisions can be applied to data strategy decisions.  

For deeper analysis of data strategy decisions, though, we formulate another variation that 

exposes trends in forecasting performance across sample sizes, numbers of clusters, and time 

step sizes, for data strategies that adopt any one of the basic integration rules.  

1. Scope the analysis. 

a. Choose a set of forecasting process decisions, including data strategy decisions, 

to study. 

b. Choose a set of forecasting techniques to study by systematically instantiating 

the model over a range of options for each data strategy decision.  Restrict the 

range of options for each prescribed decision and non-data strategy decision 

appropriately.  Choose a range of options for each data strategy decision. 

c. Choose a set of metrics to study. 

2. Prepare the data. 

a. Gather data sources. 

b. Pre-process the data sources. 

c. Organize data into samples, if indicated by data strategy decisions to do so. 

d. Organize data into groups of clusters, if indicated by data strategy decisions to 

do so. 

e. Organize data into temporally magnified representations, if indicated by data 

strategy decisions to do so.  

f. Aggregate the data.  Consolidate time series constituting each sample or cluster 

corresponding to the reference series.  Similarly, consolidate time series 

constituting each sample or cluster corresponding to the predictor series. 

g. Compile data ensembles, one ensemble for each sample or cluster.  Each data 

ensemble then comprises data describing the reference series and predictor 

series in time series form for a specific sample or cluster.  

3. Examine the data. 
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4. Construct forecasts and evaluations.  Systematically invoke data strategies, techniques, 

and metrics to construct forecasts and evaluate forecasting performance, taking care to 

include any special treatment indicated by the integration rule decision. 

5. Examine the results.  Examine metric score distribution trends and rank distribution 

trends across sample sizes, numbers of clusters, and time step sizes – across all 

techniques. 

2.9 Computation Platform 

To practically realize our analysis methods, we develop an original computation platform.  The 

current version is implemented in R and comprises about 5,000 lines of code. [72]   It leverages 

the rminer and other popular machine learning packages, leverages the relaimpo package for 

relative importance scoring, and makes extensive use of the ggplot2 package for custom data 

visualizations. [68,69,70,72,73]  Computation platform functionality includes pre-processing 

specific electricity usage data; pre-processing temperature data; generating calendar data; 

grouping data by sampling, clustering, and temporal magnification strategies; aligning data 

from different sources into data ensembles; managing data formats; computing forecasts and 

metric scores; and visualizing results in a variety of standard and custom graphics. 

2.9.1 Design 

The design of the computation platform is guided by the three-tier decision taxonomy and 

forecasting process models.  As such, an evaluation machine (that handles metric decisions) is 

nested within a forecasting/evaluation machine (that handles technique decisions), which in 

turn is nested within a strategic forecasting/evaluation machine (that handles data source and 

data strategy decisions). 

The evaluation machine is straightforward.  The machine accepts as input a forecast, some 

temporally aligned test data, and a metric that operates on the forecast and test data.  It 

outputs a score quantifying the forecast performance (Figure 2-5). 
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Figure 2-5: Evaluation machine.  Blue indicates the machine.  Yellow indicates inputs 
and outputs. 

The forecasting/evaluation machine incorporates the evaluation machine just described, and a 

forecasting machine.  The forecasting machine accepts as input a technique, which instantiates 

a specific forecasting process to be realized by the machine.  The technique includes pointers to 

data sources, so the forecasting machine is provided everything it needs to unambiguously 

construct and output a forecast and corresponding test data (Figure 2-6). 

 

Figure 2-6: Forecasting/evaluation machine.  Blue indicates component machines.  
Yellow indicates inputs and outputs. 

The strategic forecasting/evaluation machine incorporates both the evaluation and forecasting 

machines just described, and additionally data manipulation and forecast consolidation 

machines.  The data manipulation machine accepts as input a data strategy and the part of a 

technique that points to data sources, and outputs the data sources appropriately transformed 
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to a sample, group of clusters, temporal magnification, or other form.  Each of these outputs is 

in turn provided as input to the forecasting machine, along with a technique, which outputs a 

set of forecast/test data pairs, one pair corresponding to each transformed data source input.  

At this step, the test data are discarded.  All the forecasts as a group are provided as input to 

the forecast consolidation machine, which outputs a single forecast/test data pair.  This 

forecast and test data, plus a metric, are provided as input to the evaluation machine, which 

finally outputs a score (Figure 2-7).  

 

Figure 2-7: Strategic forecasting/evaluation machine.  Blue indicates component 
machines.  Yellow indicates inputs and outputs. 

2.9.2 Architecture and Data Organization 

The computation platform is architected as five modules, which communicate with each other 

in a variety of data formats. 

Code 
Modules 

• Module 1 – Pre-process 
• Module 2 – Group 
• Module 3 – Ensemble 
• Module 4 – Experiment 
• Module 5 – Visualize 
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Data File 
Formats 

• Raw CER format 
• Raw SGSC format 
• multiID format 
• uniID format 
• Ensemble format 
• Technique format 
• Result format (forecast, technique, evaluation, compute time) 
• Result format (fast evaluation) 

 

2.9.3 Computing Functionality 

The computation platform includes much original and leveraged code to provide extensive 

functionality.  

Manage data formats • Convert between data formats 

Manage data scale • Auto-parallelize data operations 

Pre-process data • Pre-process Ireland CER data 
• Pre-process Australia SGSC data 
• Pre-process WU temperature data 
• Pre-process airport temperature data 
• Generate calendar data 
• Find clean data range 
• Handle daylight savings time 
• Impute missing data 

Group data by 
samples 

• Re-sample by bootstrap version 1 
• Re-sample by bootstrap version 2 
• Re-sample by bootstrap version 3 
• Re-sample by jackknife 

Group data by clusters • Cluster by geographic proximity 
• Cluster by electricity usage correlation 
• Cluster by electricity usage coherence 

Build data ensemble • Coarsen/refine source data resolution 
• Align source data 
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Compute forecasts • Convert time-series data to cross-sectional data 
• Extend forecast by extension rule 
• Apply machine learning algorithms 

Score forecasts • Score forecast 

Rank forecasts • Rank by single metric 
• Rank by multiple metrics 

 

2.9.4 Supported Algorithms 

The computation platform supports custom algorithms (algorithm class + its hyper-parameters), 

provided as any R functions parameterized to accept an aligned data ensemble representing 

the reference series and predictor series.  For convenience, the current version provides the 

following already-implemented standard algorithms. 

knn Nearest neighbor k=5, kernel=rectangular

linreg Linear regression 

mlp Multilayer perceptron 1 hidden layer, normalized,  
weight initialization=0.7, decay=0, maximum 
iterations=100, absolute tolerance=0.0001, 
relative tolerance=1x10-8, 
activation function=sigmoid 

naïve Naïve forecasted level is always same as origin level

svm Support vector regression normalized, scaled,  type=eps, kernel=radial, 
gamma=1.0, cost=1000, tolerance=0.01, 
epsilon=0.1 

tree Decision tree method=anova, complexity parameter=1x10-10
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2.9.5 Supported Metrics 

The computation platform supports custom metrics, provided as any R functions parameterized 

to accept two same-size numeric vectors representing aligned forecast and reference series.  

For convenience, the current version provides the following already-implemented metrics.  

SAE  sum absolute error/deviation [0, ∞]

MAE  mean absolute error [0, ∞]

MdAE  median absolute error [0, ∞]

GMAE  geometric mean absolute error [0, ∞]

MaxAE  maximum absolute error [0, ∞]

RAE  relative absolute error [0%, ∞]

SSE  sum squared error [0, ∞]

MSE  mean squared error [0, ∞]

MdSE  median squared error [0, ∞]

RMSE  root mean squared error [0, ∞]

GMSE  geometric mean squared error [0, ∞]

HRMSE  heteroscedasticity consistent root mean squared error [0, ∞]

RSE  relative squared error [0, ∞]

ME  mean error [0, ∞]

SMinkowski3  sum of Minkowski loss function (q=3, heavier penalty for 
large errors when compared with SSE) 

[0%, ∞]

MMinkowski3  mean of Minkowski loss function (q=3, heavier penalty for 
large errors when compared with SSE) 

[0%, ∞]

MdMinkowski3  median of Minkowski loss function (q=3, heavier penalty for 
large errors when compared with SSE) 

[0%, ∞]

COR  correlation [-1, 1]

q2  1-correlation^2 test error metric, as used by M.J. Embrechts [0, 1]
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R2  coefficient of determination R^2 (squared Pearson 
correlation coefficient) 

[0, 1]

Q2  R^2/SD test error metric, as used by M.J. Embrechts [0, ∞]

NAREC  normalized REC area (given a fixed val=tolerance) [0, 1]

TOLERANCE  the tolerance (y-axis value) of a REC curve (given a fixed 
val=tolerance) 

[0, 1]

MAPE  mean absolute percentage error [0%, ∞]

MdAPE  median absolute percentage error [0%, ∞]

RMSP  root mean square percentage error [0%, ∞]

RMdSPE  root median square percentage error [0%, ∞]

SMAPE  symmetric mean absolute percentage error [0%, 200%]

NRMSE  normalized root mean square error [0, 1]

MASE  Mean absolute scaled error [0, ∞]

 

Additionally, also for convenience, the current version provides 30 already-implemented 

penalty functions that can be used as metrics. 

OFT.r0   OFT.r10   OFT.r25  
UFT.r0   UFT.r10   UFT.r25  

fraction of time that the 
technique over-forecasted or 
under-forecasted, assuming a 
reserve of 0%, 10%, or 25% 

[0%, 100%]

OFM.r0   OFM.r10   OFM.r25  
UFM.r0   UFM.r10   UFM.r25  

fraction of the amount that the 
technique over-forecasted or 
under-forecasted, assuming a 
reserve of 0%, 10% or 25%. 

[0%, ∞]
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PT.r0.1.1   PT.r0.2.1   PT.r0.1.2  
PT.r10.1.1   PT.r10.1.2   PT.r10.2.1  
PT.r25.1.1   PT.r25.1.2   PT.r25.2.1  

weighted average of the over-
forecasts and under-forecasts, 
with respect to time, assuming a 
reserve of 0%, 10%, or 25%, and 
weighted 1 or 2 for over-
forecasts and 1 or 2 for under-
forecasts 

[0%, 100%]

PM.r0.1.1   PM.r0.1.2   PM.r0.2.1  
PM.r10.1.1   PM.r10.1.2   PM.r10.2.1 
PM.r25.1.1   PM.r25.1.2   PM.r25.2.1  

The weighted average of the 
over-forecasts and under-
forecasts, with respect to 
amount, assuming a reserve of 
0%, 10% or 25%, and weighted 1 
or 2 for over-forecasts and 1 or 2 
for under-forecasts 

[0%, ∞]

 

2.9.6 Data Visualization Functionality 

The computation platform provides a variety of custom data visualizations. 

Series visualizations 
(full population, 
sample, or cluster) 

• Visualize series 
see Figure 4-3 

• Visualize series trends 

• Visualize series seasonality 

• Visualize series correlations 
see Figure 4-4 

• Visualize series autocorrelation 
see Figure 4-5 

• Series geo-location map 
see Figure 6-2 

Forecast visualizations 
(full population, 
sample, or cluster) 

• Visualize forecast 

• Visualize forecast error 

• Visualize forecasts as overlay 
see Figure 4-6 
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• Visualize forecast error as overlay 
see Figure 4-7 

Technique score 
visualizations 

• Visualize technique score distribution 
see Figure 4-11 

• Visualize relative importance of decisions to technique score 
see Figure 4-8 

• Visualize technique scores with decision option trend 
see Figure 4-16 

• Visualize technique scores with algorithm competition 
see Figure 4-12 

• Visualize monotonicity 

• Visualize best technique score distribution by data source 
see Figure 3-4 

• Visualize best technique algorithm class-family distribution by 
data source 
see Figure 3-5, Figure 3-10  

Metric relationship 
visualizations 

• Visualize metric mean score correlations 
see Figure 4-18 

• Visualize techniques by rank across metrics, scatter 

• Visualize techniques by rank across metrics, stack 

Technique rank 
visualizations 

• Visualize techniques by rank 
see Figure 4-20, Figure 4-21, Table 4-1 

• Visualize techniques by decision option distribution 
see Figure 4-22 

• Visualize technique families by rank split by decision options 
see Figure 4-26 

• Visualize technique families by rank split by decision options in 
context 
see Figure 4-35 

• Visualize techniques by rank with multiple metrics 
see Table 6-7 

Sample visualizations • Visualize sample score trend across sample sizes 
see Figure 5-8 
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• Visualize sample rank trend across sample sizes 
see Figure 5-10 

• Visualize sample score impact trend, multiple locations 
see Figure 6-53 

• Visualize bounded sample score impact trend, multiple 
locations 
see Figure 6-54 

Cluster visualizations • Visualize series mean correlations 

• Visualize cluster assignment, phylogram 
see Figure 5-5 

• Visualize cluster score trend across cluster counts 
see Figure 5-20 

• Visualize cluster rank trend across cluster counts 
see Figure 5-22 

• Visualize cluster count score impact trend, multiple locations 
see Figure 6-57 

• Visualize bounded cluster count score impact trend, multiple 
locations 
see Figure 6-58 

Temporal magnification 
visualizations 

• Visualize temporal magnification score trend across time step 
sizes 
see Figure 5-27 

• Visualize temporal magnification rank trend across time step 
sizes 
see Figure 5-29 

• Visualize temporal magnification score impact trend, multiple 
locations 
see Figure 6-60 

• Visualize bounded temporal magnification score impact trend, 
multiple locations 
see Figure 6-61 
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2.10 Proof-of-Concept 

To demonstrate our analysis methods for metric and technique decisions, we apply them here 

to explore relationships between data source characteristics and forecastability, using the 3,003 

benchmark time series from the M3 Forecasting Competition as reference and predictor series. 

[156] 

(Further demonstration of methods to analyze technique and data strategy decisions follow in 

subsequent chapters.) 

2.10.1 Metric Decisions 

To analyze the effects of a metric decision ranging over 3 options, we construct forecasts for all 

3,003 series using the same one technique, and evaluate each per the 3 metrics. 

Reference data 
source 

3,003 options From M3 Forecasting Competition.  Any of 3,003 
anonymous time series datasets of length 20 to 144 
time steps. 

Predictor data 
source 

3,003 options Same as reference data source. 

Algorithm class lock-in support vector regression

Extension rule lock-in direct

Update cycle lock-in 1 time step

Holdout lock-in 0.50

Metric 3 options MAPE, MASE, R2

 

We then rank order the data sources by their associated forecast scores per one metric, MAPE, 

color coding data sources based on their spans, to show us the relative forecastability of the 

data sources (Figure 2-8).  Those near the front, because their forecasts evaluate to low MAPE 
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scores, lend themselves to being forecasted by the technique.  We see that most of the long 

data sources gravitate to the front, and so we may suspect a relationship between data span 

and forecastability. 

However, when we compare data sources evaluated per the other two metrics, MASE and R2, 

but still rank ordered per MAPE score, we see very different patterns.  Many of the data 

sources highly forecastable in the context of a MAPE metric decision are poorly forecastable in 

the context of a MASE or R2 metric decision.  MAPE correlates to MASE at r = 0.15, MASE to R2 

at r = -0.20, and MAPE to R2 at r = -0.09.  Across all metrics, 85.23% of metric-pairs show 

statistically significant correlation, with p-value < 0.05, albeit most of these correlations are low 

(Figure 2-9). 

Forecastability is highly sensitive to the metric decision. 

2.10.2 Technique Decisions 

To analyze the effects of technique decisions, we vary four technique decisions, apply the 

resultant techniques to construct 32 forecasts for each of the 3,003 series, and evaluate each 

per one metric, MAPE. 

Reference data 
source 

3,003 options From M3 Forecasting Competition.  Any of 3,003 
anonymous time series datasets of length 20 to 144 
time steps. 

Predictor data 
source 

3,003 options Same as reference data source. 

Algorithm class 4 options linear regression, multilayer perceptron, naïve, 
support vector regression 

Extension rule 2 options direct, recurse

Update cycle 2 options 1 time step, 2 time steps
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Holdout 2 options 33%, 50%

Metric lock-in MAPE

 

We see that each series is associated with a distribution of MAPE scores, some ranging from 

near zero to over 100.  Correlations between techniques range from r = 0.30 to r = 1.0.  Most 

technique-pairs are correlated strongly, and all correlations are statistically significant, with 

p-value < 0.05 (Figure 2-10).  

Looking at the mean or best scores for each series, or looking at the scores for one specific 

technique for each series, give different pictures of forecasting performance (Figure 2-11). 

We can explore the relative performance of various algorithm classes, too.  In the context of 

locked-in decisions for all but algorithm class, we identify the best performing techniques by 

algorithm class for each series, and see a distinctive distribution of the winning algorithm 

classes across the series – naïve wins in 59% of series, linear regression wins in 38% of series 

(Figure 2-12).  In the context of many decisions, we see a somewhat different distribution of 

winning algorithm classes – naïve wins in only 50% of series, linear regression wins in almost 

41% of series. (Figure 2-13).  In this case, which algorithm class ranks best does not change in 

the context of many decisions, but we do see that the best performing algorithm class is not 

quite so much better as we would otherwise have thought.  Further, forecasts constructed by 

the winning algorithm classes score 15.26 MAPE points better on average when considered in 

the context of many decisions.  So, we get a richer picture of just how good the good algorithm 

classes are. 

Locked-in decisions can distort the view of forecasting performance.  

 

Locked-in decisions can distort the view of algorithm class importance to forecasting 

performance.  
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2.11 Tables and Data Visualizations 
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Table 2-1: 
Electricity demand forecasting research classified by look-ahead, based on Hong. [18] 

 

 

Table 2-2: 
Electricity demand forecast uses, based on Hong. [18] 
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Table 2-3: Popular algorithm classes (statistical linear). 
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Table 2-4: Popular algorithm classes (statistical non-linear and machine learning). 
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Table 2-5: Popular hyper-parameter selection criteria. 

 

Table 2-6: Popular data transformations. 

 

Table 2-7: Popular extension rules. 

 

Table 2-8: Popular training and testing rules. 
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Table 2-9: Popular metrics. 
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Table 2-10: Integration rules at fixed time step size. 

 

Table 2-11: Integration rules at refining time step size. 
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Table 2-12: Integration rules at coarsening time step size. 
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Figure 2-8: Distribution of metric scores across data sources.  3,003 data sources from 
the M3 Forecasting Competition.  Data sources are arranged along x-axis by rank order 
per MAPE score of associated forecast made by a specific technique.  Blue is MAPE 
score, green is MASE score, red is R2 score.  Darker bars are longer data spans, lighter 
bars are shorter data spans. 
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Figure 2-9: Metric-metric correlations for metric scores across data sources, fixed 
technique.  1 technique.  3,003 data sources from the M3 Forecasting Competition.  
For each cell, all data sources are scored per two metrics, and the sequence of scores 
per the first metric is correlated with the sequence of scores per the second metric.  
Red is positive correlation.  Blue is negative correlation.  Dark is strong absolute 
correlation.  Light is weak absolute correlation.  Gray is statistically not significant, p-
value < 0.05. 
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Figure 2-10: Technique-technique correlations for metric scores across data sources, 
fixed metric.  32 techniques.  3,003 data sources from the M3 Forecasting 
Competition.  Metric is MAPE.  For each cell, all data sources are scored per two 
techniques, and the sequence of scores per the first technique is correlated with the 
sequence of scores per the second technique.  Red is positive correlation.  Blue is 
negative correlation.  Dark is strong absolute correlation.  Light is weak absolute 
correlation.  All correlations are statistically significant, p-value < 0.05. 
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Figure 2-11: Distribution of metric scores across data sources.  Data sources from the 
M3 Forecasting Competition.  3,003 data sources x 32 techniques = 96,096 forecasts 
and evaluations.  Data sources are arranged along the x-axis.  Violet is best MAPE score 
among 32 techniques applied to one data source.  Crimson is mean MAPE score 
among 32 techniques applied to one data source.  Green is MAPE score for one specific 
technique applied to one data source. 
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Figure 2-12: Distribution of best metric scores across data sources, by algorithm class, 
4 techniques.  Data sources from the M3 Forecasting Competition.  3,003 data sources 
x 4 techniques = 12,012 forecasts and evaluations.  Data sources are arranged along 
the x-axis.  Blue is MAPE score of linear regression-based technique applied to one 
data source.  Green is MAPE score of perceptron-based technique applied to one data 
source.  Red is MAPE score of naïve-based technique applied to one data source.  Gold 
is MAPE score of support vector regression-based technique applied to one data 
source.  Large point is best MAPE score among 4 techniques applied to one data 
source. 
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Figure 2-13: Distribution of best metric scores across data sources, by algorithm class, 
32 techniques.  Data sources from the M3 Forecasting Competition.  3,003 data 
sources x 32 techniques = 96,096 forecasts and evaluations.  Data sources are 
arranged along the x-axis.  Blue is best MAPE score among 8 linear regression-based 
techniques applied to one data source.  Green is best MAPE score among 8 multilayer 
perceptron-based techniques applied to one data source.  Red is best MAPE score 
among 8 naïve-based techniques applied to one data source.  Gold is best MAPE score 
among 8 support vector regression-based techniques applied to one data source.  
Large point is best MAPE score among 32 techniques applied to one data source.  
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Figure 2-14: Distribution of metric scores across data sources, lock-in algorithm class, 
1 technique.  Data sources from the M3 Forecasting Competition.  3,003 data sources 
x 1 technique = 3,003 forecasts and evaluations.  Data sources are arranged along the 
x-axis.  Blue is MAPE score of linear regression-based technique applied to one data 
source. 
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Figure 2-15: Distribution of best metric scores across data sources, lock-in algorithm 
class, 8 techniques.  Data sources from the M3 Forecasting Competition.  3,003 data 
sources x 8 techniques = 24,024 forecasts and evaluations.  Data sources are arranged 
along the x-axis.  Blue is best MAPE score among 8 linear regression-based techniques 
applied to one data source.  Large point is best MAPE score among 8 techniques 
applied to one data source. 
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3 DECISIONS AND DATA ENTROPY AS A PREDICTOR OF FORECASTABILITY  

 

“Tonight’s forecast: dark.  Broken up tomorrow by widely scattered light.” 

  – George Carlin 

 

3.1 Research Questions 

In this chapter, we address the following research questions: 

• How well does data entropy predict forecastability? 

• How do forecasting process decisions affect the power of entropy to predict 

forecastability? 

3.2 Research Approach 

It would be useful to forecasting practitioners to know a priori something about how much a 

given reference series lends itself to being forecasted, so that commensurate effort can be 

planned for accordingly.  Studies suggest that data entropy of reference series can predict 

means or bounds on associated forecasting performance in some cases, and so may be a useful 

tool in this regard. [148,149,150,151,152]   We apply our analysis methods to expand on these 

studies, exposing the effects of varying several decisions on the relationship between entropy 

and forecastability, and compare our results.  In our version, forecastability is measured first 

with respect to the set of techniques reflected by the decisions, and then with respect to the 

set of best performing techniques only, rather than with respect to a single technique as is 

common in the other studies. 
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3.3 Scope of Analysis   

We construct and explore performance of 96,096 forecasts –32 techniques across 3,003 data 

sources – by varying data source and decisions for algorithm class, extension rule, update cycle, 

and holdout.  The data sources are those used in the M3 Forecasting Competition. [156]  MASE 

is locked-in as the metric decision.  The entropy function assumes a default parameterization 

(similarity criterion r = 0.2 x standard deviation of data) applied to all data. 

Reference data 
source 

3,003 options From M3 Forecasting Competition.  Any of 3,003 
anonymous time series datasets of length 20 to 144 
time steps. 

Predictor data 
source 

3,003 options Same as reference data source. 

Algorithm class 4 options linear regression, multilayer perceptron, naïve, 
support vector regression 

Extension rule 2 options direct, recurse

Update cycle 2 options 1 time step, 2 time steps

Holdout 2 options 33%, 50%

Metric lock-in MASE (based on training data mean) 

 

3.4 Results 

In the context of many decisions, but looking at one technique at a time, correlation between 

entropy and forecastability across reference series ranges from R2 = 0.00 to R2 = 0.54 (Figure 

3-1).  Only techniques that use the naïve algorithm class correlate at R2 > 0.12.  Most are much 

worse, e.g., one technique that uses support vector regression correlates at 0.11 (Figure 3-2). 

Across all techniques, correlation between entropy and forecastability is almost completely 

absent (Figure 3-3). 
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Across only the best performing techniques for each reference series, correlation between 

entropy and corresponding (best) forecast MASE scores is much higher: R2 = 0.63 (Figure 3-4).  

Twenty-eight of 32 techniques perform better than all others on at least one data source.  The 

algorithm class decision appears to play a role in determining which techniques do better than 

others (Figure 3-5).  Linear regression-based techniques correlate at R2 = 0.69 (Figure 3-6), 

multilayer perceptron-based techniques correlate at R2 = 0.61 (Figure 3-7), naïve-based 

techniques correlate at R2 = 0.55 (Figure 3-8), and support vector regression-based techniques 

correlate at R2 = 0.24 (Figure 3-9).  Further, the least correlated techniques are not well-

represented among the best performing techniques. 

The span decision (in these experiments determined by the reference series) also appears to 

play a role.  Across only the best performing techniques for each reference series at span ≤ 36 

time steps, correlation is low:  R2 = 0.13 (Figure 3-10).  As span increases to 37-72 time steps, 

correlation increases to R2 = 0.65 (Figure 3-11).  Spans of 73-108 time steps and ≥ 109 times 

steps correlate at R2 = 0.73 (Figure 3-12, Figure 3-13).  A clear pattern is evident suggesting that 

the predictive power of entropy increases asymptotically to about R2=0.73 as span increases 

(Figure 3-14).  Further, as the span and predictive power increase, so does the sensitivity of 

forecastability to entropy (Equation 3-1). 

Equation 3-1:  
Empirical relationship between entropy and forecastability, 

based on M3 Forecasting Competition data at long span. 1, ≡ , ≅ 0.35× − 0.04 

 
Where … 
F is measure of forecastability, 
D is dataset (used as reference and predictor series), 
d is vector of decisions, 
e is entropy function, 
MASEbest is mean absolute scaled error of forecast using best technique. 
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3.5 Comparison to Benchmark Studies 

Catt investigated entropy as a potential predictor of forecastability across the M3 Forecasting 

Competition 3,003 time series. [148]  In the study, forecastability is measured in terms of 

MASE, where training data mean is assumed as the default forecast.  In our parlance, the study 

varies the data source among these time series.  All other decisions are locked-in, but for the 

caveat that holdout is specified as a fixed number of time steps, not as a fraction of the total 

number of time steps – and depends on the data source.  Also, the entropy function is 

parameterized (by setting similarity criterion r) to optimize the correlation between the entropy 

of training data and the corresponding MASE scores for forecasts made on the training data.  

Entropy is calculated for training data only. 

Reference data 
source 

3,003 options From M3 Forecasting Competition.  Any of 3,003 
anonymous time series datasets of length 20 to 144 
time steps. 

Predictor data 
source 

3,003 options Same as reference data source. 

Algorithm class lock-in Holt linear trend

Extension rule lock-in direct

Update cycle lock-in 1 time step

Holdout lock-in 6, 8, or 18 time steps, depending on data source

Metric lock-in MASE (based on training data mean) 

 

The study finds that entropy defined in terms of a specific technique is modestly correlated 

with forecastability at R2=0.56, about the same as in our study for forecastability defined in 

terms of the best correlated technique. 
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3.6 Insights 

In practice, forecastability as measured assuming many decisions at play may be more useful 

than as measured assuming a single technique, because it avoids the need to treat a specific 

technique as a proxy for the best performing technique that will ultimately be selected by the 

forecasting practitioner.  Happily, we see that accounting for the set of best techniques actually 

unleashes the power of entropy to better predict forecastability. 

We glean the following insights from our results, with the requisite caveat that they are based 

on one specific set of data and a practically scoped set of experiments. 

For forecastability defined in terms of a specific technique, entropy is a weak to modest 

predictor of forecastability, depending on the metric and technique decisions. 

 
 

For forecastability defined in terms of the set of best performing techniques in the context 

of many technique decisions, entropy is a strong predictor of forecastability, more or less so 

depending on the technique decisions for algorithm class and span. 

 
 

For forecastability defined in terms of the set of best performing techniques in the context 

of many technique decisions, the predictive power of entropy grows asymptotically along 

with decisions to increase span. 

 

For forecastability defined in terms of the set of best performing techniques in the context 

of many technique decisions, the sensitivity of forecastability to entropy grows along with 

decisions to increase span. 
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3.7 Tables and Data Visualizations 
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Figure 3-1: Distribution of correlations of metric score-to-entropy across techniques.  
Data sources from the M3 Forecasting Competition.  3,003 data sources from x 32 
techniques = 96,096 forecasts and evaluations.  Evaluation by MASE score.  
Techniques are arranged along the x-axis. 
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Figure 3-2: Metric score vs. entropy, 1 technique.  Data sources from the M3 
Forecasting Competition.  3,003 data sources from x 1 technique = 3,003 forecasts 
and evaluations.  Evaluation by MASE score.  Entropy values are arranged along the 
x-axis. 
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Figure 3-3: Metric score vs. entropy, 32 techniques.  Data sources from the M3 
Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 forecasts 
and evaluations.  Evaluation by MASE score.  Entropy values are arranged along the 
x-axis. 
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Figure 3-4: Best metric score vs. entropy, 32 techniques.  Data sources from the M3 
Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 forecasts 
and evaluations.  Evaluation by MASE score.  Entropy values are arranged along the 
x-axis.  Colors are best technique applied to one data source. 
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Figure 3-5: Best metric score vs. entropy, by algorithm class.  Data sources from the 
M3 Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 
forecasts and evaluations.  Evaluation by MASE score.  Entropy values are arranged 
along the x-axis.  Colors are algorithm class of best technique applied to one data 
source. 
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Figure 3-6: Best metric score vs. entropy, linear regression.  Data sources from the M3 
Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 forecasts 
and evaluations.  Evaluation by MASE score.  Entropy values are arranged along the 
x-axis.  Blue is best technique applied to one data source, filtered for linear regression 
algorithm class. 
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Figure 3-7: Best metric score vs. entropy, multilayer perceptron.  Data sources from 
the M3 Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 
forecasts and evaluations.  Evaluation by MASE score.  Entropy values are arranged 
along the x-axis.  Green is best technique applied to one data source, filtered for 
multilayer perceptron algorithm class. 
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Figure 3-8: Best metric score vs. entropy, naive.  Data sources from the M3 
Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 forecasts 
and evaluations.  Evaluation by MASE score.  Entropy values are arranged along the 
x-axis.  Red is best technique applied to one data source, filtered for naive algorithm 
class. 
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Figure 3-9: Best metric score vs. entropy, support vector regression.  Data sources 
from the M3 Forecasting Competition.  3,003 data sources from x 32 techniques = 
96,096 forecasts and evaluations.  Evaluation by MASE score.  Entropy values are 
arranged along the x-axis.  Gold is best technique applied to one data source, filtered 
for support vector regression algorithm class. 
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Figure 3-10: Best metric score vs. entropy, short span.  Data sources of length 1-36 
time steps from the M3 Forecasting Competition.  32 techniques.  Evaluation by MASE 
score.  Entropy values are arranged along the x-axis.  Colors are algorithm class of best 
technique applied to one data source. 
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Figure 3-11: Best metric score vs. entropy, medium span.  Data sources of length 37-
72 time steps from the M3 Forecasting Competition.  32 techniques.  Evaluation by 
MASE score.  Entropy values are arranged along the x-axis.  Colors are algorithm class 
of best technique applied to one data source. 
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Figure 3-12: Best metric score vs. entropy, medium-long span.  Data sources of length 
73-108 time steps from the M3 Forecasting Competition.  32 techniques.  Evaluation 
by MASE score.  Entropy values are arranged along the x-axis.  Colors are algorithm 
class of best technique applied to one data source. 
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Figure 3-13: Best metric score vs. entropy, long span.  Data sources of length 109-144 
time steps from the M3 Forecasting Competition.  32 techniques.  Evaluation by MASE 
score.  Entropy values are arranged along the x-axis.  Colors are algorithm class of best 
technique applied to one data source. 
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Figure 3-14: Correlation of metric score-to-entropy vs. data span.  Data sources from 
the M3 Forecasting Competition.  3,003 data sources from x 32 techniques = 96,096 
forecasts and evaluations.  Evaluation by MASE score.  Data spans are arranged along 
the x-axis. 
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4 TECHNIQUE DECISIONS AND RESIDENTIAL ELECTRICITY DEMAND ESTIMATION  

 

“If you can look into the seeds of time, and say which grain will 

grow and which will not, speak then unto me.” 

  – William Shakespeare 

 

4.1 Research Questions 

In this chapter, we address the following research questions: 

• How well do residential electricity demand forecasting techniques perform? 

• How can smart electric grid data be utilized to improve residential electricity demand 

forecasting performance? 

4.2 Literature Review 

Electricity demand forecasting research has been quadrifurcated based on look-ahead and 

update cycle: very short-term, short-term, medium-term, and long-term. [14]  By look-ahead, 

we mean how far into the future a forecast begins.  By update cycle, we mean how far from the 

time a forecast begins does it continue before a new forecast is allowed to be made.  The term 

horizon is sometimes used interchangeably with look-ahead or update cycle, so here we use 

only the latter terms to avoid confusion.  Challenges, opportunities, and benefits of the 

different look-ahead ranges have proven specialized enough to warrant unique study 

approaches for each range.  Various definitions for the four ranges have been proposed to 

better organize the relevant research and application in power utilities (Table 2-1, Table 2-2). 

[14,18,23] 
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Day-ahead to week-ahead is the range typically considered by electricity demand forecasting 

practitioners when scheduling electricity generation and transmission, and as such has 

motivated investigations specific to these look-aheads. 

Many electricity demand forecasting studies score forecasting performance per mean absolute 

percentage error (MAPE) or root mean square error (RMSE).  MAPE of 4% seems to be a utility 

industry de facto standard for the threshold qualifying a forecast as practical. 

Statistical algorithms have been applied to electricity demand forecasting since at least 1966. 

[2,76]  Machine learning has been applied to electricity demand forecasting since the 1990s. 

[42,76]  Machine learning algorithms based on neural networks, including multilayer 

perceptrons, and support vector regression in particular showed early promise for electricity 

demand forecasting and continue to account for much research. [42,77]  A form of neural 

network coined “extreme learning” has generated controversy around its originality, but is 

reported especially effective in electricity demand forecasting. [30]  

With the recent advent of smart electric grids, electricity usage data measured at fine temporal 

and geographic resolutions have become available to researchers for the first time.  Notable 

smart electric grid datasets include those from the Ireland Commission for Energy Regulation 

(Smart Metering Project in Dublin, Ireland), the Australian Government (Smart Grid / Smart City 

Customer Trial in Australia), Pacific Gas and Electric (Energy Data Request Program in California, 

United States), and the University of Texas at Austin (Pecan Street Demonstration in Texas, 

United States). [153,155,157,158]   

With more data detail comes new decisions around how much data to use, how to sample it, 

how to cluster it, how to temporally magnify it, and how to aggregate it. 

The Global Energy Forecasting Competition (GEFCom), a competition focusing specifically on 

electricity demand-related forecasting, has been held twice, in 2012 and 2014. 

[137,138,139,140,142,143]   The winning technique in 2012 employed a version of the multiple 
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linear regression algorithm.  The winning technique in 2014 employed a quantile generalized 

additive model algorithm. 

4.3 Research Approach 

We apply our analysis methods and computation platform to study 8,016 week-ahead and day-

ahead electricity demand forecasting techniques scored by 60 metrics, utilizing smart electric 

grid data on 782 households collected by the Ireland Commission for Energy Regulation Smart 

Metering Project in 2009-10.  The techniques incorporate nearest neighbor, linear regression, 

multilayer perceptron, naïve, support vector regression, and decision tree algorithms. 

4.4 Scope of Analysis 

We scope our analysis to the effects of 12 decisions and a collection of electricity-related 

datasets, locking in 5 of the decisions and varying the remaining 7 decisions over a range of 

options.  We choose these particular decisions because they are represented in several other 

studies that consider their effects in isolation, whereas we are interested in their combined 

effect.  We choose this particular collection of datasets because it reflects the finest granularity, 

multi-year electricity usage data now publicly available. 

We are interested in both week-ahead and day-ahead forecasting settings, so we instantiate 

two versions of the model – one for week-ahead and one for day-ahead – and conduct the 

analysis in two parts accordingly, reporting the results separately. 

4.4.1 Model Instantiation for Week-Ahead Forecasting 

For the week-ahead part of our analysis, we lock-in a one-day time step size.  Our model 

instantiations then vary across options for seven other decisions, identifying 2,880 techniques, 

all scored by 60 metrics, for a total of 172,800 vectors = 5 update cycle options x 3 span options 

x 6 algorithm class options x 2 extension rule options x 4 holdout options x 4 clip options x 60 

metrics.  We vary these particular decisions to highlight the potential impact of small variations 
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in choices around techniques that are commonly based on tacit assumptions about their 

importance in other studies. 

The algorithm class options comprise representatives from five popular, distinct forecasting 

approaches, plus a naïve algorithm that serves as a benchmark.  The naïve algorithm used here 

always forecasts no change in electricity demand at one-week ahead.  The multilayer 

perceptron and support vector regression algorithms are statically tuned to hyper-parameter 

values that work well for one typical technique. 

Objective Decisions lock-in Reference data 
source 

Ireland CER electricity usage 

lock-in Reference look-
ahead 

1 week 

5 options Update cycle 1 day 
2 days 
3 days 
5 days 
7 days 

lock-in Time step size 1 day 

Data Strategy 
Decisions 

3 options Span 6 months 
12 months 
18 months 

Form Decisions 6 options Algorithm class k-nearest neighbor 
linear regression 
multilayer perceptron 
naïve 
support vector regression 
decision tree 

lock-in Predictor data 
sources 

Ireland CER electricity usage + 
WU temperature + 
day of week 

lock-in Predictor look-
backs 

( 0, 1 week, 2 weeks, 3 weeks ) +
( 0 ) + 
( 0 ) 
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2 options Extension rule direct 
recurse 

Training and Testing 
Decisions 

4 options Holdout % 20% 
30% 
40% 
50% 

4 options Clip % 0 
1% 
10% 
20% 

Metric and Penalty 
Decisions 

60 options Metric function or 
penalty function 

any of 30 metrics functions or 30 
penalty functions 

 

4.4.2 Model Instantiation for Day-Ahead Forecasting 

For the day-ahead part of our analysis, we lock-in a one-hour time step size.  Our model 

instantiations then vary across options for seven other decisions, identifying 648 techniques, all 

scored by 60 metrics, for a total of 38,880 vectors = 3 update cycle options x 3 span options x 4 

algorithm class options x 2 extension rule options x 3 holdout options x 3 clip options x 60 

metric options. 

The four algorithm class options have appeared in other day-ahead forecasting studies using 

the same reference data source.   

Objective Decisions lock-in Reference data 
source 

Ireland CER electricity usage 

lock-in Reference look-
ahead 

1 day 

3 options Update cycle 1 hour 
12 hours 
24 hours 

lock-in Time step size 1 hour 
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Data Strategy 
Decisions 

3 options Span 6 months 
12 months 
18 months 

Form Decisions 4 options Algorithm class linear regression 
multilayer perceptron 
naïve 
support vector regression 

lock-in Predictor data 
sources 

Ireland CER electricity usage + 
WU temperature + 
day of week + 
hour of day 

lock-in Predictor look-backs ( 0, 1 day, 2  days, 3 days, 
  4 days, 5 days, 6 days ) + 
( 0 ) + 
( 0 ) + 
( 0 ) 

2 options Extension rule direct 
recurse 

Training and Testing 
Decisions 

3 options Holdout % 20% 
33% 
50% 

3 options Clip % 0 
10% 
20% 

Metric and Penalty 
Decisions 

60 options Metric function or 
penalty function 

any of 30 metrics functions or 
30 penalty functions 

 

4.4.3 Data Sources 

Our techniques all assume the same reference and predictor series, renderings of data 

collected by a real smart electric grid, pre-processed as necessary to prepare it for use by the 

platform. 
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For our reference series, we use electricity usage time series data from the Commission for 

Energy Regulation (CER) Smart Metering Project conducted by the Government of Ireland, 

assuming that demand exactly equaled usage in the absence of physical constraints or financial 

disincentives. [128,155]  This smart electricity grid covered 7,444 businesses and households in 

and around Dublin, Ireland, measuring usage at that geographic granularity at half-hour 

intervals, spanning July 14, 2009 through December 31, 2010.  Of these, we restrict our series 

to reflect 782 households that had no missing data throughout the entire period, and that were 

not affected by any experimental pricing policies.  To consolidate the 782 time series, we 

convert to hourly resolution and sum across households at each time step, resulting in a 

12,864-step time series.  Hourly values for the aggregated population range from 245 kWh to 

2,176 kWh, with mean 759 kWh. 

Our predictor series (three for week-ahead, four for day-ahead) are electricity usage, 

temperature, day of week, and hour of day.  For electricity usage, we use the same CER data.  

For temperature, we use actual temperature time series data reported for Dublin, Ireland, at 

hourly intervals, from the IBM Weather Underground weather data service. [159]  For day of 

week and hour of day, we use time series data constructed per an integer coding scheme. 

Reference series Electricity usage.  From Ireland Commission for Energy Regulation 
Smart Metering Project (CER).  30-minute intervals across 782 control 
households in Dublin, Ireland in 2009-10. 

Predictor series Electricity usage.  From Ireland Commission for Energy Regulation 
Smart Metering Project (CER).  Measured at 30-minute intervals 
across 782 households in Dublin, Ireland in 2009-10.  Same data 
source as for reference series. 

Temperature.  From IBM Weather Underground.  Measured at 1-hour 
intervals at Dublin, Ireland in 2009-10. 

Day of week.  Generated by analysis platform. 

Hour of day (for day-ahead only).  Generated by analysis platform. 
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4.5 Results 

For expediency and because MAPE is a de facto electricity forecasting standard, as noted 

earlier, we highlight results around MAPE-based techniques in our reports on sensitivity of 

metric scores, rank, and rank in context.  Similarly, we highlight results around MAPE, MaxAE, 

and R2 in our reports on metric relationships and sensitivity of rank based on multiple metrics.  

Metrics like MaxAE and R2 are useful for capturing objectives that try to minimize the adverse 

effects of demand spikes, supply spikes, and alternating over- and under-supply.  These three 

metrics in combination reflect important, but potentially conflicting, objectives. 

4.5.1 Data Characterization 

At one-day time step size, as used for our week-ahead forecasting, clearly evident are a 

negative correlation between the electricity usage and temperature series, annual seasonality 

in the electricity usage series, and significant correlation of electricity usage between any one 

time step and some multiple of exactly one day prior (Figure 4-3, Figure 4-4, Figure 4-5).  The 

former correlation is well known and typical of cold climates, where households use electricity 

for heating, but less so for cooling.  The same patterns are evident at one-hour time step size as 

used for our day-ahead forecasting.   

Notably, two electricity usage spikes coincide with the Christmas 2009 and New Year 2010 

holiday periods despite rises in temperature.  A more pronounced spike coincides with the 

Christmas 2010 holiday period when temperatures fall to their coldest. 

4.5.2 Sensitivity of Forecasts to Decisions 

Evident in the distribution of forecasts is a tendency for many techniques to over-forecast a 

short time from the origin, and many more techniques to under-forecast more pronouncedly as 

the temporal distance from the origin increases (Figure 4-6, Figure 4-7).  The pattern is evident 

in day-ahead forecasts and week-ahead forecasts. 
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4.5.3 Sensitivity of Metric Scores to Decisions 

Twenty-five out of 30 metrics yield valid forecast performance evaluations for all forecasts.  

Metrics scores vary widely across the set of all techniques, as do metric scores across 

techniques that vary only in the metric used to evaluate forecast performance. 

With week-ahead forecasts, different decisions influence forecast performance 

disproportionately (Figure 4-8).  The span decision accounts for about 75% relative importance 

with respect to metric score across most of the metrics.  Span remains highly influential even 

through the lens of a fixed algorithm decision, across all algorithm class options, though for a 

few metrics clip becomes more influential (Figure 4-9).  With day-ahead forecasts, the decision 

of update cycle most influences metric score across all but one metric (Figure 4-10). 

With week-ahead forecasts, MAPE scores are distributed in a distinctive pattern, ranging from 

2.3% to 35.9%, with mean 10.8% (Figure 4-11).  Scores are skewed toward the low end, but 

unevenly so, concentrated between 4% and 7%, with only 331 out of 2,880 scores falling below 

4%.  As noted earlier, MAPE of 4% is a de facto standard for the threshold qualifying a forecast 

as practical.  Score distributions for other metrics from day-ahead forecasts and week-ahead 

forecasts line up in their own distinctive patterns. 

With week-ahead forecasts, considered in the context of fixed algorithm class decisions, MAPE 

scores are usually best for techniques that use the naïve algorithm, all other decisions being 

equal, some by as little as 3 MAPE points and some by as much as 30 MAPE points (Figure 

4-12).  Techniques using support vector regression never beat their peers.  In contrast, with 

day-ahead forecasts, techniques that use the naïve algorithm win less often, sharing the role of 

best among peers with techniques that use linear regression or support vector regression 

(Figure 4-13). 

With week-ahead forecasts, looking deeper into the evident sensitivity of metric score to 

technique, most metric scores trend monotonically across span decision options, with 

techniques that use longer spans performing better (Figure 4-14).  In contrast, no monotonic or 
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other regular trend appears across techniques that vary by holdout (Figure 4-15).  For MAPE in 

particular, score either increases or decreases as holdout increases depending on the technique 

and the holdout option being compared (Figure 4-16).  With day-ahead forecasts, the 

monotonicity seen in the span trends breaks down, with no clear relationship apparent 

between metric score and span decision (Figure 4-17). 

4.5.4 Metric Relationships 

With week-ahead forecasts, since only 25 of 30 metrics correspond to well-defined scores for 

all techniques, all other decisions being equal, we consider these 25 metrics and ∑ = 300 

non-twin pairs of metrics as we look for relationships among them.  Scores arranged by 

technique are strongly correlated at > 0.9 in 89 out of 300 pairs of metrics (Figure 4-18).  Other 

pairs are modestly or poorly correlated.  MAPE/MaxAE are correlated modestly at 0.66.  

MAPE/R2 are (negatively) modestly correlated at -0.68.  MaxAE/R2 are modestly (negatively) 

correlated at -0.48.  SAE is poorly correlated with most other metrics. 

With day-ahead forecasts, all 30 metrics are in play, and lead to ∑ = 435 non-twin pairs.  

Most pairs are more strongly correlated when considering scores from day-ahead forecasts 

than from week-ahead forecasts (Figure 4-19). 

4.5.5 Sensitivity of Ranks to Decisions 

With week-ahead forecasts, techniques ranked per MAPE show a distinctive decision 

effectiveness signature (Figure 4-20).  The top-ranked technique per MAPE uses a 12-month 

span, naïve algorithm, direct extension rule, 1-day update cycle, 50% holdout, and 20% clip 

(Figure 4-21, Table 4-1).  Though this best performing technique uses the mid-length span, most 

of the 20 best performing techniques use the longest span (Figure 4-22).  No one decision 

option is represented in all of the 20 best performing techniques, but 17 techniques use an 

18-month span, and 17 (different) techniques use a 20% clip.  None of the 20 best performing 

techniques use the multilayer perceptron or support vector regression algorithm, nor a clip less 

than 10%.  Among the 20 best performing techniques, decisions about algorithm class, 
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extension rule, and holdout show more variation than do decisions about span, update cycle, 

and clip. 

With day-ahead forecasts, techniques ranked per MAPE show a different decision effectiveness 

signature (Figure 4-23).  The top ranked technique per MAPE uses an 18-month span, linear 

regression algorithm, direct extension rule, 1-hour update cycle, 33% holdout, and 20% clip 

(Figure 4-24, Table 4-2).  Among the 20 best performing techniques, the decision for longest 

span still appears prominently, but not as much as with week-ahead forecasts (Figure 4-25).  

The 20 best performing techniques all use the linear regression algorithm, a direct extension 

rule, and a 1-hour update cycle.  Among the 20 best performing techniques, no particular 

holdout or clip decision option is disproportionately represented.  

With week-ahead forecasts, looking more closely at effects of individual decisions on MAPE 

score, the best 75% of techniques that use an 18-month span beat 80% of techniques that use a 

12-month span and 94% of techniques that use a 6-month span.  Further, while 100% of 

techniques that use an 18-month span beat only 15% of techniques that use a 12-month span, 

they beat 75% of techniques that use a 6-month span (Figure 4-26).  Techniques that use the 

naïve algorithm mostly dominate other techniques, techniques that use support vector 

regression never dominate any other techniques (Figure 4-27).  Techniques that use a recursive 

extension rule mostly dominate techniques that use a direct extension rule (Figure 4-28).  

Techniques that use shorter update cycles mostly dominate techniques that use longer update 

cycles, but not by much (Figure 4-29).  Techniques that use the smallest holdout are dominated 

by the other techniques, but not by much (Figure 4-30).   Techniques that use a larger clip 

mostly dominate techniques that use a smaller clip, but not by much (Figure 4-31). 

With day-ahead forecasts, the span decision does not distinguish dominant techniques as it 

does with week-ahead forecasts (Figure 4-32).  The best 13% of techniques that use linear 

regression beat all other techniques, but the rest of the techniques that use linear regression 

rarely dominate any other techniques (Figure 4-33).  Techniques that use the shortest update 

cycle dramatically dominate the other techniques – the best 94% of techniques that use a 
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1-hour update cycle beat all other techniques, and 100% of techniques that use a 1-hour 

update cycle beat 96% of other techniques (Figure 4-34). 

4.5.6 Sensitivity of Ranks to Decisions in Context 

The stories sound different when ranks are considered in the context of locking-in certain 

decision options. 

With week-ahead forecasts, in the context of a decision to use a short span, techniques that use 

the naïve and linear regression algorithms dominate techniques that use other algorithms even 

more (Figure 4-35).  A decision to use a longer span distinguishes techniques that use the naïve 

algorithm further (Figure 4-36).  But, a decision to use the longest span results in no especially 

dominant techniques (Figure 4-37).  Techniques that use support vector regression become 

increasingly subordinate with decisions to use longer spans. 

With day-ahead forecasts, locking in decisions about update cycle reveals more about the effect 

of the algorithm decision.  In the context of a decision to use a short update cycle, techniques 

that use linear regression do especially well, not so for techniques that use support vector 

regression (Figure 4-38).  Here, the best 40% of techniques that use linear regression beat all 

others.  But, in the context of a decision to use a longer update cycle, the relative performance 

of techniques switches – techniques that use linear regression do worse and techniques that 

use support vector regression do better (Figure 4-39).  A decision about update cycle 

dramatically affects the relative performance of techniques that use the naïve algorithm, too – 

they do worse as the update cycle increases (Figure 4-38, Figure 4-39, Figure 4-40). 

4.5.7 Sensitivity of Ranks Based on Multiple Metrics to Decisions 

With week-ahead forecasts, techniques ranked by a MAPE/MaxAE/R2 summation rule take on a 

technique effectiveness signature that shows decisions for longer span tend to be better, and 

for support vector regression tend to be worse (Figure 4-41). 
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With day-ahead forecasts, techniques ranked by a MAPE/MaxAE/R2 summation rule show that 

the decision about clip is less important.  

Restricting techniques to only those qualified to be of practical use reveals further variation.  

Our results assume qualification criteria of MAPE ≤ 5.50%, MaxAE ≤ 12,000 kWh/day, and 

R2 ≥ 0.91.  The thresholds are chosen to align with reasonable industry objectives. 

With week-ahead forecasts, 905 out of 2,880 techniques satisfy the MAPE criterion, 2,176 

satisfy the MaxAE criterion, 59 satisfy the R2 threshold, and 20 of these are fully qualified by 

satisfying the criteria for all three metrics.  Of the fully qualified techniques, MAPE ranged from 

2.72% to 4.10%, MaxAE ranged from 2,312 kWh/day to 7,363 kWh/day, and R2 ranged from 

0.91 to 0.93.  All qualified techniques use a recursive extension rule, 18 use a 1-day update 

cycle, and 16 use an 18-month span.  The top techniques as ranked by MAPE, MaxAE, and R2 

within the set of qualified techniques ranked 4th, 6th, and 3rd when ranked by the 

MAPE/MaxAE/R2 summation rule, respectively (Table 4-3). Qualified techniques do not 

necessarily perform well across all of MAPE, MaxAE, and R2.  Only 2 out of 20 techniques are 

represented among the best performing 10% of all techniques according to MAPE, MaxAE, and 

R2, specifically the techniques ranked 4th and 6th according to the MAPE/MaxAE/R2 summation 

rule.   

With day-ahead forecasts, 7 out of 648 techniques satisfy the MAPE criterion, 102 satisfy the 

MaxAE criterion, 85 satisfy the R2 criterion, and 7 of these are fully qualified by satisfying the 

criteria for all three metrics.  Of the fully qualified techniques, MAPE ranged from 4.90% to 

5.46%, MaxAE ranged from 436 kWh/hr (= 10, 464 kWh/day) to 457 kWh/hr 

(= 10,968 kWh/day), and R2 ranged from 0.96 to 0.97.  All qualified techniques use the linear 

regression algorithm, a direct extension rule, and 1-hour update cycle. The top techniques as 

ranked by MAPE, MaxAE, and R2 ranked 2nd, 4th, and 3rd when ranked by the MAPE/MaxAE/R2 

summation rule, respectively (Table 4-4).  Qualified techniques here do perform well across all 

of MAPE, MaxAE, and R2.  Five out of 7 techniques are represented among the best performing 
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5% of all techniques according to MAPE, MaxAE, and R2, and all 7 techniques are represented 

among the best performing 10% of all techniques according to MAPE, MaxAE, and R2. 

4.5.8 Sensitivity of Ranks Based on Penalty Function to Decisions 

With week-ahead and day-ahead forecasts, techniques ranked by penalty function look similar 

to as when ranked by MAPE (Figure 4-43, Figure 4-44, Table 4-5, Table 4-6). 

4.6 Insights 

We glean the following insights from our results, with the requisite caveat that they are based 

on one specific smart electric grid dataset and a practically scoped set of experiments. 

4.6.1 Decisions 

Forecasting performance is highly sensitive to the combined effects of forecasting process 

decisions. 

In our analysis, we see that forecasting performance depends on the complete vector of 7 

decisions.  Specifying options for one, two, or three decisions is not sufficient to determine 

forecast performance.  For example, in the case of week-ahead forecasting, specifying a linear 

regression algorithm class, but leaving other decisions unspecified, actually specifies 480 unique 

techniques with MAPE scores ranging from 2.47% to 27.45%. 

4.6.2 Update Cycle Decision 

The best forecasting techniques tend to use a short update cycle. 

The update cycle decision is very important to technique performance.  Techniques that use 

short update cycles usually forecast better than techniques that use long update cycles.  

Techniques that use update cycle > 1 day forecast about as well any other, on average. 
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4.6.3 Algorithm Decision 

Many of the best forecasting techniques use the linear regression algorithm. 

Many of the best week-ahead forecasts and all the best day-ahead forecasts come from 

techniques that use linear regression rather than support vector, multilayer perceptron, naïve, 

or other algorithms, though some techniques that use those algorithms can do relatively well, 

too.  Some techniques that use the naive algorithm forecast better than many techniques that 

use other algorithms. 

4.6.4 Techniques for Week-Ahead Forecasting 

The best week-ahead forecasting techniques use the naïve algorithm when span is short. 

 

The best week-ahead forecasting techniques use any algorithm except support vector 

regression when span is long. 

4.6.5 Techniques for Day-Ahead Forecasting 

The best day-ahead forecasting techniques use linear regression, direct extension, and short 

update cycle; other decisions are not as important to performance. 

 

The best day-ahead forecasting techniques use the naïve or support vector regression 

algorithm when the update cycle is long. 

4.7 Comparison to Benchmark Studies  

 We further explore application of our analysis methods and computation platform by 

evaluating relative forecasting performance of techniques across algorithm decisions in the 
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context of process-level decisions, and comparing the results to those of another study that 

evaluated them in a narrower context, but also using the Ireland CER data. 

We set up our analysis to correspond to Humeau et al.’s and Wijaya et al.’s experiments on 

day-ahead electricity demand forecasting, where (in our parlance) a technique using the 

support vector regression (SVM) algorithm outperforms techniques using linear regression or 

multilayer perceptron (MLP) algorithms, all other decisions being equal, as measured by all of 

MAPE, RMSE, and NRMSE. [71,99,117]  Algorithms are statically tuned with hyper-parameter 

values pre-computed to optimize each technique’s forecast with respect to the three metrics.  

Other decisions are locked-in. 

Span lock-in 12,672 hours (~18 months) 

Algorithm class 3 options linear regression, multilayer perceptron, 
support vector regression 

Hyper-parameters lock-in For mlp: normalize, decay=0, max iterations=100, 
absolute tolerance=0.0001, relative tolerance=1x10-8 
For svm: normalize, eps, kernel=radial, γ=1, 
cost=1000, tolerance=0.01, ε=0.1, shrink 

Tuning lock-in static tuning

Extension rule lock-in direct

Update cycle lock-in 1 hour

Holdout lock-in 32.4%

Clip lock-in 0

Metric 3 options MAPE, RMSE, NRMSE
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4.7.1 Model Instantiation 

In our analysis, we construct and explore performance of 1,536 techniques, scored by 3 metrics, 

by varying decisions for span, algorithm class, extension rule, update cycle, holdout, clip, and 

metric. 

Span 4 options 3 months, 6 months, 12 months, 18 months 

Algorithm class 3 options linear regression, multilayer perceptron, 
support vector regression 

Hyper-parameters lock-in For mlp: normalize, decay=0, max iterations=100, 
absolute tolerance=0.0001, relative tolerance=1x10-8 
For svm: normalize, eps, kernel=radial, γ=1, 
cost=1000, tolerance=0.01, ε=0.1, shrink 

Tuning lock-in static tuning

Extension rule 2 options direct, recurse

Update cycle 4 options 1 hour, 1 day, 2 days, 3 days

Holdout 4 options 20%, 30%, 40%, 50%

Clip 4 options 0, 2.5%, 5%, 10%

Metric 3 options MAPE, RMSE, NRMSE

 

4.7.2 Results 

We reproduced the Humeau et al. experiments in Weka and R, varying the algorithm class 

decision among linear regression, multilayer perceptron, and support vector regression options, 

locking in all other decisions, and confirmed that the technique using support vector regression 

out-performed the others.  We then re-ran the experiments, adjusting for daylight savings time, 

temperature reliability, and other data integrity considerations that could potentially inflate 

performance.  Under these new assumptions, the technique using linear regression performed 
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best (Table 4-7).  This held for both static and dynamic tuning.  Further, when freed to vary all 

decisions, the best performing techniques among the 1,536 we analyzed improved 

performance across all three algorithms and all three metrics.  A technique using linear 

regression again performed best, and the worst technique using linear regression performed 

much better than the worst techniques using other algorithms, though on average techniques 

using support vector regression did perform slightly better as scored by MAPE. 

4.7.3 Insights 

Relative forecasting performance of algorithms is highly sensitive to the interaction effects 

of the algorithm decision and other forecasting process decisions. 

Comparing our results to those of another benchmark study that explored the same data, we 

find that the forecasting technique rank order and absolute level of performance changes 

depending on the extent to which forecasting process decisions are explicitly identified and 

included in the analysis.   

4.8 Implications for Smart Electric Grid Design and Electricity Policy 

With potentially more accurate “grid-enabled” forecasting techniques may come the 

opportunity for new smart electric grid designs that leverage this capability. 

4.8.1 Economic Costs in Terms of Penalty Functions 

Forecasting process decisions are related to the economic costs of smart electric grid operation.  

If operators plan for too much electricity, it will be wasted, and that can be expensive.  If they 

plan for too little electricity, they will have to obtain extra electricity from somewhere else on 

short notice, and that can be expensive, too.  If they plan for way too little electricity, there just 

will not be enough even from somewhere else, and that means an interruption of electric 

power, a blackout, could occur. 
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Benefits derived from more accurate forecasts are justified only to the extent that they exceed 

economic costs.  As a highly simplified example, consider what happens to electricity prices 

during an unexpected heat wave such as occurred in the PJM Interconnection service area on 

July 13, 2013. [131]  Electricity procured in advance was priced at approximately $20 per MWh 

for the 4am hour to $240 per MWh for the 2pm hour.  On that day, though, electricity demand 

exceeded forecasts by about 20,000 MWh throughout the day, peaking at just under 157,000 

MWh.  Electricity procured on 5-minute notice to cover the gap was priced about $100 per 

MWh higher on average, ranging from $20 per MWh to $500 per MWh at different times of the 

day.  20,000 MWh shortfall x 24 hr x $100 per MWh price premium = $48 million per day.  The 

economic cost of a blackout could cost many times this amount. [133]  This gives us a sense for 

the magnitude of costs associated with electricity demand forecasting performance. 

As a next order approximation, a penalty function can serve as a proxy cost function, assuming 

forecast asymmetric error is proportional to the combined impact of all cost elements.  An even 

better approximation of economic costs requires a cost function defined in terms of all cost 

elements or their dependencies.  With such a cost function, a distribution of economic costs 

can be calculated across various potential actual demand levels through Monte Carlo 

simulation or other methods.  In turn, an economic cost estimate or optimal economic cost 

boundary can be calculated. 

Formulation of a cost function is out of scope here, as it requires separate research to uncover 

the relationships between many cost elements not related to forecasting.  However, we do 

suggest the form that the cost function may take, to expose how forecasting process decisions 

can influence economic cost, and how they are therefore important considerations for smart 

electric grid design and electricity policy (Figure 4-1). 
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Figure 4-1: Influence diagram of cost function.  Green indicates a computed economic 
value.  Orange indicates other computed values.  Violet indicates a random event.  
Blue indicates information provided by the forecasting practitioner. 

 

 

 



94 
 

Operating costs is a function of … • Cost of blackout/brownout, if any 
• Cost of spot market purchase, if any 
• Cost of contract for unneeded electricity, if any 
• Cost of contract for needed electricity 

Cost of blackout/brownout, if any, is a 
function of … 

• Electricity shortfall, if any 

Cost of short notice purchase, if any, 
is a function of … 

• Electricity purchased on spot market, if any 

Cost of contract for unneeded 
electricity, if any, is a function of … 

• Actual demand 
• Electricity purchased on contract 

Cost of contract for needed electricity 
is a function of … 

• Cost of contract for unneeded electricity, if any 
• Electricity purchased on contract 

Electricity shortfall, if any, is a 
function of … 

• Actual demand 
• Electricity purchased on spot market, if any 
• Electricity purchased on contract 

Electricity purchased on spot market, 
if any, is a function of … 

• Actual demand 
• Electricity purchased on contract 

Actual demand is a random event  

Electricity purchased on contract is a 
function of … 

• Forecasted demand 

Forecasted demand is a function of …  • Decisions 

Decisions are decisions made by 
forecasting practitioner 

 

 

4.8.2 Economic Costs in Terms of Standard Metrics 

If penalty functions do serve as good proxies for cost functions, then it is important that 

performance scored by MAPE or other standard metrics correlates well with performance 

scored by penalty functions, so that the large body of research on electricity demand 
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forecasting using such metrics can be taken as applicable.  As noted earlier, MAPE is the de 

facto metric used to evaluate electricity demand forecasts in many studies. 

We see that for the 30 standard metrics and 30 penalty functions we used to evaluate Ireland 

week-ahead forecasts, standard metric scores across all techniques correlated poorly with 

those of penalty functions that considered only over-forecasting error, but most correlated 

extremely well with those of penalty functions that considered either only under-forecasting 

error or both over- and under-forecasting error (Figure 4-45).  For example, MAPE and 

PT.r10.1.2, the penalty function that assumes a 10% reserve and weighs under-forecasting 

twice as much as over-forecasting, correlates at r = 0.95. 

We also see that the impact of using MAPE instead of a penalty function directly is extremely 

low, suggesting that MAPE works well as proxy for penalty functions (Table 4-8).  The best 20 

techniques as scored by MAPE increase PT.r10.1.2 scores by only 0.01, on average, over what 

techniques scored by PT.r10.1.2 can do. 
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4.10 Tables and Data Visualizations 
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Table 4-1: Best performing techniques, ranked by MAPE score, Ireland week-ahead forecasts. 

 

Table 4-2: Best performing techniques, ranked by MAPE score, Ireland day-ahead forecasts. 
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Table 4-3: 
Best performing qualified techniques, ranked by MAPE/MaxAE/R2 scores, 

Ireland week-ahead forecasts. 

 

Table 4-4: 
Best performing qualified techniques, ranked by MAPE/MaxAE/R2 scores, 

Ireland day-ahead forecasts. 
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Table 4-5: 
Best performing techniques, ranked by PT.r10.1.2 penalty function, 

Ireland week-ahead forecasts. 
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Table 4-6: 
Best performing techniques, ranked by PT.r10.1.2 penalty function, 

Ireland day-ahead forecasts. 
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Table 4-7: Comparison of forecasting performance across multiple studies. 
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Table 4-8: 
Impact on PT.r10.1.2 when best techniques by MAPE are used, week-ahead forecasts. 
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 http://bsnscb.com/dublin-wallpapers/38814219.html 

Figure 4-2: Dublin, Ireland. 
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Figure 4-3: Reference and predictor series, Ireland, for week-ahead forecasts.  
Reference series is aggregated 782-household electricity usage.  Predictor series are 
aggregate electricity usage, temperature, and day of week (integer coded). 

 



105 
 

 

Figure 4-4: Correlations of series, Ireland, for week-ahead forecasts.  Reference series 
is aggregated 782-household electricity usage.  Predictor series are aggregate 
electricity usage, temperature, and day of week (integer coded). 
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Figure 4-5: Autocorrelation of reference series, Ireland, for day-ahead forecasts.  
Reference series is aggregate electricity usage. 
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Figure 4-6: Forecasts, Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  
Blue is reference series.  Red is overlay of forecasts. 
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Figure 4-7: Forecast error, Ireland, week-ahead forecasts.  2,880 techniques and 
forecasts.  Blue is reference series error (0).  Red is overlay of forecast errors. 
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Figure 4-8: Relative importance of decision to metric score variation, across metrics, 
Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  LMG score for each 
decision is presented along y-axis.  Metrics are arranged along x-axis.  Colors are 
decision.  Large point is highest relative importance. 
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Figure 4-9: Relative importance of decision to metric score variation, linear regression 
algorithm class only, across metrics, Ireland, week-ahead forecasts.  2,880 techniques 
and forecasts.  LMG score for each decision is presented along y-axis.  Metrics are 
arranged along x-axis.  Colors are decision.  Large point is highest relative importance. 
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Figure 4-10: Relative importance of decision to metric score variation, across metrics, 
Ireland, day-ahead forecasts.  648 techniques and forecasts.  LMG score for each 
decision is presented along y-axis.  Metrics are arranged along x-axis.  Colors are 
decision.  Large point is highest relative importance. 
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Figure 4-11: Distribution of metric scores, Ireland, week-ahead forecasts.  2,880 
techniques and forecasts.  Metric is MAPE.  Black is metric score for a qualified 
technique.  Gray is metric score for an unqualified technique. 
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Figure 4-12: Distribution of metric scores across techniques, Ireland, week-ahead 
forecasts.  2,880 techniques and forecasts.  Each vertical bar represents a family of 
techniques that differ from each other only by algorithm class. Distances along the 
vertical bars represent metric scores for specific techniques.  Metric is MAPE.  Colors 
are algorithm class.  Large point is metric score of best technique within a family of 
techniques. 
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Figure 4-13: Distribution of metric scores across techniques, Ireland, day-ahead 
forecasts.  648 techniques and forecasts.  Each vertical bar represents a family of 
techniques that differ from each other only by algorithm class.  Distances along the 
vertical bars represent metric scores for specific techniques.  Metric is MAPE.  Colors 
are algorithm class.  Large point is metric score of best technique within a family of 
techniques. 
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Figure 4-14: Metric score vs. span decision option, split by technique family, 
for several metrics, Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  
Each trend line represents a family of techniques that differ from each other only by 
span decision option.  Spans are arranged sequentially along the x-axis.  Metric is as 
indicated in header strip.  Colors are technique family. 
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Figure 4-15: Metric score vs. holdout decision option, split by technique family, 
for several metrics, Ireland, day-ahead forecasts.  2,880 techniques and forecasts.  
Each trend line represents a family of techniques that differ from each other only by 
holdout decision option.  Holdouts are arranged sequentially along the x-axis.  Metric 
is as indicated in header strip.  Colors are technique family. 
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Figure 4-16: Metric score vs. holdout decision option, split by technique family, 
for several metrics, Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  
Each trend line represents a family of techniques that differ from each other only by 
holdout decision option.  Holdouts are arranged sequentially along the x-axis.  Metric 
is MAPE.  Colors are technique family. 
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Figure 4-17: Metric score vs. span decision option, split by technique family, 
for several metrics, Ireland, day-ahead forecasts.  648 techniques and forecasts.  Each 
trend line represents a family of techniques that differ from each other only by span 
decision option.  Spans are arranged sequentially along the x-axis.  Metric is as 
indicated in header strip.  Colors are technique family. 
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Figure 4-18: Correlations of scores per one metric-to-scores per another metric, 
across metric pairs, Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  
For each cell, all techniques are scored per two metrics, and the sequence of scores 
per the first metric is correlated with the sequence of scores per the second metric.  
Red is positive correlation.  Blue is negative correlation.  Dark is strong absolute 
correlation.  Light is weak absolute correlation. 
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Figure 4-19: Correlations of scores per one metric-to-scores per another metric, 
across metric pairs, Ireland, day-ahead forecasts.  648 techniques and forecasts.  For 
each cell, all techniques are scored per two metrics, and the sequence of scores per 
the first metric are correlated with the sequence of scores per the second metric.  Red 
is positive correlation.  Blue is negative correlation.  Dark indicates strong absolute 
correlation.  Light is weak absolute correlation. 
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Figure 4-20: List of techniques, rank ordered by performance per MAPE score, 
Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  Rank 1 means best 
performing technique.  Decisions are arranged as major columns along the x-axis.  
Decision options are arranged as minor columns within a major column along the x-
axis.  Colors are the decision option – X1 means the first decision option, X2 means 
the second decision option, etc.  Grayed major columns indicate decisions that are 
not varied by forecasting practitioner. 
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Figure 4-21: List of best techniques, rank ordered by performance per MAPE score, 
Ireland, week-ahead forecasts.  20 best of 2,880 techniques and forecasts.  Rank 1 
means best performing technique.  Decisions are arranged as major columns along 
the x-axis.  Decision options are arranged as minor columns within a major column 
along the x-axis.  Colors are the decision option – X1 means the first decision option, 
X2 means the second decision option, etc.  Grayed major columns indicate decisions 
that are not varied by forecasting practitioner. 
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Figure 4-22: Distribution of decision options in best techniques, Ireland, week-ahead 
forecasts.  20 best of 2,880 techniques and forecasts.  Colors are the decision option 
– X1 means the first decision option, X2 means the second decision option, etc.  
Grayed major columns indicate decisions that are not varied by forecasting 
practitioner. 
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Figure 4-23: List of techniques, rank ordered by performance per MAPE score, 
Ireland, day-ahead forecasts.  648 techniques and forecasts.  Rank 1 means best 
performing technique.  Decisions are arranged as major columns along the x-axis.  
Decision options are arranged as minor columns within a major column along the x-
axis.  Colors are the decision option – X1 means the first decision option, X2 means 
the second decision option, etc.  Grayed major columns indicate decisions that are 
not varied by forecasting practitioner. 
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Figure 4-24: List of best techniques, rank ordered by performance per MAPE score, 
Ireland, day-ahead forecasts.  20 best of 648 techniques and forecasts.  Rank 1 means 
best performing technique.  Decisions are arranged as major columns along the x-axis.  
Decision options are arranged as minor columns within a major column along the x-
axis.  Colors are the decision option – X1 means the first decision option, X2 means 
the second decision option, etc.  Grayed major columns indicate decisions that are 
not varied by forecasting practitioner. 
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Figure 4-25: Distribution of decision options in best techniques, Ireland, day-ahead 
forecasts.  20 best of 648 techniques and forecasts.  Colors are the decision option – 
X1 means the first decision option, X2 means the second decision option, etc.  Grayed 
major columns indicate decisions that are not varied by forecasting practitioner. 
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Figure 4-26: Technique rank trend, split by span, Ireland, week-ahead forecasts.  2,880 
techniques and forecasts.  Each curve represents a family of techniques with the span 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the span decision option. 
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Figure 4-27: Technique rank trend, split by algorithm class, Ireland, week-ahead 
forecasts.  2,880 techniques and forecasts.  Each curve represents a family of 
techniques with the algorithm class decision option in common, each point on a curve 
represents a technique.  Points are arranged along the y-axis in order of the technique 
rank within the population of techniques.  Points are arranged along the x-axis in 
order of the technique percentile rank within the family of techniques represented by 
that curve.  Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 4-28: Technique rank trend, split by extension rule, Ireland, week-ahead 
forecasts.  2,880 techniques and forecasts.  Each curve represents a family of 
techniques with the extension rule decision option in common, each point on a curve 
represents a technique.  Points are arranged along the y-axis in order of the technique 
rank within the population of techniques.  Points are arranged along the x-axis in 
order of the technique percentile rank within the family of techniques represented by 
that curve.  Metric is MAPE.  Colors are the extension rule decision option. 
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Figure 4-29: Technique rank trend, split by update cycle, Ireland, week-ahead 
forecast.  2,880 techniques and forecasts.  Each curve represents a family of 
techniques with the update cycle decision option in common, each point on a curve 
represents a technique.  Points are arranged along the y-axis in order of the technique 
rank within the population of techniques.  Points are arranged along the x-axis in 
order of the technique percentile rank within the family of techniques represented by 
that curve.  Metric is MAPE.  Colors are the update cycle decision option. 
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Figure 4-30: Technique rank trend, split by holdout, Ireland, week-ahead forecasts.   
2,880 techniques and forecasts.  Each curve represents a family of techniques with 
the holdout decision option in common, each point on a curve represents a technique.  
Points are arranged along the y-axis in order of the technique rank within the 
population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the holdout decision option. 
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Figure 4-31: Technique rank trend, split by clip, Ireland, week-ahead forecasts.  2,880 
techniques and forecasts.  Each curve represents a family of techniques with the clip 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the clip decision option. 
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Figure 4-32: Technique rank trend, split by span, Ireland, day-ahead forecasts.  648 
techniques and forecasts.  Each curve represents a family of techniques with the span 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the span decision option. 
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Figure 4-33: Technique rank trend, split by algorithm class, Ireland, day-ahead 
forecasts.  648 techniques and forecasts.  Each curve represents a family of techniques 
with the algorithm class decision option in common, each point on a curve represents 
a technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 4-34: Technique rank trend, split by update cycle, Ireland, day-ahead forecasts.  
648 techniques and forecasts.  Each curve represents a family of techniques with the 
update cycle decision option in common, each point on a curve represents a 
technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the update cycle decision option. 
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Figure 4-35: Technique rank trend at short span, split by algorithm class, Ireland, 
week-ahead forecasts.  960 techniques and forecasts, all assume a decision for 182-
day span.  Each curve represents a family of techniques with the algorithm class 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the algorithm class decision option. 
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Figure 4-36: Technique rank trend at medium span, split by algorithm class, Ireland, 
week-ahead forecasts.  960 techniques and forecasts, all assume a decision for 363-
day span.  Each curve represents a family of techniques with the algorithm class 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the algorithm class decision option. 
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Figure 4-37: Technique rank trend at long span, split by algorithm class, Ireland, week-
ahead forecasts.  960 techniques and forecasts, all assume a decision for 534-day 
span.  Each curve represents a family of techniques with the algorithm class decision 
option in common, each point on a curve represents a technique.  Points are arranged 
along the y-axis in order of the technique rank within the population of techniques.  
Points are arranged along the x-axis in order of the technique percentile rank within 
the family of techniques represented by that curve.  Metric is MAPE.  Colors are the 
algorithm class decision option. 
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Figure 4-38: Technique rank trend at short update cycle, split by algorithm class, 
Ireland, day-ahead forecasts.  216 techniques and forecasts, all assume a decision for 
1-hour update cycle.  Each curve represents a family of techniques with the algorithm 
class decision option in common, each point on a curve represents a technique.  
Points are arranged along the y-axis in order of the technique rank within the 
population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 4-39: Technique rank trend at medium update cycle, split by algorithm class, 
Ireland, day-ahead forecasts.  216 techniques and forecasts, all assume a decision for 
12-hour update cycle.  Each curve represents a family of techniques with the 
algorithm class decision option in common, each point on a curve represents a 
technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 4-40: Technique rank trend at medium update cycle, split by algorithm class, 
Ireland, day-ahead forecasts.  216 techniques and forecasts, all assume a decision for 
24-hour update cycle.  Each curve represents a family of techniques with the 
algorithm class decision option in common, each point on a curve represents a 
technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 4-41: List of techniques, rank ordered by performance per MAPE, MaxAE, and 
R2 scores, Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  Rank 1 
means best performing technique.  Decisions are arranged as major columns along 
the x-axis.  Decision options are arranged as minor columns within a major column 
along the x-axis.  Colors are the decision option – X1 means the first decision option, 
X2 means the second decision option, etc.  Grayed major columns indicate decisions 
that are not varied by forecasting practitioner. 
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Figure 4-42: List of techniques, rank ordered by performance per MAPE, MaxAE, and 
R2 scores, Ireland, day-ahead forecasts.  648 techniques and forecasts.  Rank 1 means 
best performing technique.  Decisions are arranged as major columns along the x-axis.  
Decision options are arranged as minor columns within a major column along the x-
axis.  Colors are the decision option – X1 means the first decision option, X2 means 
the second decision option, etc.  Grayed major columns indicate decisions that are 
not varied by forecasting practitioner. 
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Figure 4-43: List of techniques, rank ordered by performance per PT.r10.1.2 penalty 
function score, Ireland, week-ahead forecasts.  2,880 techniques and forecasts.  Rank 
1 means best performing technique.  Decisions are arranged as major columns along 
the x-axis.  Decision options are arranged as minor columns within a major column 
along the x-axis.  Colors are the decision option – X1 means the first decision option, 
X2 means the second decision option, etc.  Grayed major columns indicate decisions 
that are not varied by forecasting practitioner. 
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Figure 4-44: List of techniques, rank ordered by performance per PT.r10.1.2 penalty 
function score, Ireland, day-ahead forecasts.  648 techniques and forecasts.  Rank 1 
means best performing technique.  Decisions are arranged as major columns along 
the x-axis.  Decision options are arranged as minor columns within a major column 
along the x-axis.  Colors are the decision option – X1 means the first decision option, 
X2 means the second decision option, etc.  Grayed major columns indicate decisions 
that are not varied by forecasting practitioner. 
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Figure 4-45: Correlations of scores per one standard metric-to-scores per one penalty 
metric, across metric pairs, Ireland, week-ahead forecasts.  2,880 techniques and 
forecasts.  For each cell, all techniques are scored per two metrics, and the sequence 
of scores per the first metric are correlated with the sequence of scores per the 
second metric.  Red is positive correlation.  Blue is negative correlation.  Dark is strong 
absolute correlation.  Light is weak absolute correlation. 
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5 DATA STRATEGY DECISIONS AND RESIDENTIAL ELECTRICITY DEMAND 
ESTIMATION 

 

“It is a capital mistake to theorize before one has data.” 

  – Arthur Conan Doyle 

 

5.1 Research Questions 

In this chapter, we address the following research questions: 

• How robust are residential electricity demand forecasting techniques to data strategies? 

• How can smart electric grid data be manipulated to improve residential electricity 

demand forecasting performance? 

5.2 Research Approach 

Decisions about data strategy are of special interest to forecasting practitioners due to their 

potential economic implications.  By data strategy, we mean how data is manipulated as it is 

gathered, corresponding to the discretion afforded in a smart electric grid design over the form 

in which data could be provided.  Manipulation can take the form of transforming data to (1) a 

sample of the data, (2) a group of clusters, where the clusters are an exhaustive and mutually 

exclusive partitioning of the data, and each cluster is internally relatively homogeneous 

according to some similarity criterion, or (3) a temporal magnification of the data, where the 

time step becomes finer or coarser.  A data strategy can include one, two, or all three of these 

manipulations.  

Given a baseline for forecasting performance, we apply our analysis methods and computation 

platform to study 5,704 week-ahead and day-ahead electricity demand forecasting techniques 
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scored by 60 metrics, utilizing Ireland CER as before, but focusing on decisions about data 

strategy. 

Sample size Adjusts for the fraction of households used to represent the whole 
population.  Forecasts are constructed for the sample, then re-scaled for 
evaluation against the actual whole population. 

Cluster count Adjusts for the number of clusters of households.  Forecasts are 
constructed for each cluster separately, then aggregated for evaluation 
against the actual whole population. 

Time step size Adjusts for the time step size of raw data collected – daily, hourly, half-
hourly, etc.  Forecasts are constructed using data at a pre-forecast time 
step size, then coarsened or refined for evaluation against the whole 
population at the actually measured time step size.  

 

5.3 Scope of Analysis 

We scope our analysis to the effects of 4 decisions and a collection of electricity-related 

datasets.  We choose these particular decisions because they are represented in several other 

studies that consider their effects in isolation, whereas we are interested in their combined 

effect.  We intentionally fix the other decisions whose effects were already explored in our 

earlier analysis, namely update cycle, span, holdout, and clip. 

We are interested in both week-ahead and day-ahead forecasting settings, so we instantiate 

two versions of the model – one for week-ahead and one for day-ahead – and conduct the 

analysis in two parts accordingly.  Each part is further organized into three sub-analyses to 

explore the effects of sampling, clustering, and temporal magnification separately. 

5.3.1 Model Instantiations for Week-Ahead Forecasting 

For the week-ahead part of our analysis, we lock-in a one-day time step size. 
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Objective Decisions lock-in Reference data 
source 

Ireland CER smart-grid 

lock-in Reference look-
ahead 

1 week 

lock-in Update cycle 1 day 
lock-in Time step size 1 day 

Data Strategy 
Decisions 

lock-in Span 18 months 

Algorithm Decisions 6 options Algorithm class k-nearest neighbor 
linear regression 
multilayer perceptron 
naïve 
support vector regression 
decision tree 

lock-in Predictor data 
sources 

Ireland CER smart-grid + 
WU temperature + 
day of week 

lock-in Predictor look-backs ( 0, 1 week, 2 weeks, 3 weeks ) + 
( 0 ) + 
( 0 ) 

2 options Extension rule direct 
recurse 

Training and Testing 
Decisions 

lock-in Holdout % 30% 

lock-in Clip % 0 

Metric and Penalty 
Decisions 

60 options Metric function or 
penalty function 

any of 30 metrics functions or 
30 penalty functions 

 

Sampling 

Our model instantiation for sampling analysis specifies 732 techniques, scored by 60 metrics, 

for a total of 43,920 vectors = 61 sample options x 6 algorithm class options x 2 extension rule 

options x 60 metric options. 
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Data Strategy 
Decisions 

6 options Sample size any of 20 1-household samples 
any of 10 39-household samples 
any of 10 78-household samples 
any of 10 195-household samples
any of 10 586-household samples
full population 

 

Clustering 

Our model instantiation for clustering analysis specifies 60 techniques, scored by 60 metrics, for 

a total of 3,600 vectors = 5 cluster grouping options x 6 algorithm class options x 2 extension 

rule options x 60 metric options – or 28,800 component vectors = 2+4+8+25+1 cluster options x 

6 algorithm class options x 2 extension options x 60 metric options. 

Data Strategy 
Decisions 

5 options Cluster count partitioned into 2 clusters 
partitioned into 4 clusters 
partitioned into 8 clusters 
partitioned into 25 clusters 
not clustered 

 

Temporal Magnification 

Our model instantiation for temporal magnification analysis specifies 36 techniques, scored by 

60 metrics, for a total of 2,160 vectors = 3 time step size options x 6 algorithm class options x 2 

extension rule options x 60 metric options. 

Data Strategy 
Decisions 

3 options Time step size 6 hour 
12 hour 
1 day 

 

5.3.2 Model Instantiations for Day-Ahead Forecasting 

For the week-ahead part of our analysis, we lock-in a one-day time step size. 
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Objective Decisions lock-in Reference data 
source 

Ireland CER smart-grid 

lock-in Reference look-
ahead 

1 day 

lock-in Update cycle 1 hour 
lock-in Time step size 1 hour 

Data Strategy 
Decisions 

lock-in Span 18 months 

Algorithm Decisions 4 options Algorithm class linear regression 
multilayer perceptron 
naïve 
support vector regression 

lock-in Predictor data 
sources 

Ireland CER smart-grid + 
WU temperature + 
day of week 

lock-in Predictor look-backs ( 0, 1 day, 2 days, 3 days, 4, days, 
5 days, 6 days  ) + 
( 0 ) + 
( 0 ) + 
( 0 ) 

2 options Extension rule direct 
recurse 

Training and Testing 
Decisions 

lock-in Holdout % 30% 
lock-in Clip % 0 

Metric and Penalty 
Decisions 

60 metrics Metric function or 
penalty function 

any of 30 metrics functions or 
30 penalty functions 

 

Sampling 

Our model instantiation for sampling analysis specifies 488 techniques, scored by 60 metrics, 

for a total of 29,280 vectors = 61 sample options x 4 algorithm class options x 2 extension rule 

options x 60 metric options. 
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Data Strategy 
Decisions 

6 options Sample size any of 20 1-household samples 
any of 10 39-household samples 
any of 10 78-household samples 
any of 10 195-household samples
any of 10 586-household samples
full population 

 

Clustering 

Our model instantiation for clustering analysis specifies 40 techniques, scored by 60 metrics, for 

a total of 2,400 vectors = 5 cluster grouping options x 4 algorithm class options x 2 extension 

rule options x 60 metric options – or 19,200 component vectors = 2+4+8+25+1 cluster options x 

4 algorithm class options x 2 extension options x 60 metric options. 

Data Strategy 
Decisions 

5 options Cluster count partitioned into 2 clusters 
partitioned into 4 clusters 
partitioned into 8 clusters 
partitioned into 25 clusters 
not partitioned 

 

Temporal Magnification 

Our model instantiation for temporal magnification analysis specifies 24 techniques, scored by 

60 metrics, for a total of 1,440 vectors = 3 time step size options x 4 algorithm class options x 2 

extension rule options x 60 metric options. 

Data Strategy 
Decisions 

3 options Time step size 30 min 
1 hour 
2 hours 

 

5.3.3 Data Sources 

We specify reference series and predictor series as renderings of data from the following 

sources, as before. 
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Reference series Electricity usage.  From Ireland Commission for Energy Regulation 
Smart Metering Project (CER).  30-minute intervals across 782 control 
households in Dublin, Ireland in 2009-10. 

Predictor series Electricity usage.  From Ireland Commission for Energy Regulation 
Smart Metering Project (CER).  Measured at 30-minute intervals 
across 782 households in Dublin, Ireland in 2009-10.  Same data 
source as for reference series. 

Temperature.  From IBM Weather Underground.  Measured at 1-hour 
intervals at Dublin, Ireland in 2009-10. 

Day of week.  Generated by analysis platform. 

Hour of day (for day-ahead only).  Generated by analysis platform. 

 

5.4 Results 

For expediency and because MAPE is a de facto electricity forecasting standard, as noted 

earlier, we highlight our results around MAPE-based techniques. 

5.4.1 Sampling 

Some electricity usage series, aggregated over samples, resemble the series for the population, 

while others appear very different.  Consequently, forecasts based on techniques that use the 

series, when re-scaled to population size, also vary accordingly (Figure 5-6, Figure 5-7).  Some 

severely under- or over-forecast at the population scale, some do both. 

With both week-ahead and day-ahead forecasts, MAPE scores vary widely across techniques 

applied to single household samples, but as sample size increases to only 5%-10% of population 

size, they converge quickly to tight distributions approximating the population distribution 

(Figure 5-8, Figure 5-9). 

Technique ranks within a single household sample vary widely across the set of all single 

household samples – techniques that perform well for one household do not generally perform 
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very well for other households (Figure 5-10, Figure 5-16).  As sample size increases, technique 

ranks within a sample, as a group, move monotonically to align with technique ranks within the 

population, though not as quickly as MAPE score moves (Figure 5-11, Figure 5-12, Figure 5-13, 

Figure 5-14, Figure 5-15, Figure 5-17).  Notably, however, individual technique ranks within a 

sample converge on the population rank, but not monotonically, i.e., for any specific technique, 

its mean rank within a sample at some size does not necessarily move closer with each increase 

in size on its way to the mean rank within the population.  

With both week-ahead forecasts and day-ahead forecasts, penalty function scores, e.g., 

PT.r10.1.2 scores, show a relationship to sample size similar to that seen for MAPE scores, 

though converging to the population distribution more slowly (Figure 5-18, Figure 5-19). 

5.4.2 Clustering 

With both week-ahead and day-ahead forecasts, the number of clusters used to produce 

population forecasts has little effect on MAPE score distributions across techniques (Figure 

5-20, Figure 5-21).  As number of clusters decreases, technique ranks within a cluster grouping, 

as a group, move monotonically to align with technique ranks within the population, but 

individual technique ranks do so non-monotonically (Figure 5-22, Figure 5-23, Figure 5-24, 

Figure 5-25, Figure 5-26).  

5.4.3 Temporal Magnification 

With week-ahead forecasts, MAPE score distributions across techniques at finer time step sizes 

– 6-hour and 12-hour as compared to a 1-day baseline – tend to worsen (Figure 5-27). 

With day-ahead forecasts, MAPE score distributions across techniques at finer time step sizes – 

30-minute and 2-hour as compared to a 1-hour baseline – tend to improve (Figure 5-28).  

Technique ranks show no clear relationship to the time step size used to produce population 

forecasts (Figure 5-29, Figure 5-30, Figure 5-31, Figure 5-32). 
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5.5 Insights 

We glean the following insights from our results, with the requisite caveat that they are based 

on one specific smart electric grid dataset and a practically scoped set of experiments. 

5.5.1 Sampling 

Forecasting performance is not much degraded by sampling. 

We see that use of even a small sample size, say anything larger than 5%-10% of population 

size, does not much degrade forecasting performance. 

5.5.2 Clustering 

Forecasting performance is not much improved by clustering. 

We see that none of a wide variety of cluster counts does much to improve forecasting 

performance. 

5.5.3 Temporal Magnification 

Forecasting performance is degraded by refining temporal magnification at coarse time step 

sizes. 

 

Forecasting performance is improved by refining temporal magnification at fine time step 

sizes. 

With week-ahead forecasts, we see that even a small decrease in time step size degrades 

forecasting performance, over the range 6 hours to 24 hours.  With day-ahead forecasts, we 
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see that even a small decrease in time step size improves forecasting performance, over the 

range 30 minutes to 2 hours.  

5.6 Implications for Smart Electric Grid Design and Electricity Policy 

Data strategies are related to the economic costs of smart electric grid operation and 

implementation.  As a first order approximation, a penalty function can serve as a proxy cost 

function, assuming forecast asymmetric error is proportional to the combined impact of all cost 

elements.  A better approximation of economic costs requires a cost function defined in terms 

of all cost elements or their dependencies.  With such a cost function, a distribution of 

economic costs can be calculated across various potential actual demand levels through Monte 

Carlo simulation or other methods.  In turn, an economic cost estimate or optimal economic 

cost boundary can be calculated. 

Formulation of a cost function is out of scope here, as it requires separate research to uncover 

the relationships between many cost elements not related to forecasting. [132]  However, we 

do suggest the form that the cost function may take, to expose how forecasting process 

decisions about data strategy can influence economic cost, and how they are therefore 

important considerations for smart electric grid design and electricity policy (Figure 5-1). 
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Figure 5-1:  Influence diagram of cost function, accounting for decisions about data 
strategy. 
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Total cost is a function of … • Implementation cost 
• Operating cost 

Implementation cost is a function of … • Cost of meter deployment 
• Cost of data management 
• Cost of computing resources 

Operating costs is a function (indirectly) of … • Forecasted demand 

Cost of meter deployment is a function of … • Requirements for # of meters 

Cost of data management is a function of … • Requirements for data storage 

Cost of computing resources is a function of … • Requirements for computing time and 
memory 

Requirements for # of meters is a function of … • Decision about sample size 

Requirements for data storage is a function of … • Data volume 

Requirements for computing time and memory 
is a function of … 

• Decision about sample size 
• Decision about time step size 
• Decision about cluster count 

Data volume is a function of … • Decision about sample size 
• Decision about time step size 

Forecasted demand is a function of … • Decision about sample size 
• Decision about time step size 
• Decision about cluster count 
• Other decisions 

Decision about sample size is a decision made by 
forecasting practitioner 

 

Decision about time step size is a decision made 
by forecasting practitioner 

 

Decision about cluster count is a decision made 
by forecasting practitioner 
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5.7 Tables and Data Visualizations 
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2 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  782 (distance mean 0.431, sd 0.038, max 0.672, min 0.239  :::  cor mean 0.138, sd 0.075, max 0.522, min -0.343) 
2 clusters of sizes ... 
  775 (distance mean 0.430, sd 0.037, max 0.672, min 0.239  :::  cor mean 0.140, sd 0.074, max 0.522, min -0.343) 
    7 (distance mean 0.474, sd 0.028, max 0.505, min 0.385  :::  cor mean 0.051, sd 0.055, max 0.230, min -0.009) 
                                                            weighted mean 0.140

Figure 5-2: Group 782 households as 2 clusters, Ireland.  Colors indicate to which 
clusters households are assigned.  
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4 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  782 (distance mean 0.431, sd 0.038, max 0.672, min 0.239  :::  cor mean 0.138, sd 0.075, max 0.522, min -0.343) 
4 clusters of sizes ... 
  480 (distance mean 0.452, sd 0.028, max 0.651, min 0.239  :::  cor mean 0.096, sd 0.057, max 0.522, min -0.303) 
  205 (distance mean 0.372, sd 0.023, max 0.457, min 0.244  :::  cor mean 0.256, sd 0.047, max 0.511, min 0.085) 
   90 (distance mean 0.393, sd 0.026, max 0.506, min 0.242  :::  cor mean 0.214, sd 0.053, max 0.516, min -0.012) 
    7 (distance mean 0.474, sd 0.028, max 0.505, min 0.385  :::  cor mean 0.051, sd 0.055, max 0.230, min -0.009) 
                                                            weighted mean 0.151

Figure 5-3: Group 782 households as 4 clusters, Ireland.  Colors indicate to which 
clusters households are assigned. 
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8 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  782 (distance mean 0.431, sd 0.038, max 0.672, min 0.239  :::  cor mean 0.138, sd 0.075, max 0.522, min -0.343) 
8 clusters of sizes ... 
  205 (distance mean 0.372, sd 0.023, max 0.457, min 0.244  :::  cor mean 0.256, sd 0.047, max 0.511, min 0.085) 
  203 (distance mean 0.452, sd 0.023, max 0.567, min 0.301  :::  cor mean 0.095, sd 0.046, max 0.399, min -0.133) 
   97 (distance mean 0.395, sd 0.026, max 0.506, min 0.242  :::  cor mean 0.210, sd 0.052, max 0.516, min -0.012) 
   85 (distance mean 0.420, sd 0.019, max 0.477, min 0.285  :::  cor mean 0.160, sd 0.038, max 0.429, min 0.045) 
   56 (distance mean 0.422, sd 0.021, max 0.493, min 0.338  :::  cor mean 0.156, sd 0.042, max 0.324, min 0.013) 
   47 (distance mean 0.473, sd 0.021, max 0.542, min 0.322  :::  cor mean 0.053, sd 0.042, max 0.355, min -0.084) 
   44 (distance mean 0.407, sd 0.028, max 0.474, min 0.289  :::  cor mean 0.186, sd 0.055, max 0.421, min 0.051) 
   45 (distance mean 0.483, sd 0.043, max 0.602, min 0.239  :::  cor mean 0.033, sd 0.087, max 0.522, min -0.203) 
                                                            weighted mean 0.162

Figure 5-4: Group 782 households as 8 clusters, Ireland.  Colors indicate to which 
clusters households are assigned. 
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25 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  782 (distance mean 0.431, sd 0.038, max 0.672, min 0.239  :::  cor mean 0.138, sd 0.075, max 0.522, min -0.343) 
25 clusters of sizes ... 
   66 (distance mean 0.421, sd 0.013, max 0.473, min 0.368  :::  cor mean 0.158, sd 0.026, max 0.265, min 0.054) 
   51 (distance mean 0.416, sd 0.032, max 0.528, min 0.289  :::  cor mean 0.169, sd 0.063, max 0.421, min -0.056) 
   50 (distance mean 0.457, sd 0.017, max 0.527, min 0.358  :::  cor mean 0.086, sd 0.034, max 0.284, min -0.054) 
   45 (distance mean 0.431, sd 0.023, max 0.482, min 0.301  :::  cor mean 0.138, sd 0.047, max 0.399, min 0.036) 
   45 (distance mean 0.375, sd 0.014, max 0.425, min 0.322  :::  cor mean 0.251, sd 0.029, max 0.356, min 0.150) 
   42 (distance mean 0.469, sd 0.018, max 0.520, min 0.400  :::  cor mean 0.062, sd 0.036, max 0.200, min -0.040) 
   38 (distance mean 0.473, sd 0.045, max 0.557, min 0.239  :::  cor mean 0.054, sd 0.090, max 0.522, min -0.115) 
   35 (distance mean 0.338, sd 0.025, max 0.389, min 0.244  :::  cor mean 0.324, sd 0.051, max 0.511, min 0.221) 
   34 (distance mean 0.396, sd 0.019, max 0.448, min 0.334  :::  cor mean 0.209, sd 0.039, max 0.332, min 0.104) 
   32 (distance mean 0.422, sd 0.023, max 0.493, min 0.346  :::  cor mean 0.157, sd 0.045, max 0.308, min 0.013) 
   30 (distance mean 0.395, sd 0.019, max 0.454, min 0.320  :::  cor mean 0.210, sd 0.038, max 0.360, min 0.091) 
   30 (distance mean 0.357, sd 0.028, max 0.426, min 0.242  :::  cor mean 0.287, sd 0.055, max 0.516, min 0.149) 
   29 (distance mean 0.353, sd 0.033, max 0.457, min 0.267  :::  cor mean 0.294, sd 0.067, max 0.467, min 0.085) 
   28 (distance mean 0.477, sd 0.020, max 0.515, min 0.322  :::  cor mean 0.047, sd 0.040, max 0.355, min -0.029) 
   26 (distance mean 0.394, sd 0.034, max 0.458, min 0.285  :::  cor mean 0.211, sd 0.068, max 0.429, min 0.084) 
   24 (distance mean 0.377, sd 0.016, max 0.431, min 0.309  :::  cor mean 0.245, sd 0.033, max 0.383, min 0.138) 
   23 (distance mean 0.448, sd 0.019, max 0.487, min 0.376  :::  cor mean 0.105, sd 0.038, max 0.247, min 0.026) 
   20 (distance mean 0.460, sd 0.024, max 0.517, min 0.396  :::  cor mean 0.081, sd 0.048, max 0.208, min -0.034) 
   17 (distance mean 0.407, sd 0.017, max 0.455, min 0.365  :::  cor mean 0.186, sd 0.034, max 0.269, min 0.090) 
   16 (distance mean 0.373, sd 0.015, max 0.407, min 0.328  :::  cor mean 0.254, sd 0.029, max 0.345, min 0.186) 
   16 (distance mean 0.330, sd 0.020, max 0.392, min 0.283  :::  cor mean 0.340, sd 0.039, max 0.433, min 0.217) 
   15 (distance mean 0.410, sd 0.018, max 0.453, min 0.370  :::  cor mean 0.179, sd 0.036, max 0.259, min 0.094) 
   15 (distance mean 0.369, sd 0.013, max 0.392, min 0.326  :::  cor mean 0.262, sd 0.025, max 0.349, min 0.216) 
   14 (distance mean 0.391, sd 0.019, max 0.435, min 0.350  :::  cor mean 0.218, sd 0.038, max 0.301, min 0.130) 
   41 (distance mean 0.454, sd 0.044, max 0.580, min 0.322  :::  cor mean 0.092, sd 0.087, max 0.357, min -0.159) 
                                                            weighted mean 0.173

Figure 5-5: Group 782 households as 25 clusters, Ireland.  Colors indicate to which 
clusters households are assigned. 
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Figure 5-6: Effect of sampling – forecasts, Ireland, week-ahead forecasts.  12 
techniques.  Blue is electricity usage/demand series for a specific sample of size 1 out 
of 782.  Red is overlay of 12 forecasts of the specific sample. 
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Figure 5-7: Effect of sampling – forecasts, Ireland, week-ahead forecast.  Blue is 
electricity usage/demand series for the population.  Red is overlay of 12 forecasts of 
a specific sample of size 1 out of 782 re-scaled to the population size. 
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Figure 5-8: Effect of sampling – distribution of metric scores vs. sample size, Ireland, 
week-ahead forecasts.  12 techniques.  20 samples at sample size 1 out of 782, 10 
samples at other sample sizes.  Metric is MAPE.  Blue is metric score for a forecast at 
a specific sample size.  Large blue is mean metric score of forecasts at a specific sample 
size.  Red is metric score of a forecast at no sampling (full population).  Large red is 
mean metric score of forecasts at no sampling (full population).  Gray is 2 standard 
deviations from mean metric score of forecasts at a specific sample size.  White is 95% 
confidence interval of mean metric score of forecasts at a specific sample size. 
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Figure 5-9: Effect of sampling – distribution of metric scores vs. sample size, Ireland, 
day-ahead forecasts, effect of sampling.  8 techniques.  20 samples at sample size 1 
out of 782, 10 samples at other sample sizes.  Metric is MAPE.  Blue is metric score for 
a specific forecast at a specific sample size.  Large blue indicates mean metric score of 
forecasts at a specific sample size.  Red indicates metric score of a forecast at no 
sampling (full population).  Large red is mean metric score of forecasts at no sampling 
(full population).  Gray is 2 standard deviations from mean metric score of forecasts 
at a specific sample size.  White is 95% confidence interval of mean metric score of 
forecasts at a specific sample size. 
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Figure 5-10: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 1, Ireland, week-ahead forecasts.  12 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 20 samples of 
size 1 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 20 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 5-11: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 39, Ireland, week-ahead forecasts.  12 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 39 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 5-12: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 78, Ireland, week-ahead forecasts.  12 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 78 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 5-13: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 195, Ireland, week-ahead forecasts.  12 techniques.  Metric 
is MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 195 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 5-14: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 391, Ireland, week-ahead forecasts.  12 techniques.  Metric 
is MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 1391 out of 782.  Large blue is mean technique rank for a specific technique 
applied to all 10 samples.  Large red is technique rank for a specific technique applied 
to full population. 
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Figure 5-15: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 586, Ireland, week-ahead forecasts.  12 techniques.  Metric 
is MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 586 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 5-16: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 1, Ireland, day-ahead forecasts.  8 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 20 samples of 
size 1 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 20 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 5-17: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 586, Ireland, day-ahead forecasts.  8 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 586 out of 782.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 

 

 



176 
 

 

Figure 5-18: Effect of sampling – distribution of metric scores vs. sample size, Ireland, 
week-ahead forecasts.  12 techniques.  20 samples at sample size 1 out of 782, 10 
samples at other sample sizes.  Metric is PT.r10.1.2 penalty function, defined as the 
fraction of time that error exceeds threshold limits, assuming a 10% reserve above 
forecast, and assuming under-forecasts are twice as costly as over-forecasts.  Blue is 
metric score for a forecast at a specific sample size.  Large blue is mean metric score 
of forecasts at a specific sample size.  Red is metric score of a forecast at no sampling 
(full population).  Large red is mean metric score of forecasts at no sampling (full 
population).  Gray is 2 standard deviations from mean metric score of forecasts at a 
specific sample size.  White is 95% confidence interval of mean metric score of 
forecasts at a specific sample size. 
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Figure 5-19: Effect of sampling – distribution of metric scores vs. sample size, Ireland, 
day-ahead forecasts.  8 techniques.  20 samples at sample size 1 out of 782, 10 
samples at other sample sizes.  Metric is PT.r10.1.2 penalty function, defined as the 
fraction of time that error exceeds threshold limits, assuming a 10% reserve above 
forecast, and assuming under-forecasts are twice as costly as over-forecasts.  Blue is 
metric score for a forecast at a specific sample size.  Large blue is mean metric score 
of forecasts at a specific sample size.  Red is metric score of a forecast at no sampling 
(full population).  Large red is mean metric score of forecasts at no sampling (full 
population).  Gray is 2 standard deviations from mean metric score of forecasts at a 
specific sample size.  White is 95% confidence interval of mean metric score of 
forecasts at a specific sample size. 
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Figure 5-20: Effect of clustering – distribution of metric scores vs. number of clusters, 
Ireland, week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is metric score 
for a forecast at a specific number of clusters.  Large blue is mean metric score of 
forecasts at a specific number of clusters.  Red is metric score of a forecast at no 
clustering (full population).  Large red is mean metric score of forecasts at no 
clustering (full population).  Gray is 2 standard deviations from mean metric score of 
forecasts at a specific number of clusters.  White is 95% confidence interval of mean 
metric score of forecasts at a specific number of clusters. 
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Figure 5-21: Effect of clustering – distribution of metric scores vs. number of clusters, 
Ireland, day-ahead forecasts.  8 techniques.  Metric is MAPE.  Blue is metric score for 
a forecast at a specific number of clusters.  Large blue is mean metric score of 
forecasts at a specific number of clusters.  Red is metric score of a forecast at no 
clustering (full population).  Large red is mean metric score of forecasts at no 
clustering (full population).  Gray is 2 standard deviations from mean metric score of 
forecasts at a specific number of clusters.  White is 95% confidence interval of mean 
metric score of forecasts at a specific number of clusters. 
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Figure 5-22: Effect of clustering – technique rank vs. technique at 2 clusters, Ireland, 
week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 2 clusters.  Red is technique rank for a 
specific technique applied without clustering. 
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Figure 5-23: Effect of clustering – technique rank vs. technique at 4 clusters, Ireland, 
week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 4 clusters.  Red is technique rank for a 
specific technique applied without clustering. 
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Figure 5-24: Effect of clustering – technique rank vs. technique at 8 clusters, Ireland, 
week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 8 clusters.  Red is technique rank for a 
specific technique applied without clustering. 
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Figure 5-25: Effect of clustering – technique rank vs. technique at 25 clusters, Ireland, 
week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 25 clusters.  Red is technique rank for a 
specific technique applied without clustering. 
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Figure 5-26: Effect of clustering – technique rank vs. technique at 2 clusters, Ireland, 
day-ahead forecasts.  8 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 2 clusters (hidden by red).  Red is 
technique rank for a specific technique applied without clustering. 
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Figure 5-27: Effect of temporal magnification – distribution of metric scores vs. time 
step size, Ireland, week-ahead forecasts.  36 techniques (3 decision options for time 
step size, 12 combinations of other decision options).  Metric is MAPE.  Blue is metric 
score for a forecast at a specific time step size.  Large blue is mean metric score of 
forecasts at a specific time step size.  Red is metric score of a forecast at baseline time 
step size.  Large red is mean metric score of forecasts at baseline time step size.  Gray 
is 2 standard deviations from mean metric score of forecasts at a specific time step 
size.  White is 95% confidence interval of mean metric score of forecasts at a specific 
time step size. 
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Figure 5-28:  Effect of temporal magnification – distribution of metric scores vs. time 
step size, Ireland, day-ahead forecasts.  24 techniques (3 decision options for time 
step size, 8 combinations of other decision options).  Metric is MAPE.  Blue is metric 
score for a forecast at a specific time step size.  Large blue is mean metric score of 
forecasts at a specific time step size.  Red is metric score of a forecast at baseline time 
step size.  Large red is mean metric score of forecasts at baseline time step size.  Gray 
is 2 standard deviations from mean metric score of forecasts at a specific time step 
size.  White is 95% confidence interval of mean metric score of forecasts at a specific 
time step size. 
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Figure 5-29: Effect of temporal magnification – technique rank vs. technique at short 
time step size, Ireland, week-ahead forecasts.  36 techniques (3 decision options for 
time step size, 12 combinations of other decision options).  Metric is MAPE.  Blue is 
technique rank for a specific technique applied at temporal magnification with 6-hour 
time step size.  Red is technique rank for a specific technique applied without 
temporal magnification (baseline 24-hour time step size). 
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Figure 5-30: Effect of temporal magnification – technique rank vs. technique at 
medium time step size, Ireland, week-ahead forecasts.  36 techniques (3 decision 
options for time step size, 12 combinations of other decision options).  Metric is 
MAPE.  Blue is technique rank for a specific technique applied at temporal 
magnification with 12-hour time step size.  Red is technique rank for a specific 
technique applied without temporal magnification (baseline 24-hour time step size). 
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Figure 5-31: Effect of temporal magnification – technique rank vs. technique at short 
time step size, Ireland, day-ahead forecasts.  24 techniques (3 decision options for 
time step size, 8 combinations of other decision options).  Metric is MAPE.  Blue is 
technique rank for a specific technique applied at temporal magnification with 30-
minute time step size.  Red is technique rank for a specific technique applied without 
temporal magnification (baseline 1-hour time step size). 
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Figure 5-32: Effect of temporal magnification – technique rank vs. technique at long 
time step size, Ireland, day-ahead forecasts.  24 techniques (3 decision options for 
time step size, 8 combinations of other decision options).  Metric is MAPE.  Blue is 
technique rank for a specific technique applied at temporal magnification with 2-hour 
time step size.  Red is technique rank for a specific technique applied without 
temporal magnification (baseline 1-hour time step size). 
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6 ROBUSTNESS OF DECISION EFFECTS AND RESIDENTIAL ELECTRICITY DEMAND 
ESTIMATION 

 

“It ain’t what you don’t know that gets you in trouble. 

 It’s what you know for sure that just ain’t so.” 

  – Mark Twain 

 

6.1 Research Questions 

In this chapter, we address the following the research questions: 

• How robust are residential electricity demand forecasting techniques to data sources? 

• Are the relationships between forecasting process decisions and residential electricity 

demand forecasting performance universal or location-specific? 

6.2 Research Approach 

To explore the robustness of our earlier results to variations in data source, we essentially 

repeat our analysis of week-ahead forecasting, substituting smart electric grid data from the 

Australian government for the data from Ireland CER – and then compare the two sets of 

results. 

6.3 Scope of Analysis 

We scope our week-ahead analysis, as before, to the effects of 12 decisions, and then drill 

down on the effects of 3 data strategy decisions.  Day-ahead analysis is scoped similarly. 
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6.3.1 Model Instantiations 

Our week-ahead model instantiations vary decisions, as before, but substituting a different 

reference data source.  Our day-ahead model instantiations vary decisions similarly. 

 Objective Decisions lock-in Reference data 
source 

Australia SCSG electricity usage 

lock-in Reference look-
ahead 

1 week 

5 options Update cycle 1 day 
2 days 
3 days 
5 days 
7 days 

lock-in Time step size 1 day 

Data Strategy 
Decisions 

3 options Span 6 months 
12 months 
18 months 

Algorithm Decisions 6 options Algorithm class k-nearest neighbor 
linear regression 
multilayer perceptron 
naïve 
support vector regression 
decision tree 

lock-in Predictor data 
sources 

Australia SCSG electricity usage +
Sydney airport temperature + 
day of week 

lock-in Predictor look-
backs 

( 0, 1 week, 2 weeks, 3 weeks ) + 
( 0 ) + 
( 0 ) 

2 options Extension rule direct 
recurse 

Training and Testing 
Decisions 

4 options Holdout % 20% 
30% 
40% 
50% 
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4 options Clip % 0 
1% 
10% 
20% 

Metric and Penalty 
Decisions 

60 options Metric function or 
penalty function 

any of 30 metrics functions or 30 
penalty functions 

 

Sampling 

Data Strategy 
Decisions 

6 options Sample szie any of 20 1-household samples 
any of 10 39-household samples 
any of 10 78-household samples 
any of 10 195-household samples
any of 10 586-household samples
full population 

 

Clustering 

Data Strategy 
Decisions 

5 options Cluster grouping partitioned into 2 clusters 
partitioned into 4 clusters 
partitioned into 8 clusters 
partitioned into 25 clusters 
not partitioned 

 

Temporal Magnification 

Data Strategy 
Decisions 

3 options Time step size 6 hour 
12 hour 
1 day 

 

6.3.2 Data Sources 

Our techniques all assume the same reference and predictor series, pre-processed as necessary 

to prepare them for use by the platform. 
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For our reference series, we use electricity usage time series data from the Australian 

Government Smart City / Smart Grid Project, assuming that demand exactly equaled usage in 

the absence of physical constraints or financial disincentives. [128,155]  The smart electric grid 

covered 78,720 households in southeastern Australia, measuring usage at that geographic 

granularity at half-hour intervals, spanning October 2010 to February 2014.  Of these, we 

restrict our analysis to the 223 households that had no missing data throughout an overlapping 

2-year period.  To consolidate the 223 time series, we sum across households at each time step, 

resulting in a 35,088-step time series.  Half-hourly values for the aggregated population range 

from 27 kWh to 251 kWh, with mean 74 kWh. 

Our four predictor series are electricity usage, temperature, day of week, and hour of day (for 

day-ahead only).  For electricity usage, we used the same Australia data.  For temperature, we 

used actual temperature time series data, reported at hourly intervals, from the Sydney airport 

database.  For day of week, we used time series data constructed per an integer coding 

scheme. 

Reference series Electricity usage.  From Australia Government Smart City / Smart Grid 
Project (SCSG).  Measured at 30-minute intervals across 223 
households in southeastern Australia in 2010-2012. 

Predictor series Electricity usage.  From Australia Government Smart City / Smart Grid 
Project (SCSG).  Measured at 30-minute intervals across 223 
households in southeastern Australia in 2010-2012.  Same data source 
as for reference series. 

Temperature.  Sydney airport database.  Measured at 1-hour intervals 
at Sydney airport 2010-2012. 

Day of week.  Generated by analysis platform. 

Hour of day (for day-ahead only).  Generated by analysis platform. 
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6.4 Results 

To facilitate comparison to results of our Ireland analysis, we again highlight results around 

MAPE-based techniques.  Our discussion centers on results from week-ahead analysis, but we 

include data visualizations of results from day-ahead analysis, too.  

6.4.1 Data Characterization 

With Australia data captured at one-day resolution, as used for our week-ahead forecasting, 

evident is a more complex relationship between electricity usage and temperature than with 

Ireland data (Figure 6-3, Figure 6-4).  Positive and negative correlations are present at different 

times of year corresponding to temperature peaks and troughs, respectively.  The positive 

correlation at temperature peaks is somewhat less pronounced than the negative correlation at 

temperature troughs.  Electricity usage increases for cooling when temperatures are high, 

increases for heating when temperatures are low, and decreases when temperatures are mild.  

(What constitutes temperatures low enough to trigger increases in electricity usage differs 

between Ireland and Australia.) 

6.4.2 Sensitivity of Metric Scores to Decisions 

Twenty-five out of 30 metrics considered yielded valid forecast accuracy evaluations for all 

forecasts. 

Different decisions influence forecasting performance disproportionately (Figure 6-5).  The span 

decision accounts for most relative importance for 4 out of 25 metrics, algorithm class for 6 

metrics, extension rule for 10 metrics, and holdout for 5 metrics.  As scored by MAPE, decisions 

for algorithm class and extension rule together account for about 85% relative importance; 

span accounts for little relative importance. 

MAPE scores are distributed in a distinctive pattern similar to that as for Ireland, but with 

scores concentrated at 10% to 20% rather than 5% to 10% (Figure 6-7).  Considered in the 

context of fixed algorithm class decisions, the best MAPE scores are distributed across 
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techniques using any of the six algorithms, all other decisions being equal (Figure 6-8).  As for 

Ireland, MAPE score either increases or decreases as holdout increases depending on the 

technique and the holdout option being compared (Figure 6-10). 

6.4.3 Metric Relationships 

Scores arranged by technique are strongly correlated at > 0.9 in only 28 out of 300 pairs of 

metrics (Figure 6-11).  As compared to Ireland, many more pairs are poorly correlated.   

6.4.4 Sensitivity of Ranks to Decisions 

Techniques ranked per MAPE show a distinctive decision effectiveness signature (Figure 6-13).  

The top-ranked technique per MAPE uses a 6-month span, linear regression algorithm, 

recursive extension rule, 1-day update cycle, 20% holdout, and 20% clip (Figure 6-14, Table 6-1).  

All of the 20 best performing techniques use the shortest span, the smallest holdout, and one 

of the two largest clips.  Techniques ranked 2 through 5 differ only by update cycle.  All 

algorithms, all update cycles, and both extension rules are represented among the 20 best 

performing techniques (Figure 6-15). 

Looking more closely at effects of individual decisions on MAPE score, the best 13% of 

techniques that use a 6-month span beat all other techniques; 75% of techniques that use a 6-

month span beat by all other techniques (Figure 6-19).  Techniques that use a 12-month span 

and those that use an 18-month span perform about as well each other, when compared rank-

to-rank.  As noted earlier, all algorithms are represented among the best performing 

techniques, though as performance decreases, multilayer perceptron soon falls away and naïve 

later falls away (Figure 6-20).  Except for the best performing techniques, those that use a 

recursive extension rule mostly dominate techniques that use a direct extension rule (Figure 

6-21).  Techniques that use shorter update cycles mostly dominate techniques that use longer 

update cycles, but not by much (Figure 6-22).  Techniques that use the largest holdout mostly 

dominate the other techniques (Figure 6-23).   Techniques that use a larger clip mostly 

dominate techniques that use a smaller clip, but not by much (Figure 6-24). 
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6.4.5 Sensitivity of Ranks to Decisions in Context 

The stories sound different when ranks are considered in the context of locking-in certain 

decision options. 

In the context of a decision to use a short span, choice of algorithm does not matter much 

among the best performing techniques (Figure 6-25).  However, through a lens looking only at 

spans longer than 6 months, the algorithm decision distinguishes techniques considerably.  At a 

12-month span, no techniques that use multilayer perceptron or support vector regression are 

represented in the 13% best performing techniques (Figure 6-26).  At an 18-month span, no 

techniques that use k-nearest neighbor, decision tree, or multilayer perceptron are represented 

among the 10% best performing techniques (Figure 6-27). 

6.4.6 Sampling 

Like in Ireland, MAPE scores vary widely across techniques applied to single household samples, 

but as sample size increases to only 5%-10% of population size, they converge quickly to tight 

distributions approximating the population distribution (Figure 6-41). 

Also as seen with Ireland, techniques that perform well for one household do not generally 

perform very well for other households (Figure 6-43).  As sample size increases, technique ranks 

within a sample, as a group, move monotonically to align with technique ranks within the 

population, though not as quickly as MAPE score moves (Figure 6-43, Figure 6-44). 

6.4.7 Clustering 

Like in Ireland, the number of clusters used to produce population forecasts has little effect on 

MAPE score distributions across techniques (Figure 6-47).  As the number of clusters decreases, 

technique ranks within a cluster grouping, as a group, move monotonically to align with 

techniques ranks within the population, but individual technique ranks do so non-

monotonically (Figure 6-49).  
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6.4.8 Temporal Magnification 

Like in Ireland, MAPE score distributions across techniques at finer resolutions – 6-hour and 12-

hour resolutions as compared to a 1-day resolution baseline – tend to worsen (Figure 6-51). 

6.5 Insights 

We glean the following insights from our results, with the requisite caveat that they are based 

on two specific smart electric grid datasets and a practically scoped set of experiments. 

6.5.1 Training and Testing Decisions 

Training and testing decisions can dominate other forecasting process decisions. 

The common thread running through Australia’s best performing techniques is that they all use 

a small amount of testing data, the result of a short span, a small holdout, and a large clip.  

Anthropomorphizing freely here, Australia is leveraging training and testing decisions and a 

small portion of its data that happens to be easily forecastable by techniques using most any 

algorithm, extension rule, or update cycle.  Comparison of techniques across Ireland and 

Australia is still legitimate because Ireland is afforded the same opportunity.  It just turns out 

for Ireland that no small portion of easily forecastable data could be isolated by training and 

testing decisions. 

6.5.2 Location-Specific Techniques 

Different locations lend themselves to different forecasting techniques. 

Ireland’s 20 best performing techniques have little in common with Australia’s 20 best 

performing techniques (Table 6-3, Table 6-4).  None of Ireland’s are among Australia’s, and 

none of Australia’s are among Ireland’s. 
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Ireland’s 20 best performing techniques produce forecasts that evaluate to a mean MAPE of 

2.69%.  These same techniques applied in Australia produce forecasts that evaluate to a mean 

MAPE of 10.90%, with mean rank 718th, ranging from 21st to 1,726th out of 2,880.  Ireland’s best 

technique applied in Australia would produce a forecast 9.46 MAPE points, or 6.41 times, worse 

than one produced by Australia’s best technique.  Across all of Ireland’s best techniques applied 

in Australia, they would on average produce a forecast 7.38 MAPE points, or 2.30 times, worse 

than those produced by Australia’s best techniques. 

Looking at it the other way around, Australia’s 20 best performing techniques applied in Ireland 

produce among the very worst forecasts, evaluating to a mean MAPE of 29.41%, with mean 

rank 2,723rd, ranging from 1,389th to 2,877th.  Australia’s best technique applied in Ireland 

would produce a forecast 8.93 MAPE points, or 3.83 times, worse than one produced by 

Ireland’s bets technique.  Across all of Australia’s best techniques applied in Ireland, they would 

on average produce a forecast 26.71 MAPE points, or 9.91 times, worse than those produced by 

Ireland’s best techniques. 

In light of what we learned about Australia’s fondness for small amounts of testing data, we 

additionally compared Ireland and Australia results excluding forecasts that use a 6-month 

span, to see if the dissimilarity of best performing techniques persists (Table 6-5, Table 6-6).  

Through this lens, two of Ireland’s 20 best performing techniques are represented among 

Australia’s: Ireland’s 18th is Australia’s 8th, Ireland’s 19th is Australia’s 1st.  Ireland’s 20 best 

applied in Australia produce forecasts that evaluate to a mean MAPE of 11.33%, with mean 

rank 511th, ranging from 1st to 1,270th.  Australia’s 20 best applied in Ireland produce forecasts 

that evaluate to a mean MAPE of 3.33%, with mean rank 111th, ranging from 18th to 349th.  

Australia’s techniques work better in Ireland than Ireland’s do in Australia.  There is less, but 

still significant, dissimilarity when forecasts using a 6-month span are excluded. 
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6.5.3 “One-Size-Fits-All” Techniques 

Forecasting performance at different locations is not much degraded by “one-size-fits-all” 

techniques. 

To find the set of techniques that optimally compromise the MAPE impact across multiple 

locations, we rank per the order of the sums of individual location ranks (Table 6-7).  We call 

the 20 best techniques so ranked the “one-size-fits-all” techniques. 

The “one-size-fits-all” techniques produce forecasts that evaluate to better MAPE scores than 

do Ireland’s best applied to Australia or Australia’s best applied to Ireland, with an Ireland mean 

MAPE of 3.09% and an Australia mean MAPE of 7.54%.  The best “one-size-fits-all” technique 

applied in Ireland would produce a forecast 0.18 MAPE points, or 0.08 times, worse than one 

produced by Ireland’s best.  The best “one-size-fits-all” technique applied in Australia would 

produce a forecast 3.12 MAPE points, or 2.11 times worse than one produced by Australia’s 

best.  Across all the “one-size-fits-all” techniques applied in Ireland, they would on average 

produce a forecast 0.40 MAPE points, or 0.15 times, worse than those produced by Ireland’s 

best techniques.  Across all the “one-size-fits-all” techniques applied in Australia, they would on 

average produce a forecast 4.02 MAPE points, or 1.21 times, worse than those produced by 

Australia’s best techniques.  Mean impacts of 0.40 MAPE points (in Ireland) and 4.02 MAPE 

points (in Australia) may or may not be considered acceptable.  By this standard, one set of 

“one-size-fits-all” techniques may or may not be a reasonable substitute for many sets of 

location-specific best techniques. 

Again, we additionally compared Ireland and Australia results excluding forecasts that use a 6-

month span, to see if the level of impact persists (Table 6-8).  In this case, the mean impact on 

Ireland would be 0.34 MAPE points, or 0.13 times, worse.  The impact on Australia would be 

0.37 MAPE points, or 0.05 times, worse.  Mean impacts of 0.34 MAPE points (in Ireland) and 

0.37 MAPE points (in Australia) likely may be considered acceptable.  By this standard, one set 
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of “one-size-fits-all” techniques may be a reasonable substitute for many sets of location-

specific best techniques. 

6.5.4 Sampling 

Forecasting performance at different locations is not much degraded by sampling. 

For each location, we can formulate a relationship between MAPE impact and sample size, 

where impact is expressed as a third-degree polynomial of the logarithm of the sample size 

normalized with respect to the population size, adjusted proportionally by proximity to full 

population size to force intersection with the mean impact at full population size.  From this 

relationship, we can estimate the impact for some given sample size (Figure 6-53), or 

conversely, estimate the minimum sample size that restricts impact to within some given 

tolerance (Figure 6-54).  For example, for Ireland, techniques applied per a data strategy 

assuming a sample 11.2% or more of the population size are estimated on average to produce 

forecasts that evaluate to within 2.5 MAPE points of the mean for techniques applied without 

this data strategy.  For Australia, a sample of 19.3% or more will do it. 

The shapes of the impact/sample size curves match closely across locations.  In both cases, we 

see that use of even a small sample size (say anything larger than 5%-20% of population size) 

does not much degrade forecasting performance.  

6.5.5 Clustering 

Forecasting performance at different locations is not much improved by clustering. 

For each location, we can formulate a relationship between MAPE impact and number of 

clusters, where impact is expressed as a third-degree polynomial of the logarithm of the 

number of clusters, adjusted proportionally by proximity to no clustering to force intersection 

with the mean impact at no clustering. 
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From this relationship, we can estimate the impact for some given number of clusters (Figure 

6-57), or conversely, estimate the maximum number of clusters that restricts impact to within 

some given tolerance (Figure 6-58).  For example, for Ireland, techniques applied per a data 

strategy assuming any number of clusters are estimated on average to produce forecasts that 

evaluate to within 0.5 MAPE points of the mean for techniques applied without this data 

strategy.  For Australia, about 12 clusters or fewer will do it. 

The shapes of the impact/number of clusters curves match closely across locations.  In both 

cases, we see that even a wide variety in number of clusters does not much improve forecasting 

performance.  

6.5.6 Temporal Magnification 

Forecasting performance at different locations is degraded by refining temporal 

magnification at coarse time step sizes. 

For each location, we can formulate a relationship between MAPE impact and time step size, 

where impact is expressed as a second-degree polynomial of the time step size, over the range 

6 hours to 24 hours, in the context of week-ahead forecasts. 

From this relationship, we can estimate the impact for some given time step size (Figure 6-60), 

or conversely, estimate the minimum time step size that restricts impact to within some given 

tolerance (Figure 6-61).  For example, for Ireland, techniques applied per a data strategy 

assuming time step size of 19 hours or more are estimated on average to produce forecasts 

that evaluate to within 5 MAPE points of the mean for techniques applied without this data 

strategy.  For Australia, time step sizes of 20 hours or more will do it. 

The shapes of the impact/time step size curves match closely across locations.  In both cases, 

we see that even a small decrease in time step size degrades forecasting performance, over the 

range 6 hours to 24 hours. 
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6.6 Tables and Data Visualizations 
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Table 6-1: Best performing techniques, ranked by MAPE score, Australia week-ahead forecasts. 
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Table 6-2: Best performing techniques, ranked by MAPE score, Australia day-ahead forecasts. 
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Table 6-3: Impact on Australia when Ireland best techniques are used, week-ahead forecasts. 

 

 

Table 6-4: Impact on Ireland when Australia best techniques are used, week-ahead forecasts. 
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Table 6-5: 
Impact on Australia when Ireland best techniques are used, 

no 6-month span, week-ahead forecasts. 

 

 

Table 6-6: 
Impact on Ireland when Australia best techniques are used,  

no 6-month span, week-ahead forecasts. 

 

  



208 
 

Table 6-7: 
Impact on Australia and Ireland when “one-size-fits-all” best techniques are used, 

week-ahead forecasts. 
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Table 6-8: 
Impact on Australia and Ireland when “one-size-fits-all” best techniques are used, 

no 6-month span, week-ahead forecasts. 
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Table 6-9: Impact on Australia when Ireland best techniques are used, day-ahead forecasts. 

 

 

Table 6-10: Impact on Ireland when Australia best techniques are used, day-ahead forecasts. 
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Table 6-11: 
Impact on Australia and Ireland when “one-size-fits-all” best techniques are used, 

day-ahead forecasts. 
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 https://relentlesslife.org/sydney-australia-at-night-2/ 

Figure 6-1:  Sydney, Australia. 
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Figure 6-2: Australia household sites.  223 households.  Red is household location.  
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Figure 6-3: Reference and predictor series, Australia, for week-ahead forecasts.  
Reference series is aggregated 223-household electricity usage.  Predictor series are 
aggregate electricity usage, temperature, and day of week (integer coded). 
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Figure 6-4:  Correlations of series, Australia, for week-ahead forecasts.  Reference 
series is aggregated 223-household electricity usage.  Predictor series are aggregate 
electricity usage, temperature, and day of week (integer coded). 
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Figure 6-5: Relative importance of decision to metric score variation, across metrics, 
Australia, week-ahead forecasts.  2,880 techniques and forecasts.  LMG score for each 
decision is presented along y-axis.  Metrics are arranged along x-axis.  Colors are 
decision.  Large point is highest relative importance. 
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Figure 6-6: Relative importance of decision to metric score variation, across metrics, 
Australia, day-ahead forecasts.  648 techniques and forecasts.  LMG score for each 
decision is presented along y-axis.  Metrics are arranged along x-axis.  Colors are 
decision.  Large point is highest relative importance. 
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Figure 6-7: Distribution of metric scores, Australia, week-ahead forecasts.  2,880 
techniques and forecasts.  Metric is MAPE.  Black is metric score for a qualified 
technique.  Gray is metric score for an unqualified technique. 
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Figure 6-8: Distribution of metric scores across techniques, Australia, week-ahead 
forecasts.  2,880 techniques and forecasts.  Each vertical bar represents a family of 
techniques that differ from each other only by algorithm class. Distances along the 
vertical bars represent metric scores for specific techniques.  Metric is MAPE.  Colors 
are algorithm class.  Large point is metric score of best technique within a family of 
techniques. 
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Figure 6-9: Distribution of metric scores across techniques, Australia, day-ahead 
forecasts.  648 techniques and forecasts.  Each vertical bar represents a family of 
techniques that differ from each other only by algorithm class. Distances along the 
vertical bars represent metric scores for specific techniques.  Metric is MAPE.  Colors 
are algorithm class.  Large point is metric score of best technique within a family of 
techniques. 
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Figure 6-10: Metric score vs. holdout decision option, split by technique family, 
for several metrics, Australia, week-ahead forecasts.  2,880 techniques and forecasts.  
Each trend line represents a family of techniques that differ from each other only by 
holdout decision option.  Holdouts are arranged sequentially along the x-axis.  Metric 
is MAPE.  Colors are technique family. 
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Figure 6-11: Correlations of scores per one metric-to-scores per another metric, 
across metric pairs, Australia, week-ahead forecasts.  2,880 techniques and forecasts.  
For each cell, all techniques are scored per two metrics, and the sequence of scores 
per the first metric are correlated with the sequence of scores per the second metric.  
Red is positive correlation.  Blue is negative correlation.  Dark is strong absolute 
correlation.  Light is weak absolute correlation. 
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Figure 6-12: Correlations of scores per one metric-to-scores per another metric, 
across metric pairs, Australia, day-ahead forecasts.  648 techniques and forecasts.  For 
each cell, all techniques are scored per two metrics, and the sequence of scores per 
the first metric are correlated with the sequence of scores per the second metric.  Red 
is positive correlation.  Blue is negative correlation.  Dark is strong absolute 
correlation.  Light is weak absolute correlation. 
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Figure 6-13: List of techniques, rank ordered by performance per MAPE score, 
Australia, week-ahead forecasts.  2,880 techniques and forecasts.  Rank 1 means best 
performing technique.  Decisions are arranged as major columns along the x-axis.  
Decision options are arranged as minor columns within a major column along the x-
axis.  Colors are the decision option – X1 means the first decision option, X2 means 
the second decision option, etc.  Grayed major columns indicate decisions that are 
not varied by forecasting practitioner. 
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Figure 6-14: List of best techniques, rank ordered by performance per MAPE score, 
Australia, week-ahead forecasts.  20 best of 2,880 techniques and forecasts.  Rank 1 
means best performing technique.  Decisions are arranged as major columns along 
the x-axis.  Decision options are arranged as minor columns within a major column 
along the x-axis.  Colors are the decision option – X1 means the first decision option, 
X2 means the second decision option, etc.  Grayed major columns indicate decisions 
that are not varied by forecasting practitioner. 

 

 



226 
 

 

Figure 6-15: Distribution of decision options in best techniques, Australia, week-
ahead forecasts.  20 best of 2,880 techniques and forecasts.  Colors are the decision 
option – X1 means the first decision option, X2 means the second decision option, etc.  
Grayed major columns indicate decisions that are not varied by forecasting 
practitioner. 
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Figure 6-16: List of techniques, rank ordered by performance per MAPE score, 
Australia, day-ahead forecasts.  648 techniques and forecasts.  Rank 1 means best 
performing technique.  Decisions are arranged as major columns along the x-axis.  
Decision options are arranged as minor columns within a major column along the x-
axis.  Colors are the decision option – X1 means the first decision option, X2 means 
the second decision option, etc.  Grayed major columns indicate decisions that are 
not varied by forecasting practitioner. 
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Figure 6-17: List of best techniques, rank ordered by performance per MAPE score, 
Australia, day-ahead forecasts.  20 best of 648 techniques and forecasts.  Rank 1 
means best performing technique.  Decisions are arranged as major columns along 
the x-axis.  Decision options are arranged as minor columns within a major column 
along the x-axis.  Colors are the decision option – X1 means the first decision option, 
X2 means the second decision option, etc.  Grayed major columns indicate decisions 
that are not varied by forecasting practitioner. 
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Figure 6-18: Distribution of decision options in best techniques, Australia, day-ahead 
forecasts.  20 best of 648 techniques and forecasts.  Colors are the decision option – 
X1 means the first decision option, X2 means the second decision option, etc.  Grayed 
major columns indicate decisions that are not varied by forecasting practitioner. 
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Figure 6-19: Technique rank trend, split by span, Australia, week-ahead forecasts.  
2,880 techniques and forecasts.  Each curve represents a family of techniques with 
the span decision option in common, each point on a curve represents a technique.  
Points are arranged along the y-axis in order of the technique rank within the 
population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the span decision option. 
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Figure 6-20: Technique rank trend, split by algorithm class, Australia, week-ahead 
forecasts.  2,880 techniques and forecasts.  Each curve represents a family of 
techniques with the algorithm class decision option in common, each point on a curve 
represents a technique.  Points are arranged along the y-axis in order of the technique 
rank within the population of techniques.  Points are arranged along the x-axis in 
order of the technique percentile rank within the family of techniques represented by 
that curve.  Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 6-21: Technique rank trend, split by extension rule, Australia, week-ahead 
forecasts.  2,880 techniques and forecasts.  Each curve represents a family of 
techniques with the extension rule decision option in common, each point on a curve 
represents a technique.  Points are arranged along the y-axis in order of the technique 
rank within the population of techniques.  Points are arranged along the x-axis in 
order of the technique percentile rank within the family of techniques represented by 
that curve.  Metric is MAPE.  Colors are the extension rule decision option. 

 

 

 



233 
 

 

Figure 6-22: Technique rank trend, split by update cycle, Australia, week-ahead 
forecast.  2,880 techniques and forecasts.  Each curve represents a family of 
techniques with the update cycle decision option in common, each point on a curve 
represents a technique.  Points are arranged along the y-axis in order of the technique 
rank within the population of techniques.  Points are arranged along the x-axis in 
order of the technique percentile rank within the family of techniques represented by 
that curve.  Metric is MAPE.  Colors are the update cycle decision option. 
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Figure 6-23: Technique rank trend, split by holdout, Australia, week-ahead forecasts.   
2,880 techniques and forecasts.  Each curve represents a family of techniques with 
the holdout decision option in common, each point on a curve represents a technique.  
Points are arranged along the y-axis in order of the technique rank within the 
population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the holdout decision option. 
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Figure 6-24: Technique rank trend, split by clip, Australia, week-ahead forecasts.  
2,880 techniques and forecasts.  Each curve represents a family of techniques with 
the clip decision option in common, each point on a curve represents a technique.  
Points are arranged along the y-axis in order of the technique rank within the 
population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the clip decision option. 
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Figure 6-25: Technique rank trend at short span, split by algorithm class, Australia, 
week-ahead forecasts.  960 techniques and forecasts, all assume a decision for 182-
day span.  Each curve represents a family of techniques with the algorithm class 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the algorithm class decision option. 
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Figure 6-26: Technique rank trend at medium span, split by algorithm class, Australia, 
week-ahead forecasts.  960 techniques and forecasts, all assume a decision for 363-
day span.  Each curve represents a family of techniques with the algorithm class 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the algorithm class decision option. 
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Figure 6-27: Technique rank trend at long span, split by algorithm class, Australia, 
week-ahead forecasts.  960 techniques and forecasts, all assume a decision for 534-
day span.  Each curve represents a family of techniques with the algorithm class 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the algorithm class decision option. 
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Figure 6-28: Technique rank trend, split by span, Australia, day-ahead forecasts.  648 
techniques and forecasts.  Each curve represents a family of techniques with the span 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the span decision option. 
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Figure 6-29: Technique rank trend, split by algorithm class, Australia, day-ahead 
forecasts.  648 techniques and forecasts.  Each curve represents a family of techniques 
with the algorithm class decision option in common, each point on a curve represents 
a technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the algorithm class decision option. 
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Figure 6-30: Technique rank trend, split by extension rule, Australia, day-ahead 
forecasts.  648 techniques and forecasts.  Each curve represents a family of techniques 
with the extension rule decision option in common, each point on a curve represents 
a technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the extension rule decision option. 
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Figure 6-31: Technique rank trend, split by update cycle, Australia, day-ahead 
forecast.  648 techniques and forecasts.  Each curve represents a family of techniques 
with the update cycle decision option in common, each point on a curve represents a 
technique.  Points are arranged along the y-axis in order of the technique rank within 
the population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the update cycle decision option. 
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Figure 6-32: Technique rank trend, split by holdout, Australia, day-ahead forecasts.   
648 techniques and forecasts.  Each curve represents a family of techniques with the 
holdout decision option in common, each point on a curve represents a technique.  
Points are arranged along the y-axis in order of the technique rank within the 
population of techniques.  Points are arranged along the x-axis in order of the 
technique percentile rank within the family of techniques represented by that curve.  
Metric is MAPE.  Colors are the holdout decision option. 
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Figure 6-33: Technique rank trend, split by clip, Australia, day-ahead forecasts.  648 
techniques and forecasts.  Each curve represents a family of techniques with the clip 
decision option in common, each point on a curve represents a technique.  Points are 
arranged along the y-axis in order of the technique rank within the population of 
techniques.  Points are arranged along the x-axis in order of the technique percentile 
rank within the family of techniques represented by that curve.  Metric is MAPE.  
Colors are the clip decision option. 
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Figure 6-34: Technique rank trend at short span, split by algorithm class, Australia, 
day-ahead forecasts.  216 techniques and forecasts, all assume a decision for 182-day 
span.  Each curve represents a family of techniques with the algorithm class decision 
option in common, each point on a curve represents a technique.  Points are arranged 
along the y-axis in order of the technique rank within the population of techniques.  
Points are arranged along the x-axis in order of the technique percentile rank within 
the family of techniques represented by that curve.  Metric is MAPE.  Colors are the 
algorithm class decision option. 

 

 

 



246 
 

 

Figure 6-35: Technique rank trend at medium span, split by algorithm class, Australia, 
day-ahead forecasts.  216 techniques and forecasts, all assume a decision for 363-day 
span.  Each curve represents a family of techniques with the algorithm class decision 
option in common, each point on a curve represents a technique.  Points are arranged 
along the y-axis in order of the technique rank within the population of techniques.  
Points are arranged along the x-axis in order of the technique percentile rank within 
the family of techniques represented by that curve.  Metric is MAPE.  Colors are the 
algorithm class decision option. 

 

 



247 
 

 

Figure 6-36: Technique rank trend at long span, split by algorithm class, Australia, day-
ahead forecasts.  216 techniques and forecasts, all assume a decision for 534-day 
span.  Each curve represents a family of techniques with the algorithm class decision 
option in common, each point on a curve represents a technique.  Points are arranged 
along the y-axis in order of the technique rank within the population of techniques.  
Points are arranged along the x-axis in order of the technique percentile rank within 
the family of techniques represented by that curve.  Metric is MAPE.  Colors are the 
algorithm class decision option. 
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2 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  223 (distance mean 0.434, sd 0.046, max 0.649, min 0.232  :::  cor mean 0.131, sd 0.093, max 0.535, min -0.298) 
2 clusters of sizes ... 
  222 (distance mean 0.434, sd 0.046, max 0.649, min 0.232  :::  cor mean 0.133, sd 0.092, max 0.535, min -0.298) 
    1 (distance mean 0.000, sd 0.000, max 0.000, min 0.000  :::  cor mean 1.000, sd 0.000, max 1.000, min 1.000) 
                                                            weighted mean 0.136  

Figure 6-37: Group 223 households as 2 clusters, Australia.  Colors indicate to which 
clusters households are assigned. 
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5 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  223 (distance mean 0.434, sd 0.046, max 0.649, min 0.232  :::  cor mean 0.131, sd 0.093, max 0.535, min -0.298) 
5 clusters of sizes ... 
   71 (distance mean 0.381, sd 0.033, max 0.495, min 0.241  :::  cor mean 0.238, sd 0.065, max 0.519, min 0.009) 
   63 (distance mean 0.424, sd 0.044, max 0.561, min 0.256  :::  cor mean 0.152, sd 0.089, max 0.487, min -0.122) 
   44 (distance mean 0.477, sd 0.041, max 0.649, min 0.246  :::  cor mean 0.046, sd 0.082, max 0.508, min -0.298) 
   44 (distance mean 0.405, sd 0.043, max 0.497, min 0.232  :::  cor mean 0.191, sd 0.086, max 0.535, min 0.005) 
    1 (distance mean 0.000, sd 0.000, max 0.000, min 0.000  :::  cor mean 1.000, sd 0.000, max 1.000, min 1.000) 
                                                            weighted mean 0.170  

Figure 6-38: Group 223 households as 4 clusters, Australia.  Colors indicate to which 
clusters households are assigned. 
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8 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  223 (distance mean 0.434, sd 0.046, max 0.649, min 0.232  :::  cor mean 0.131, sd 0.093, max 0.535, min -0.298) 
8 clusters of sizes ... 
   42 (distance mean 0.361, sd 0.033, max 0.450, min 0.241  :::  cor mean 0.278, sd 0.066, max 0.519, min 0.100) 
   30 (distance mean 0.386, sd 0.046, max 0.496, min 0.232  :::  cor mean 0.228, sd 0.091, max 0.535, min 0.007) 
   23 (distance mean 0.483, sd 0.056, max 0.649, min 0.246  :::  cor mean 0.034, sd 0.112, max 0.508, min -0.298) 
   22 (distance mean 0.391, sd 0.043, max 0.475, min 0.256  :::  cor mean 0.218, sd 0.086, max 0.487, min 0.051) 
   21 (distance mean 0.451, sd 0.038, max 0.525, min 0.326  :::  cor mean 0.098, sd 0.076, max 0.347, min -0.051) 
   18 (distance mean 0.388, sd 0.031, max 0.443, min 0.254  :::  cor mean 0.223, sd 0.062, max 0.491, min 0.114) 
   17 (distance mean 0.429, sd 0.027, max 0.489, min 0.364  :::  cor mean 0.141, sd 0.054, max 0.272, min 0.022) 
   50 (distance mean 0.429, sd 0.042, max 0.537, min 0.283  :::  cor mean 0.142, sd 0.084, max 0.434, min -0.074) 
                                                            weighted mean 0.178  

Figure 6-39: Group 223 households as 8 clusters, Australia.  Colors indicate to which 
clusters households are assigned. 
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26 CLUSTERS BASED ON correlation , dynamic_deep tree cut: 
distance measure is (1 - correlation) / 2  
population of size  ... 
  223 (distance mean 0.434, sd 0.046, max 0.649, min 0.232  :::  cor mean 0.131, sd 0.093, max 0.535, min -0.298) 
26 clusters of sizes ... 
   17 (distance mean 0.429, sd 0.027, max 0.489, min 0.364  :::  cor mean 0.141, sd 0.054, max 0.272, min 0.022) 
   16 (distance mean 0.458, sd 0.039, max 0.525, min 0.326  :::  cor mean 0.084, sd 0.078, max 0.347, min -0.051) 
   14 (distance mean 0.376, sd 0.032, max 0.436, min 0.254  :::  cor mean 0.248, sd 0.063, max 0.491, min 0.127) 
   12 (distance mean 0.341, sd 0.053, max 0.431, min 0.232  :::  cor mean 0.318, sd 0.106, max 0.535, min 0.138) 
   11 (distance mean 0.409, sd 0.039, max 0.481, min 0.305  :::  cor mean 0.183, sd 0.078, max 0.389, min 0.039) 
   10 (distance mean 0.339, sd 0.040, max 0.405, min 0.256  :::  cor mean 0.323, sd 0.081, max 0.487, min 0.189) 
    9 (distance mean 0.468, sd 0.029, max 0.530, min 0.412  :::  cor mean 0.065, sd 0.057, max 0.177, min -0.060) 
    9 (distance mean 0.337, sd 0.022, max 0.379, min 0.283  :::  cor mean 0.325, sd 0.044, max 0.434, min 0.243) 
    9 (distance mean 0.385, sd 0.025, max 0.419, min 0.321  :::  cor mean 0.229, sd 0.049, max 0.358, min 0.163) 
    9 (distance mean 0.356, sd 0.026, max 0.415, min 0.293  :::  cor mean 0.288, sd 0.052, max 0.413, min 0.170) 
    8 (distance mean 0.405, sd 0.032, max 0.455, min 0.348  :::  cor mean 0.190, sd 0.064, max 0.304, min 0.090) 
    8 (distance mean 0.303, sd 0.025, max 0.349, min 0.241  :::  cor mean 0.393, sd 0.049, max 0.519, min 0.302) 
    8 (distance mean 0.420, sd 0.028, max 0.476, min 0.344  :::  cor mean 0.160, sd 0.056, max 0.312, min 0.049) 
    7 (distance mean 0.424, sd 0.050, max 0.470, min 0.246  :::  cor mean 0.152, sd 0.099, max 0.508, min 0.060) 
    6 (distance mean 0.393, sd 0.044, max 0.458, min 0.312  :::  cor mean 0.213, sd 0.088, max 0.376, min 0.084) 
    6 (distance mean 0.473, sd 0.024, max 0.503, min 0.430  :::  cor mean 0.054, sd 0.048, max 0.140, min -0.006) 
    6 (distance mean 0.431, sd 0.031, max 0.468, min 0.372  :::  cor mean 0.138, sd 0.062, max 0.257, min 0.064) 
    6 (distance mean 0.385, sd 0.025, max 0.428, min 0.351  :::  cor mean 0.230, sd 0.050, max 0.298, min 0.144) 
    6 (distance mean 0.372, sd 0.028, max 0.421, min 0.323  :::  cor mean 0.256, sd 0.056, max 0.354, min 0.157) 
    5 (distance mean 0.333, sd 0.013, max 0.350, min 0.312  :::  cor mean 0.335, sd 0.025, max 0.375, min 0.301) 
    5 (distance mean 0.333, sd 0.038, max 0.385, min 0.282  :::  cor mean 0.333, sd 0.077, max 0.436, min 0.230) 
    5 (distance mean 0.342, sd 0.013, max 0.362, min 0.324  :::  cor mean 0.316, sd 0.026, max 0.353, min 0.276) 
    4 (distance mean 0.423, sd 0.047, max 0.484, min 0.373  :::  cor mean 0.154, sd 0.093, max 0.254, min 0.031) 
    4 (distance mean 0.416, sd 0.022, max 0.439, min 0.373  :::  cor mean 0.169, sd 0.043, max 0.255, min 0.121) 
    4 (distance mean 0.363, sd 0.013, max 0.388, min 0.353  :::  cor mean 0.274, sd 0.026, max 0.294, min 0.224) 
   19 (distance mean 0.414, sd 0.054, max 0.533, min 0.250  :::  cor mean 0.171, sd 0.108, max 0.501, min -0.067) 
                                                            weighted mean 0.212  

Figure 6-40: Group 223 households as 26 clusters, Australia.  Colors indicate to which 
clusters households are assigned. 
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Figure 6-41: Effect of sampling – distribution of metric scores vs. sample size, 
Australia, week-ahead forecasts.  12 techniques.  20 samples at sample size 1 out of 
223, 10 samples at other sample sizes.  Metric is MAPE.  Blue is metric score for a 
forecast at a specific sample size.  Large blue is mean metric score of forecasts at a 
specific sample size.  Red is metric score of a forecast at no sampling (full population).  
Large red is mean metric score of forecasts at no sampling (full population).  Gray is 2 
standard deviations from mean metric score of forecasts at a specific sample size.  
White is 95% confidence interval of mean metric score of forecasts at a specific 
sample size. 

 



253 
 

 

Figure 6-42: Effect of sampling – distribution of metric scores vs. sample size, 
Australia, day-ahead forecasts.  8 techniques.  20 samples at sample size 1 out of 223, 
10 samples at other sample sizes.  Metric is MAPE.  Blue is metric score for a forecast 
at a specific sample size.  Large blue is mean metric score of forecasts at a specific 
sample size.  Red is metric score of a forecast at no sampling (full population).  Large 
red is mean metric score of forecasts at no sampling (full population).  Gray is 2 
standard deviations from mean metric score of forecasts at a specific sample size.  
White is 95% confidence interval of mean metric score of forecasts at a specific 
sample size. 
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Figure 6-43: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 1, Australia, week-ahead forecasts.  12 techniques.  Metric 
is MAPE.  Blue is technique rank for a specific technique applied to 1 of 20 samples of 
size 1 out of 223.  Large blue is mean technique rank for a specific technique applied 
to all 20 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 6-44: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 167, Australia, week-ahead forecasts.  12 techniques.  Metric 
is MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 167 out of 223.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 6-45: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 1, Australia, day-ahead forecasts.  8 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 20 samples of 
size 1 out of 223.  Large blue is mean technique rank for a specific technique applied 
to all 20 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 6-46: Effect of sampling – distribution of technique ranks across samples vs. 
technique at sample size 111, Australia, day-ahead forecasts.  8 techniques.  Metric is 
MAPE.  Blue is technique rank for a specific technique applied to 1 of 10 samples of 
size 111 out of 223.  Large blue is mean technique rank for a specific technique applied 
to all 10 samples.  Large red is technique rank for a specific technique applied to full 
population. 
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Figure 6-47: Effect of clustering – distribution of metric scores vs. number of clusters, 
Australia, week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is metric score 
for a forecast at a specific number of clusters.  Large blue is mean metric score of 
forecasts at a specific number of clusters.  Red is metric score of a forecast at no 
clustering (full population).  Large red is mean metric score of forecasts at no 
clustering (full population).  Gray is 2 standard deviations from mean metric score of 
forecasts at a specific number of clusters.  White is 95% confidence interval of mean 
metric score of forecasts at a specific number of clusters. 
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Figure 6-48: Effect of clustering – distribution of metric scores vs. number of clusters, 
Australia, day-ahead forecasts.  8 techniques.  Metric is MAPE.  Blue is metric score 
for a forecast at a specific number of clusters.  Large blue is mean metric score of 
forecasts at a specific number of clusters.  Red is metric score of a forecast at no 
clustering (full population).  Large red is mean metric score of forecasts at no 
clustering (full population).  Gray is 2 standard deviations from mean metric score of 
forecasts at a specific number of clusters.  White is 95% confidence interval of mean 
metric score of forecasts at a specific number of clusters. 
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Figure 6-49: Effect of clustering – technique rank vs. technique at 26 clusters, Ireland, 
week-ahead forecasts.  12 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 26 clusters.  Red is technique rank for a 
specific technique applied without clustering. 
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Figure 6-50: Effect of clustering – technique rank vs. technique at 26 clusters, Ireland, 
day-ahead forecasts.  8 techniques.  Metric is MAPE.  Blue is technique rank for a 
specific technique applied when grouping as 26 clusters.  Red is technique rank for a 
specific technique applied without clustering. 
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Figure 6-51: Effect of temporal magnification – distribution of metric scores vs. time 
step size, Australia, week-ahead forecasts.  36 techniques (3 decision options for time 
step size, 12 combinations of other decision options).  Metric is MAPE.  Blue is metric 
score for a forecast at a specific time step size.  Large blue is mean metric score of 
forecasts at a specific time step size.  Red is metric score of a forecast at baseline time 
step size.  Large red is mean metric score of forecasts at baseline time step size.  Gray 
is 2 standard deviations from mean metric score of forecasts at a specific time step 
size.  White is 95% confidence interval of mean metric score of forecasts at a specific 
time step size. 
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Figure 6-52: Effect of temporal magnification – distribution of metric scores vs. time 
step size, Australia, day-ahead forecasts.  24 techniques (3 decision options for time 
step size, 8 combinations of other decision options).  Metric is MAPE.  Blue is metric 
score for a forecast at a specific time step size.  Large blue is mean metric score of 
forecasts at a specific time step size.  Red is metric score of a forecast at baseline time 
step size.  Large red is mean metric score of forecasts at baseline time step size.  Gray 
is 2 standard deviations from mean metric score of forecasts at a specific time step 
size.  White is 95% confidence interval of mean metric score of forecasts at a specific 
time step size. 
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Figure 6-53:  Effect of sampling – distribution of impacts vs. sample size, Ireland and 
Australia, week-ahead forecasts.  12 techniques.  For Ireland, 20 samples at sample 
size 1 out of 782, 10 samples at other sample sizes.  For Australia, 20 samples at 
sample size 1 out of 223, 10 samples at other sample sizes.   Metric is MAPE.  Impact 
is defined as percentage difference in MAPE score between forecasts based on sample 
and forecasts based on full population (no sampling).  Green is Ireland.  Violet is 
Australia.   
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Figure 6-54: Effect of sampling – minimum sample size vs. impact threshold, Ireland 
and Australia, week-ahead forecasts.  12 techniques.  For Ireland, 20 samples at 
sample size 1 out of 782, 10 samples at other sample sizes.  For Australia, 20 samples 
at sample size 1 out of 223, 10 samples at other sample sizes.   Metric is MAPE.  Impact 
is defined as percentage difference in MAPE score between forecasts based on sample 
and forecasts based on full population (no sampling).  Impact threshold specifies the 
upper bound on allowed percentage increase in MAPE.  Green is Ireland.  Violet is 
Australia.  For example, when Ireland impact threshold is 100%, minimum sample size 
is 25% – i.e., if mean MAPE of forecasts on a sample compared to mean MAPE of 
forecasts on population is not allowed to increase by more than 100%, then the 
sample size cannot be smaller than 25% of the population size. 
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Figure 6-55:  Effect of sampling – distribution of impacts vs. sample size, Ireland and 
Australia, day-ahead forecasts.  8 techniques.  For Ireland, 20 samples at sample size 
1 out of 782, 10 samples at other sample sizes.  For Australia, 20 samples at sample 
size 1 out of 223, 10 samples at other sample sizes.   Metric is MAPE.  Impact is defined 
as percentage difference in MAPE score between forecasts based on sample and 
forecasts based on full population (no sampling).  Green is Ireland.  Violet is Australia.   
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Figure 6-56: Effect of sampling – minimum sample size vs. impact threshold, Ireland 
and Australia, day-ahead forecasts.  8 techniques.  For Ireland, 20 samples at sample 
size 1 out of 782, 10 samples at other sample sizes.  For Australia, 20 samples at 
sample size 1 out of 223, 10 samples at other sample sizes.   Metric is MAPE.  Impact 
is defined as percentage difference in MAPE score between forecasts based on sample 
and forecasts based on full population (no sampling).  Impact threshold specifies the 
upper bound on allowed percentage increase in MAPE.  Green is Ireland.  Violet is 
Australia.  For example, when Ireland impact threshold is 100%, minimum sample size 
is 34% – i.e., if mean MAPE of forecasts on a sample compared to mean MAPE of 
forecasts on population is not allowed to increase by more than 100%, then the 
sample size cannot be smaller than 34% of the population size. 
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Figure 6-57:  Effect of clustering – distribution of impacts vs. cluster count, Ireland and 
Australia, week-ahead forecasts.  12 techniques.  Metric is MAPE.  Impact is defined 
as percentage difference in MAPE score between forecasts based on clusters and 
forecasts based on full population (no clustering).  Green is Ireland.  Violet is Australia. 
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Figure 6-58:  Effect of clustering – maximum cluster count vs. impact threshold, 
Ireland and Australia, week-ahead forecasts.  12 techniques.  Metric is MAPE.  Impact 
is defined as percentage difference in MAPE score between forecasts based on 
clustering and forecasts based on full population (no clustering).  Impact threshold 
specifies the upper bound on allowed percentage increase in MAPE.  Green is Ireland.  
Violet is Australia.  For example, when Australia impact threshold is 20%, maximum 
cluster count is 5 – i.e., if mean MAPE of forecasts based on a group of clusters 
compared to mean MAPE of forecasts on population is not allowed to increase by 
more than 20%, then the grouping cannot exceed 5 clusters. 
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Figure 6-59:  Effect of clustering – distribution of impacts vs. cluster count, Ireland and 
Australia, day-ahead forecasts.  8 techniques.  Metric is MAPE.  Impact is defined as 
percentage difference in MAPE score between forecasts based on clusters and 
forecasts based on full population (no clustering).  Green is Ireland.  Violet is Australia. 
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Figure 6-60:  Effect of temporal magnification – distribution of impacts vs. time step 
size, Ireland and Australia, week-ahead forecasts.  36 techniques (3 decision options 
for time step size, 12 combinations of other decision options).  Metric is MAPE.  Impact 
is defined as percentage difference in MAPE score between forecasts based on 
temporal magnification and forecasts at a baseline time step size.  Green is Ireland.  
Violet is Australia. 
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Figure 6-61:  Effect of temporal magnification – minimum time step size vs. impact 
threshold, Ireland and Australia, week-ahead forecasts.  36 techniques (3 decision 
options for time step size, 12 combinations of other decision options).  Metric is 
MAPE.  Impact is defined as percentage difference in MAPE score between forecasts 
based on temporal magnification and forecasts at a baseline time step size.  Impact 
threshold specifies the upper bound on allowed percentage increase in MAPE.  Green 
is Ireland.  Violet is Australia.  For example, when Ireland impact threshold is 100%, 
minimum time step size 23 hours – i.e., if mean MAPE of forecasts based on temporal 
magnification compared to mean MAPE of forecasts at baseline time step size is not 
allowed to increase by more than 100%, then the time step size cannot be shorter 
than 23 hours. 
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Figure 6-62:  Effect of temporal magnification – distribution of impacts vs. time step 
size, Ireland and Australia, day-ahead forecasts.  24 techniques (3 decision options for 
time step size, 8 combinations of other decision options).  Metric is MAPE.  Impact is 
defined as percentage difference in MAPE score between forecasts based on temporal 
magnification and forecasts at a baseline time step size.  Green is Ireland.  Violet is 
Australia. 

 



274 
 

 

Figure 6-63:  Effect of temporal magnification – maximum time step size vs. impact 
threshold, Ireland and Australia, day-ahead forecasts.  24 techniques (3 decision 
options for time step size, 8 combinations of other decision options).  Metric is MAPE.  
Impact is defined as percentage difference in MAPE score between forecasts based 
on temporal magnification and forecasts at a baseline time step size.  Impact 
threshold specifies the upper bound on allowed percentage increase in MAPE.  Green 
is Ireland.  Violet is Australia.  For example, when Ireland impact threshold is 100%, 
minimum time step size 1.2 hours – i.e., if mean MAPE of forecasts based on temporal 
magnification compared to mean MAPE of forecasts at baseline time step size is not 
allowed to increase by more than 100%, then the time step size cannot be larger than 
1.2 hours. 
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7 CONCLUSION 

 

“I hope that posterity will judge me kindly, not only as to the things 

which I have explained, but also to those which I have intentionally omitted 

so as to leave to others the pleasure of discovery.” 

  – Rene Descartes 

 

We have conducted research into the forecasting process in general, as applied to prediction of 

forecastability, and as applied to residential electricity demand estimation.  Contributions to 

the field include the following: 

Model A model of the forecasting process that accounts for many of the process 
decisions studied in the literature. 

Analysis Method A method to analyze the effects of forecasting process decisions about 
techniques on forecasting performance that accounts for many decisions 
working in concert. 

Analysis Method A method to analyze the effects of forecasting process decisions about 
data strategy on forecasting performance that accounts for many 
decisions working in concert. 

Computation 
Platform 

Software to explore the effects of forecasting process decisions. 

Proof-of-Concept Demonstration of the practicality and usefulness of the analysis methods 
and computation platform applied to benchmark data and real-world 
data from smart electric grids. 

Findings Several findings about the relationships between forecasting 
performance and forecasting process decisions, especially in the domain 
of residential electricity demand estimation. 

Our main finding is that forecasting performance is highly sensitive to the combined effects of 

many forecasting process decisions working in concert.  This holds empirically when using M3 
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Forecasting Competition benchmark datasets, and when using two specific but representative 

sets of real smart electric grid data from opposite sides of the globe, collected at different 

times, and reflecting different climates.  For the residential electricity demand estimation 

domain, we see that techniques characterized by too few forecasting process decisions lead to 

a distorted understanding of their forecasting performance. 

We find sampling to be an especially effective data strategy, clustering not so, temporal 

magnification mixed.  Other relationships between certain decisions and performance are 

surfaced, too. 

While these findings are empirical and specific to one practically scoped investigation, they are 

potentially generalizable, with implications for residential electricity demand estimation, smart 

electric grid design, and electricity policy. 

More research is required to better understand just how far these results generalize.  Our 

analysis methods and computation platform may provide useful guidance and support in this 

regard.  We expect that future studies will increasingly make explicit and account for more 

forecasting process decisions. 

7.1 Summary of Insights 

Our analyses reveal several potentially useful insights, with the caveat that they are based on 

specific datasets and a practically scoped set of experiments. 

7.1.1 General Insights 

MAIN INSIGHT • Forecasting performance is sensitive to the interaction effects of 
many process-level decisions. 

OTHER INSIGHTS • Forecastability is highly sensitive to the metric decision. 

• Locked-in decisions can distort the view of forecasting performance. 

• Locked-in decisions can distort the view of algorithm class 
importance to forecasting performance. 
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7.1.2 Insights About Entropy and Forecastability 

MAIN INSIGHT • Entropy can be a good predictor of forecastability, measured with 
respect to best performing techniques, and improves as data span 
lengthens. 

OTHER INSIGHTS • For forecastability defined in terms of a specific technique, entropy is 
a weak to modest predictor of forecastability, depending on the 
metric and technique decisions. 

• For forecastability defined in terms of the set of best performing 
techniques in the context of many technique decisions, entropy is a 
strong predictor of forecastability, more or less so depending on the 
technique decisions for algorithm class and span. 

• For forecastability defined in terms of the set of best performing 
techniques in the context of many technique decisions, the predictive 
power of entropy grows asymptotically along with decisions to 
increase span. 

• For forecastability defined in terms of the set of best performing 
techniques in the context of many technique decisions, the sensitivity 
of forecastability to entropy grows along with decisions to increase 
span. 

7.1.3 Insights About Residential Electricity Demand Estimation 

MAIN INSIGHTS • Which process-level decisions are important to forecasting 
performance are location-specific. 

• The best location-specific forecasting techniques do not work well 
applied to other locations. 

• The best “one-size-fits-all” forecasting techniques do work well 
applied across multiple locations. 

• Forecasting based on a small data sample approaches performance of 
forecasting based on the full population. 

• Forecasting based on a cluster grouping of data does not much 
improve performance over forecasting based on the full population. 

• Forecasting based on data collected at relatively fine or coarse 
resolution may or may not improve performance. 
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OTHER INSIGHTS • Relative forecasting performance of algorithms is highly sensitive to 
the interaction effects of the algorithm decision and other forecasting 
process decisions. 

• Forecasting performance is highly sensitive to the combined effects 
of forecasting process decisions. 

• The best forecasting techniques tend to use a short update cycle. 

• Many of the best forecasting techniques use the linear regression 
algorithm. 

• The best week-ahead forecasting techniques use the naïve algorithm 
when span is short. 

• The best week-ahead forecasting techniques use any algorithm 
except support vector regression when span is long. 

• The best day-ahead forecasting techniques use linear regression, 
direct extension, and short update cycle; other decisions are not as 
important to performance. 

• The best day-ahead forecasting techniques use the naïve or support 
vector regression algorithm when the update cycle is long. 

• Forecasting performance is not much degraded by sampling. 

• Forecasting performance is not much improved by clustering. 

• Forecasting performance is degraded by refining temporal 
magnification at coarse time step sizes. 

• Forecasting performance is improved by refining temporal 
magnification at fine time step sizes. 

• Training and testing decisions can dominate other forecasting process 
decisions. 

• Different locations lend themselves to different forecasting 
techniques. 

• Forecasting performance at different locations is not much degraded 
by “one-size-fits-all” techniques. 

• Forecasting performance at different locations is not much degraded 
by sampling. 

• Forecasting performance at different locations is not much improved 
by clustering. 
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• Forecasting performance at different locations is degraded by refining 
temporal magnification at coarse time step sizes. 

7.2 Future Research 

Our analysis results motivate us to pursue more research in several areas. 

7.2.1 More on Data Characterization 

Our findings about entropy as a predictor of forecastability motivate us to expand the scope of 

analysis to better quantify and gather more evidence for the relationships between entropy, 

forecastability, and other factors.  While our analysis uses benchmark data, which facilitates 

comparison of results with other those of other studies, more can be learned by using much 

longer span data.  Also, using a greater variety of algorithm class, metric, and other decision 

options will provide more support for whatever relationships are found.  Further, the same 

investigative approach can be applied to look for predictive relationships between a wide 

variety of data characteristics and the importance of various decisions.  Such predictive 

relationships, if known, can potentially be used to inform choice of clustering strategies, so that 

individual clusters are optimized for maximum forecastability.  All of these investigations 

constitute finding “a predictor of a predictor”, so machine learning can be leveraged to find 

both predictors.  

• More on entropy as a predictor of forecastability – longer time series, multi-variate 
algorithms, variety of metrics 

• Data characterization as a predictor of decision importance 

• Cluster similarity measure as a predictor of decision importance 

• Machine learning for forecastability prediction models 

• Machine learning for data importance prediction models 
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7.2.2 Expand Scope of Analysis on Residential Electricity Demand Estimation 

To quantify and verify the robustness of the relationships we find between decisions and 

forecasting performance, we look to expand the scope of our analysis in several dimensions, 

including especially repeating the analyses with data sourced from additional locations. 

• More decisions, decision options, metrics, reference series, predictor series 

• Verify robustness of relationships, quantify relationships 

7.2.3 Formulate the Cost Function for Residential Electricity Demand Estimation 

As discussed, we expect that penalty functions correspond closely to real economic costs, which 

would make them a practical tool for forecasting practitioners responsible for the economic 

cost implications of their forecasts.  The form, variables, range of variable values, and ties to 

penalty functions must be gathered from an exploration of real forecasting practitioner 

environments, like utility company planning department operations. 

• Identify variables and variable value ranges for cost function 

7.2.4 Expand Scope of Analysis to Other Domains 

In addition to analyses presented in this dissertation, we have started applying our methods 

and platform to analyze forecasting performance in other domains, specifically forecasts of 

technical support call center incoming call levels and international refugee levels.  For calls, we 

have been provided long-term, fine-resolution data, and so find that the methods work well.  

For refugees, available data is much coarser, and so using the methods in this domain produces 

less satisfying results. 

• Technical support call centers 

• International refugees 
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• Non-residential electricity demand estimation 

• Other domains 

7.2.5 Expand Computation Platform Functionality 

• Large scale data handling 

• Memory & speed optimization 

• Standardized data pre-processing 

• More built-in algorithm classes and metrics 

• Complex algorithm tuning 

• Complex integration rules 

• Variable decisions per sample or cluster 

• Complex training and testing rules 

• Simplified architecture and data organization 

• More visualizations 

7.2.6 Prepare Computation Platform for Commercial or Open Source Use 

Full proof-of-capability of the computation platform, and readiness for use by a wide audience, 

requires further enhancements.  One approach is to structure it as an R library of functions to 

be distributed as open source software.  Another approach is to wrap it in a user interface, 

perhaps implemented with the Shiny R library, to make its functionality available to non-

programmers.  

• R library 

• Shiny user interface 

• User documentation 
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Appendix A MORE ABOUT SAMPLING RULES 

A.1 Bootstrap Sampling, version 1 

[Low level of control over randomness in resulting sample]  Start with a population of n 

observations.  Pick n-1 observations at random with replacement.  The sample will be the same 

size as the original population and some of the observations will be duplicates.  Repeat for as 

many samples as desired.  This approach does not control how much of the original population 

is reflected in the sample, nor how much influence particular observations have on the sample. 

A.2 Bootstrap Sampling, version 2 

[Medium-low level of control over randomness in resulting sample]  Start with a population of n 

observations.  For some i in (1 through n-1), pick i observations at random without 

replacement.  From this set, pick n observations at random with replacement.  The sample will 

be the same size as the original population and some of the observations will be duplicates.  

Repeat for as many samples at i as desired.  Repeat for each i as desired.  This approach 

controls how much of the original population is reflected in the sample, but does not control 

how much influence particular observations have on the sample. 

A.3 Bootstrap Sampling, version 3 

[Medium-high level of control over randomness in resulting sample]  Start with a population of 

n observations.  For some i in (1 through n-1), pick i observations without replacement.  From 

this set, duplicate each observation an approximately equal number of times until reaching 

exactly n observations.  The sample will be the same size as the original population and some of 

the observations will be duplicates.  Repeat for as many samples at i as desired.  Repeat for 

each i as desired.  This approach controls how much of the original population is reflected in 

the sample, and ensures each observation has approximately equal influence on the sample. 
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A.4 Jackknife Sampling 

[High level of control over randomness in resulting sample]  Start with a population of n 

observations.  For some i in (1 through n-1), pick i observations without replacement.  From this 

set, scale each observation by n/i.  Repeat for as many samples at i as desired.  Repeat for each 

i as desired.  The sample will be smaller than the original population, but any aggregations 

applied to the original population and sample will result in comparable magnitudes.  This 

approach controls how much of the original population is reflected in the sample, and ensures 

each of these observations has exactly equal influence on the sample. 
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Appendix B MORE ABOUT EXTENSION RULES 

B.1 Direct Extension Rules 

At training time, several engines are produced based on the training period in advance of any 

forecasting in the test period.  All the engines accept as input a set of predictor series levels at 

time steps prescribed by the look-back, but each specific engine outputs a forecast for one 

specific time step related to the look-ahead.  The first engine produces a forecast for the time 

step at the look-ahead, the second engine produces a forecast for one time step beyond that, 

and so on for all time steps prescribed by the update cycle.  At test time, all the engines are 

applied to the same origin time step using the same inputs, resulting in a forecast starting at a 

distance from the origin prescribed by the look-ahead and continuing throughout the update 

cycle.  Then, the origin is repeatedly advanced as prescribed by the update cycle, and the 

engines each time applied again.  The forecasts (each covering a period prescribed by the 

update cycle) are concatenated to produce a forecast covering the complete test period. 

Figure B-1 illustrates an example.  The look-ahead is 3 time steps, the update cycle is 2 time 

steps, and the look-back is the set of 0, 1, 2, 3, 4, 5 time steps.  At training time, 2 engines are 

produced: the first forecasts 3 time steps ahead, the second forecasts 4 time steps ahead.  At 

test time, both engines are applied to the same origin time step, indicated in blue, using the 

same inputs, namely the predictor series levels at 0, 1, 2, 3, 4, and 5 steps behind the origin.  

The first engine outputs a 3 time step ahead forecast, indicated as “?” (a).  The second engine 

outputs a 4 time step ahead forecast, also indicated as “?” (b).  The origin is then advanced 2 

time steps and the procedure repeated throughout the test period (c). 

B.2 Recursive Extension Rules 

At training time, one engine is produced based on the training period in advance of any 

forecasting in the test period.  The engine accepts as input a set of predictor series levels at 

time steps prescribed by the look-back, and outputs a forecast for one time step ahead, 
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regardless of the look-ahead.  At test time, the engine is applied to the origin time step, 

resulting in a forecast for one time step ahead of the origin.  Subsequently, the origin is 

advanced one time step and the engine applied again, this time with new input potentially 

including some of the recent forecasts.  This is repeated until forecasts are produced for time 

steps starting at a distance from the origin prescribed by the look-ahead and continuing 

throughout the update cycle.  Then, the origin is repeatedly advanced as prescribed by the 

update cycle, and the procedure applied again.  The forecasts (each covering a period 

prescribed by the update cycle) are concatenated to produce a forecast covering the complete 

test period. 

Figure B-2 illustrates an example.  The look-ahead is 3 time steps, the update cycle is 2 time 

steps, and the look-back is the set of 0, 1, 2, 3, 4, 5 time steps.  At training time, one engine is 

produced that forecasts 1 time step ahead.  At test time, the engine is applied to the origin time 

step, indicated in blue, using as inputs the predictor series levels at 0, 1, 2, 3, 4, and 5 steps 

behind the origin.  It outputs a 1 time step ahead forecast, indicated as “?” (a).  Subsequently, 

the origin is advanced 1 time step and the engine applied again, using new inputs accordingly, 

including the forecast just made (b).  This is repeated until forecasts have been produced for 

each time step covered by the update cycle (c) (d).  The origin is then advanced 2 time steps 

and the procedure repeated throughout the test period (e). 

B.3 Other Extension Rules 

A variation on either the direct or recursive rule is to periodically produce new engines with 

refreshed training data as prescribed by the retrain cycle.  If practical to do so, this would 

potentially guard against the engines losing relevance near the end of the test period.  Many 

other variations have been proposed in the literature. 

Note, in the degenerate case of look-ahead 1 time step, update cycle 1 step, i.e., continuously 

advancing the origin, the direct and recursive rules produce the same forecast. 
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(a) (b) (c) 

Figure B-1:  Direct extension rule, look-ahead=3, update cycle=2, look-back=(0,1,2,3,4,5) 

 

 
(a) (b) (c) 

 
(d) (e) 

 

Figure B-2:  Recursive extension rule, look-ahead=3, update cycle=2 
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99. Humeau S, Wijaya TK, Vasirani M, Aberer K. Electricity load forecasting for residential 
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106. Lang K, Zhang M, Yuan Y. Improved Neural Networks with Random Weights for Short-

Term Load Forecasting. PLoS One. 2015; 10(12). 
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 ---  Compares the accuracy of six univariate methods for short-term electricity demand forecasting for 

lead times up to a day ahead.  The methods considered include the recently proposed exponential 

smoothing method for double seasonality and a new method based on principal component analysis 

(PCA). The methods are compared using a time series of hourly demand for Rio de Janeiro and a series of 
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demand. Various ANNs with different inputs, outputs, numbers of hidden neurons are examined, and 

techniques for their optimization are proposed. 
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Paper presented at: International Multiconferecne of Engineers and Computer 

Scientists; Mar 16-18, 2011; Hong Kong. 

 ---  Proposeal for a novel short term load forecasting approach based on training data selection. The load 
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