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Abstract	

Expanding access to electricity is central to development in East Africa but massive increases in 

investment are required to achieve universal access. Private sector participation in electrification 

is essential to meeting electricity access targets. Policy makers have acknowledged that grid 

extension in many remote rural areas is not as cost effective as decentralized alternatives such as 

microgrids. Microgrid companies have been unable to scale beyond pilot projects due in part to 

challenges in raising capital for a business model that is perceived to be risky. This thesis aims to 

identify and quantify the primary sources of investment risk in microgrid utilities and study ways 

to mitigate these risks to make these businesses more viable. Two modeling tools have been 

developed to this end. The Stochastic Techno-Economic Microgrid Model (STEMM) models the 

technical and financial performance of microgrid utilities using uncertain and dynamic inputs to 

permit explicit modeling of financial risk. This model is applied in an investment risk assessment 

and case study in Rwanda. Key findings suggest that the most important drivers of risk are fuel 

prices, foreign exchange rates, demand for electricity, and price elasticity of demand for 

electricity. The relative importance of these factors is technology dependent with demand 

uncertainty figuring stronger for solar and high solar penetration hybrid systems and fuel prices 

driving risk in diesel power and low solar penetration hybrid systems. Considering uncertainty in 

system sizing presents a tradeoff whereby a decrease in expected equity return decreases 

downside risk. High solar penetration systems are also found to be more attractive to lenders. 

The second modeling tool leverages electricity consumption and demographic data from four 

microgrids in Tanzania to forecast demand for electricity in newly electrified communities. 

Using statistical learning techniques, improvements in prediction performance was achieved over 

the historical mean baseline. I have also identified important predictors in estimating electricity 
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consumption of newly connected customers. These include tariff structures and prices, pre-

connection sources of electricity and lighting, levels of spending on electricity services and 

airtime, and pre-connection appliance ownership. Prior exposure to electricity, disposable 

income, and price are dominant factors in estimating demand. 
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1 Introduction	
 
Access to affordable and high quality electricity is essential for the development of modern 

economies. Low rates of electricity access in the developing world pose a significant barrier to 

sustainable economic and social development, particularly in rural areas. Yet the International 

Energy Agency (IEA) estimates that about 1.3 billion people in the world, primarily in South 

Asia and Sub-Saharan Africa, still lack a connection to electricity [1]. 

 

Electricity access has been linked to many positive developmental and welfare benefits including 

greater economic opportunities and increased income, higher quality of life and access to 

information, improved health, and greater educational attainment [2]-[9]. Lack of electricity in 

rural communities has also been linked to disparities in regional development within countries 

and increased rural to urban migration, thus putting further stress on already strained urban 

infrastructure systems [10]-[12].  For this reason, access to electricity has taken greater 

prominence in recent years on the global development agenda. 

 

State-owned utilities have traditionally carried out electrification projects driven by a mandate to 

expand social access to electricity services. Power sector reforms in the 1990s, advocated by 

organizations such as the World Bank, led to the commercialization and privatization of many 

state-owned utilities. This led to a shift in the treatment of electricity from a social service to a 

commodity [13]. Because rural electrification projects are rarely economically attractive, power 

sector reforms generally has a negative effect on electrification activities [14]. In some cases, 

countries have seen the number of people without access actually increase as population growth 

in unelectrified areas exceeded the number of new connections [15]. 
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More recently, many countries have recognized that if electricity access is to be expanded into 

rural areas, resources need to be allocated for projects of a social rather than a commercial nature 

[14]. This has led to the establishment of dedicated rural electrification agencies whose mandates 

are to expand access to electricity for the purpose of long-term social and economic development 

[16]. Limited public and donor funds, however, have proven insufficient to meet the aggressive 

access goals that governments and international organizations have set. Increasing attention has 

now focused on how to encourage the private sector to invest in electricity access projects in 

developing countries. Because of the typically unattractive risk-return profiles of these 

investments, efforts to accelerate access by securing private capital have been largely 

unsuccessful [17]. As a result, several scholars have pointed out the need for greater academic 

work exploring barriers and solutions to unlocking private sector investment in electrification 

activities [18], [19]. 

 

In the absence of legacy systems, many developing countries have the opportunity to leverage 

decades of technological advancement and experience in developed countries as they build 

innovative modern infrastructure systems. Microgrids, small electricity networks that have the 

ability to operate autonomously, can play a key role in developing an electricity infrastructure 

built around decentralized renewable energy technologies. At the same time, microgrids can 

accelerate electricity access to areas the central electricity grid cannot reach in the short to 

medium term. As these microgrids develop, they can be easily interconnected, creating a 

decentralized network that can aggregate loads and generation capacity, while maintaining the 

ability to operate as isolated systems should the need arise. Many developed nations are now 
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devoting significant resources to retrofit existing infrastructure and permit the integration of 

decentralized technologies [20]. Countries with underdeveloped electricity systems are well 

positioned to leapfrog outdated centralized approaches. 

 

Many of the barriers to private sector investment in microgrid utilities are related to perceived 

high levels of risk and uncertainty about key inputs into microgrid financial models. This thesis 

identifies key drivers of risk in microgrid business models and ways to mitigate these risks 

through system design using a tool called the Stochastic Techno-Economic Microgrid Model 

(STEMM). Demand for electricity in as yet unelectrified communities is among the important 

sources of risk identified. Using data from PowerGen Renewable Energy, a developer of 

microgrid utilities in East Africa, this thesis also develops a predictive model of demand for 

electricity for electrified businesses and households. 

 

Chapters 1 and 2 are based on a paper, Enabling private sector investment in microgrid-based 

rural electrification in developing countries: A review, published in Renewable and Sustainable 

Energy Reviews [21]. These chapters present a review of the benefits of the microgrid-based 

electrification, barriers to attracting capital into the sector, and potential policies and business 

models to overcome these challenges. Chapter 3 develops the modeling tool, STEMM, and 

applies the model to perform a risk assessment of microgrid utilities in four technology 

scenarios. Chapter 4, based on a paper presented at the 2016 IEEE PowerAfrica Conference in 

Livingstone, Zambia [22], applies STEMM to study the sizing of hybrid diesel/solar/battery 

microgrids under uncertainty. Chapter 5 presents a predictive model of electricity demand using 

consumption and demographic data from four PowerGen micgrogrids in Tanzania using various 
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statistical learning techniques. Chapter 6 concludes the thesis with a discussion of the 

implications of this work as well as recommendations for future work.  	
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2 Enabling	Private	Sector	Investment	in	Microgrid-based	Rural	
Electrification	in	Developing	Countries:	A	Review	

 

This chapter examines the benefits of and the challenges faced by private sector participation in 

the deployment of microgrids for rural electrification in developing countries. It further explores 

various solutions that have been proposed and tested to unlock the potential for private sector-

driven microgrid-based electricity access projects. The chapter is intended to provide a global 

perspective with an understanding that many solutions are very context-specific and must 

consider unique geographical and cultural conditions. 

 

2.1.1 Advantages	of	Microgrid	Electrification	

The decentralized nature of microgrids is viewed as having several inherent advantages over 

traditional centralized infrastructure. These advantages include improved economics, technical 

performance, environmental sustainability, and regional equity in the context of rural 

electrification. In many countries, the reach of the electricity grid is extremely limited and almost 

exclusively serves urban areas. Sub-Saharan Africa is a prime example of electricity access 

disparity between rural and urban communities. The World Energy Outlook 2011 [23] reports 

the urban electrification rate in this region is 59.9% whereas the rural access rate is only 14.2%. 

Without a decentralized approach to expanding access, many communities located far from 

existing grid infrastructure will be left in the dark for decades to come.  

 

The proximity of load to generation in a microgrid is also an economic advantage. While it may 

be technically feasible to pursue an entirely grid-based electrification program, several studies 

have found that the cost of building distribution and transmission infrastructure to deliver power 
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from centralized power stations often exceeds the cost of decentralized solutions. The low levels 

of rural electricity demand and the energy losses incurred en route do not justify the cost of 

building the long power lines to remote areas. Parshall et al. [24] found the average grid 

connection cost for a household in Kenya to be about $1,900, with more remote and sparsely 

populated communities having much higher connection costs. Decentralized solutions such as 

microgrids are often more cost effective solutions to delivering electricity to these areas [25], 

[26]. Further, unlike other decentralized technologies such as solar home systems, microgrids 

can be more easily integrated into larger grids in the future when economic development takes 

hold, the central grid expands, and/or demand for electricity rises. Upon connection to the main 

grid, the microgrid then has the ability to feed excess electricity into the network or draw 

electricity to meet shortfalls. This aggregation of loads and generators on a larger scale unlocks 

greater economies of scale and more efficient management of the power system. By maintaining 

the ability to operate microgrids in an islanded mode once interconnected, the security of the 

power system is enhanced. The rolling blackouts often associated with centralized grid networks 

in developing countries could be avoided by distributing energy generation resources in semi-

autonomous microgrids. 

 

From a development perspective, the ability of microgrids to produce grid-quality power also 

presents benefits over other decentralized alternatives. While there are several companies 

operating in developing countries that offer energy services from solar home systems on a “fee 

for use” and “lease to own” basis, these systems are limited in the type of energy services they 

can provide. For example, M-KOPA, a company with over 100,000 customers in East Africa, 

offers small 8W solar home systems (SHS) that power LED lights, a cell phone charger and a 
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radio.  These systems are unable to provide electricity for productive use such as refrigeration, 

mills and food processing, sewing machines, and electric tools for carpentry and construction, 

which are key to stimulating rural economies and reducing poverty [7]. The service level 

limitations of SHS have also resulted in high levels of customer dissatisfaction where grid level 

service was expected [27]. 

 

From an environmental perspective, microgrids may have lower environmental impacts than 

traditional systems. Microgrids are well suited to use local renewable energy resources like wind, 

small hydro, and solar power. They may also be suitable for the application of advanced 

generation technologies like modular nuclear reactors, biomass-based systems, and combined 

heat and power. While most developing nations only contribute to a small fraction of global 

greenhouse gas emissions, the early adoption of renewable energy technologies presents an 

opportunity to pursue a cleaner and more environmentally-friendly developmental path than the 

developed economies of today. Should developing regions pursue fossil fuel-based solutions to 

meet their energy needs, the problem of climate change would only be exacerbated in the long 

term as economies grow and energy demand increases. Furthermore, it is developing nations that 

tend to face the greatest consequences of climate change while at the same time being the least 

prepared to adapt [7]. 

 

In addition to providing environmental benefits, the use of renewable resources also enhances 

energy security. Many developing countries depend on imported diesel for a large portion of 

their electricity generation. This dependence on diesel and other imported fossil fuels exposes 

economies to price shocks resulting from the volatility of the price of oil and risks due to supply 
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chain disruption. Renewable energy technologies rely primarily on freely available local 

resources and are, therefore, not vulnerable to the price of primary energy sources. 

 

2.1.2 Advantages	of	Private	Sector	Participation	

Despite the apparent advantages of microgrids and several public sector efforts encourage their 

deployment in rural areas, microgrid electrification has not yet contributed significantly to the 

alleviation of energy poverty in developing countries. There is growing interest in understanding 

how to encourage private sector participation in rural electrification efforts. One of the primary 

motivations for pursuing private sector investment in energy access projects is to tap into the 

large amounts of capital available in the private sector [19], [28]. Electrification is a capital-

intensive activity and one of the major constraints to rolling out electricity access projects is the 

limited availability of resources in the public sector and donor community. The private sector is 

therefore viewed as a source of capital to finance these infrastructure projects. 

 

The advantages of private sector participation go beyond access to capital. Publicly-owned utility 

companies have also been known to suffer from inefficiency and poor technical performance 

[14]. Common reasons for failure in publicly-owned electrification projects are a lack of 

technical capability to properly maintain and operate the technology and poor service quality 

[29]. This has been found both in community-operated cooperatives and grid extension projects 

operated by public utilities. India has even experienced instances of de-electrification due to poor 

maintenance and vandalism [30]. Privately-operated microgrids, on the other hand, often benefit 

from technical skills, management capabilities, and efficiency that are lacking in community-run 

projects and even large, state-owned utilities [14]. Private sector participation in electrification 
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projects could thus lead to both an increase in the availability of capital as well as improved 

technical and managerial performance. However, the private sector has not been quick to answer 

the call of governments in developing countries to invest in electrification projects. The next 

section will provide a broad summary of the barriers to private sector involvement in 

decentralized electrification. 

 

2.2 Barriers	to	Private	Sector	Investment	in	Electrification	via	Microgrids	

Despite some clear advantages of private sector participation in electrification efforts, there are 

several challenges that must be overcome to make these projects attractive to potential investors 

and project developers. Expanding electricity access to rural areas in developing countries is 

often motivated by social concerns, but as with any investment opportunity, the private sector 

will measure the attractiveness of a project by its expected financial return and its associated 

risks. The security of revenue streams, long-term risks and policy certainty, regulatory 

transparency and complexity, as well as practical challenges relating to local organizational 

structures and technical implementation are issues of significant concern. This section examines 

various issues that must be overcome to create an enabling environment for private sector 

participation in microgrid electrification. Though many of these challenges are codependent, I 

divide them into three broad categories as represented in Figure 2-1: financial barriers, 

institutional and policy obstacles, and technical challenges. 
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Figure	2-1	Challenges	to	private	sector	microgrid	electrification.	
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Ability to pay varies between countries, regions, and even within communities. It is often the 

case that rural communities depend highly upon activities such as subsistence farming, with only 

a small fraction of the population receiving regular cash income. As a result, the seasonality of 

income poses challenges to revenue collection during certain times of the year. With typical 

interest rates for locally sourced debt exceeding 10%, and at times exceeding 20%, in sub-

Saharan Africa, late payment can be costly to project owners [34]-[38]. 

 

The level of electricity demand in rural communities is also typically very low. This results in a 

high unit cost to generate and distribute electricity, which in turn amplifies problems related to 

the ability of rural consumers to pay for energy services. The level of demand itself is highly 

uncertain [19]. It is not possible to directly measure the electricity demand in a community that 

has never had access. When assessing potential demand, it is therefore necessary to employ 

methods such as surveys of current energy use or to base assumptions on experiences in other 

villages [29]. Fabini et al. [39] have developed a technique to map predicted demand in 

unelectrified communities using demographic and socioeconomic data. Since the profitability of 

a project is highly dependent on the amount of electricity that is produced and sold, uncertainty 

regarding electricity demand in microgrids represents a significant risk to investors. Should 

demand fall short of expectations, the microgrid may turn out to be unprofitable. On the other 

hand, should demand exceed expectations, the installed generation capacity may fall short of 

demand, resulting in poor performance and customer satisfaction which could jeopardize the 

sustainability of the project [40]. 

 



	 12	

Revenue security risks are amplified due to the capital-intensive nature of electrification, 

particularly if they include large amounts of renewable energy generation such as wind and 

photovoltaic systems, though the costs of these technologies is rapidly falling [41]. This means 

that several years may be required for the project to break even and start generating profits, 

which exposes project owners to long-term risks that could cause a project to fail before the 

recovery of initial capital investments [42]. Furthermore, such projects are often funded by 

project finance, which is based upon projected future cash flows rather than physical assets or 

collateral. Project developers will therefore need to demonstrate to debt providers that revenue 

streams are secure throughout the loan tenor. 

 

Securing finance for rural electrification projects is often challenging. Electrification projects are 

seen as high risk by both debt and equity funders. These project-specific risks are often 

compounded by a generally poor local investment climate in developing countries resulting from 

perceived political risks and other country specific challenges. This frequently results in projects 

being unable to secure the capital required for implementation. When they do, it is often on 

unfavorable terms with high interest rates and short debt tenors, which exacerbates the challenge 

of achieving sustainable, affordable tariffs [37], [43]. Investors in microgrid projects will thus 

need assurances that their investments will be protected over the medium- to long-term [42]. 

Risks to overcome include grid encroachment, unregulated competition, loss of operating 

subsidies, changes in regulated tariffs, and other sources of policy and regulatory uncertainty. 

Addressing these risks requires a sound policy and regulatory environment that is often lacking 

in developing countries. The next section includes a discussion of these issues. 
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2.2.2 Institutional	and	Policy	Challenges	

Creating an enabling policy and regulatory environment is essential to stimulating private 

investment in infrastructure projects with low profitability and strong social welfare motivations. 

If private investment is to take place, the electricity sector must be open to the private sector and 

not subject to state-owned monopolies. Progress has been made in this regard in many countries 

under World Bank pressure for power sector reform. However, these reforms often lead to the 

treatment of electricity purely as a commodity and not as a public good. Such policies have been 

disastrous for rural electrification where access to electricity should be motivated primarily by 

social rather than commercial motives [14]. Consequently, there must be a balance between the 

needs of the private sector and the goals of public policy in providing social services. 

 

In order to ensure financial sustainability for private investors, tariff regulations must permit cost 

recovery and subsidies may be necessary to promote affordability to consumers. These policies 

must balance the need to protect and attract investment and the obligation to promote social and 

economic development among the rural poor. A lack of regulatory independence has often led to 

unsustainably low electricity tariffs due to political pressure to maintain affordability. 

Unfortunately, these low tariffs have made the electricity sector in many countries unprofitable 

and unattractive to the private sector [44]. 

 

It is also important to minimize regulatory and licensing complexity. Bureaucratic red tape 

increases transaction costs, unnecessarily extends timelines, and deters investment [17]. Clear 

policy and regulatory frameworks and long-term policy certainty permit the development of 

bankable business plans and financial models.  Policies and regulations that are frequently 



	 14	

changing or are poorly-defined lead to a breakdown in investor confidence that the policies on 

which they are building their business case will be respected. Well-developed policies and 

regulations however, are only one of the prerequisites. Effective administration of policy and 

regulation relies on clear institutional structures with well-defined allocation of roles and 

responsibilities. All too often, institutional structures and regulatory processes are complex and 

difficult to navigate, acting as a barrier to potential project developers and investors [19]. 

Furthermore, where state-owned utilities exist, it is essential to have clearly-defined relationships 

between private and public actors in the sector.  For example, the creation of the Agence 

Sénégalaise d’Électrification Rurale (ASER), which was meant in part to relieve the utility 

SENELEC of its electrification mandate and attract private sector participation, was initially a 

source of conflict and resentment as the utility viewed the new arrangement as a threat [45]. 

 

Beyond the state institutions, it is important that any electrification project involve the local 

community in the project from an early stage. Poor coordination and consultation with target 

customers has frequently resulted in projects that do not meet community needs and do not 

achieve local acceptance or participation. The consequences of this have been low uptake of 

energy services, poor payment morality, low collection rates, and high incidence of electricity 

theft [19]. Creating effective local organization and stakeholder consultation is a challenge in 

remote areas where there is often a cultural gap between project sponsors and project 

beneficiaries. Bridging this gap is essential to creating a sustainable project that meets the needs 

of beneficiary communities. 
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2.2.3 Technical	Challenges	

This review does not focus on the technical design of microgrids. However, there are several 

technical issues that affect the feasibility of microgrids for rural electrification that should be 

noted. For any gridded system, population distribution patterns are an important determinant of 

the technical design specifications and capital investments required to build physical 

infrastructure. Low density and highly dispersed settlement patterns result in higher distribution 

infrastructure costs per customer when compared to more densely populated areas. Population 

density and settlement patterns are therefore an important factor to consider when evaluating the 

appropriateness of a microgrid as a technical solution for electrification [46]. 

 

Microgrids are also more sensitive to local energy consumption patterns than interconnected grid 

systems. Because loads are aggregated over smaller geographical areas, the variability of demand 

is more pronounced than in large national and regional grids. Combined with potentially high 

proportions of variable and intermittent renewable energy sources, grid management becomes a 

greater challenge. This complicates the generation system design process, which must maximize 

service quality while minimizing cost. Uncertain load profiles add to this problem, making it 

difficult to size the generators required to meet the demand. 

 

Once the project has been built, a lack of local technical skills creates challenges in maintaining 

and operating the system [19], [47]. The remoteness of some sites can make maintenance and 

repairs challenging, with high costs and long lead times for the delivery of replacement parts, 

which may not be available in local markets. Teferra [36] notes that in some cases in Ethiopia, 

utilities have stepped in as a supplier due to the difficulty of sourcing materials for construction. 
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Local skills and supply chains are important to the long-term sustainability of microgrids. Even 

when these skills have been developed, experience has shown that newly trained technicians may 

be tempted to take their new found skills to urban areas with higher salaries [48]. Meeting the 

technical challenges of rural microgrids thus requires the preparation and retention of local 

technicians and operators. 

 

2.3 Business	Models	and	Policy	Support	for	Private	Microgrids	

Despite the aforementioned challenges, many strategies have been put forward to overcome 

these barriers to private sector participation in electrification generally, and microgrids 

specifically. This section examines various models that have been proposed or tested in the field, 

including various subsidy and finance models, strategies to secure and stimulate electricity 

demand, and innovative revenue models. It also highlights important considerations relating to 

organizational and institutional approaches, as well as technical and skills development 

solutions. Figure 2-2 provides an overview of public policy interventions and Table 2-2  links the 

barriers from section 2.2 to the interventions described in section 2.3. 

 

2.3.1 Financing	and	Subsidy	Models	

While subsidization is often not a preferred intervention due to concerns about economic 

sustainability and market distortion, the need for subsidies to make electricity affordable to the 

rural poor is most often a reality. Subsidies for microgrids can take a number of different forms, 

but they typically support either capital or operating expenditures. A number of non-subsidy 

financial supports, such as loan and partial risk guarantees and concessionary debt to overcome 

failures in capital markets, exist as well [49]. The implications of these financial supports are 
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diverse and must be carefully considered when designing programs to encourage private sector 

investment in electrification. Table 2-1 summarizes the various interventions reviewed in this 

paper. 

 

 

Figure	2-2	Policy	interventions	in	support	of	private	sector	microgrid	electrification.
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Table	2-1	Summary	of	Public	Microgrid	Support	Interventions	

		 		 Description	 Advantages	 Disadvantages	
Subsidies	 	   
		

Capital	subsidies	 Subsidization	of	capital	costs	
for	project	realization.	

Reduces	capital	burden	and	time	to	
capital	recovery.	Promotes	
affordable	tariffs	to	end-uers.	

Lack	of	public	sector	capital	is	a	
motivation	for	private	sector	
subsidization	but	also	a	
limitation	on	funding	subsidies.	
Reduced	incentive	for	fiscal	
discipline.	

	

Operating	subsidies	
Subsidization	of	operating	
costs	during	operations.	
Includes	fuel	subsidies.	

Promotes	affordable	tariffs	to	end-
users.	

Exposes	project	to	risk	of	
subsidy	discontinuation.	
Viewed	as	unsustainable	and	a	
continuous	burden	on	public	
funds.	

		

Output-based	subsidies	

Subsidization	of	capital	and/or	
operating	costs	after	project	
realization	based	on	
fulfillment	performance	of	
criteria.	

Ties	subsidies	to	specific	policy	
objectives	such	as	connection	rates.	

Exposes	developers	to	high	cost	
at	risk	as	subsidies	are	not	paid	
until	after	project	realization.	

	

Direct	tariff	subsidies	

Direct	subsidization	of	
consumers	through	
instruments	such	as	electricity	
vouchers	or	via	sale	of	power	
to	a	subsidized	3rd	party	
retailer.	

Can	be	targeted	to	specific	
customer	classes	in	the	case	of	
vouchers.	Expands	access	to	grid	
subsidies	if	sold	to	state	owned	
retailer.	Long-term	PPA	with	third	
party	reduces	revenue	insecurity.	

Essentially	an	operating	
subsidies	with	similar	
associated	risks.	

Guarantees	and	Preferential	Lending	 		 		
	

Loan	guarantees	
Assists	project	in	securing	
debt	by	assumption	of	debt	
obligation	in	event	of	default.	

Enables	microgrid	to	secure	debt	
finance	or	secure	debt	finance	on	
more	favorable	terms.	No	upfront	
cost.	

Transfers	risk	of	project	failure	
to	guarantor.	Cost	is	difficult	to	
quantify.	

		

Partial	risk	guarantees	

Guarantee	to	private	lenders	
by	third	party	to	fulfill	
contractual	obligations	of	
government	in	case	of	
nonperformance.	

Enables	projects	to	secure	debt	by	
reducing	risk	related	to	government	
nonperformance	on	subsidies	and	
other	obligations.	

Government	incurs	additional	
cost	in	securing	partial	risk	
guarantee.	

	
Preferential	lending	

Direct	lending	on	
concessionary	terms	to	
projects.	

Provides	access	to	debt	finance	at	
reduced	interest	rates	and/or	
longer	tenors.	

Transfers	risk	of	project	failure	
to	debtor.	

Tax	Incentives	 		 		 		
	

Customs/Duties	exemptions	
Reduction	or	exemption	of	
microgrid	equipment	from	
customs	and	import	duties.	

Reduces	capital	costs.	No	reduction	
in	public	revenue	if	project	would	
not	otherwise	be	realized.	

Reduces	public	tax	revenue	if	
the	project	would	have	been	
realized	without	incentive.	
Vulnerable	to	abuse	if	
exempted	equipment	has	
multiple	applications.	

		 VAT/Sales	tax	exemptions	on	
equipment	

Reduction	or	exemption	of	
microgrid	equipment	from	
VAT/sales	tax.	

Reduces	capital	costs.	No	reduction	
in	public	revenue	if	project	would	
not	otherwise	be	realized.	

Reduces	public	tax	revenue	if	
the	project	would	have	been	
realized	without	incentive.	

	
Income	tax	
exemption/reduction	

Reduction	of	operating	
expenses	through	reduction	in	
tax	burden.	

Reduces	operating	costs.	No	
reduction	in	public	revenue	if	
project	would	not	otherwise	be	
realized.	

Reduces	public	tax	revenue	if	
the	project	would	have	been	
realized	without	incentive.	

		 VAT/Sales	tax	exemptions	on	
electricity	sales	

Reduction	or	exemption	of	
electricity	sales	from	
VAT/sales	tax.	

Reduces	electricity	prices	for	
consumers.	

Reduces	public	tax	revenue	
from	taxes	on	substituted	
unsubsidized	forms	of	energy.	

Concessions	

Award	of	exclusive	rights	to	
service	a	geographic	area	for	a	
fixed	term	with	minimum	
service	level	obligation.	

Protects	microgrid	investments	
from	competition	in	medium	to	
long-term.	Often	accompanied	by	
subsidies.	

Provides	monopoly	status	to	a	
single	private	sector	operator.	
Proper	regulation	necessary	to	
protect	consumers.	
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Table	2-2	Summary	of	public	microgrid	support	interventions	

Barrier	 Interventions	

Access	to	finance	

Loan	guarantees	
Climate	finance	
Partial	risk	guarantees	
Preferential	lending	

Affordability	
Public	subsidization	
Tax	exemptions/reductions	
Financing	of	connection	fees	

Grid	encroachment	 Public	service	concessions	

Revenue	security	

Long-term	PPAs	
Anchor	customers	
Fixed	service	based	tariffs	
Financing	of	appliances	

Revenue	collection	 Prepayment	meters	
Mobile	phone	payments	

	

2.3.1.1 Subsidy	Models	

Capital subsidies, which reduce the initial investment cost for project implementers, are 

frequently cited as preferred to operating subsidies for reasons of long-term sustainability. 

Capital subsidization corresponds well to the cost structure of microgrids, which require large 

investments in electricity distribution and generation equipment. Capital subsidies also tend to 

promote the use of capital-intensive generation technologies such as wind, solar, and 

hydropower. Compared to fossil-based generating technologies, these renewable energy 

technologies have lower exposure to fuel price volatility and operating costs uncertainty. The 

reduction of capital requirements and the fuel price certainty of renewables leads to affordable 

electricity tariffs without the need for continued subsidization throughout the life of the project 

[50]. Greater uptake of renewable energy technologies has the positive side effect of improved 

environmental performance as well. The use of low carbon technologies also has the potential to 

attract carbon emissions reduction credits, which can be an additional source of revenue for the 
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microgrid. 

 

One of the primary motivations for attracting private sector participation is to overcome a lack of 

capital in the public and donor spheres. This shortage of public capital for electrification projects 

is therefore also a limitation on capital subsidies. However, using public funds to provide capital 

subsidies may permit the limited amount of public capital available for electrification to be 

stretched farther by coupling it with private sector investment. The level of capital subsidization 

offered should seek to deliver affordable electricity to consumers with a reasonable return to 

investors, while at the same time maximizing the number of projects that public funding can 

support. 

 

Experience has shown that full subsidization of capital costs of privately owned systems is a 

disincentive to fiscal discipline. For example, a program in Peru that offered fully subsidized 

solar home systems found that many of the systems provided to the poor were later sold [51]. 

While the technology is different, the principle is still applicable to microgrids, where a 

developer may be tempted to, for example, install more generation capacity than is necessary to 

meet demand. Capital subsidies have also received criticism, primarily in the context of 

community ownership. There is evidence that indicates that projects fully financed by the owners 

and beneficiaries are more likely to be well taken care of [52]. Such examples have also led to 

the implementation of output-based subsidies. 

 

Output-based, or performance-based, subsidies are only paid out if certain goals or milestones 

are reached. They allow governments to align subsidies with specific policy goals such as 
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expanding access [49]. For example, subsidies can be linked to the number of customers 

connected to the microgrid, therefore incentivizing microgrid operators to connect as many 

customers as possible rather than focusing on a small group of more profitable high-consumption 

users [53]. To the developer and investor, output-based subsidies involve more risk than upfront 

capital subsidies. Projects must be financed, built, and operating before the subsidies can be 

accessed. The German development organization Gesellschaft für Internationale 

Zusammenarbeit (GIZ) is currently developing such a subsidy scheme for microgrid 

development in rural Rwanda [54]. Output-based subsidies must therefore be based on clear and 

transparent criteria and policies to mitigate these risks. 

 

Subsidization of operating costs can take several forms. The subsidization of fuel is a commonly 

used subsidy, which is primarily used to reduce the cost of diesel. Diesel subsidies are often 

applied nationally and are not necessarily specific to electricity generation. Such subsidies 

reduce the cost of diesel-based electricity generation, which is then reflected in lower tariffs to 

customers. The use of subsidized diesel, however, comes with an environmental cost and can 

create a long-term burden on national budgets [19]. Several studies have shown the levelized 

cost of electricity from renewable energy is frequently lower than the cost of diesel-generated 

electricity [26], [55], [56]. While conventional generation technologies such as diesel have many 

technical advantages over variable and intermittent renewable energy technologies such as wind 

and solar power, subsidization of diesel has the potential to increase the total economic and 

environmental cost of electricity generation by making lower cost clean technologies less 

attractive. 
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Another form of operational subsidy is direct subsidization of tariffs. This typically takes the 

form a power purchase agreement whereby the owner of the power generation sells the 

electricity generated to a third party, often a state subsidized utility, which then sells this 

electricity at a lower rate. Grid-based electricity in developing countries is often supported by 

public subsidies so that electricity can be sold at rates below the cost of production. Subsidizing 

privately owned and operated microgrids in this way ensures that all electricity consumers have 

access to public subsides and equal tariffs. The power purchase agreements (PPAs) that typically 

accompany this arrangement are designed to ensure long-term revenue security to independent 

power producers (IPPs). PPAs will be discussed in greater detail in section 3.3 on revenue 

models. 

 

An alternative form of direct tariff subsidization is the use of “energy coupons” provided by the 

government. These “coupons” can be redeemed for the purchase of electricity from a microgrid. 

This form of subsidy is given directly to consumers and can be targeted to people with the least 

ability to pay [57]. Such a model grants policy makers a greater ability to create subsidies that 

target the most vulnerable while requiring those with greater means to make greater financial 

contributions to the microgrid. For the microgrid operator, these subsidies serve to broaden their 

customer base and increase revenue. 

 

2.3.1.2 Tax	Incentives	

Tax incentives can also be applied as a way of indirectly subsidizing microgrid electrification 

projects, either in addition to, or in lieu of direct subsidies [58], [59]. They can act as both capital 

and operating cost subsidies. Exemption from and reductions in customs, duties, and other taxes 
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on the importation and procurement of equipment for electrification projects has become a 

common incentive used by governments to reduce the capital costs of such projects. Nepal, for 

example, has exempted certain technologies, such as generators and solar and hydro power 

equipment, from import duties [58]. India has a similar policy provided that the required 

equipment is not produced domestically. Both China and India have reduced value-added tax 

rates for renewable energy equipment [59]. To the extent that such projects would not be realized 

without public support, these tax exemptions do not necessarily reduce government revenue. 

These tax exemptions, however, are vulnerable to abuse. Many microgrid components have 

multiple applications and could result in exemptions being exploited for unintended uses. 

Batteries are one example of possible microgrid components that have a much wider range of 

applications. The World Bank suggests that such abuses can be mitigated by limiting exemptions 

to equipment meeting certain specifications and quality standards [10]. Exemption of microgrids 

from payment of income taxes and other taxes related to the operation of the microgrid is 

sometimes applied as a form of operating cost subsidy [36]. Electricity consumers can be 

subsidized directly by exempting electricity purchases from value-added and sales taxes.  

 

2.3.1.3 Climate	and	Carbon	Finance	

With the high level of interest in integrating renewable energy technologies into rural microgrids, 

it is natural to consider carbon finance as a means of subsidizing the use of clean technologies 

for rural electrification. Carbon finance is based on the value of avoided carbon emissions that 

can be traded on carbon markets, giving the holder the ability to offset emissions in developed 

countries where such emissions are capped or regulated. Credit for emissions reductions is 

measured by establishing a baseline level of emissions. In the context of an isolated microgrid, 
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the baseline could be built around the assumption that the default alternative would be to use 

diesel-based generation [25]. The difference between the diesel baseline emissions factor, 

measured in carbon equivalents per kWh, and the emissions factor for the clean technology 

would then be credited to the project owner based on the amount of electricity generated by the 

system. The goal of carbon finance programs such as the Clean Development Mechanism 

(CDM) is to offset carbon emissions in the developed world while supporting cleaner 

development paths in the developing world [60]. 

 

The literature has given mixed reviews on the potential of carbon finance to fund energy access. 

As it stands, high transaction costs make carbon finance unattractive to small scale energy 

generation projects [28] with a large majority of registered CDM projects to date being large-

scale projects in middle income countries such as China [7]. While the bundling of projects 

under Programmes of Activities (PoAs) and standardized baselines can reduce these transaction 

costs [28], [61], price volatility in carbon markets makes it difficult to build a business case 

reliant on carbon finance [62]. It is therefore unlikely that a private investor would make an 

investment decision on the basis of the availability of carbon-based revenue. 

 

Multilateral funds such as the Global Environmental Facility (GEF) provide other forms of 

climate finance. The objective of the GEF is to finance the incremental cost (the additional cost 

of using clean alternatives over traditional technologies) of using environmentally friendly 

technologies instead of more conventional solutions through grant funding. Because renewable 

energy technologies are often the lowest cost solution in remote rural areas [25], [26], [56], the 

incremental cost may in fact be negative which would render the project ineligible for GEF 
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funding. Furthermore, Zerriffi et al. [60] found that GEF funding for energy access projects did 

not cover the entire incremental cost in roughly half of all cases analyzed. From a purely 

financial perspective, a private investor would have no incentive to pursue clean technologies if 

incremental costs are not met. Even in the case where incremental costs are exactly covered by 

GEF funding, the investor would be neutral between technologies from an economic standpoint. 

Zerriffi et al. [60], however, did find that in some cases incremental costs were exceeded, 

providing a net benefit to the project sponsors. Furthermore, the level of GEF funding is not 

dependent on variable market prices and in this way gives microgrid developers greater certainty 

for decision making than carbon credits. Other multilateral funds for clean energy development 

that provide support for energy access projects include the Climate Investment Fund, the Global 

Energy Efficiency and Renewable Energy Fund, Seed Capital Assistance Facility, and the 

Renewable Energy Enterprise Development program operated by the United Nations 

Environment Programme [61]. 

 

Climate-based financing of electrification projects has not been significant historically and is 

only relevant to projects implementing clean energy solutions. Newer mechanisms such as PoAs 

and other interventions that reduce transaction costs have the potential to increase carbon 

financing for electrification projects [28]. Despite this progress, building a business case 

dependent on carbon finance remains challenging. Uncertain long-term carbon prices add further 

risk to projects that are already considered high risk. 
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2.3.1.4 Preferential	Lending	and	Risk	Guarantees	

Even with a favorable cost structure, microgrid projects can be difficult to finance. Governments 

and development finance institutions (DFIs) have also explored interventions to facilitate the 

ability of electrification projects to secure finance. This can be done by providing debt facilities 

directly or through risk and loan guarantees. To overcome difficulties in securing debt funding 

from commercial banks on acceptable terms, some governments and DFIs have offered investors 

debt funding at preferential rates [7], [61]. These arrangements typically offer lower interest rates 

and longer debt tenors than those available commercially. Additionally, they may offer debt 

finance for projects that would not be able to secure commercial debt under any terms. China has 

been providing low-interest loans for rural energy projects since 1987 [59]. These loans, 

provided at around half the commercial interest rate, have supported a variety of renewable 

energy projects for electricity access in rural areas [63]. 

 

Preferential lending, the provision of debt on concessionary terms, may be appropriate when 

projects are financially viable but perceived to be too risky by commercial lenders. By offering 

debt to projects at concessionary rates, the lender is assuming default risks at a reduced risk 

premium. Preferential lending is only effective when the project has a strong business case and 

attractive return expectation [28]. Concessionary loans can overcome barriers to obtaining debt 

and enhance returns on strong projects. However, leveraging an unprofitable project with debt 

will only serve to amplify losses on equity. Gunning [53] also notes that there exists some 

controversy over interventions that “distort market conditions” such as offering financial services 

under conditions not available on the market. 
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As an alternative to direct lending to projects, governments and DFIs have also offered loan or 

partial risk guarantees to assist projects in securing debt funding from commercial institutions. 

Under a loan guarantee, the guarantor agrees to become liable for all or a portion of debt to the 

funding institutions in the case of default. Partial risk guarantees are provided by organizations 

such as the World Bank and provide private lenders with assurance that the guarantor will fulfill 

government obligations towards the private sector project in the case of nonperformance [64]. 

Such guarantees may permit projects unable to obtain debt finance to secure the required funds 

or, for risky projects, to secure debt on more favorable terms. Loan guarantees transfer risk from 

project owners or financiers to the guaranteeing government or organization. The expected cost 

of loan guarantees is much more difficult to gauge than other financial support mechanisms 

because the probability of default is unknown. Loan guarantees require no initial cost to the 

guarantor but risk becoming a heavy financial burden should project risks turn into defaults on 

debt [49]. Partial risk guarantees must be purchased by the government or entity securing the 

guarantee on behalf of private sector actors therefore increasing the cost of the intervention, be it 

subsidies or concession contracts [64].  

 

One reason that lenders are averse to providing debt to microgrid electrification projects is that 

they are unfamiliar with such projects and do not know how to properly assess the project risks 

[35]. Loan guarantees can help generate the experience and track record necessary for 

commercial lenders to begin lending to future projects without such strict terms. A unique 

lending approach was taken by commercial banks in Rwanda to obtain security on debt provided 

for microhydro power projects developed by public-private partnerships. Because of the 

unfamiliarity of the banks with hydropower investments and the associated risks, they were 
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unwilling to provide debt on the basis of projected cash flows from electricity sales. The agreed-

upon solution was that the banks would purchase the turbines used in the projects and lease them 

back to the project owners as a form of collateral. The assets of the project owner and 

shareholders were additionally required as loan guarantees. Such extreme conditions such as the 

inclusion of shareholders’ private assets as security are certain to deter many potential investors. 

However, it is likely that such conditions would be relaxed as lenders gain more experience and 

comfort with the technology and business model [35]. 

 

It is also possible to support access through the provision of microfinance to rural electricity 

consumers [61]. Part of the capital cost required to establish microgrid connections is shared 

with customers through the payment of connection fees. Connection fees are meant to cover the 

cost of physically linking customers to the grid. These costs can be a significant barrier for low-

income consumers who may otherwise be able to pay for electricity service. Removing this 

barrier promotes wider access to electricity service permitting government to achieve social and 

equity objectives and providing microgrid operators with more customers. Micro-finance for 

connection costs can be provided by third parties or directly by microgrid operators, who can 

collect loan payments over time along with service payments. As will be discussed in section 3.2, 

common electrical appliances can be bundled into this cost to provide greater benefit to users 

while stimulating increased electricity demand on the microgrid. 
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2.3.1.5 Public	Service	Concessions	

While not strictly a financial support intervention, the awarding of concessions to private 

companies for electrification of geographic areas is a means by which governments can mitigate 

long-term project risks by isolating investors from competition. The concession model awards 

private companies monopoly rights to distribute and retail electricity in a geographic area. These 

concessions typically include an obligation on the concessionaire to maintain a specified level of 

service and to connect all or some minimum number of customers within their concession. At 

times it has been difficult to attract private sector interest for concessions in rural areas, which 

are viewed as challenging, risky, or potentially unprofitable. Some countries have therefore 

elected to bundle concessions. Through this approach, concessions to distribute electricity in 

dense urban areas are bundled with less attractive rural concessions [16], [27]. For example, in 

the 1990’s, Argentina launched a program to expand rural electricity access by offering 

concessions to private companies, which would then receive subsidies from the local provincial 

government. Concessionaires were selected based on predefined criteria, which included the 

amount of subsidy that they would require to implement the project. The concessions provided 

for a 15-year monopoly under regulated tariffs. Under the terms of the contract, the 

concessionaire was required to provide service to all households and public facilities within their 

concession provided their accounts were in good standing [27]. 

 

Due to the long term and regulated nature of private concessions, a transparent tariff and subsidy 

setting process is essential to providing certainty to concessionaires while ensuring that public 

money is spent in a responsible manner and consumer interests are protected. Subsidies can 

include initial connection costs and ongoing tariff and operating expense support. Concession 
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contracts must clearly define the terms of the agreement. Important terms include the way in 

which risk is shared, incentive schemes, as previously described, and performance standards with 

associated penalties when these standards are not met [65]. 

 

Mostert [16] distinguishes between decentralized and centralized electrification approaches. In 

the context of concessions, this reflects the size of concessions offered. Large concessions, which 

divide territories into a small number of large areas, are more likely to attract large foreign 

utilities that can leverage greater economies of scale. However, in regions that are viewed as 

particularly high risk, such as sub-Saharan Africa, such public tenders may fail to attract viable 

bids. Concessions in a decentralized approach may include a mix of small-to-medium and large 

concession areas and encourage the participation of multiple players including local companies 

and investors. These smaller projects may suffer from higher relative transaction costs and less 

favorable economies of scale. This could act as a deterrent to larger international investors, 

allowing room for domestic businesses to participate. The decentralized approach tends to attract 

a larger number of participants resulting in a more competitive market at the cost of economies 

of scale [16]. 

 

2.3.2 	Securing	and	Stimulating	Demand	

One of the key challenges to building a sustainable microgrid model while maintaining an 

affordable tariff structure is generating sufficient demand for electricity, which will produce 

enough revenue to cover operating costs, repay debt, and provide returns for investors. 

Approaches to overcoming this challenge have included simply selecting sites with more energy-

intensive customers, taking measures to stimulate demand by enabling customers to use more 
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electricity, and establishing commercial and light industrial facilities that require electricity and 

generate local income. 

 

The first step in securing sufficient electricity demand is to target communities that are likely to 

require more energy. Not only does this increase the economic sustainability of the microgrid, it 

is also likely to result in greater developmental benefits to the electrified community. 

Communities with higher potential electricity demand have higher levels of commercial and 

industrial activity, access to markets through transportation infrastructure, and potential to 

exploit nearby tourist sites or high agricultural potential. Proper site selection may include the 

identification of one or more anchor customers that have high, reliable electricity demand, and 

the ability to pay for electricity at an attractive tariff. These anchor customers range from rural 

industries, to public buildings, to infrastructure systems such as base transceiver stations (BTS) 

for mobile phone networks [16], [66]. 

 

BTSs for mobile networks are particularly promising anchor customers. These facilities are 

widespread in off-grid areas across developing countries, about 639,000 at the end of 2012. In an 

off-grid situation, they are typically powered by diesel generators or, increasingly, stand-alone 

hybrid renewable energy systems [67]. Electricity provision to BTSs is estimated to make up 

around 40% of mobile network operators’ (MNOs) operating costs [68]. MNOs are therefore 

eager to reduce the cost of electricity provision and have been selling their BTS sites at a rapid 

rate to independent tower operators, who then lease capacity on the sites back to the operators. 

This trend has also encouraged tower sharing resulting in larger loads at BTS sites. BTSs have 

several desirable qualities as anchor customers for microgrids. They provide a high level of 
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certainty regarding electricity demand and have a very predictable and flat load profile for which 

it is easy to design a power supply [69]. They do require a high level of reliability, but 

considering their current energy costs, would likely be willing to pay a premium for it. They are 

expected to have a high payment morality and new off-grid BTS sites are being installed 

everyday. Given the rapid rate at which new BTS sites are being established [67], it is likely that 

they will be reliable longer-term customers. 

 

Rural industries such as mineral extraction and agro-processing facilities are also potential 

anchor customers. These customers typically have substantial electricity demand and, provided 

they are operating at a profit and rely on electricity for their operations, should exhibit good 

payment morality. However, they are also more likely to have challenging load profiles with 

significant variability and intermittency. This may result in higher cost power supply systems. 

Furthermore, relying on temporary anchors customers like mines, may create a risk to the 

microgrid, as they are designed around the energy needs of the anchor. Failure of the anchor 

typically leads to failure of the microgrid. The use of multiple anchors can mitigate this risk. 

 

Public service buildings can also serve as anchors but they typically do not require large amounts 

of power. Typical loads at schools, for example, may include lighting, a few computers, and 

perhaps some audio-visual equipment. While loads from schools, health clinics, and 

administrative offices consume more energy than households and generate daytime demand that 

complements residential morning and evening peaks, they are not likely to be substantial 

anchors. Heating and air conditioning loads, while not common in many rural developing 

country contexts, could represent a significant load. In any case, the existence of such 
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infrastructure is a positive attribute for a potential microgrid site. 

 

Regardless of the presence of an anchor customer, the largest proportion of customers in a 

microgrid is likely to be households. Households are generally low-demand customers. 

Particularly after first connection, households do not possess many electrical appliances and the 

upfront investment required to obtain them is a barrier to increased electricity demand. Many 

companies offering solar home systems in off-grid areas on a fee-for-service or micro-finance 

basis have bundled the most desired appliances with their systems. This enables customers to 

obtain greater utility from their systems and also allows companies to upsell clients to larger 

systems that can power televisions and sound systems. Microgrid operators could stimulate 

demand on a microgrid in a similar manner [28]. As discussed in section 2.3.1, the offer of 

microfinance to fund connection costs can help overcome barriers related to upfront costs. 

Providing microfinance for both connection costs and appliances simultaneously has the 

potential to stimulate greater electricity demand in the residential and small enterprise sector.  

 

Providing assistance to community members to invest in and benefit from the productive use of 

electricity can also generate demand and increase the affordability of electricity to customers 

[28]. This requires strong integration with the community and a good understanding of 

community needs. Potential projects include electric mills, water pumping, workshops, and 

irrigation. Income-generating activities are particularly appropriate as they increase the ability of 

customers to pay for electricity. 
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2.3.3 Microgrid	Revenue	Models	

Securing predictable long-term revenue streams is a key determinant of microgrid success. The 

previous section described different strategies employed to establish demand for electricity. The 

importance of securing demand stems from the assumption that revenue and electricity demand 

are closely tied, as is the case in the metered business models used by traditional utilities. The 

coupling of revenue and demand however, depends on the revenue model microgrid operators 

adopt. Several private microgrid operators have implemented tariffs based on access to services 

such as lighting and charging rather than consumption of kWhs. This section reviews several 

microgrid revenue models followed by a brief overview of revenue collection systems and 

technologies. Figure 2-3 summarizes the tariff and revenue collection models that are discussed. 

 

Figure	2-3	Overview	of	tariff	and	revenue	collection	models	

 
Perhaps the lowest risk model for microgrid operators is the sale of electricity to a reliable third 

party under a long-term PPA. This third party, most often a state subsidized utility, will then 

retail the power to end-users.  PPAs have traditionally been used to encourage private electricity 

generation in a grid-connected setting. IPPs are privately owned and operated electricity 
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generators who sell power under a PPA to either an electricity trader, an electricity distributor, or 

directly to an end user. When a public entity is offering the PPA, the payment received by the 

IPP for each unit of energy delivered is called a feed-in tariff (FIT). 

 

Several countries have attempted to attract IPPs to generate electricity under a PPA to feed into 

existing utility-owned microgrids. These grids are typically powered at great expense by diesel 

generators. Current prices for renewable energy such as wind and photovoltaic power can be 

significantly lower than the cost of diesel generation depending on local energy resources. 

Although the generation capacities required for these microgrids are much lower than those 

required for systems connected to the main grid, a price premium is often offered for generators 

on microgrids. Kenya, for example, offers $0.12/kWh for a system connected to the main grid 

but $0.20/kWh for systems connecting to microgrids [70]. Tanzania also offers significantly 

higher rates for IPPs feeding into microgrids [71]. 

 

However, it is not just the FIT that is important in attracting private sector investors. The 

counterparty to these agreements must be ‘bankable’ and there must be long-term certainty 

regarding tariffs to ensure that the project will produce a reasonable return on investment. As an 

example, Tanzania offers PPAs to IPPs on different terms for generators linked to grid-connected 

and isolated microgrid systems. A major shortcoming of the Tanzanian standardized PPA is that, 

in the event that isolated microgrids are connected to the main grid, PPAs for IPPs feeding into 

microgrids will be terminated and given the option to sign a new PPA under the terms and tariffs 

for grid-connected systems [64], [72]. The low tariff for grid-connected systems is not viable for 

most renewable energy projects. The risk that the main grid may arrive before the project is fully 
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amortized is likely to prevent would-be project developers from securing debt finance. 

 

Another important attribute of the PPA is the duration of the agreement, which should be at least 

as long as the debt tenor. In the case of renewable energy projects, such as wind and solar 

photovoltaic power, this is typically 15 years or more due to the capital-intensive nature of these 

technologies. Having standardized documents setting out the terms and conditions for IPPs and 

clearly defined processes for the development, approval, and interconnection of these generators 

can greatly reduce the transaction cost of these projects as well. Transaction costs can be a major 

barrier for small projects where these costs may represent a significant portion of the total project 

development and capital cost. 

 

The limited size of microgrid loads also creates the possibility that at times the full power being 

produced by an embedded renewable energy IPP might not be required or would cause 

conventional generators to operate below minimum load factors. In this case, these renewable 

energy generators might be required to curtail their output. Project investors and financiers will 

therefore likely insist that the IPP be compensated even for energy that is curtailed to de-risk the 

project from uncertainties related to electricity demand. This risk is particularly important to 

mitigate in microgrids that are fully owned and operated by private companies. In such instances, 

risks related to electricity demand on the system fall entirely on the owner of the microgrid. To 

eliminate this risk and encourage investment in microgrids that are entirely owned and operated 

by the private sector, Rwanda has embarked on an innovative pilot project that offers privately 

operated projects compensation based on the availability of power on the microgrid. The detailed 

terms of the arrangement have not yet been made public but based on pre-qualification 
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documents released by Rwanda’s public utility Rwanda Energy Group (REG), the microgrids 

will be owned and operated privately but the power will be purchased and retailed to consumers 

by REG [73]. This relieves the microgrid operator of risks related to demand and the complexity 

of setting up revenue collection systems. Furthermore, REG will retail the electricity to 

consumers at the regulated tariff thereby providing microgrid customers access to subsidies 

afforded to grid-connected consumers. Public subsidies of electricity are significant in Rwanda 

where the costs of generating and delivering a kWh of electricity are currently 200 Rwf 

(US$0.29) and the retail tariff (at the time the work was completed) is 134 Rwf (US$0.20) [74]. 

While this system increases the cost of public subsidization of electricity, it does provide equal 

access to such subsidies to the so-called “geographically disadvantaged” [30]. 

 

Most often, long-term PPAs with a third-party retailer have not been available to privately 

owned and operated microgrids. For microgrids that retail electricity directly to end users, there 

are various revenue models that have been explored to meet the needs of both consumers and 

microgrid operators. Tariff models typically fall into two categories: tariffs based on energy 

consumption and tariffs based on maximum power consumption. There are arguments for the 

appropriateness of both revenue models. Energy-based tariffs could be seen as more equitable. 

Those who consume the most electricity pay the most. Others have observed that the 

predictability of a fixed monthly rate for a connection limited by the amount of power that can be 

drawn makes it easier for consumers to budget their limited incomes. Furthermore, it has been 

argued that fixed tariffs are more appropriate for microgrids because the cost structure of 

microgrids is largely composed of fixed costs [50].  
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Fixed monthly payments can be based on the demand from a certain number of appliances, most 

often light bulbs, or on a maximum allowable power draw from the microgrid. Microgrids with 

tariffs based on maximum power consumption often enforce this policy by installing load 

limiting devices that disconnect the customer when their demand exceeds the limit to which they 

have subscribed [40], [75]. In the absence of a physical limitation on power consumption, some 

microgrid operators have instituted strict penalties for those found to have installed unauthorized 

appliances that exceed their allotted power [40]. With such an arrangement, customers are 

limited in how they can use the microgrid, but are not limited in how long they can use it. This 

revenue model may be less appropriate for microgrids powered by operating expense-intensive 

generation technologies such as diesel generators for which operating cost is closely tied to the 

amount of electricity generated. However, with a capital-intensive generator such as a solar 

array, the operating cost is not related to the electricity produced but rather the installed 

generation capacity. Higher than anticipated electricity consumption in a diesel powered 

microgrid using fixed tariffs, could result in revenues that are insufficient to meet operating 

costs. 

 

The more traditional tariff structure is based on the number of kWhs consumed by the customer. 

This system requires the installation of electricity meters, which increases the cost of 

connections. Energy consumption-based tariffs can use either prepaid or postpaid revenue 

collection systems. The literature emphasizes the need for tariffs that can at least recover the cost 

of operation while remaining as affordable as possible [50]. Keeping tariffs at affordable but 

sustainable levels permits broader access to energy services within communities. Having more 

customers spreads fixed costs among a larger pool. Microgrid operators seeking to maximize 
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their return must strike a balance between higher tariffs and a larger customer base. 

 

Lessons can also be learned from fee-for-service solar home system companies. Most of these 

companies charge a flat rate for their services because their cost structure consists almost entirely 

of fixed costs associated with financing hardware, providing maintenance, and customer 

services. Microgrids, particularly those relying on renewable energy, also have high fixed costs. 

The potential for demand falling short of expectations presents a significant risk for microgrids 

with high fixed costs. A revenue model similar to that of solar home systems may be appropriate 

while still permitting user access to electricity services without consumption limitations. 

 

A hybrid revenue model where customers pay a fixed monthly charge that permits the use of a 

fixed amount of kWhs per month, with excess consumption charged at an energy based tariff, 

would ensure that fixed costs are met. At the same time, it would ensure that those who consume 

less do not subsidize more energy-intensive customers. As previously discussed, basic electrical 

appliances can be financed and bundled into this monthly charge to ensure that consumers have 

the equipment needed to benefit from the basic electricity allowance. 

 

Regardless of the revenue model employed, revenue collection can be a financial, technical, and 

logistical challenge in remote rural areas. Prepaid meters have become increasingly popular even 

in grid-connected settings [76], [77]. In such a system, revenues are collected prior to 

consumption and customers are disconnected automatically when their credit is exhausted. These 

meters reduce the cost and complexity of billing and revenue collection and allow customers to 

avoid consuming more electricity than they can afford [78]. Experience from Peru has shown 
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about a 66% reduction in revenue collection costs using prepayment meters over traditional 

revenue collection methods. While prepaid meters are more expensive than traditional meters, 

the operating cost savings were found to pay for the increased cost of meters in 5 years [7]. 

 

Community participation has also been found to be crucial to maintaining high collection rates 

and good payment morality. Cooperatives and projects involving local community committees 

have shown significantly higher payment rates and lower incidences of electricity theft. In some 

cases, community management has provided a reduction in electricity theft from as high as 35% 

down to 15% and settlement of accounts in arrears for up to 5 years [7].  

 

Regardless of the payment method, seasonal income patterns will inevitably create problems for 

consumers in some regions. The World Bank’s Energy Sector Management Assistance Program 

(ESMAP) advises that flexible payment options be adopted for those who do not receive regular 

incomes. This can take several forms, including large prepayments when seasonal incomes are 

received or less frequent collection of payment designed to correspond with influxes of income 

such as after harvests [40]. Some energy service companies in East Africa that operate solar 

home system services allow systems to be paid off over a number of years and permit users a 

fixed grace period during a year to accommodate customers with cash flow problems. Customers 

who are in a grace period have their services disconnected remotely through the mobile phone 

network. If the grace period becomes exhausted, the system is repossessed. This is an 

undesirable result for both the service provider and the customer because collection of systems 

located in rural areas represents a significant cost. 
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The remote disconnection of service described in the previous example is possible through the 

integration of mobile communication chips into the solar home system hardware, which permits 

communication with the device via the mobile phone network. Such technology could also be 

integrated into microgrids so that users that have not paid for their service can be disconnected 

without the need for a technician to go to the premises and manually disconnect service. 

Furthermore, mobile money systems, which began in Kenya and are now growing in popularity 

around the world, can be used to collect payments through mobile money transfers [79]-[81]. A 

portion of each transaction will go to mobile network operators as a service fee. This service fee 

non-withstanding, acceptance and uptake of the technology can simplify revenue collection by 

leveraging existing mobile network payment infrastructure. Mobile payment paired with remote 

disconnection through the mobile network can vastly reduce the complexity of revenue 

collection. Mobisol, for example, provides electricity services through solar home systems 

ranging in size from 15W to 200W [79]. Using a mobile connection, Mobisol can monitor 

customer use of electricity and system performance, and remotely unlock systems for use after 

payment. Remote monitoring of system performance permits remote diagnosis of technical 

issues and fast response for maintenance and repairs [81]. Such a system, of course, necessitates 

the existence of a mobile network that offers mobile money services at the microgrid site.  

 

2.3.4 Institutional	Models	

The effective design and implementation of any rural electrification program depends on the 

existence of effective institutions. According to Irwin [49], institutions are “the set of rules 

governing decision making” and includes “who is involved in making which decisions, who has 

the right to be consulted and make recommendations to the decision makers, what justifications 
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must the decision makers provide about the decision, what monitoring of the results of the 

decision must be undertaken.” Institutional structures for rural electrification will typically 

include government ministries for finance and energy, regulators, private sector actors (including 

developers, investors, technology providers and lenders), multilateral institutions, non-

governmental organizations, donors, and community representatives. Effective institutional 

structures must ensure that decision makers have positive incentives to make good decisions. 

This means establishing accountability, avoiding conflicts of interest, and ensuring that decision 

makers have access to the information required to make good decisions [49]. 

 

Overly complex, opaque, or poorly defined institutional structures can be a significant barrier to 

private sector participation. Overlapping and conflicting institutional functions and poor 

interagency coordination can make the institutional landscape difficult and expensive to navigate 

for project developers [19]. The results are higher transaction costs, more red tape, and often the 

deterrence of any private sector investment. This has led to many countries developing dedicated 

rural electrification agencies that are tasked to be a central point of contact for electrification 

activities and to enforce regulations.  

 

Gridded electricity distribution is a natural monopoly [14]. Given that the purpose of 

electrification is often to enhance livelihoods and social welfare at the base of the pyramid, 

public support is generally required to make electricity services affordable to the poor in 

developing countries. As such, effective regulation of the electricity industry, and rural 

electrification activities in particular, is essential. The role of the regulator is to create an 

environment that both promotes investment and protects the public interest. This is a delicate 
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balance that is prone to political interference. Common regulatory functions are tariff setting, 

granting licenses, guaranteeing service quality through enforcement of standards, and providing 

a forum for complaints [82]. 

 

Tariff setting is one of the most crucial roles that regulators play because the tariffs that 

microgrid operators are permitted to charge their customers lies at the heart of project 

profitability. In many jurisdictions, small generators, including microgrids, are exempt from 

tariff regulation and are permitted to fix their own tariffs or to do so in consultation with the local 

community [82]. Where exemptions do not exist, microgrids are sometimes subject to blanket 

tariff regulations that apply to all electricity distributors. These tariffs are generally designed for 

large utilities that are often state-owned and benefit from public subsidies. While such tariffs 

promote equitable energy costs nationally, they are not well adapted to microgrid cost structures 

that are often much higher than grid-based electricity on a per unit basis. Without some sort of 

subsidization, these tariffs will most often render microgrid projects unviable. 

 

Other regulators make tariff decisions on a case-by-case basis. A “cost plus” model is frequently 

employed to ensure that investors are able to cover their costs plus a reasonable return [53]. The 

definition of a reasonable return is left to the regulator but should balance affordability, 

recognition of the opportunity costs incurred and risks carried by the microgrid investor. Cost 

plus models can also be tied to subsidies where tariffs are fixed below cost for social reasons. In 

such a case, the regulator will determine subsidies based on a fixed target return for the 

microgrid owner. Such a model comes with an administrative burden due to requirements for 

project operators to furnish detailed financial information that regulators must assess in 
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determining subsidies. It also reduces operator incentive to control cost because a fixed return is 

guaranteed [53]. 

 

Regulators are also commonly tasked with adjudicating applications for electricity generation 

and distribution licenses. Licensing requirements are meant to ensure that service companies 

provide a minimum level of service quality and consumer protection. Overly stringent licensing 

requirements can create large administrative burdens on private operators and increase 

transaction costs that operators will attempt to pass on to customers. The role of the regulator is 

to strike a balance between protecting the interests of investors and consumers [82]. These 

requirements are typically very context-specific and no general prescriptions can be offered. 

 

The creation and enforcement of standards also often falls to regulatory agencies. These 

standards are meant to ensure service quality and safety. The World Bank advises against over-

regulation of microgrids and advocates the use of different standards on the basis of system size, 

with the smallest systems being required only to register and file annual reports [10]. The 

regulator must find a balance between ensuring quality service and minimizing costs. If it is 

envisioned that in the future microgrids will be integrated with a larger grid, standards should 

ensure compatibility to avoid costs related to infrastructure that must be replaced or upgraded. 

 

Finally, policy makers also have a role in creating an environment conducive to the development 

of business and industry that supports electrification activities.  In many developing countries, 

the equipment and skills required to implement rural electrification projects are not available 

locally in sufficient quantity or quality [61], [83]. Importation of equipment and hiring of foreign 
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consultants add cost and complexity to electrification projects, including microgrid-based 

projects [16]. Steady and predictable investment in electrification activities stimulates the 

development of local supply chains and skilled labor, which in turn reduces prices and 

transaction costs. However, supply chains and pools of labor take time to develop and will only 

take hold when steady investment takes place. This requires a steady flow of funds to projects. 

Further, institutions of vocational and higher education tied to programs that prevent “brain 

drain” can also support electricity access and should be a priority for governments. 

 

2.4 	Discussion		

Active participation and investment from private sector actors are essential if ambitious goals to 

expand access to electricity in the developing world are to be achieved. Decentralized microgrid-

based projects will play an important role in ensuring that people who are far from the grid are 

not left waiting in the dark for decades to come. As it stands, microgrid electrification projects 

are not attractive opportunities for the private sector due to high levels of risk and potentially low 

returns. Unlocking this investment will require innovation on the part of businesses, carefully 

designed policies as well as incentive programs from the public sector and donor community. 

 

Innovative entrepreneurs will need to find ways to secure reliable revenue streams while 

minimizing costs. Several opportunities exist including the leveraging of anchor clients such as 

off-grid cell phone towers, decoupling revenue and demand with service based models and 

providing microfinance to households and small businesses to purchase electrical appliances. 
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The objectives of electrification are often social in nature, providing a strong justification for 

public sector intervention and subsidization. Many subsidy models have been proposed and 

implemented. Capital subsidies have traditionally been viewed as more sustainable than 

subsidies on operating costs. Output-based subsidies acting as both capital and operating 

subsidies have the ability to tie subsidies to performance and specific policy objectives. Long-

term power purchase agreements between private operators and public utilities also have the 

potential to mitigate risks and extend public grid-based subsidies to rural electricity consumers. 

As has been proposed in Rwanda, private operators can own and operate decentralized grids 

while selling the power to the state-owned utility that retails the electricity using existing prepaid 

electricity systems and distribution channels. 

 

Even with a strong subsidy program that improves the profitability of decentralized 

electrification projects, developers are often unable to secure the required financing to realize the 

project. Risk-averse lenders that are often unfamiliar with and unable to assess the merits of such 

projects may require guarantees from a third party. This may come in the form of a loan 

guarantee from a government or a partial risk guarantee from an organization such as the World 

Bank. Direct lending from governments and development finance institutions at concessionary 

rates can address this problem as well. 

 

The allocation of rural electrification concessions has had success in South America in 

encouraging private sector-based electrification, although not necessarily through microgrids. 

Concessions provide private operators with protection from competition in the medium to long-
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term. These have often been accompanied by subsidies or have been attached to more attractive 

urban concessions. 

 

Strong and effective institutions and policy must support all of these public interventions. 

Ineffective institutions unnecessarily increase transaction costs and lead times, which could deter 

investment entirely. A common policy barrier that must be overcome is a blanket electricity tariff 

cap that renders private projects unviable without access to the same subsidies received by 

distributors on the central grid. 

 

There is still a lot of work that can be done to reduce uncertainties in microgrid business models 

and better understand ways that government and the donor community can support sustainable 

private sector electrification projects. More work is needed to understand the way that rural 

populations use electricity after first receiving access and how this behavior evolves over time. 

Uncertainty about electricity demand remains a major challenge in building strong business cases 

for privately operated microgrids. A greater understanding of factors influencing rural electricity 

demand and how rural consumers respond to price and different tariff schemes would greatly 

improve the ability of potential project developers to meet the needs of rural consumers and 

create sustainable and bankable projects. 

 

Additionally, very little quantitative work has been completed to date to understand the 

comparative costs and benefits of the public interventions described in this thesis and how these 

interventions affect the risks and returns faced by private sector investors in microgrid 

electrification projects. In order to ensure that limited public and donor funds are allocated in the 
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most cost effective manner, more work is needed to quantify the risks and benefits of the various 

support measures that could be pursued. All of the above mentioned challenges have to be 

addressed in a collective manner. Only after that will it be possible to use the untapped energy 

resources in developing countries. Large masses will be energized with microgrids that rely on 

the distributed energy resources and operate in a sustainable and reliable manner.  
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3 An	Investment	Risk	Assessment	of	Microgrid	Utilities	for	Rural	
Electrification	Using	the	Stochastic	Techno-Economic	Microgrid	
Model:	A	Case	Study	in	Rwanda	

 
3.1 Introduction	

As discussed in Chapter 2, access to electrical energy is an enabler and driver of economic 

growth and development [84] and yet, more than 1.2 billion people in the world today still lack 

access to reliable electricity services [85]. The regions most affected are also the least urbanized 

in the world [86] and the cost of reaching rural populations with a centralized grid are high [24]. 

With the decreasing cost of distributed generation technologies such as photovoltaics (PV) and 

wind, decentralized systems are now, in many cases, a lower cost solution to rural electricity 

service provision than extension of the electricity grid [25], [26]. However, a barrier for both 

centralized and decentralized electrification programs has been a scarcity of capital from public 

sources and the donor community [87]. As a result, the pace of progress towards meeting 

ambitious energy access goals has been slow. Governments have looked to the private sector to 

fill the gap, but high-perceived risk has been a stumbling block [87]. Unfortunately, there is a 

lack of quantitative analysis to critically evaluate the key drivers of risk in microgrid utilities, or 

how different business models and technologies affect the potential for these projects to attract 

finance and scale up deployment. Using a Stochastic Techno-Economic Microgrid Model 

(STEMM), this chapter presents a risk analysis of the key uncertain factors affecting microgrid 

utility business models. The key contributions of this work are the identification of important 

risk factors in microgrid utility projects and how choices of technology and tariff models affect 

these risks. 
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3.2 Methods	

STEMM models microgrid utilities as ring-fenced corporate entities. The model consists of two 

primary components: a technical model and a financial model. These models are linked to 

simulate connections between technical design and performance and financial outcomes. 

STEMM is designed from an investor’s perspective; therefore, primary model outputs are 

financial indicators meant to shed light on the attractiveness of the microgrid as an investment 

opportunity to equity investors and lenders. The core strength of STEMM is its ability to 

compute these metrics probabilistically so as to account for risk and uncertainty. Debt Service 

Coverage Ratio (DSCR) measures the “bankability” of the project. Lenders use the DSCR to 

determine whether or not the expected project cash flows will be sufficient to repay a loan on 

schedule. The DSCR is the ratio of cash available to repay debt to the debt payment owed in a 

period. A DSCR of less than one indicates that the project cannot pay its debt from project 

revenues. Similarly, the net present value (NPV) of projected equity cash flows measures the 

attractiveness of the project to equity investors. The equity NPV is the net present value of equity 

cash flows discounted by a target return on equity. An equity NPV greater than or equal to zero 

means that project meets or exceeds the target return or cost of equity. In addition to equity NPV 

and DSCR, STEMM also computes a levelized cost of electricity (LCOE). While LCOE serves 

as a metric to compare the costs of different generating technologies, it is not widely used as an 

investment metric and is thus excluded from the analysis in this chapter.  

 

STEMM is implemented in Analytica  [88], a flexible modeling tool in which any input can be 

modeled as uncertain (as a distribution) or deterministic (as a point value). This provides the user 

flexibility in determining which uncertainties to model explicitly as distributions or 
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parametrically. STEMM explicitly models some inputs, including fuel price, exchange rates, 

electricity demand, and solar resource as uncertain. The model propagates uncertainties using 

Monte Carlo simulation. In this chapter, I use a 10-year model horizon, based on the assumption 

of a 10-year debt tenor and that equity investors will take a relative short-term view, given risks 

that are more difficult to quantify such as grid encroachment. Shorter debt tenors result in larger 

debt payments early in the project life and lower DSCRs. Longer debt tenors have higher DSCRs 

but are exposed to similar risks as equity such as grid encroachment and will therefore be 

difficult to secure. The 10-year debt tenor has been selected as a realistic value that balances 

these considerations. 

 

3.2.1 Technical	Model	

The technical module in STEMM simulates microgrid performance at an hourly resolution over 

the model horizon. It is currently capable of modeling multiple AC loads, a solar photovoltaic 

generator, multiple diesel generators, and battery-based energy storage. Figure 3-1 depicts the 

general system configuration of STEMM. Key outputs of the technical model that feed into the 

financial model include satisfied and unsatisfied customer demand, fuel consumption, and 

microgrid component runtimes. 

 

Figure	3-1	General	microgrid	technical	configuration	in	STEMM.	
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STEMM allows the use of multiple diesel generators while aggregating all photovoltaic 

generation into a single array. STEMM operates under the assumption that diesel generators are 

available to supply power at any time step at load factors between a user specified minimum and 

100%. The case studies in this paper assume a typical minimum load factor of 30%. The diesel 

generator’s fuel consumption is linearly related to electrical output with a non-zero, no-load fuel 

consumption of the form 

𝐹"#" = 𝐹%&'( ∙ 𝑃(+, + 𝐹,. 

where 𝐹"#" is the total fuel consumption at each time step, 𝐹%&'( is the marginal fuel 

consumption per kW of generator output at each time step (𝑃(+,), and 𝐹,. is the no-load fuel 

consumption at each time step. 

 

The PV generator module in STEMM relies on equations that estimate PV module fill factor, and 

therefore assumes the PV array operates at the maximum power point (MMP). The outputs of the 

model include hourly AC and DC maximum PV power availability, which feed into the dispatch 

model to determine the schedule for meeting demand and charging the batteries. Uncertainty in 

the PV module results from uncertainty in the meteorological data and as well as uncertain loss 

and module degradation inputs. The case studies in this paper use hourly solar resource data from 

the HelioClim-3 database and include temperature corrections and uncertainty, as described in 

Appendix A. In addition, STEMM includes a storage model that simulates the performance of a 

lead-acid battery bank using a version of the kinetic battery model (KiBaM) [89] and a capacity 

fade model to estimate battery lifetime and capacity degradation [90], also described in more 

detail in Appendix A. 
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Demand on the microgrid can be modeled as a single load or as multiple loads that can be 

controlled independently. This allows the STEMM user to prioritize certain loads over others in 

the case of a shortfall in supply, and/or to implement different tariff structures for each load. 

Expected load profiles are user-defined on an hourly basis for each month of the year. Because 

electricity demand is usually a key uncertainty for microgrids, STEMM accounts for uncertainty 

in the load profiles, as described in more detail in Appendix A. In addition, STEMM can model 

tariffs changing in real terms over time (for example, if tariffs move with the price of diesel), in 

which case the model relies on a constant price elasticity of demand to adjust customer demand. 

Finally, STEMM has the ability to account for demand growth over time as an annual growth 

rate. Demand growth in newly electrified communities is poorly studied and inputs are difficult 

to estimate. Furthermore, accurate modeling of demand growth should include decisions to 

expand generating capacity on the grid over time. In the future, such functionality will be added 

to STEMM. This chapter, however, only includes case studies in which there is a single 

aggregate load without prioritization between customers and without demand growth. The 

chapter also includes cases with tariffs both fixed in real terms and linked to fuel prices.  

 

The core of the technical module in STEMM is the dispatch model, which determines how 

generation and storage resources operate to meet demand and charge the battery bank. In the case 

of a shortfall in generation capacity, it also determines which loads to serve and which loads to 

shed. The manner in which load-shedding occurs depends on the technology deployed in the 

grid. Figure 3-2 provides an overview of the data flows between other technical modules and the 

dispatch module. The details of the dispatch algorithm are available in Appendix A. It is also 

worth noting that STEMM models the distribution system as having technical and non-technical 
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losses equal to a percentage of the total energy delivered on the system. Strictly speaking, non-

technical losses are not losses due to the distribution system, as they represent electricity theft 

and uncollected revenue; however, both losses represent load that does not generate revenue.  

 

Figure	3-2	STEMM	technical	model	influence	diagram.	

 
The dispatch algorithm in STEMM currently provides two load-shedding algorithm options for 

cases when supply is not sufficient to satisfy demand. The algorithms depend on the level of 

control the grid operator can exert on demand. In the simplest case, the operator is only able to 

shed entire circuits on the grid, represented in the model as loads. Deployment of smart meters 

can enable microgrid operators to control demand on a finer scale. In the case where operators 

are able to disconnect individual customers, the system is able to serve partial loads. Figure 3-3 

illustrates the load-shed algorithms available in STEMM. For this chapter I use the “shed by 

load” algorithm with a single load. 

 

When dispatchable generators are combined with battery storage, STEMM offers two options for 

the way in which generator and battery dispatch/charging is done. In the ‘load following’ 

algorithm, batteries are dispatched last and recharged only with solar power. In the ‘charge 

cycling’ algorithm, batteries are dispatched after solar and before diesel generation subject to 

constraints on battery state of charge. Excess generation capacity on dispatched diesel generators 
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is used to charge batteries when they are not discharging. Further details can be found in 

Appendix A. The simulations in this chapter use the charging cycling algorithm. 

 

Figure	3-3	Comparison	of	load	shedding	algorithms.	In	the	shed	by	load	scenario,	any	load	that	cannot	be	met	
completely	is	shed;	while	in	the	shed	by	customer	scenario,	partial	loads	can	be	supplied.	The	lighter	colors	in	

the	figure	represent	loads	shed.	

 
3.2.2 Financial	Model	

The primary outputs of the technical model that feed into the financial model are revenue 

generating demand, fuel consumption, generator runtimes, battery capacity fade, and, in cases 

where a penalty is applied to unmet demand, the amount of load shed due to insufficient 

generating capacity. The STEMM financial model simulates cash flows over the model horizon, 

on a monthly resolution, using these technical model outputs and financial inputs. Because most 

of the financial parameters (described in detail in Appendix A) are decision variables, STEMM 

currently treats most of these input parameters (with the exception of fuel costs, price indices, 

and exchange rates) as deterministic values. It is however possible to model these 

probabilistically if desired.  
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Cash flows in STEMM include capital costs, operating costs, revenues, income tax, and debt 

payments. STEMM models not only initial capital costs but also calculates timings for 

replacement of capital assets at end-of-life (as described in Appendix A). Operating costs, also 

described in more detail in Appendix A, include fixed operating costs, fuel costs, PV operation 

and maintenance (O&M), battery O&M, diesel generator O&M, and unmet demand penalties 

With the exception of fuel costs, the current assumption is that costs are fixed in real terms. As 

many microgrid projects are financed in hard currency such as dollars and euros, the model 

allows for the use of two currencies, one local and one foreign. Consumer price indices and 

foreign exchange rates are simulated using a version of the Wilkie Investment Model [91]. 

Because fuel price uncertainty is a key driver of risk in microgrids with significant amounts of 

fossil fuel-based generation, STEMM models real fuel price uncertainty using a geometric 

Brownian motion (GBM) model, described in Appendix A. In this chapter, I rely on fuel price 

volatility from a long term study of US oil prices [92]. Globally, petroleum products are traded in 

US dollars so the fuel price is modeled in US dollars and converted to local currency at the 

prevailing exchange rate at each time step.  

 

STEMM accounts for three different types of revenue: energy consumption-based tariffs, fixed 

monthly service charges, and connection fees. The case studies in this chapter use only 

consumption-based tariffs. While many microgrid entrepreneurs are experimenting with 

alternative revenue models, there is not sufficient knowledge about consumer behavior in these 

situations to model these scenarios. STEMM also accounts for corporate income taxes payable 

on microgrid profits, as described in Appendix A. Finally, the financing model assumes that 
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microgrid capital costs are financed with a combination of debt and equity. Key inputs include 

the percentage of capital financed by debt, the cost of debt and equity, and the debt tenor. These 

parameters are fixed for all capital expenses. Loan repayments are calculated based on a constant 

monthly payment method. The cost of debt and equity can be specified as either real or nominal. 

Nominal rates are fixed whereas real rates move with the rate of inflation modeled with the 

Wilkie Investment Model. 

 

3.3 Risk	Assessment	Methods	and	Case	Study	Inputs	

The risk assessment presented in this chapter relies on two different sensitivity analysis methods 

to analyze the relative importance of key uncertain inputs. In the first sensitivity analysis, I hold 

all variables but one at their expected value in STEMM; I then set the uncertain variable being 

tested to their 5th and 95th percentile values based on estimated probability distributions and 

repeat this process for each uncertain variable of interest. I refer to this as a deterministic 

sensitivity analysis. The result is a tornado chart describing the sensitivity of model outputs 

(equity NPV and minimum DSCR) to each uncertain input. The second method involves running 

a Monte Carlo simulation while holding a single input variable in STEMM at its expected value. 

This provides an estimation of how much the uncertainty of outputs could be reduced by 

eliminating the uncertainty of an individual variable. I refer to this as a probabilistic sensitivity 

analysis. 

	

For the sensitivity analyses in this chapter, I rely on a case study in rural Rwanda. The load 

profile used came from planning documentation from the Rwandan electric utility, the Rwanda 
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Energy Group (REG), and represents a typical rural load center of 500 households described in 

Figure 3-4. I built four generation scenarios (described in  

 

Table	3-1) to compare financial outcome sensitivity to different technologies. Appendix B 

provides a detailed description of the process used to determine generator sizings in each 

generation scenario. I also determined an initial tariff for each generation scenario such that 

equity NPV is approximately zero when the model is run deterministically. 

 

Figure	3-4	Average	load	profile	for	a	typical	load	center	from	REG	electricity	master	plan.	

 
In addition to the generation technology scenarios, I also evaluate cases with tariffs fixed in real 

terms and tariffs that are linked to diesel prices. In the fixed tariffs case, I include an annual 

escalation factor, equal to inflation, to the initial tariffs in  

 

Table 3-1. In the linked tariffs case, I escalate a portion of the tariff at a rate equal to the change 

in annual average fuel price, in addition to inflation. The portion of the tariff that scales up/down 

with fuel prices is equal to the average contribution of diesel to the overall generation mix on the 

microgrid when running STEMM in deterministic mode. Whether or not tariffs are fixed in 

practice depends on the local regulatory environment. On the central grid, many countries have 
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fixed national tariffs. Kenya includes a fuel surcharge in their tariffs that links electricity prices 

to the cost of fuel.  

Table 3-2 summarizes the uncertain inputs considered in the sensitivity analysis. Appendix B 

provides a more detailed list of inputs. Finally, Table 3-3 summarizes the finance structure 

assumptions. 

	

 
Table	3-1	Summary	of	generation	technology	scenarios	for	sensitivity	analysis.	

Scenario Diesel Hybrid 
(small PV) 

Hybrid 
(large PV) Solar/Battery 

Diesel Gen 1 (kW) 50 50 50  
Diesel Gen 2 (kW) 25 25 25  
Diesel Gen 3 (kW) 25 25 25  
PV Array (kWp)  50 100 200 
Inverter (kW)  50 50 75 
Battery Strings  1 4 22 
Tariff (RWF/kWh) 1,137 1,137 1,219 1,665 
Diesel Weight 1 0.69 0.46 0 
Initial Capex (k$) 432.1 607.9 790.4 1,297 
USD is approx. 800 RWF 

	

Table	3-2	Uncertain	inputs	considered	in	sensitivity	analysis.	

Input Distribution Parameters 

Mean Daily Demand (kWh) Normal mean: REG profile 
rel. std. dev.: 20% 

Fuel Price (USD/liter) Geometric Brownian Motion drift: 0% 
volatility: 20% 

Annual PV Degradation Triangular 
min: 0.2% 
mode: 0.5% 
max: 0.8% 

DC PV Losses Beta a: 12.8 
b: 96.7 

Generator Life Triangular 
min: 20,000hrs 
mode: 25,000hrs 
max: 30,000hrs 

Battery Capacity Fade Rate Triangular min: 0.017%/cycle 
mode: 0.023%/cycle 
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max: 0.029%/cycle 

Solar Resource Bias Normal mean: 0.6% 
rel. std. dev.: 2.6% 

Price Elasticity of Demand Triangular 
min: -0.35 
mode: -0.25 
max: -0.15 

Non-Technical Losses Triangular 
min: 0% 
mode: 2% 
max: 4% 

Exchange Rate 1st Order Autoregressive1 XA: 0.891261 
XV: 0.00037489 

 See Appendix A for further details. 
Table	3-3	Financing	assumptions	for	sensitivity	analysis	cases.	

Input Value 
Leverage (% of capital financed by debt) 50% 
Debt tenor 10 years 
Cost of debt (real) 10% 
Cost of equity (real) 15% 

 
3.4 Results	

Figure 3-5 and Figure 3-6 show the results of the deterministic sensitivity analysis. Figure 3-5 

presents the case with tariffs fixed in real terms while Figure 3-6 presents results with tariffs 

linked to diesel prices. The red bars represent the change of the equity NPV and minimum DSCR 

(the minimum DSCR for a month over the model horizon) from their baseline value (in the case 

of equity NPV, tariffs are selected such that this baseline value is zero), with the corresponding 

variable set to its 5th percentile value based on the distributions in  
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Table 3-2. The orange bars represent the 95th percentile value. All other variables are fixed at 

their median values with the exception of the load profile time series, which I allowed to vary 

randomly around the median load profile to account for load variability. The baseline value is the 

indicator value with all variables fixed to their median values with the aforementioned exception. 

 

Figure 3-5 and Figure 3-6 show that, in all scenarios, both the equity NPV and minimum DSCR 

are highly sensitive to mean daily electricity consumption, price elasticity, and the exchange rate. 

In the scenarios incorporating diesel generation with fixed tariffs, the fuel price is also highly 

influential. As expected, this sensitivity to diesel prices decreases with increasing solar 

penetration as fuel consumption decreases. Linking tariffs to fuel prices reduces the sensitivity of 

the financial performance to fuel price. In cases where tariffs depend on diesel prices, we can see 

that both increases and decreases in diesel prices negatively affect NPV and DSCR. This is due 

to lower tariffs that are collected when fuel prices are low. Furthermore, lower tariffs result in 

higher demand, which may also lead to more load shedding and lost revenues. On the other hand, 

higher fuel prices still have a larger negative effect because, while price increases compensate 

for higher fuel prices, the higher tariffs reduce demand for electricity. DSCR is particularly 

sensitive when solar penetration is low. When tariffs are linked to fuel prices, solar plays a less 

significant role as a risk mitigant for equity (because tariff increases are proportional to the 

contribution of diesel to the overall energy mix) but is still important to lenders. Whether or not 

microgrid utilities can freely adjust their tariffs with fuel prices is a matter of policy and 

regulation. 
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Price elasticity and mean daily consumption are both variables related to the amount of 

electricity sold on the microgrid. As previously described, the change in indicators due to 

variation in price elasticity results from uncertainty in how demand estimated at a certain tariff 

level, in this case grid tariffs, changes with increased or decreased tariffs. In this case study, 

because the cost of electricity on the microgrid is higher than the regulated grid tariff, 

consumption would be lower than it would be on the grid. The importance of these variables 

increases with solar penetration and the solar/battery scenario is the most sensitive to the 

assumption about the elasticity. This is due to the high capital costs of solar panels and batteries, 

which may remain unused if demand falls short of expectations. 
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Figure	3-5	Deterministic	sensitivity	analysis	results	with	fixed	tariffs.	The	scenarios	are	set	up	such	that	the	
baseline	NPV	is	zero.	Baseline	DSCR	varies	by	scenario.	
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Figure	3-6	Deterministic	sensitivity	analysis	results	with	tariffs	linked	to	diesel	price.	The	scenarios	are	set	up	
such	that	the	baseline	NPV	is	zero.	Baseline	DSCR	varies	by	scenario.	
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The fourth dominant variable is the exchange rate between local currency and the hard currency 

in which capital investments are made. Here, the effect of moving from low capex (capital 

expense)/high opex (operating expense) diesel to high capex/low opex solar is different for the 

fixed and diesel-linked tariff scenarios. In the fixed tariffs scenario, sensitivity of NPV to 

exchange rates is relatively constant moving from the diesel to solar scenario, while DSCR 

sensitivity decreases. The trend is reversed in the linked tariffs cases. The DSCR sensitivity does 

not change significantly with increasing solar penetration but NPV sensitivity increases. 

Exchange rates also affect fuel prices because fuel prices are set globally in US dollars. When 

tariffs are fixed, equity bears the foreign exchange risk not just for repayment of debt 

denominated in foreign currency, but also for local fuel prices that are affected by exchange 

rates. When tariffs are linked to fuel prices, a portion of foreign exchange risk is passed on to 

consumers. In this case, the foreign exchange risk is due primarily to repayment of foreign 

currency denominated debt, which affects capital intensive solar microgrids more strongly. 

Lenders face greater risk with fixed tariffs because higher fuel prices reduce cash flow available 

for debt service, thereby reducing the DSCR. With fuel price-linked tariffs, higher fuel prices are 

partially offset by increased electricity tariffs. 

 

Other variables are of relatively minor importance. Non-technical losses are most important in 

scenarios reliant on diesel because non-revenue generating consumption incurs a fuel cost. 

Technical factors affecting the performance of the solar array such as PV losses, PV array 

degradation, and solar resource are relatively more important in solar based hybrid scenarios but 

less important for the solar/battery scenario. This is because in the solar/battery scenario, 

components are oversized to ensure high reliability that diesel generators supply in the hybrid 
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cases. Only in extreme cases do these losses result in capacity shortfall. Battery capacity fade is 

strongest in the large solar hybrid scenario. The battery bank in the small solar hybrid scenario is 

relatively small and therefore does not represent as large of a capital expenditure as in the large 

solar hybrid scenario with a larger battery bank. In the solar/battery case, the battery bank is so 

large that the number of equivalent full cycles completed is relatively small and therefore results 

in less capacity fade and less frequent replacements. 

 

Figure 3-7 and Figure 3-8 present the results of the probabilistic sensitivity analysis. The upper 

panel provides results for simulations using tariffs fixed in real terms and the lower panel gives 

results for tariffs linked to diesel prices with equity NPV on the left and minimum DSCR on the 

right. The boxplots show the interquartile range of the indicators in the orange box. The whiskers 

show the maximum and minimum values obtained in the simulations. The median value is the 

dividing line between the light and dark orange blocks within the box. A smaller distribution of 

outcomes, as described by the boxplots, indicates higher sensitivity of uncertainty to the 

corresponding variable. The dashed line in the DSCR plot indicates a ratio of one. 

 

The equity NPV probabilistic sensitivity results in Figure 3-7 and Figure 3-8 highlight the same 

important variables as the deterministic sensitivity analysis: fuel price, exchange rates, mean 

daily electricity consumption, and price elasticity. With fixed prices, fixing the fuel price 

significantly reduces downside risk with limited effect on the upside for diesel heavy scenarios. 

When tariffs are linked to fuel prices, fuel price is not a strong contributor to equity risk and in 

diesel heavy scenarios seems to even slightly increase the upside. 

 



	 67	

 

Figure	3-7	Probabilistic	sensitivity	analysis	results	with	fixed	tariffs.	
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Figure	3-8	Probabilistic	sensitivity	analysis	results	with	tariffs	linked	to	diesel	price.	
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In both tariff escalation scenarios, fixing exchange rates reduces upside potential more than it 

mitigates downside risk. The effect is stronger with larger solar penetration because of the 

greater capital cost incurred and repaid (for the debt financed portion) in hard currency. Price 

elasticity and mean daily consumption also affects upside disproportionally for diesel dependent 

scenarios whereas the solar/battery case sees significant risk reduction. Overall, with fixed 

tariffs, the hybrid scenarios are less risky to equity compared to solar and diesel. The solar and 

diesel scenarios have similar ranges from maximum to minimum NPV but solar has a larger 

interquartile range. When tariffs are linked to fuel prices, equity risk exposure is greatly reduced 

because fuel price risks are passed on to consumers through tariff adjustments. The diesel and 

small solar hybrid scenarios then become more attractive. 

 

In contrast to the equity NPV, lenders face greater risk in diesel heavy scenarios as seen in the 

DSCR results in the right panel of Figure 3-7 and Figure 3-8. Particularly with fixed tariffs, the 

fuel price is clearly the most significant contributor to risk in diesel-based cases. Interestingly, 

fixing mean daily consumption increases the minimum DSCR noticeably compared to other 

variables when tariffs are fixed in diesel cases. In the solar case, eliminating mean daily 

consumption uncertainty results in a minimum DSCR across simulations that is greater than the 

benchmark value of one. If reliable demand for electricity can be secured, solar/battery 

microgrids appear to be safe investments for lenders. 

 

3.5 Discussion		

The risk assessment presented in this chapter has identified four important uncertain variables in 

microgrid utility business models that contribute significantly to project risk. These variables are 
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fuel price, foreign exchange rates, demand for electricity, and price elasticity of demand. The 

relative importance of these factors varies between technologies and tariff structures. Allowing 

tariffs to vary with fuel price in an unregulated environment mitigates fuel price risk for equity 

investors. Linking tariffs to fuel prices is also effective in mitigating risk to debt providers but to 

a lesser extent. Introducing solar generators into a diesel powered microgrid further reduces 

lenders’ exposure to fuel price risk. 

 

Price elasticity and mean electricity consumption risk are both related to the level of electricity 

demand on the microgrid. These variables are more critical to solar and high penetration 

solar/diesel hybrid microgrids. These systems have high capital costs that will be either 

underused if demand for electricity falls short of expectations or unreliable if demand exceeds 

design specifications. Diesel-dominated systems require less capital investment and their 

operating costs are linked to revenue via fuel consumption. Because most microgrids being 

deployed in Africa are financed with hard currency but collect revenue in local currency, 

microgrid investors are exposed to significant foreign exchange risk. 

 

There are various ways to mitigate these risks that merit further investigation. Fuel subsidies 

could mitigate fuel price risk but they are controversial, costly, and inefficient [93]. Introducing 

or increasing solar penetration into diesel powered microgrids is effective in mitigating fuel price 

risk exposure [22]. Securing reliable anchor customers could reduce uncertainty of electricity 

demand and price elasticity [21]. Further research is also needed to better understand consumer 

behavior in these settings. The case studies presented in this chapter assume energy-based tariffs 

but entrepreneurs in the field have experimented with other tariff structures to reduce revenue 
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uncertainty. Introducing fixed monthly charges that come with credit for a certain number of 

kWhs partially decouples electricity consumption from revenue. These scenarios are currently 

difficult to model as it is unclear how consumers respond to different tariff structures. Exchange 

rate exposure can decrease by sourcing local capital. However, this is often in short supply. 

There are hedging products available to address foreign exchange risk. 

 

Microgrids have enormous potential to accelerate access to electricity in rural areas of Africa 

and, through the integration of renewable energy technologies, set the region on a cleaner energy 

pathway. In order to scale up their deployment, microgrid companies will need access to large 

amounts of capital. Understanding and mitigating investment risk is essential. This paper has 

identified key contributors to investment risk to both debt and equity such as fuel prices, 

electricity demand, price elasticity, and foreign exchange. This knowledge should then be 

applied in further research to identify strategies to mitigate these risks and improve access to 

finance for microgrid companies. For example, in the next chapter, I show how these companies 

can balance fuel price and demand risk by appropriately sizing hybrid systems and how policy 

makers can mitigate project risk and promote the use of renewable energy by offer concessional 

debt.  
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4 PV-array	Sizing	in	Hybrid	Diesel/PV/Battery	Microgrids	under	
Uncertainty	

 
4.1 Introduction	

Chapter 3 presented the Stochastic Techno-Economic Microgrid Model (STEMM) as a tool to 

assess the financial performance of microgrid utilities and applies the tool to identify important 

drivers of risk in these business models. Technology choice was found to be an important factor 

influencing the risk profile of these businesses. Considering how technology choice affects 

project risk and the ability of projects to raise capital early in the design process is therefore 

important.  This chapter examines how STEMM can be used to make system design decisions 

accounting for uncertainty and how consideration of this uncertainty may change design 

decisions from common approaches relying on point value estimates of uncertain inputs. 

  

There is extensive literature on techno-economic models of hybrid microgrids [94]. Many 

conclude that hybridizing diesel powered microgrids with photovoltaic (PV) generators and 

battery storage offers significant cost advantages. In addition, hybridization has the potential to 

mitigate the risks related to uncertainty about future diesel fuel prices. Most previous work to 

evaluate the economic viability of rural microgrids relies on a cost-minimization framework 

using point value inputs. It thus excludes considerations of the additional risk mitigating benefit 

of hybridization, which could lead to different microgrid design decisions. Furthermore, the 

financial metrics used in other studies, such as levelized cost of energy (LCOE) [95] and life 

cycle cost (LCC) [96], [97], are often of limited interest to potential debt and equity investors. 

Equity investors are more often interested in the short- to medium-term net present value (NPV) 

or internal rate of return, while debt financiers want to know whether the project generates 
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sufficient revenues to repay debt on schedule, often measured by a debt service coverage ratio 

(DSCR). 

 

Using STEMM, this chapter examines PV array and battery bank sizing decisions for hybrid 

microgrids while explicitly accounting for risk, particularly to enhance the perspective of 

investors. 

 

4.2 Case	Studies	

The case studies in this paper are based on a typical rural Rwandan load center of 500 

households. The load profile, shown in Figure 4-1, comes from planning documentation from 

Rwanda’s electricity utility, the Rwanda Energy Group (REG) [98]. Two primary drivers of 

uncertainty in financial outputs are fuel price and total electricity demand. Total demand on the 

microgrid is modeled as uncertain using a normal distribution with hourly load profiles scaled 

accordingly. The relative standard deviation of this distribution is treated parametrically to 

account for different levels of demand uncertainty. Volatility in the GBM fuel price model is also 

treated parametrically to examine the effect of different levels of fuel price volatility on financial 

risk. The base case volatility assumption is taken as 20% based on long term oil price data [92]. 

The model horizon and debt tenor used is 10 years. 
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Figure	4-1	Load	profile	for	500	household	rural	community	used	in	the	case	studies	

 
Table 4-1 summarizes uncertain model inputs and their distributions. Table 4-2 describes the cost 

assumptions for these case studies. The microgrid relies solely on revenues from energy 

consumption with a tariff of US$1/kWh, fixed in real terms over the model horizon. These case 

studies rely on fixed tariffs as a simplifying assumption because if tariffs could vary with, for 

example, fuel prices, consumer behavior may change in response. Price elasticity of demand for 

electricity in these settings is currently poorly understood and therefore difficult to model. To 

understand how PV array and battery sizing decisions affect risk and financial performance, PV 

array and battery bank size are treated parametrically as described in Table 4-2. The technical 

configuration assumes three diesel generators of capacities 25kW, 50kW, and 100kW and power 

inverters of capacity 225kW. Diesel generator sizings were determined by running HOMER [99] 

in a diesel based scenario. The inverter capacity is oversized in the model to simplify the analysis 

and prevent clipping in any scenario. Solar resource data is taken from the HelioClim-3 database 

[100] for the coordinates 2°S, 30°E. Temperature data is drawn from the NASA SSE database 

for the same coordinates [101]. 
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Table	4-1	Probabilistic	model	inputs.	

Input Distribution Parameters 
Solar resource rel. bias Normal μ: 5.9%, σ: 2.6% [102]-[106] 
Solar resource rel. st. dev. Lognormal μ: 20%, σ: 5.0% [102]-[106] 
Max. daily temp. Normal μ: NASA SSE Data, σ: 3.1°C [101], [107] 
Min. daily temp. Normal μ: NASA SSE Data, σ: 2.5°C [101], [107] 
Lifetime battery 
throughput Triangular min: 2.2MAh, mode: 2.7MAh, max: 3.3MAh  [108] 

Generator operating life Triangular min: 20,000 hrs, mode: 25,000 hrs, max: 30,000 hrs 
Non-technical losses Triangular min: 0%, mode: 2%, max: 4% [109] 
PV system losses Beta α: 12.8, β: 96.7 [110] 
PV annual degradation Triangular min: 0.2%, mode: 0.5%, max: 0.8% [111] 
Fuel price GBM Model drift: 0%, volatility: parametric [92] 
Daily electricity demand 
(DED) Normal μ: EARP Data, σ: parametric [98] 

Hourly load profile 
(HLP) Trunc. Normal μ: EARP Profile, σ: 10% × μ 

scaled to DED, truncated at zero 
Demand time step 
variability Trunc. Normal μ: HLP σ: 8% × μ 

truncated at zero 
 

Table	4-2	Cost	and	parametric	model	inputs.	

Cost/Revenue Inputs Parametric Inputs 

Capital Costs Value Operating Costs Input Levels 

PV system $,2700/kWp Initial fuel cost $1.41/liter Demand 
uncertainty 10%, 25% 

Power 
electronics $500/kW Generator 

O&M $0.15/hour Fuel price volatility 10%, 20% 

Batteries $250/kWh PV/battery 
O&M $8/kWp/month Cost of debt 0%, 5%, 10% 

Diesel 
generators 

$4,400 + 
$475/kW Fixed costs $300/month Leverage 0%, 25%, 50%, 75%, 100% 

Meters $40/customer    Cost of equity 5%, 10%, 15% 

LV distribution $580/customer Revenue   Battery strings 1, 20, 40 

Connection 
cost $92/customer Tariff $1.00/kWh PV Array Size 

(kW) 
0, 50, 100, 150, 200, 250, 
300 
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4.3 Results	

Figure 4-2 presents results of Monte Carlo simulations for both equity NPV and the 90% 

exceedance value (P90) of the minimum DSCR as a function of PV capacity installed in the 

microgrid. Because lenders are more risk averse than equity investors, they use higher 

exceedance values in their investment criteria. So where an investment may be attractive to 

equity investors at a P50 level, the P90 DSCR may not meet lender requirements in high-risk 

scenarios. The blue and orange bands represent small (91kWh) and large (1.8MWh) storage 

cases, respectively. For equity NPV, dashed lines represent the median values and the lower and 

upper bands plot the 10th and 90th percentile values, tracing out an 80% confidence interval. The 

upper panel shows results when the microgrid is levered 75% with concessional debt (0% real 

cost of debt); the center panel represents a commercial debt case with a 10% real cost of debt and 

50% leverage; and the lower panel gives the unlevered (100% equity) case. In all cases, the real 

cost of equity is 15%. Concessional lending rates lower the cost of borrowing, thereby increasing 

the amount of debt that the project can carry while meeting DSCR targets. The columns 

represent cases with different levels of demand uncertainty and annual fuel price volatility. 

 

Examining the DSCR plots in Figure 4-2, it is clear that demand certainty is important in 

establishing bankability for these projects. The only bankable cases, those having at least a 

minimum DSCR greater than one, are those with large storage capacity, high PV penetration, 

and low demand uncertainty. Low PV penetration levels do not generate the fuel consumption 

savings necessary to mitigate downside fuel price risk in the P90 case. At high PV penetrations, 

the small storage scenario again limits reductions in fuel consumption and the associated risk 
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mitigation benefit. Because these scenarios are based on an energy tariff-based revenue model, 

demand uncertainty equates to revenue uncertainty. High levels of PV penetration are capital-

intensive and therefore more sensitive to demand uncertainty than low penetration scenarios that 

rely more heavily on diesel, as can be seen in the divergence of DSCR curves in the low- and 

high-demand uncertainty cases. In low-capital, diesel-heavy scenarios, demand uncertainty is 

mitigated by the fact that operating costs are highly correlated with revenues. 

 

In terms of equity NPV, low PV penetrations and small battery banks provide better median 

returns. However, none of the small storage/low PV cases are bankable, meaning these projects 

would need to be financed entirely or nearly entirely by equity. The median NPV in the 

unlevered case falls just short of the target return and favors small storage/low PV cases. The 

only scenarios that could meet lending requirements are those with low demand uncertainty, 

large energy storage, and relatively high PV penetration. Of these, only the concessional debt 

case achieves positive median equity NPVs. Focusing on this case, one observes that median 

equity NPV peaks around 150kWp while the P90 NPV peaks closer to 200kWp PV penetration. 

At 150kWp, median NPV is $173,000 and the P90 NPV is $38,000. A larger array of 200kWp 

produces a slightly lower median NPV of $165,000 but a higher P90 NPV of $71,000. This 

presents a trade off for microgrid developers. Higher median returns can be achieved with a 

small PV array. However, for a $8,000 reduction in median NPV, the downside risk can be 

reduced by about $33,000 in the P90 case. All of this is to say that larger penetrations of PV 

generation into hybrid microgrids can serve to mitigate downside risk, driven by exposure to 

volatile fuel prices, by sacrificing some expected returns. 
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Figure	4-2	80%	confidence	intervals	of	equity	NPV	and	P90	min.	DSCR.	Blue	( )	represents	the	small	(91kWh)	
storage	scenario	and	orange	( )	represents	the	large	storage	scenario	(1.8MWh).	In	all	cases,	the	real	cost	of	
equity	is	15%.	
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4.4 Discussion	

From a policy perspective, the results in this chapter suggest that offering concessional debt 

facilities to microgrid developers can have a two-fold benefit of promoting the use of clean 

technologies like PV and helping to mitigate fuel price risks faced by microgrid equity investors. 

From the perspective of investors, this scenario offers reduced risk exposure at the cost of a 

small reduction in median returns. Because risk is a major barrier to investment in microgrid 

projects, this may be a tradeoff that investors are willing to make. 

 

As with any investment decision, potential investors in microgrid utilities in developing 

countries will base their decisions both on expected returns and risk. The findings in this paper 

suggest that technical design and generator sizing decisions have a significant effect not only on 

expected returns but also on financial risk. Microgrid developers and system designers should 

therefore also carefully examine how PV array and storage sizing decisions may affect the risk 

exposure of the microgrid business and its ability to secure both debt and equity finance. 

Furthermore, it has been seen that uncertainty around electricity demand strongly affects the 

bankability of microgrid projects that rely on business models based on energy tariffs. It should 

therefore be important to lenders that microgrid businesses demonstrate a high level of revenue 

security. Because consumer behavior in newly-electrified communities is poorly understood, 

further research should focus on better characterizing the electricity consumption patterns of 

these new users to reduce demand uncertainty.  
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5 A	predictive	model	of	household-level	electricity	demand	in	newly	
electrified	communities	in	East	Africa	

 
5.1 Introduction	

In previous chapters, I identified that uncertainty in demand for electricity in newly electrified 

communities is a key driver of risk for microgrid utilities. This uncertainty makes it difficult for 

them to raise the capital needed to deploy new systems [19], [21]. As a result, there is interest in 

developing demand forecasting models for microgrids in these communities. Researchers have 

developed several methods to estimate demand in areas that have never had electricity, including 

bottom-up methods based on assumed appliance use, or simple averages of consumption from 

systems installed in other communities. For example, Louw et al. [112] assessed the 

determinants of electricity demand in newly electrified households in South Africa, finding that 

appliance ownership, the price of alternative fuels, income, and access to credit were statistically 

significantly related to demand. Llanos et al. [113] used clustering algorithms to predict demand 

in un-electrified communities from similar electrified communities. Mandelli et al. [114] 

developed a bottom up approach to estimate load profiles based on expected appliance use and 

the coincidence of use. These approaches have been limited in their ability to forecast demand of 

individual microgrid customers, and thus are only useful when modeling aggregate demand. 

Modeling customer level demand is useful, for example, in identifying customers that are likely 

to consume enough electricity to justify the cost of connecting them. The limited work 

evaluating customer-level demand has focused on households that are typically low use 

customers on microgrids, in contrast to commercial customers. Furthermore such work does not 

assess the predictive power of the models developed. 
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This chapter analyzes the load characteristics of 11 microgrids and then applies several statistical 

learning techniques to predict electricity demand for customers, both residential and commercial, 

on new microgrids using electricity consumption data as well as demographic data at the 

customer level from four of these microgrids for which detailed demographic data are available. 

We compare the predictive performance of these statistical techniques to forecast mean daily 

electricity consumption during the first 30 days after connection to the microgrid. The short time 

horizon is due to data limitations but is a good starting point for developing longer term 

forecasts. Finally, we quantify the uncertainty of these forecasts and highlight the important 

correlates to electricity demand. The data for this chapter came from PowerGen Renewable 

Energy, a developer of rural microgrids in East Africa. PowerGen collected consumption data 

using smart meters, while demographic data came from surveys PowerGen deployed during the 

customer screening process.  

 

5.2 Load	Characteristics	

Before developing the predictive model, this section presents load characteristics for 11 

PowerGen microgrids in Kenya and Tanzania. Where the predictive model I develop in this 

chapter forecasts average daily demand after connection, the analysis here provides information 

on hourly load profiles, short term and seasonal variability, and growth patterns. These analyses 

provide an empirical starting point for developing inputs to STEMM and other software such as 

HOMER [115]. 
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5.2.1 Load	Profiles	

Figure 5-1 shows hourly load profiles, normalized to mean hourly demand for each site to 

facilitate comparison between microgrids of different sizes. Peak demand is consistently between 

7PM and 9PM. This is in line with expectations since sunset is consistently around 6PM in the 

region and it is generally assumed that evening loads from lighting and social activities peak 

after dark. Consumption decreases significantly between 11PM and 12AM. Several sites also 

exhibit a second smaller peak from late morning through the afternoon, likely due to commercial 

activity, as these sites typically have a higher proportion of commercial customers. 

 
Figure	5-1	Mean	hourly	load	profiles	normalized	to	mean	hourly	demand.	

 
5.2.2 Load	Profile	Variability	Parameters	

The magnitude of variation around these mean load profiles is also an important factor in 

microgrid design. HOMER models loads with two variability factors while STEMM uses only a 
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single timestep variability parameter. Day-to-day variability is modeled as independent normal 

distributions around the mean total daily consumption each day, with the standard deviation set 

to a percentage of the mean value. This percentage is called the day-to-day variability. To 

estimate this parameter using the empirical data, the daily total electricity consumption is 

computed for each day at every site. I then compute the day-to-day variability for each site as the 

standard deviation of the daily consumption values divided by the mean. Table 5-1 shows the 

results of these computations. 

The second variability parameter is the timestep variability. To compute this parameter, I first 

adjust hourly demand based on the ratio of the electricity consumption on that day to the mean 

daily consumption. With these adjusted hourly values, I then compute the mean and standard 

deviation of electricity consumption for each hour of the day at each site. The ratio of standard 

deviation to mean produces a timestep variability parameter for each hour of the day. HOMER 

relies on a single value because it assumes that timestep variability is the same across all hours of 

the day [7]. This is not the case for the sites in our database, which have lower timestep 

variability during peak times. To combine the hourly time-step variability in the empirical data 

into a single timestep variability that could be used in HOMER or STEMM, both a simple 

average and a weighted average are presented. The weighted average weights the hourly timestep 

variability by the load profile, giving greater weight to high consumption hours. Peak demand is 

more critical to system design than off-peak demand. The simple average may lead to 

overestimation of variability of peak load leading to inaccurate system sizing.  

Table 5-1 also shows these results. The weighted timestep variability is highly correlated with 

the number of customers on the microgrid (-0.73) and more weakly correlated with day-to-day 

variability (-0.13). 
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Table	5-1	Site	sample	sizes	and	HOMER	load	variability	parameters	
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KE 1 30 Oct. 2015 1.3 27% 61% 40% 
KE 2 71 Nov. 2015 9.0 54% 45% 38% 
KE 3 32 Jun. 2014 3.9 35% 94% 61% 
KE 4 25 Jun. 2014 2.0 44% 98% 70% 
KE 5 21 Jun. 2014 2.7 58% 128% 65% 
KE 6 28 Mar. 2015 1.2 63% 74% 63% 
KE 7 33 Oct. 2015 0.6 37% 74% 51% 
TZ 1 70 Jun. 2016 1.1 39% 62% 43% 
TZ 2 109 Jul. 2016 7.8 57% 52% 43% 
TZ 3 52 Oct. 2016 12 25% 39% 39% 
TZ 4 92 Oct. 2016 87 15% 21% 18% 

 

The day-to-day variability and time-step variability parameters estimated with the empirical data 

suggest that load variability can be high but varies significantly between sites. Time-step 

variability is strongly negatively correlated with the number of customers on the microgrid. 

Therefore, increasing the number of customers connected to a microgrid, especially balancing 

the domestic and commercial customers, could reduce load variability. 

 

5.2.3 Seasonal	and	Weekly	Trends	

Simulation tools like STEMM and HOMER also allow the use of different load profiles for 

weekdays and weekends, and for different months in order to account for weekly and seasonal 

demand patterns [7]. Using the empirical data, I evaluated the differences in load characteristics 

during weekdays and weekends, as well as seasonal variability. Figure 5-2 shows monthly 
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electricity demand normalized to the monthly mean for each site and Figure 5-3 shows the 

electricity demand by day of the week normalized to the daily mean. The number of monthly 

samples per site is low so trends are difficult to determine at this point. However, no clear 

patterns are discernable based on this early data. The results suggest that such low frequency 

variability is not very significant in the PowerGen sites. There are two exceptions in the weekly 

variation with one site showing significantly greater demand on Mondays and another with 

increased demand on Fridays, which corresponds to market days in those villages. 

 

Figure	5-2	Variation	in	electricity	consumption	by	month	(sites	with	less	than	12	months	of	data	have	been	
excluded).	
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Figure	5-3	Variation	in	electricity	consumption	by	day	of	the	week.	

		

5.2.4 Load	Growth	

Microgrid developers like PowerGen are increasingly interested in understanding how demand 

for electricity evolves after customers are first connected. Figure 5-4 plots the mean daily 

consumption for each month after connection normalized to the mean daily consumption in the 

first month. The results suggest that there are microgrids in this study that experienced 

significant increases in demand following installation. However, I am unable to identify 

consistent trends in load growth. To create more consistent load growth for all customers, 

PowerGen is building out various demand stimulation programs, the effects of which will be 

carefully monitored. 
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Figure	5-4	Monthly	electricity	consumption	normalized	to	consumption	in	first	month	of	access.	

 
5.3 Predictive	Demand	Model	

In order to develop a predictive model of demand to support microgrid-planning efforts, I use a 

subset of the PowerGen data previously described. In particular, the analysis in this section relies 

on data collected at four PowerGen microgrid sites in rural Tanzania. PowerGen installs smart 

meters that record hourly electricity consumption for each customer connected to the microgrid. 

After the PowerGen team selects communities for microgrid deployment, a survey team collects 

data on potential customers using their customer application survey. Of the 322 unique meter 

numbers at the four sites in the consumption data, 269 also have complete demographic data 

from the customer application survey. Customers with missing or incomplete customer 

application surveys were excluded from the models. Table 5-2 summarizes the types of 

customers found at each of the four microgrid sites. The majority of customers are households, 
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typically with a 60/40 split between residential and commercial connections. Some connections 

include both a household and adjoining business. The most common types of commercial 

customers are shops, restaurants, bars, and guest houses. 

 

The dependent variable in the statistical models is the mean daily electricity consumption for 

each customer during both peak and off-peak periods for the first 30 days after connection to the 

microgrid. We developed two separate models for peak and off-peak periods because about half 

of the customers in the sample are on time of use (TOU) tariffs that charge different rates based 

on the time of day. Separate models allow estimation of price elasticities of demand for each 

time period. 

Table	5-2	Customer	types	by	microgrid	site	

Connection Type 
Site 

1 
Site 

2 
Site 

3 
Site 

4 
Total 

Home 37 78 36 58 209 
Shop 7 17 9 24 57 
Restaurant 7 4 1 4 16 
Bar 0 3 2 7 12 
Guest house/Hotel 0 2 3 3 8 
Hair salon 0 0 0 2 2 
Business Services 0 1 0 0 1 
Phone charging 1 3 0 1 5 
Battery charging 0 1 0 0 1 
Milling 0 0 1 0 1 
Rental premises 3 0 3 0 6 
Office 0 1 0 0 1 
Pharmacy 2 1 0 0 3 
Dispensary 0 2 1 0 3 
Other 2 2 6 4 14 
Total Connections 49 86 46 88 269 
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Table 5-3 lists the categorical variables collected during customer application surveys and used 

in this study. Such variables include the type of customer (home or type of business), existing 

and planned electrical appliances, current sources of electricity and lighting, and building type 

and ownership. Several levels of these categorical variables had low response frequency in the 

customer surveys, so they were grouped. These groupings were made by mean electricity 

demand for customers having these attributes and similarity in the nature of the attributes. For 

example, we grouped the “bar” and “restaurant” levels in the customer type variable and the 

solar between 50W-150W with solar 150W or greater in the existing appliances/lighting source 

variable. Numerical variables include the electricity price per kWh, the number of existing light 

bulbs, and monthly spending on airtime and electricity services. Some variables collected during 

customer application surveys were not used due to incomplete data collection such as amount 

and source of income, number of children enrolled in school in the household and asset 

ownership. 

Table	5-3	Categorical	variables	and	levels.	Shaded	boxes	indicate	groupings	of	levels.	Response	frequency	is	
indicated	by	the	number	to	the	right	of	the	levels.	

Connection Type* Current Electricity/Light Source* Existing Appliances* Planned Appliances* 
 Home 209  None 8  None 45  None 5 
 Shop 57  Kerosene Lamp 31  Phone charging 124  Lights 172 
 Guest house/Hotel 8  Solar (< 50W) 79  Radio 160  Phone charging 99 
 Hair salon 2  Solar (50W – 150W) 57  Low watt TV 58  Radio 107 
 Restaurant 16  Solar (> 150W) 4  High watt TV 50  Low watt TV 144 
 Bar 12  Generator/Microgrid 50  CD/DVD player 41  High watt TV 7 
 Business services 1  Solar Lantern 79  Sound system 15  CD/DVD player 66 
 Phone charging 5  Other 24  Printer/Photocopier 2  Sound system 19 
 Battery charging 1 Building Type   Computer 5  Computer 11 
 Milling 1  Brick 96  Refrigerator 15  Printer/Photocopier 4 
 Rental premises 6  Sticks and mud 4  Shaver 3  Refrigerator 126 
 Office 1  Mudbrick 14  Other 25  Microwave 5 
 Pharmacy 3  Old concrete 18 Building Ownership  Shaver 12 
 Dispensary 3  Irons sheets 1  Own 239  Hair clippers 8 
 Other 14  Well-built concrete 136  Rent 24  Other 62 
* Multiple responses permitted   Other 6    
 

The cost of electricity is likely a strong determinant of demand. PowerGen implements different 

tariff structures at different sites and for different classes of customers. Two of the four sites 
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included in the data rely on a bundled tariff structure whereby the more a customer pays in a 

single purchase, the larger the number of kWhs credited to their account. The other two sites rely 

on a TOU tariff structure. In this structure, customers receive a lower off-peak rate for electricity 

consumed between 10am and 4pm. The rate for consumption during the peak period (the peak 

tariff) is higher than the off-peak rate. Furthermore, PowerGen has three tiers of TOU tariffs on 

these sites, with higher consumption customers paying a lower rate. The actual price points for 

these tariff structures are confidential and cannot be published, but the statistical models in this 

chapter account for such rates. Customers are placed into TOU tiers based on anticipated 

electricity consumption estimated from anticipated appliance use. Table 3 summarizes the 

number of customers at each site on each tariff plan. The different tariff structures are the result 

of a policy change and were not assigned on the basis of any site characteristics. 

 
Table	5-4	Number	of	customers	per	site	on	each	tariff	plan	

 Number of Customers 
Tariff Plan Site 1 Site 2 Site 3 Site 4 Total 
Bundled 49 86 0 0 135 
TOU Small User 0 0 32 0 32 
TOU Medium User 0 0 14 27 41 
TOU Large User 0 0 0 61 61 

	
5.3.1 Method	

The objective of this paper is to develop a predictive model of initial demand for electricity by 

customers in newly electrified communities using the data collected in customer application 

surveys as predictors. Using the python package scikit-learn [116], we apply several regression 

techniques on a training subset of the data representing 70% of the 269 customers with complete 

survey records. We then evaluate the model performance on the remaining test data using the 

mean squared error metric. 
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As previously mentioned, the cost of electricity likely affects demand. Since roughly half of the 

customers in the database are on the TOU tariff structure (in which they face a lower rate for 

consumption between 10am and 4pm), we create two models to capture differences between 

peak consumption (more expensive) and off-peak consumption (less expensive). The dependent 

variable used in the two models is the log mean daily consumption in each period for each 

customer during the first 30 days after connection. The 30-day period is chosen because 35 days 

of data was available for the newest sites when the modeling was completed. Future work will 

examine how consumption evolves over time after initial exposure. 

 

5.3.2 Regression	methods	applied	

In this analysis we test the performance of different statistical models to predict customer 

demand during the first 30 days of being connected to the microgrid. We compare all of the 

models to a base model that assumes that the best prediction of a customer’s demand is the 

average across all customers. This is equivalent to an ordinary least squares (OLS) model with an 

intercept and no predictors. The other regression techniques applied in this paper include OLS 

regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, 

principal components regression (PCR), and random forests [117]. 

 

5.3.2.1 OLS	

Building on the intercept model (base model), OLS minimizes the sum of squared residuals 

between observations and a model that is linear in parameters  
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where y is mean daily electricity consumption during the first 30 days after connection during 

each period, xOPQ is a dummy variable for customers on TOU tariffs, xRSTUVV is the price per kWh 

in Tanzanian shillings (TSH) charged to TOU customers in each period, and xW are the other 

predictors (listed in Table 5-3). β6 is the intercept, and βW are the model coefficients estimated in 

the model. Numerical variables are incremented by one and logged. This model structure is used 

for all linear regression techniques applied in this paper. OLS coefficients are determined by 

solving the minimization problem, 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛
^

𝑦A − 𝛽6 − 𝛽4𝑥4A
4G7

<

A

. 

OLS is a widely used technique and provides another point of reference for comparison of more 

recently developed statistical learning techniques. 

5.3.2.2 Ridge	

Ridge regression is a coefficient shrinkage method. A penalty term, introduced to the objective 

function of the minimization problem, shrinks the 𝐿< norm of the coefficients (the sum of 

squared coefficients) as follows, 

𝛽 = 𝑚𝑖𝑛
^

𝑦A − 𝛽6 − 𝛽4𝑥4A
4

<

A

+ 𝛼 𝛽4<
4G7

 

where 𝛼 is a tuning parameter that determines the level of coefficient shrinkage.  

Ridge regression addresses issues arising from correlated variables that cause coefficients to 

have high variance in OLS [117]. Figure 5-5 presents the correlation matrices of the model 
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variables showing several large correlations between variables. Appliance ownership, for 

example, is correlated with source of electricity and lighting. Customers are more likely to have 

appliances if they have a high quality source of electricity. Certain appliances are correlated as 

well. Sound system or DVD player ownership is positively correlated with TV ownership. 

Unsurprisingly, spending on electricity is positively correlated with appliance ownership and 

having a high quality source of power. 

 
Figure	5-5	Predictor	correlation	matrices	

In this paper, we use 10-fold cross validation for model selection. We normalize all predictors by 

subtracting the mean and dividing by the standard deviation so that all independent variables are 

on the same scale. The top panels of Figure 5-6 show the shrinkage of coefficients as a function 

of the tuning parameter. All coefficients approach zero as the tuning parameter increases. The 

bottom panels show the cross-validated MSE as a function of alpha. The alpha that minimizes 

the MSE is the value selected for the model. An alpha value of zero corresponds to an OLS 

model. On the other extreme, as alpha approaches infinity, coefficients are forced to zero with a 

non-zero intercept. These end points represent our OLS and intercept models. The OLS model 

with zero alpha has low bias. Increasing alpha introduces bias while reducing variance. The 

mean squared error is the sum of squared bias and variance. The minimum MSE in Figure 5-6 

balances the introduction of bias with reduced variance. 
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Figure	5-6	Ridge	Regression.	Top	panel:	variation	of	weights	(coefficients	with	tuning	parameter.	Bottom	panel:	
variation	of	mean	squared	error	(MSE)	on	test	data	with	tuning	parameter	alpha	with	error	bars	of	one	standard	

error.	The	dashed	line	represents	the	alpha	value	with	minimum	test	MSE.	

5.3.2.3 LASSO	

LASSO regression is another shrinkage method, but rather than penalizing the 𝐿< norm of the 

coefficients, the 𝐿7 norm (the sum of coefficient absolute values) is penalized leading to the 

minimization problem, 

𝛽 = 𝑚𝑖𝑛
^

𝑦A − 𝛽6 − 𝛽4𝑥4A
4

<

A

+ 𝛼 𝛽4
4G7

. 
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Figure	5-7	LASSO	Regression.	Top	panel:	variation	of	coefficients	with	tuning	parameter.	Bottom	panel:	variation	
of	mean	squared	error	(MSE)	on	test	data	with	tuning	parameter	alpha.	The	dashed	line	represents	the	alpha	

value	with	minimum	test	MSE.	

 
The nature of the 𝐿7 constraint leads some coefficients to be set precisely to zero with 

sufficiently large values of alpha. The LASSO therefore performs variable selection in addition 

to shrinking coefficients. This leads to fewer predictors and a generally more interpretable model 

[117]. The value of alpha for the LASSO is also determined using a 10-fold cross validation. 

Figure 5-7 shows the variation of coefficients and cross-validated MSE for the LASSO. The 

purple curve is the time of use (TOU) dummy coefficient and the yellow curve is the coefficient 

for the TOU tariff interacted with the TOU dummy. The TOU dummy coefficient shrinks rapidly 
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from the positive side while the interaction term coefficient shrinks rapidly from the negative 

side. These variables are clearly positively correlated due to the interaction (when the TOU 

dummy is zero, the interaction term is zero). In the OLS model, this leads to large coefficients 

with opposite sign and is a possible source of variance in predictions. The penalty term reduces 

this effect as seen in the corresponding shrinkage of these coefficients. Most coefficients are set 

to zero at the alpha value that minimizes the cross validated MSE. As seen in Table 5-5, 12 

variables were selected for both the peak and off-peak models. Predictors are normalized in the 

same way as with the Ridge regression. 

 
5.3.2.4 Principal	Components	Regression	(PCR)	

Principal components regression relies on the transformation of variables into a set of orthogonal 

principal components that are a linear combination of the predictors. The transformation is 

completed in a way that first components explain the largest amount of variance in the data. We 

normalize all predictors by subtracting the mean and dividing by the standard deviation prior to 

applying the principal components transformation. An OLS model is then constructed on the 

principal components [117]. The number of principal components included in the model is 

determined using a 10-fold cross validation to minimize cross validated MSE. Figure 5-8 shows 

the variation of cross-validated MSE as a function of the number of principal components 

included in the model and the variation of coefficients in terms of the original (untransformed) 

variables. PCR reduces the dimensionality of the model. At the right most side of the figure, all 

principal components are included in the model and the solution is equivalent to the OLS case. 

Zero principal components is equivalent to the intercept model. As more components are added, 

coefficients grow. The reduction in dimensions reduces the incidence of collinear variables. 
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Figure	5-8	Principal	Components	Regression.	Top	panel:	variation	of	coefficients	with	the	number	of	principal	
components.	Bottom	panel:	variation	of	mean	squared	error	(MSE)	on	test	data	with	the	number	of	principal	

components.	The	dashed	line	represents	the	alpha	value	with	minimum	test	MSE.	

 
5.3.2.5 Random	Forest	

Random forests estimate the dependent variable as the mean estimation of a set of regression 

trees. Figure 5-9 presents an extract of a sample regression tree. The algorithm splits on 

predictors and assigns values to observations on either side of each split that minimizes the 

squared error. The split predictors and split points are also determined to minimize squared error. 

The leaves at the bottom of the tree give estimations of the dependent variable. In random 

forests, each node split is chosen from a random subset of predictors. This avoids the situation 
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where several dominant predictors are consistently selected at the top of the tree leading to 

correlation between trees in the forest. We have set the number of candidate predictors at each 

node to the square root of the total number of predictors, as is common practice [117]. The 

number of trees in the random forest was set to 30. There is generally no disadvantage to more 

trees except for the computational cost. The cross-validated MSE stabilizes at fewer than 30 

estimators. Each tree is constructed by resampling the training subset with replacement. The 

random forest model is not split between peak and off-peak periods but run as a single model. 

The dependent variable is left as log consumption and models are present for peak, off-peak and 

total demand to permit comparison of MSE between models. Numerical independent variables 

are untransformed. 

 
Figure	5-9		Extract	from	sample	regression	tree.	
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5.4 Results	

Each model described in section 5.3.2 was trained on a randomly selected training set, consisting 

of 70% total of observations. This was repeated 1,000 times for different training/test splits. The 

model coefficients, intercepts, tuning parameters, and training/test MSEs were recorded for each 

iteration. 

 

5.4.1 MSE	

Figure 5-10 presents boxplots of the six models for the mean squared error on test data for 1,000 

random train/test splits for peak and off-peak periods. Combined results are the MSE of the sum 

of peak and off-peak predictions. This sum is computed as log 𝑒dCDEF + 𝑒dJKKLCDEF . The results 

show significant improvement in prediction performance over the intercept only baseline model. 

The standard OLS model is outperformed by the other candidate models with the exception of 

the PCR and random forest peak consumption models, which perform similarly. 

 
As seen in Figure 5-10, the LASSO model produced the lowest mean test MSE for all periods, 

followed by Ridge regression. The PCR and random forest models perform only slightly better 

than the standard OLS model. In this context, the coefficient shrinkage methods therefore seem 

to be the best approaches to minimizing the squared error of predictions, suggesting little 

advantage is obtained in using the non-linear random forest model. The random forest model 

does, however, do a better job picking out higher consumption customers (at the cost of some 

loss of accuracy for customers close to the mean) which could mean there are some non-linear 

effects at extreme values that are not captured by the linear models.  Off-peak prediction 

performs much more poorly than on-peak for all models. Mean daily peak consumption per 

customer is 129 Wh compared to 52 Wh off-peak. The relatively poor prediction performance of 
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off-peak demand therefore has limited impact on the accuracy of predictions for total daily 

demand. 

 
Figure	5-10	Boxplots	of	test	MSEs	for	1,000	train/test	data	splits.	

 

5.4.2 Coefficients	

The coefficients for the OLS, Ridge, LASSO, and PCR models trained on the entire dataset are 

provided in Table 5-5. We evaluated the models by training the model on 1,000 random train/test 

spits, computing model parameters on the training data, and testing predictive performance on 

the test data for each split. Table 9-2 in Appendix C contains the mean and standard deviation of 

the parameters from these iterations. Because the LASSO regression performs variable selection, 

median values are also reported, as the mean can be misleading when it includes zeros from 

iterations when a variable was not selected. A non-zero median indicates that a variable is 

selected more often than not. Figure 5-14 provides further details on LASSO variable selection   
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Table	5-5	Regression	model	parameters	fit	to	entire	data	set	

 OLS Ridge LASSO PCR 
 Peak Off-

peak 
Peak Off-

peak 
Peak Off-

peak 
Peak Off-

peak 
Tuning Parameter   0.575 1.33 0.004 0.010 18.0 3.00 
Intercept -3.53 -9.43 -3.75 -7.57 -4.20 -7.32 -4.06 -7.02 
Own Building -0.038 0.031 -0.021 -0.007   0.017 -0.075 
Building Type         
Well Built Concrete -0.456 0.068 -0.067 0.128   -0.011 0.268 
Brick/Mud Brick/Sticks & Mud/Wood -0.421 0.105 -0.113 -0.178   -0.081 -0.335 
Current Light/Electricity Source         
None/Kerosene Lamp -0.712 -0.249 -0.399 -0.527 -0.284 -0.271 -0.319 -0.216 
Solar Lantern -0.183 0.594 -0.138 -0.076   -0.193 -0.188 
Solar < 50W -0.197 0.316 -0.206 -0.209   -0.253 -0.174 
Solar > 50W 0.125 1.235 -0.114 0.188  0.204 -0.130 0.225 
Generator/Mini-Grid 1.03 1.79 0.88 1.10 1.508 1.96 0.946 0.483 
Other 0.215 0.208 0.103 0.123   0.393 0.189 
Existing Appliances         
None -0.301 0.528 -0.150 0.104   0.003 -0.375 
Computer/Refrigerator/Printer/Copier 0.334 0.615 0.235 0.447 0.065 0.119 0.236 0.414 
Television 0.591 0.817 0.382 0.440 0.531 0.466 0.271 0.456 
Radio -0.184 -0.235 0.048 0.070   -0.013 0.211 
Phone Charger 0.009 -0.038 0.000 -0.020   0.056 0.028 
CD-DVD Player/Sound System -0.011 0.005 -0.015 -0.031   0.091 -0.055 
Other -0.389 -0.690 -0.170 -0.341 -0.040 -0.091 -0.263 0.127 
Planned Appliance         
None -0.379 0.059 0.048 0.137   0.625 0.339 
Computer/Refrigerator/Printer/Copier 0.090 0.374 -0.021 0.074   -0.117 0.052 
Television 0.311 0.958 0.014 0.122   -0.065 -0.365 
Radio 0.323 -0.010 0.190 -0.011 0.194  0.337 -0.356 
Phone Charger 0.270 0.230 0.175 0.050 0.186  0.177 -0.248 
CD-DVD Player/Sound System -0.011 0.005 -0.015 -0.031   0.091 -0.055 
Lights 0.035 0.295 -0.076 -0.058   -0.055 -0.140 
Other 0.168 0.253 0.067 0.148   -0.078 -0.028 
Customer Type         
Home 0.330 -0.503 -0.012 -0.430  -0.237 0.012 -0.170 
Restaurant/Bar 0.618 0.179 0.411 0.250 0.361  0.890 0.151 
Shop/Hair Salon/Guest House 0.181 0.432 0.101 0.351 0.031 0.366 0.173 0.168 
Other -0.309 -0.572 -0.474 -0.463 -0.509 -0.182 -0.714 0.096 
Time of Use 11.1 16.2 0.290 0.612 0.540 1.50 0.223 0.403 
Numerical Variables         
Log Peak Tariff (TSH/kWh) -1.30  0.023    0.024  
Log Off-peak Tariff (TSH/kWh)  -1.96  0.067    0.054 
Log Airtime Spend (TSH) -0.070 0.022 -0.015 0.074   -0.021 0.099 
Log Electricity Spend (TSH) 0.031 0.065 0.029 0.053 0.013 0.019 0.053 0.042 
Log Number of Existing Lights -0.206 0.195 0.035 0.239  0.259 0.219 0.154 
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frequency. While the structure of the random forest model does not lend itself to concise 

summary in Table 5-5, the model is particularly useful for identifying the relative importance of 

model variables, as we will discuss later in the paper. 

	

5.4.3 Prediction	Intervals	

Regardless the model employed, there will be some level of uncertainty in the demand forecast. 

When designing the microgrid and business model,  it is important to understand these 

uncertainties [22], [118]. Figure 5-11 plots model predictions against actual values from the test 

data with 90% prediction intervals for the models evaluated. We estimated prediction intervals 

for the OLS, Ridge, LASSO and PCR regression models using a method proposed by 

Steinberger and Leeb [119]. This technique constructs prediction intervals by taking quantiles of 

the leave-one-out residuals on the training data. Similarly, prediction intervals for the random 

forest are constructed using quantile regression forests, as proposed by Meinshausen [120].  The 

intervals appear to be generally slightly under confident, with 7.4%, 9.9%, 4.9%, 6.2%, and 

12.3% of observations falling outside of these prediction intervals for OLS, Ridge, LASSO, PCR 

and random forest models, respectively. When converted from log values to true values, all the 

intervals are quite large, indicating a high level of uncertainty in predicted values for individual 

customers. The level of correlation between customers in a community will determine how 

customer level uncertainty translates to aggregate community level demand uncertainty. It should 

be noted that taking the exponential of the expectation of log consumption does not return the 

expectation on the unlogged scale due to Jensen’s Inequality. Because the log is a monotonically 

increasing function, quantiles are preserved. Assuming the log consumption being estimated is 
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normally distributed, the exponential of the logged expectation is the median value on the 

unlogged scale in kWh. 

 
Figure	5-11	90%	prediction	intervals	of	test	data	predictions	for	OLS,	Ridge,	LASSO,	PCR,	and	Random	Forest	

models	plotted	against	actual	values	of	log(daily	consumption).	
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5.4.4 Classification	accuracy	

Microgrid operators with multiple tariff tiers typically offer lower tariffs to customers that 

consume more electricity. Low use customers require the same grid infrastructure to deliver 

power but attract less revenue to recover these costs. One application of the models developed in 

this paper is then to place customers into tariff groups by level of consumption. Figure 5-12 uses 

each model to class customers in the test data into low (less than 250Wh/day), medium (between 

250Wh and 500Wh/day), and high use (more than 500Wh/day) tiers and compares them to the 

observed consumption (left column). Overall classification accuracy among the models is 84.0%, 

81.5%, 82.7%, 84.0% and 85.2% for OLS, Ridge, LASSO, PCR, and random forest, 

respectively. The LASSO model classifies all customers as low users while Ridge classifies only 

two customers as medium and the rest as low. The random forest model performs relatively 

poorly on MSE but has the highest classification accuracy, doing a better job of picking out 

higher use customers. These customers are fewer in number but of high interest to microgrid 

operators. OLS and PCR also pick out more medium and high use customers, many inaccurately. 

These diverging results suggest that there may be some trade off in selecting models. LASSO 

and Ridge perform well in minimizing MSE but fail to identify customers far from the mean 

level of consumption. The random forest model is able to pick out some of the higher use 

customers at the cost of some inaccuracy for customers closer to the mean. This can be seen in 

the wider distribution of customers towards the center of the prediction versus measured 

consumption plots in Figure 5-11 for the random forest compared to LASSO and Ridge. The heat 

map on the right in Figure 5-12 provides another visualization of prediction accuracy on an 

analog scale. Again, the Ridge and LASSO models greatly underestimate consumption of high 

use customers. 
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Figure	5-12	(Left)	Classification	of	customers	into	low	(<	250Wh/day),	medium	(<	500Wh/day),	and	high	(≥	

500Wh/day)	consumption	groups	compared	to	observed	consumption	(left	column)	for	each	model	applied	to	
test	data.	(Right)	Heat	map	of	estimated	median	daily	consumption	for	each	model	with	observed	consumption	

on	left.	

5.4.5 Important	Predictors	

Figure 5-13 shows the relative importance of predictors in the random forest model. The figure 

provides the top 10 predictors for both peak and off-peak periods. These rankings are derived 

from the reduction of variance resulting from a split on that predictor, weighted by the proportion 

of observations passing through the node, averaged over all trees in the forest [121]. The most 

important predictors are spending on electricity (pre-connection to the PowerGen microgrid), 

electricity tariffs, the number of existing lights, spending on airtime, and whether or not the 

customer is already using a generator or grid-based source of electricity. The spending predictors 

appear to be good proxies for the spending power of customers. The importance of having access 

to high capacity sources of electricity like a diesel generator or pre-existing microgrid suggest 

that prior exposure to electricity has a significant effect on demand. While long-term data are not 

yet available, it may be the case that long-term exposure to electricity results in increased 

consumption, perhaps after users have acquired a larger set of electrical appliances. Planned 

electrical appliance acquisitions do not feature strongly but that may be because after only 30 

days of access, customers have not yet had the opportunity to obtain new appliances. 
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Unsurprisingly, the price per kWh charged to the customer is also an important determinant of 

electricity consumption. The tariff coefficients for the OLS model in Table 5-5 indicate a high 

level of price elasticity suggesting that customers are very sensitive to price. 

 

 
Figure	5-13	Top	10	ranked	predictor	variable	importance	from	random	forest	model	for	peak	and	off-peak	

periods.	

 
Another indicator of predictor importance is the subset of predictors selected by the LASSO 

model. Figure 5-14 shows the percentage of train/test splits in which each predictor is selected by 

the LASSO model over the 1,000 splits for both the peak and off-peak models. Surprisingly, the 

tariff rates are not frequently selected in the LASSO models. Whether or not a customer is on a 

TOU tariff rather than a bundled plan, however, is selected in almost all iterations with TOU 

customers consuming more than bundle customers. Prior use of a generator or microgrid and 
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having a television are both frequently selected predictors associated with higher consumption 

levels both on and off-peak. Customers without any access to electricity or using kerosene lamps 

for lighting are frequently selected in both models and have a lower demand for electricity. This 

supports the argument that prior exposure to electricity supports higher demand. Spending on 

airtime and electricity does not feature as strongly as in the random forest case with electricity 

spending being selected about 50% of the time in both periods. 

 
Figure	5-14	LASSO	variable	selection	frequency	over	1,000	train/test	data	splits	reported	as	percent.	

 
Predictor selection frequency diverges between peak and off-peak periods in many cases. 

Curiously, having a large number of lights tends to have a strong positive influence on 

consumption during off-peak periods but not on-peak, when it is dark. The reason for this is not 

clear. The bars and restaurants dummy is frequently selected for the peak model but not the off-
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peak model. The peak model coefficient is positive and the frequency of selection is almost 

certainly due to the fact that most of their business occurs in the evenings during the peak period. 

Shops, hair salons and guesthouses use more electricity during the day (during the off-peak 

period) and are frequently selected by the LASSO model during this period. Overall, the LASSO 

model tends to select predictors relating to customer type, tariff structure and source of 

electricity and lighting, and, to a lesser extent, current electricity appliances.  

 

5.5 Discussion	

The ability to forecast demand for electricity in newly electrified communities is of critical 

importance to microgrid developers for both system design and financial modeling. Anecdotal 

evidence from energy access entrepreneurs suggests that current techniques practiced in the field 

often lead to wildly inaccurate predictions. With a number of companies like PowerGen 

Renewable Energy pioneering the microgrid space in East Africa and collecting high-resolution 

data on electricity consumption and customer profiles, it is now possible to take a more data 

driven approach. 

 

Significant reductions in MSE over the baseline intercept model are possible by implementing 

statistical learning techniques. The LASSO and Ridge models perform the best in minimizing 

prediction MSE but fair poorly in identifying higher use customers. In this regard, the random 

forest model performs a slightly better in classing customers into tariff groups using the basic 

decision model described in 5.4.4. The OLS and PCR models also identify more large-use 

customers, but with many false positives. Running multiple models can be used to identify cases 

where estimates diverge. These cases can be investigated further to identify unique customer 
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characteristics that are not fully captured by the models. Users of the model are restricted to tariff 

structures used by PowerGen. These include TOU tariffs with two periods, one from 10am to 

4pm and a second from 4pm to 10am. A single period is also possible by making tariffs for both 

periods equal. Bundled tariffs are also modeled however, due to the sensitivity of specific price 

points and the way that these tariffs are structured, the bundled tariff feature is not useable by 

third parties. 

 

Data availability presents several limitations. At the time this analysis was performed, only about 

35 days of data were available for two of the four microgrids. This limited the time horizon that 

could be assessed. Furthermore, the sample size of 269 connections is relatively small compared 

to the number of predictors available. This can make estimating coefficients challenging. The 

PCR and LASSO regression techniques address this challenge by reducing the number of 

variables used. As more sites are installed, these data can be incorporated into the training data to 

improve model performance and overcome sample size limitations. Furthermore, new 

consumption data is continuously being collected which will permit analysis of consumption at 

different intervals after first connection. 

 

The initial consumption during the first 30 days is also a good starting point for developing time 

series models to forecast changes in consumption patterns over time. As seen in Figure 5-4, 

initial data on demand growth do not show consistent patterns across sites and requires further 

investigation. Understanding how customer-level predictions can be aggregated to create 

prediction intervals for communities is also the subject of future work. A key component of this 

will be understanding how site level characteristics affect demand that may lead customers on 
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some microgrids with similar individual characteristics to have more or less demand for 

electricity than others. This can be achieved by collecting site level data that can be incorporated 

into these models. 

 

Through this work, I have also been able to identify predictors that are important in estimating 

the electricity consumption of newly connected customers. These include tariff structures and 

prices, pre-connection sources electricity and lighting, levels of spending on electricity services 

and airtime, and pre-connection appliance ownership. Prior exposure to electricity, disposable 

income, and price are dominant factors in estimating demand. This information can be used as a 

guide for practitioners in developing pre-deployment surveys and demand forecasts. 

 

Despite the improvements in prediction accuracy, uncertainty in individual customer forecasts 

remains high. Users of the model should consider their objectives when selecting a model. If the 

goal is to estimate demand for system sizing purposes or to project revenues in financial models, 

the LASSO and Ridge regression models produce the smallest overall prediction error. The 

models presented here are limited in their usefulness for revenue forecasting and system sizing 

however, because of the short time horizon considered. Time series models to understand how 

demand changes over time should be developed to overcome these limitations. It may also be the 

case that these models are used to screen customers and identify potentially high consumption 

customers. LASSO and Ridge perform poorly here compared to the random forest, PCR, and 

OLS regression. The development of classification models merits investigation as a way of better 

identifying high consumption customers. With all of the models, uncertainty in demand 

predictions for individual customers remains high. When aggregated, the overall relative 
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uncertainty should be reduced but more work is required to quantify this. Other future work 

should focus on refining demand models, exploring other potentially significant predictors of 

demand, understanding how and what impacts the evolution of demand over time, and building 

bottom up aggregate models for load profiles at the community scale based on customer 

demographics. 
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6 Conclusions	

Expanding access to electricity is central to social and economic development in East Africa. 

Achieving universal access within the next one or two decades will require massive increases in 

investment. Public and donor sources of capital are unlikely to be able to fill this gap. Private 

sector participation in electrification is therefore essential to meeting electricity access targets 

[21]. Policymakers have also acknowledged that extension of the central electricity grid to homes 

and businesses in remote rural areas is often not as cost effective as decentralized alternatives 

such as microgrids and solar home systems [84]. Increasingly, microgrids are being recognized 

as essential components of rural electrification efforts. 

 

With grid-based power dominated by highly regulated and subsidized state owned utilities, the 

off-grid sector offers space for innovative private sector entrepreneurs and developers to 

contribute to electrification efforts without competing directly with subsidized and highly 

politicized state-owned actors. A number of privately owned companies have entered this space 

to offer electricity services in rural areas using solar home system and microgrid technologies on 

a commercial basis. While the solar home system space has grown quickly, microgrids have 

lagged behind. This is due in part to challenges in raising capital for a business model that is 

perceived to be risky. Where solar home systems receive fixed payments for use of the system 

regardless of how much energy is used, microgrids are a shared resource for which payments 

usually relate directly to consumption. Furthermore, solar home system customers that default on 

their payments can have their systems repossessed and redeployed. This is not the case for 

microgrids. Despite the higher levels of risk, microgrids offer a level of service that solar home 

systems cannot provide that enables productive and income generating use of power. There is 
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thus a need to overcome these challenges to enable microgrids to raise capital and scale up 

deployment. This thesis aims to identify and quantify the primary sources of investment risk in 

microgrid utilities and study ways in which these risks can be mitigated to make these businesses 

more viable. 

 

Through this thesis work, I have identified that the most important sources of risk for microgrid 

developers include fuel prices, foreign exchange rates, price elasticity of demand, and the level 

of demand for electricity. The relative importance of these sources is technology dependent. 

While solar powered microgrids are not exposed to fuel price risks, they are more sensitive to 

uncertainty about electricity demand than diesel powered systems. Assuming finance is obtained 

in hard currency and revenue is collected in local currency, capital intense solar/battery powered 

microgrids are slightly more sensitive to foreign exchange rates. Diesel powered systems 

however, are still sensitive to foreign exchange through fuel prices that are set on global markets 

in dollars. Debt providers, who use different metrics than equity investors to assess projects, are 

exposed to more risk in diesel-powered scenarios than solar/battery scenarios. Attracting debt 

finance is therefore more feasible for solar/battery microgrids or high solar penetration hybrid 

systems. System-sizing decisions can, to a certain degree, mitigate risks. However, there is a 

tradeoff between mitigating risk and maximizing expected returns. Furthermore, high solar 

penetration scenarios are more attractive to lenders, allowing equity to leverage lower cost debt 

to increase returns on equity. From a policy perspective, governments and donors can both 

promote the use of clean solar power in microgrids and de-risk projects by reducing exposure of 

fuel prices by offering low cost concessional debt to microgrid utilities. 
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Demand for electricity in rural microgrids is a key uncertainty that drives financial risk for these 

systems. Predictive demand models that make use of data that can be collected before deploying 

the systems could help mitigate some of this risk. Using customer demographic data collected 

prior to connection as part of the PowerGen customer application process, I developed predictive 

models of electricity consumption for individual customers during the first 30 days after 

connection to the microgrid.  Significant predictive performance gains were achieved over the 

status quo that assumes all customers consume the same amount of electricity based on historical 

averages. However, uncertainty at the customer level remains high. Model selection should 

consider user objectives. While LASSO and Ridge regression produces the lowest overall 

prediction error, they also perform poorly in identifying high consumption users. LASSO and 

Ridge regression may therefore be more appropriate when the goal is to estimate aggregate 

demand from individual customer characteristics for system sizing or revenue projections. When 

screening customers to identify potential high use customers, the random forest, PCR, and OLS 

models may be more suitable. Model performance should improve over time as more data 

becomes available from new installations. At present, the small sample size is a limitation. 

 

Through these models, I was also able to identify predictors that are important in estimating the 

electricity consumption of newly connected customers. These include tariff structures and prices, 

pre-connection sources electricity and lighting, levels of spending on electricity services and 

airtime, and pre-connection appliance ownership. Prior exposure to electricity, disposable 

income, and price are dominant factors in estimating demand. This information can be used as a 

guide for practitioners in developing pre-deployment surveys and demand forecasts. 
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This thesis is a step forward in addressing the challenges to expanding access to electricity with 

microgrids in East Africa, but much work remains to be done. There are numerous opportunities 

to enhance STEMM and address current limitations. For example, new technologies can be 

added such as small hydro and wind. Currently, STEMM assumes microgrids are sized before 

deployment but several companies are looking at ways to mitigate demand risk by deploying 

generation capacity over time once demand patterns have been observed. Adding a capacity 

expansion feature that makes decisions on deploying new generating capacity is the subject of 

future work. Some risks are simply difficult to quantify, for example, political and policy risks 

and the risk of grid encroachment. 

 

The predictive demand model presented in this thesis is only a first step. Work is already 

underway in the field to collect a broader set of data on microgrid customers to explore whether 

other indicators may be important predictors of demand that can improve prediction accuracy. 

Beyond initial demand, it is important to understand how electricity consumption patterns 

change over time. Another important area of future work is developing time series models to 

model demand growth. These new models of demand should then be integrated into STEMM to 

improve STEMM’s currently rudimentary load model. 

 

Beyond the research finding described above, major outputs of this thesis are a set of tools that 

are designed to assist microgrid developers and investors make more informed design and 

investment decisions. It is my hope that STEMM will develop into a tool that can be used by 

developers to design microgrid utilities that are more financially robust and by investors to 

evaluate investment opportunities in an unbiased and comprehensive manner. The electricity 
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demand modeling work is an on-going project that will enable microgrid developers to make 

more informed site selection and system design decisions, in concert with STEMM. The demand 

model is already being integrated into PowerGen’s planning and design processes and therefore 

already having an impact on the ground. Plans are as well in place to pilot the use of STEMM in 

a real world setting with PowerGen and the German development agency, the Deutsche 

Gesellschaft für Internationale Zusammenarbeit (GIZ). 
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7 Appendix	A:	STEMM	Documentation	
 
7.1 Model	Structure	

STEMM models microgrid utilities as individual corporate entities. The model consists of two 

primary components: a technical model and a financial model. These models are linked to 

simulate connections between technical design and performance and financial outcomes. 

STEMM is designed from an investor’s perspective; therefore the financial model only includes 

costs and revenues accruing to the microgrid. 

 

The model assumes each project starts operation on January 1st of the model start year with initial 

capital costs being incurred December 31st of the previous year. The model time horizon used 

will depend on the modeler’s objectives. For example, if the goal is to understand the bankability 

of a project, the model horizon should be at least as long as the initial debt tenor. When studying 

the attractiveness of a project to equity investors, the target period for achieving a minimum 

equity return should be used. The technical model uses a temporal resolution of one hour, 

whereas the financial model aggregates cash flows on a monthly basis. As the model is 

implemented in the modeling software Analytica [88], any input can be modeled as uncertain (as 

a distribution) or deterministic (as a point value). This provides the user flexibility in 

determining which uncertainties to model explicitly as distributions or parametrically. A few 

inputs, including fuel price, demand, and solar resource, are structured explicitly in the model as 

uncertain. 
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7.2 Technical	Model	

The technical model simulates microgrid performance at an hourly resolution over the model 

horizon. It is currently capable of modeling multiple AC loads, a solar photovoltaic generator, 

multiple diesel generators, and battery-based energy storage. Figure 7-1 depicts the general 

system configuration of STEMM. Key outputs of the technical model that feed into the financial 

model include satisfied and unsatisfied customer demand, fuel consumption, and microgrid 

component runtimes. 

 

Figure	7-1	General	microgrid	technical	configuration	in	STEMM.	

 
7.2.1 Meteorological	Model	

STEMM requires local meteorological data in order to simulate the technical performance of the 

PV array including local solar irradiation and ambient temperature. 

 

7.2.2 Solar	Resource	

Solar irradiation data is input into STEMM as hourly global horizontal and array tilt irradiation 

over a year. STEMM generally relies on data for a “typical meteorological year” (TMY). Where 

long-term data are available, it is possible to input solar data over the entire model horizon. 

STEMM accounts for uncertainty associated with solar resources by modeling total annual solar 
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resource measurement bias and hourly irradiation values as normal distributions. The uncertainty 

of hourly measurements is modeled as independent with mean zero and a user-defined relative 

standard deviation. These values are scaled using the solar resource bias expressed as 

𝐺A = 𝐺A,%+&g ∙ 𝑁 0, 𝐺A,%+&g ∙ 𝜎%+&g ∙ 1 − 𝑁 𝜇mA&g, 𝜎mA&g  

where  𝐺A is the modeled irradiation at hour 𝑖, 𝐺A,%+&g is the measured or TMY input, 𝜎%+&g is 

the relative measurement error,  𝜇mA&g is the mean bias of the irradiation data and 	𝜎mA&g is the 

standard deviation of the measurement bias of the database from which the data is drawn. This 

accounts both for bias and measurement uncertainty of solar resource data. TMY data does not 

account for inter annual variation of solar resource. This could result in an underestimate of 

annual extreme values such as the minimum DSCR. This effect is not generally expected to be 

significant but could become important in undersized systems that are heavily reliant on PV 

generation. 

 

7.2.3 Temperature	

Obtaining hourly temperature profiles can be difficult for remote sites. NASA’s Surface 

meteorology and Solar Energy (SSE) database provides daily maximum and minimum ambient 

temperatures globally over 22 years (1983-2005) [101]. 

 

7.2.3.1 Ambient	

STEMM models ambient temperature profiles based on daily maximum and minimum 

temperatures from this database when user-provided hourly profiles are not available. These 

maximum and minimum temperatures are modeled as normal distributions with root mean 

squared errors (RMSE) from validation studies used as the standard deviation [122]. Hourly 
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temperature profiles are derived using the solar irradiation profiles and a model used in the 

meteorological software package Meteonorm [123]. This model, described in the Meteonorm 7 

Theory Handbook [123], assumes that temperature changes are proportional to the ‘ground to 

extraterrestrial irradiation ratio’ defined as 

𝑘𝑥 𝑡 =
𝐺𝐻𝐼 𝑡 𝑑𝑡"

gs,'Ag+

𝐺6𝑑𝑡
"
gs,'Ag+

 

where 𝐺𝐻𝐼 is the global horizontal irradiation and 𝐺6 is the solar constant. The maximum daily 

temperature occurs when 𝑘𝑥 is at its maximum value, 𝑘𝑥%&t. The slope of the temperature 

profile before 𝑘𝑥%&t is 

𝑠𝑙𝑝m =
𝑇𝑎x,%&t − 𝑇𝑎x,%A,

𝑘𝑥%&t
 

and the slope after 𝑘𝑥%&t is 

𝑠𝑙𝑝& = 1.7 ∙ 𝑠𝑙𝑝m 

where 𝑇𝑎x,%&t is the maximum daily ambient temperature and 𝑇𝑎x,%A, is the minimum daily 

ambient temperature. These minimum and maximum daily ambient temperatures for remote 

locations around the world are available through NASA’s Surface meteorology and Solar Energy 

(SSE) database [101]. 

 

Hourly temperatures between sunrise and 𝑘𝑥%&t are then given by 

𝑇𝑎 𝑡 = 𝑇𝑎 𝑡gs,'Ag+ + 𝑠𝑙𝑝m ∙ 𝑘𝑥(𝑡) 

and temperatures between 𝑘𝑥%&t and sunset are given by 

𝑇𝑎 𝑡 = 𝑇𝑎 𝑡%&t + 𝑠𝑙𝑝& ∙ (𝑘𝑥|S} − 𝑘𝑥 𝑡 ) 

where 𝑇𝑎 𝑡%&t  is the maximum daily temperature. Night time temperatures are assumed to 

decrease linearly from the temperature at sunset to the daily minimum temperature the following 
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day at sunrise [123]. Uncertainty of maximum and minimum temperatures and solar irradiation 

are reflected in the hourly temperature profiles the model generates.  

 

7.2.3.2 Solar	Cell	

The solar module cell temperature is estimated from the ambient temperature and incident solar 

irradiation as 

𝑇~+.. = 𝑇& +
𝑁𝑂𝐶𝑇 − 20
0.8	𝑘𝑊 ∙ 𝐺 

where 𝑇& is the ambient temperature and 𝑁𝑂𝐶𝑇 is the normal operating conditions temperature 

from the manufacturer’s data sheet [124]. 

 

7.2.3.3 Battery	

Currently, STEMM assumes that batteries operate at either ambient temperature or a constant 

temperature if temperature control is available. 

 

7.2.4 Generation	Model	

STEMM currently includes diesel and photovoltaic generators. The model allows the use of 

multiple diesel generators while aggregating all photovoltaic generation into a single array. 

 

7.2.4.1 Diesel	Generators	

Diesel generators are dispatchable generators assumed to be available to supply power at any 

time within a range of load factors. The low end of this range is user-defined and the upper end is 
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assumed to be 100%. Therefore, a diesel generator with a rated capacity of 10kW and a 

minimum load factor of 30% could supply anywhere from 3kW to 10kW in any time step. 

STEMM assumes the diesel generator’s fuel consumption curve is linearly related to electrical 

output with a non-zero no-load fuel consumption of the form 

𝐹"#" = 𝐹%&'( ∙ 𝑃(+, + 𝐹,. 

where 𝐹"#" is the total fuel consumption at each time step, 𝐹%&'( is the marginal fuel 

consumption per kW of generator output (𝑃(+,), and 𝐹,. is the no load fuel consumption which is 

consumed regardless of output level. STEMM users can derive these parameters by fitting linear 

curves to manufacturer-supplied fuel consumption data. 

 

7.2.4.2 Photovoltaic	Array	

The solar PV model in STEMM relies on the fill factor of the PV module. Fill factor is defined 

as the ratio of maximum power point power to the product of open-circuit voltage and closed-

circuit current, 

𝐹𝐹 =
𝑃���
𝑉#~ ∙ 𝐼g~

 

where 𝐹𝐹 is the module fill factor, 𝑃��� is the module power output at maximum power point, 

𝑉#~ is the module open-circuit voltage, and 𝐼g~ is the module short-circuit current. Solving for 

𝑃���, the module power at MPP can be found using expressions for 𝐹𝐹, 𝑉#~, and 𝐼g~. 

 

Fill factor can be expressed in terms of the normalized open-circuit voltage, 

𝐹𝐹6 =
𝑣#~ − ln	(𝑣#~ + 0.72)

𝑣#~ + 1
 

where 𝑣#~, the normalized open-circuit voltage, is defined as 
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𝑣#~ =
𝑞
𝑛𝑘𝑇 𝑉#~, 

𝑛 is the module ideality factor, 𝑘 is the Boltzmann constant, and 𝑇 is the PV module cell 

temperature [125]. For crystalline silicon PV modules, the ideality factor is typically between 1 

and 1.3, but Carerro et al. [126] notes that assuming an ideality factor of one is acceptable for 

most modeling applications. For simplicity, STEMM also adopts this assumption. Correcting for 

module series resistance, this expression becomes 

𝐹𝐹g = 𝐹𝐹6 1 −
𝑅g

𝑉#~ 𝐼g~
 

where 𝑅g is the module series resistance. A further correction is applied for the module shunt 

resistance 

𝐹𝐹 = 𝐹𝐹g 1 −
𝑣#~ + 0.7
𝑣#~

𝐹𝐹g
𝑅g�

𝑉#~ 𝐼g~

 

where 𝑅g� is the module shunt resistance. 

 

The parasitic resistances, 𝑅g and 𝑅g�, can be estimated using methods proposed by Carrero et al. 

[126]. Shunt resistance can be found by solving the following equation for 𝑅g 

𝑅g =
1

𝐼���
∙ 𝑉#~6 − 𝑉��� − 𝑛 ∙ 𝑉"� ∙ ln

𝑉��� + 𝑛 ∙ 𝑉"� − 𝐼��� ∙ 𝑅g
𝑛 ∙ 𝑉"�

 

where 𝑉��� and 𝐼���	are the module voltage and current at maximum power point under 

standard test conditions as reported on manufacturer data sheets, and 𝑉"� is the module thermal 

voltage defined as 𝑉"� = 𝑛𝑘𝑇/𝑞 where 𝑞 is the electron charge. 
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Because this equation cannot be solved explicitly for 𝑅g, an iterative approach is taken, assuming 

that 𝑅g = 0 in the right side of the equation for the initial iteration and substituting the new value 

in subsequent calculations. STEMM iterates this value until the difference between iterations is 

less than 0.001Ω. Carrero et al. [126] express the module shunt resistance as 

𝑅g� =
(𝑉��� − 𝑛 ∙ 𝑉"�) ∙ (𝑉��� − 𝐼��� ∙ 𝑅g)

𝐼g~6 − 𝐼��� ∙ 𝑉��� − 𝐼��� ∙ 𝑅g − 𝐼��� ∙ 𝑛 ∙ 𝑉"�
. 

The module open-circuit voltage is dependent on the incident solar irradiation and can be 

expressed as 

𝑉#~ =
𝑉#~6

1 + 𝛿 ∙ ln 𝐺6
𝐺

 

where 𝑉#~6 is the open circuit voltage at the standard test conditions irradiation, 𝐺, 1kW/m2 as 

reported on manufacturer data sheets [127]. The parameter 𝛿 is dimensionless and depends on 

the technology used. This is the only parameter in the PV model that cannot be found or derived 

from information commonly found on PV module manufacturer datasheets. The value adopted in 

the STEMM is that found by Zhou et al. [128], 0.058 for mono-crystalline silicon modules. 

Other values are reported in the literature; for example, van Dyk et al. [129] use a value of 0.085, 

also for monocrystalline silicon technology.  

 

Module voltage is also dependent on PV cell temperature. Many manufacturers report module 

voltage and current temperature coefficients separately in addition to an aggregated power 

temperature coefficient. Because STEMM assumes operation at MPP and does not model system 

voltage explicitly, a single temperature correction of the module power is applied rather than 

modeling the temperature effects on voltage and current individually (although this functionality 

is available). 



	

	 125	

 

The module short-circuit voltage is effectively proportional to incident solar irradiation [124] 

𝐼g~ = 𝐼g~6 ∙
𝐺
𝐺6

 

where 𝐼g~6 is the short circuit voltage at standard test conditions irradiation as reported on 

manufacturer datasheets. 

 

Returning to the equation for the fill factor, the PV module output at maximum power point can 

then be expressed as a function of irradiation and temperature as 

𝑃��� 𝐺, 𝑇~+.. = 𝐹𝐹 ∙ 𝑉#~ ∙ 𝐼g~ = 𝐹𝐹 ∙
𝑉#~6

1 + 𝛿 ∙ ln 𝐺6
𝐺

∙ 𝐼g~6 ∙
𝐺
𝐺6

∙ 1 − 𝛾 ∙ 𝑇~+.. − 25℃  

where 𝑇~+.. is the module cell temperature and 𝛾 is the module power temperature coefficient 

provided on the module manufacturer’s data sheet. 

 

The PV module power output can then be scaled up proportionally to the total array size with 

loss factors for DC cabling losses (𝛼x~,~&m.+), losses due to module soiling (𝛼g#A.) and other user 

specified DC losses (𝛼#"�+') to find the total DC power at the inverter terminals, 

𝑃��x~ =
𝑃&''&d

𝑉��� ∙ 𝐼���
∙ 𝑃���(𝐺, 𝑇~+..) ∙ (1 − 𝛼x~,~&m.+) ∙ (1 − 𝛼g#A.) ∙ (1 − 𝛼#"�+') 

where 𝑃&''&d is the rated DC capacity of the PV array. 

 

Further losses will be incurred in inversion before delivery to the microgrid. The net AC PV 

power is calculated as 

𝑃��&~ = min	(𝑃!�x~ ∙ 𝜂A,�, 𝑃A,�,%&t&~) 
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where 𝜂A,� is the inverter efficiency and 𝑃A,�,%&t&~ is the maximum AC inverter capacity. This is 

the total PV power available to power AC loads on the microgrid. Excess capacity or capacity 

clipped because of inverter limitations can be used as DC current to charge a battery bank if 

present. 

 

7.2.4.3 Inverter	and	Rectifier	

The current version of STEMM assumes a constant inverter and rectifier efficiency. Future 

versions of STEMM may incorporate efficiency curves as a function of inverter/rectifier output. 

 

7.2.5 Storage	Model	

The storage model simulates the performance of a lead-acid battery bank using a version of the 

kinetic battery model (KiBaM) [89] and either a simple amp hour throughput model or a capacity 

fade model [90]. KiBaM is derived from chemical kinetics processes to dynamically simulate 

maximum charge and discharge current, and update the battery state of charge. 

 

7.2.5.1 Operating	Model	

The KiBaM model can be conceptualized as a battery with two separate tanks connected with a 

fixed conductance. The first tank is available charge and the second tank is bound charge that is 

not immediately available. To be discharged, the bound charge must be transferred to the 

available charge tank. Mathematically, this model can be expressed by the following differential 

equations: 

𝑑𝑞7
𝑑𝑡 = −𝐼 − 𝑘 1 − 𝑐 𝑞7 + 𝑘𝑐𝑞< 
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𝑑𝑞<
𝑑𝑡 = 𝑘 1 − 𝑐 𝑞7 − 𝑘𝑐𝑞< 

where 𝑞7 is the available charge, 𝑞< is the bound charge, 𝑘 is a rate constant related to the 

conductance between the tanks, and 𝑐 is the ratio of available charge to total charge when both 

tanks are full. Solving these equations gives the following expressions for available and bound 

charge per battery: 

𝑞7,A = 𝑞7,AI7𝑒I4" +
(𝑞AI7𝑘𝑐 − 𝐼)(1 − 𝑒I4")

𝑘 −
𝐼𝑐 𝑘𝑡 − 1 + 𝑒I4"

𝑘  

𝑞<,A = 𝑞<,AI7𝑒I4" + 𝑞AI7 1 − 𝑐 1 − 𝑒I4" −
𝐼(1 − 𝑐)(𝑘𝑡 − 1 + 𝑒I4")

𝑘  

where 𝑞 = 𝑞7 + 𝑞<, 𝑡 is the model timestep, and 𝐼 is the current flowing into and out of the 

battery, negative flows being charge and positive flows being discharge. 

 

The maximum charge and discharge current is given by 

𝐼x,%&t,A =
𝑘𝑞7,AI7𝑒I4" + 𝑞AI7𝑘𝑐(1 − 𝑒I4")
1 − 𝑒I4" + 𝑐(𝑘𝑡 − 1 + 𝑒I4")  

𝐼~,%&t,A =
−𝑘𝑐𝑞%&t + 𝑘𝑞7,AI7𝑒I4" + 𝑞AI7𝑘𝑐(1 − 𝑒I4")

1 − 𝑒I4" + 𝑐 𝑘𝑡 − 1 + 𝑒 I4"  

where 𝑞%&t is the maximum battery capacity. 

 

Model constants can be derived from manufacturer data sheets. Using data on Ah capacity at 

different discharge rates, the constants 𝑐 and 𝑘 can be extracted by fitting the data to the 

following function: 

𝑞9G"�
𝑞9G"�

=
𝑡7
𝑡<

1 − 𝑒I4"� 1 − 𝑐 + 𝑘𝑐𝑡<
1 − 𝑒I4"� 1 − 𝑐 + 𝑘𝑐𝑡7
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where 𝑞9G"� is the total Ah capacity of the battery discharged over 𝑡A hours. These are the same 

constants used in the HOMER battery model [99]. The HOMER battery database can therefore 

also be used to find battery parameters. 

 

The maximum battery capacity with a slow discharge rate, 𝑞%&t, can be found using the 

constants 𝑐 and 𝑘, 

𝑞%&t =
𝑞9G"( 1 − 𝑒I4" 1 − 𝑐 + 𝑘𝑐𝑡)

𝑘𝑐𝑡  

using 𝑞9G" for a long discharge time 𝑡. 

 

The constant 𝑐 is assumed to be fixed but 𝑘 varies as a function of temperature. This accounts for 

the variation in battery capacity at different temperatures. The functional form of the relation is 

assumed to be 

𝑘 = 𝐴 ∙ 𝑒
I�

9�E��< H.7¡I¢  

where  𝑇m&" is the battery temperature, which is similar in form to the Arrhenius rate equation. 

The model constants were derived by taking data on relative battery capacity as a function of 

temperature and discharge rate and solving the KiBAM equations for the value of 𝑘. The model 

was then fit to the battery temperature and 𝑘 data as in Figure 7-2. The three points at each 

temperature level represent different discharge/charge rates. 
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Figure	7-2	KiBAM	constant	k	as	a	function	of	battery	temperature.	

 
The above model simulates the performance of the battery bank on the level of an individual 

battery. STEMM users can also specify the number of batteries in a string and the number of 

strings in the battery bank. The nominal battery bank voltage is the product of the nominal 

battery voltage and the number of batteries in a string. The total current from the battery bank is 

then the current into or out of an individual battery multiplied by the number of strings. The total 

battery DC power flow is therefore 

𝑃m&" = 𝐼m ∙ 𝑉m,A ∙ 𝑁3+'	g"'A,( ∙ 𝑁g"'A,(g 

where 𝐼m is the current from a single battery, 𝑉m,A is the battery voltage, 𝑁3+'	g"'A,( is the number 

of strings per battery, and 𝑁g"'A,(g is the number of strings in the battery bank. The battery 

voltage, 𝑉m,A, depends on whether or not the battery is charging or discharging 

𝑉m,A =

𝑉m
𝐴 ∙ ln	(−𝐼m/𝐼'&"+) + 𝐵

, 𝑖 = 𝑐ℎ𝑎𝑟𝑔𝑒

𝑉m 𝐴 ∙ ln	(𝐼m/𝐼'&"+) + 𝐵, 𝑖 = 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
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where 𝑉m is the nominal battery voltage, 𝐼'&"+ is the nominal 20h battery capacity in Ah, and 𝐴 

and 𝐵 are empirical constants that relate battery efficiency to discharge rate. When dispatched to 

power loads, the DC power is multiplied by the inverter efficiency. The constants for the battery 

efficiency model were derived from data used by Hittinger et al. [90] as seen in Figure 7-3. 

 

Figure	7-3	Battery	efficiency	curve	as	a	function	of	discharge/charge	rate.	

 
7.2.5.2 Lifetime	

Users have the option to choose between a simple Ah throughput model or a capacity fade model 

to estimate battery lifetime. 

 

7.2.5.2.1 Ah	throughput	model	

In the throughput model, lifetime Ah throughput is specified by the user. The battery reached its 

end of life when the total number of Ah charging and discharging the battery reaches the lifetime 

throughput. Lifetime throughput can be estimated from manufacturer data by 

𝐴ℎ.AB+"A%+ = 𝐶m&" ∙ 𝐷𝑂𝐷 ∙ 𝐶𝑦𝑐𝑙𝑒𝑠¦:¦ 
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where 𝐶m&" is the nominal battery capacity, 𝐷𝑂𝐷 is the average depth of discharge, and 

𝐶𝑦𝑐𝑙𝑒𝑠¦:¦ is the number of cycles to failure with a depth of discharge 𝐷𝑂𝐷. This method is 

particularly appropriate for a cycle charging battery dispatch scenario. In a load following 

scenario where the depth of discharge is not consistent, it may be more appropriate to average 

the lifetime throughput for a range of depths of discharge between the 0% and the specified 

maximum depth of discharge [130]. 

 

7.2.5.2.2 Capacity	fade	model	

The capacity fade model estimates the loss of battery capacity over time as a function of battery 

throughput and temperature with batteries being replaced after reaching a specified cumulative 

level of capacity fade, usually when the battery reaches 80% of original capacity [90]. The 

capacity fade rate is specified as a percentage of capacity losses relative to original capacity her 

full cycle equivalent. At each one-hour time step, the capacity fade is therefore 

𝐶B&x+ =
|𝐼g"'A,(|
2 ∙ 𝐶m&"

∙ 𝑅B&x+ 

where 𝑅B&x+ is the capacity fade rate. The capacity fade is cumulated over time to adjust the 

battery capacity and resets when it reaches 80% of original capacity. 

 

The capacity fade rate varies as a function of temperature. For every 10˚C above 25˚C the battery 

operates, the capacity fade rate doubles and for every 10˚C below 25˚C, the rate halves. This is 

implemented as 

𝑅B&x+ = 𝑅<¡ ∙ 2
9�E�I<¡

76  

where 𝑅<¡ is the nominal capacity fade rate at 25˚C. 
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7.2.6 Demand	Model	

Demand on the microgrid can be modeled as a single load or as multiple loads that can be 

controlled independently. This allows the STEMM user to prioritize certain loads over others in 

the case of a shortfall in supply, and/or to implement different tariff structures for each load. It is 

further possible to specify penalties for failing to meet demand for all or specific loads. 

Currently, the model allows only AC loads. Expected load profiles are user-defined on an hourly 

basis for each month of the year. Because electricity demand is usually a key uncertainty for 

microgrids, STEMM accounts for uncertainty in the load profiles. 

 

When tariffs are modeled as changing in real terms over time (for example, if tariffs move with 

the price of diesel), a price elasticity can be defined to adjust demand based on a constant price 

elasticity of demand model. The user inputs demand growth over time as an annual growth rate. 

Users input load profiles as hourly, expected mean demand. This can be entered on a monthly 

basis to account for seasonal changes in demand. 

 

STEMM models mean hourly load profiles with two separate uncertain parameters. The first 

uncertainty relates to the relative demand between hourly time steps. This is modeled as 

independent normal distributions, truncated at zero, at each time step with the user input values 

as means and a user defined relative standard deviation. Truncated distributions assign 

probability density for negative demand as probability mass at zero, which leads to a finite, 

though usually very small, probability that there is no load at all during that time step. To 

account for correlation between demand at each time step, the mean total daily demand is also 
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modeled with a truncated normal distribution. The mean demand at each time step in the load 

profile is then scaled up or down so that the sum over time steps is equal to this total demand. 

Mathematical, the mean demand at time step 𝑖 can be expressed as 

𝐿A,%+&, = 𝑁"'s,~(𝐿A,A,3s", 𝑐�,�' ∙ 𝐿A,A,3s") ∙
𝐿x&d,%+&,
𝐿A,A,3s"

 

where 𝐿x&d,%+&, = 𝑁"'s~ 𝐿A,A,3s" , 𝑐�,x&d , 𝐿A,A,3s" is the user input expected demand at time 

step 𝑖, 𝑐�,�' is the relative standard deviation from the user input expected demand at each time 

step, 𝑐�,x&d is the relative standard deviation from the expected total daily demand, and 𝑁"'s~ is 

defined as 

𝑁"'s,~(𝜇, 𝜎) =
0 𝑖𝑓	𝑁 𝜇, 𝜎 < 0

𝑁(𝜇, 𝜎) 𝑖𝑓	𝑁 𝜇, 𝜎 ≥ 0 

with 𝑁 𝜇, 𝜎  being a normal distribution with mean 𝜇 and standard deviation 𝜎. 

 

To account for variation around this mean, demand at each hour of operation is modeled as 

𝐿« = 𝑁"'s,~ 𝐿%#x «,<¬ ,%+&,, 𝑐�,�&' ∙ 𝐿%#x «,<¬ ,%+&,  

where 𝑐�,�&' is the variation of demand at each time step about the mean. 

 

When tariffs are modeled as changing in real terms over time (for example, if tariffs move with 

the price of diesel), a price elasticity can be defined to adjust demand based on a constant price 

elasticity of demand model. Demand growth over time is input by the user as an annual growth 

rate. 
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7.2.7 Distribution	Model	

STEMM models the distribution system as having losses equal to a user-specified percentage of 

the total energy delivered on the system. The user can specify these losses by individual load and 

input them separately as technical and non-technical losses. Non-technical losses are not strictly 

speaking losses due to the distribution system, as they represent electricity theft and customer 

non-payment; however, both losses represent load that does not generate revenue.  

 

7.2.8 Dispatch	Model	

The dispatch model determines how dispatchable generation resources operate to meet demand 

and charge the battery bank. In the case of a shortfall in generation capacity, it also determines 

which loads to serve and which loads to shed. Figure 7-4 provides an overview of the data flows 

between other technical modules and the dispatch module. 

 

Figure	7-4	Technical	model	influence	diagram.	

 
In a system using PV and diesel generators, STEMM first assigns load to the PV generator and 

then to the diesel generators. The diesel generator dispatch algorithm seeks to dispatch 

generators so that they operate efficiently at high load factors. Dispatch is subject to constraints 

on minimum diesel generator load factor. 
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In a PV/battery configuration (without diesel generators), loads are supplied directly by the PV 

array when possible. Any excess PV generation is used to charge the battery bank. When the PV 

array cannot satisfy demand, the battery bank supplies the balance of power so long as the 

battery bank is maintained above the minimum specified state of charge.  

 

The dispatch algorithm is more complicated when a battery bank enables energy storage and 

generation includes diesel generators. Different algorithms are possible to determine when the 

battery bank should be charged or discharged in this configuration. STEMM adopts two simple 

algorithms, similar to those found in HOMER [130], called load following and cycle charging. 

The load following algorithm uses only excess PV generation to charge the battery bank, 

whereas the cycle charging algorithm uses excess diesel generator capacity to charge batteries. 

 

In a system using PV and diesel generators, STEMM first assigns load to the PV generator and 

then to the diesel generators. The diesel generator dispatch algorithm first searches for the 

generator that meets or exceeds the remaining demand by the smallest margin. If no single 

generator can supply the demand, the largest generator is dispatched and the algorithm starts 

again with the remaining generators. This continues until all demand is satisfied or all generators 

are dispatched. While not an optimization, this algorithm attempts to operate generators 

efficiently at high load factor. Dispatch is subject to constraints on minimum diesel generator 

load factor. For example, if the total demand is 10kW and available generating capacity includes 

a 10kW generator with a minimum load factor of 30% and a PV array generating 9kW, 2kW of 



	

	 136	

PV generation would be curtailed in order to operate the diesel generator at the minimum 3kW 

output. This curtailed solar power would be used to charge batteries if they are not full. 

 

In a PV/battery configuration (without diesel), the PV array directly supplies loads when 

possible. Any excess PV generation is used to charge the battery bank. When the PV array 

cannot satisfy demand, the battery bank supplies the balance of power, so long as the battery 

bank is maintained above the minimum specified state of charge.  

 

The dispatch algorithm is more complicated when a battery bank enables energy storage and 

generation includes solar and diesel sources. Different algorithms are possible to determine when 

the battery bank should be charged or discharged in this configuration. STEMM adopts two 

simple algorithms, similar to those found in HOMER [130], called load following and cycle 

charging. Figure 7-5 illustrates these cases. The load following algorithm uses only excess PV 

generation to charge the battery bank. The battery dispatch priority in this case falls after the 

diesel generators and therefore is used to meet peak demand, subject to the minimum state of 

charge constraint. In this algorithm, diesel fuel never charges the battery bank. 

 

In addition to using excess PV to charge the batteries when available, the cycle charging 

algorithm uses the excess capacity from the diesel generators to charge batteries. This ensures 

that diesel generators operate more efficiently at high load factor (but it also consumes extra 

diesel fuel). To ensure that batteries are not maintained in a low state of charge, once the battery 

bank reaches a certain minimum state of charge, they cannot be discharged again until they reach 

an upper set point state of charge. Such battery cycling batteries improves battery life, whereas 
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maintaining batteries in a low state of charge can result in permanent capacity loss. During cycle 

charging, the battery bank is prioritized after the PV generator and before the diesel generators. 

Therefore, whenever the battery bank is available for dispatch, the batteries supply the loads 

while the diesel generators remain idle. 

 

The algorithm that performs the best economically will depend on the technical design of the 

microgrid and the loads on the system. Load following may result in less load shedding as 

batteries are dispatched last and are therefore kept in a higher state of charge to serve peaks. On 

the other hand, the battery bank may then be underused. STEMM can simultaneously run load 

following and cycle charging scenarios to determine which strategy performs best in a particular 

case.  

 

STEMM currently provides two load-shedding algorithm options for cases when supply is not 

sufficient to satisfy demand. The algorithms depend on the level of control the grid operator can 

exert on demand. In the simplest case, the operator is only able to shed entire circuits on the grid, 

represented in the model as loads. If generation is not sufficient to meet the entire demand on the 

system, load shedding occurs based on user specified priority order until generation is sufficient 

to supply the remaining loads. Deployment of smart meters can enable microgrid operators to 

control demand on a finer scale. In the case where operators are able to disconnect individual 

customers, STEMM assumes that the demand of all customers in the load is equal. Loads are 

shed until there is sufficient generation capacity to partially meet the demand of the lowest 

priority load. Higher priority loads are met in full. Generation capacity is assigned to the partially 

fulfilled load in increments equal to the total demand from that load divided by the number of 
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customers in the load. Unmet demand is calculated and, if specified by the user, a financial 

penalty is assigned per kWh shortfall in the financial model. Figure 7-6 illustrates the load shed 

algorithms available in STEMM. 

 

Figure	7-5	Examples	of	battery	dispatch	and	load	shedding	strategies:	Load	Following	(top),	Charge	Cycling	with	
load	shedding	by	load	(center),	and	Charge	Cycling	with	load	shedding	by	customer	(bottom).	 	
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Figure	7-6	Comparison	of	load	shedding	algorithms.	In	the	shed	by	load	scenario,	any	load	that	cannot	be	met	
completely	is	shed;	while	in	the	shed	by	customer	scenario,	partially	loads	can	be	supplied.	The	lighter	colors	in	

the	figure	represent	loads	shed.	

 
7.3 Financial	Model	

The STEMM financial model simulates cash flows over the model horizon, on a monthly 

resolution, using technical model outputs and user inputs. These cash flows are then used to 

generate the financial indicators, equity NPV, DSCR, and LCOE. Cash flows in STEMM include 

capital costs, operating costs, revenues, corporate income tax, and debt payments. The model 

supports two currencies, typical one hard currency and one local currency, and uses the Wilkie 

Investment model to stochastically simulate consumer price indices in both currencies and the 

exchange rate [131]. With the exception of fuel costs, the current assumption is that costs are 

constant in real terms. Similarly, because most of the financial parameters are decision variables, 

STEMM currently treats these input parameters (with the exception of fuel costs) as 

deterministic values. It is however possible to model these probabilistically if desired. 
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7.3.1 Capital	Expenditure	

STEMM models not only initial capital costs but also calculates timings for replacement of 

capital assets at end of life. Diesel generator lifetimes are calculated in hours of runtime and 

battery lifetimes are determined by total Ah throughput or capacity fade as described in 7.2.5.2. 

Other capital assets like the PV array, inverters, distribution equipment, and meters are assumed 

to have fixed lifetimes specified in years. These inputs are subject to uncertainty and can be 

entered either as point values or distributions. Initial capital costs are assumed to occur 

December 31st of the year prior to the model start year. Replacement costs are incurred on the 

last day of the month in which the asset life is exhausted. Replacement costs for capital assets are 

fixed in real terms. Technology costs for equipment like solar panels are fall rapidly however the 

lifetimes of these assets are often longer than the model horizon. Future versions of STEMM 

may incorporate learning curves to account for technology price evolution over time. 

 

7.3.2 Operating	Expenditure	

Operating costs can be broken down in many ways. STEMM splits operating costs into the 

following categories: fixed operating costs, fuel costs, PV operation and maintenance (O&M), 

battery O&M, diesel generator O&M, and unmet demand penalties. Fixed operating costs are 

general overhead and maintenance costs that are roughly constant on a monthly basis. This could 

include costs like operator salaries and general distribution system maintenance. Fuel costs, 

unlike other costs, are modeled as changing in real terms. Fuel price uncertainty is a key driver 

of risk in microgrids with significant amounts of fossil fuel-based generation. This uncertainty is 

modeled using a geometric Brownian motion (GBM) model. 
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7.3.2.1 Fuel	Price	

The GBM model requires an initial fuel price, annual volatility, and an annual price drift in order 

to project future diesel prices: 

𝑃Bs+.,A = 𝑃Bs+.,AI7 ∙ 1 +
𝐷Bs+.
12 + 𝑃Bs+.,AI7 ∙ 𝑉Bs+. ∙

1
12	 ∙ 𝑁 0,1  

where fuel price, 𝑃Bs+.,A, is indexed by month, 𝐷Bs+. is the annual percent fuel price drift 

representing the mean long term real price progression, and 𝑉Bs+. is the annual fuel price 

volatility [132]. Figure 7-7 shows ten samples of simulated fuel prices using the GBM model. 

 

Figure	7-7	Samples	of	simulated	real	fuel	price	time	series	using	Geometric	Brownian	Motion	model.	

 
7.3.2.2 Fuel	Transport	Cost	

Most microgrid sites are located in remote areas. The cost of transporting fuel to these sites can 

therefore be significant. STEMM uses the transport cost model found in Szabó et al. [26]. The 

transport cost per liter is calculated as 
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𝑃"'&,g =
2 ∙ 𝑃Bs+. ∙ 𝑐Bs+. ∙ 𝑡Bs+.

𝑉Bs+.
 

where 𝑐Bs+. is the diesel fuel consumption per hour in transit, 𝑡Bs+. is the transit time, and 𝑉Bs+. is 

the volume of fuel transported in one delivery. 

 

7.3.3 Revenue	

STEMM accounts for three different types of revenue: energy consumption-based tariffs, fixed 

monthly service charges, and connection fees. Consumption-based tariffs are specified in local 

currency units per kWh of billable demand. Different tariff levels can be set for different loads. 

Fixed monthly service charges are specified in local currency units per customer. Connection 

charges are charged on a per customer basis for the period immediately preceding connection. In 

its current form, STEMM does not model the addition of new customers so in practice, all 

collection charges are received during the first model time step. 

 

7.3.4 Foreign	Exchange	Model	

Foreign exchange rates and consumer price indices are modeled using the Wilkie Investment 

Model. This model assumes exchange rates vary as a function of the ratio of price indices for 

each currency and a scale factor that varies around a static mean value over time. Inflation rates 

are modeled as a first order autoregressive time series denoted AR(1) from which consumer price 

indices are derived. Inflation in period 𝑖 is computed as 

𝐼A = 𝐼 + 𝑄𝐴 ∙ 𝐼AI7 + 𝑄𝑆𝐷 ∙ 𝑁 0,1  

where 𝐼A is the inflation rate in period 𝑖, 𝑄𝐴 is an autoregressive constant, 𝑄𝑆𝐷 is a constant and 

𝑁 0,1  is a normal distribution with mean zero and standard deviation one. 
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Exchange rates are modeled using a purchase parity model of form 

𝑋𝑅«4 = 𝑋𝐾 ∙
𝐶𝑃𝐼4
𝐶𝑃𝐼«

 

where 𝑋𝑅«4 is the units of currency 𝑖 exchanged for one unit of currency 𝑗, 𝐶𝑃𝐼4 is the consumer 

price index for currency 𝑘, and 𝑋𝐾 is a scale factor. 𝑋𝐾 is modeled as 

ln 𝑋𝐾 = 𝑋 + 𝑋𝑁 

where 𝑋 is a constant and 𝑋𝑁 is an AR(1) variable calculated as 

𝑋𝑁A = 𝑋𝐴 ∙ 𝑋𝑁AI7 + 𝑋𝑆𝐷 ∙ 𝑁(0,1) 

where 𝑋𝑁A is the value of 𝑋𝑁 at time step 𝑖, 𝑋𝐴 is an autoregressive constant and 𝑋𝑆𝐷 is a 

constant. 

 

7.3.5 Finance	Model	

STEMM assumes that microgrid capital costs are financed with a combination of debt and 

equity. Key inputs include the percentage of capital financed by debt, the interest rate, and the 

debt tenor. These parameters are fixed for all capital expenses. Loan repayments are calculated 

based on a constant monthly payment method. Interest rates can be specified in real or nominal 

terms. If interest rates are specified in real terms, the current inflation rate, calculated from the 

simulated consumer price index, is added to the interest rate to obtain a nominal value in each 

period. 
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7.3.6 Tax	and	Depreciation	Model	

STEMM accounts for corporate income taxes payable on microgrid profits. The tax model 

assumes straight-line depreciation of capital assets relying on user-defined depreciation periods. 

Users can specify in which currency assets are depreciated. The model also assumes that 

financial losses can be carried over indefinitely. The tax payments are calculated on a monthly 

basis. Taxable income per period is calculated as 

𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑂𝑝𝑒𝑥 − 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝐶𝑎𝑟𝑟𝑖𝑒𝑑	𝐿𝑜𝑠𝑠. 

The tax paid is equal to 

𝑇𝑎𝑥 = 𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒	×	𝑇𝑎𝑥	𝑅𝑎𝑡𝑒, 𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒 > 0
0, 𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒 ≤ 0. 

When taxable income is less than zero, this loss is carried over to the following year. 

 

7.3.7 Subsidy	Model	

Various forms of subsidy can be modeled using STEMM, including both capital and operating 

subsidies. Capital subsidies can be specified as a percentage of capital cost and can be applied 

for only initial capital expenses or for ongoing capital costs. The tax model treats this subsidy as 

reduction of the book value of the asset, thereby reducing the depreciation value of the asset 

[133]. Other subsidies are treated as standard revenues. These include initial cash grants, tariff 

subsidies, fuel subsidies, and operating subsidies based on the number of customers served. 

Tariff subsidies are specified on a kWh basis and are provided directly to the microgrid operator. 

Fuel subsidies are input as a percentage of the unsubsidized price. 
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7.4 Model	Outputs	

The primary model outputs are financial indicators meant to shed light on the attractiveness of 

the microgrid as an investment opportunity to equity and lenders. The core strength of STEMM 

is its ability to compute these metrics probabilistically so as to account for risk and uncertainty. 

Debt Service Coverage Ratio (DSCR) measures the “bankability” of the project, while the net 

present value (NPV) of projected equity cash flows measures the attractiveness of the project to 

equity investors. In addition to equity NPV and DSCR, STEMM also computes a levelized cost 

of energy (LCOE). 

 

7.4.1 Equity	Net	Present	Value	

The equity NPV is the net present value of equity cash flows discounted by a user-defined target 

return on equity. This cost of equity can be defined in nominal or real terms. If defined in real 

terms, the nominal rate is calculated each period by adding the real cost of equity to the annual 

inflation rate in that period. Equity cash flows are calculated as 

𝐸𝑞𝑢𝑖𝑡𝑦	𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤

= 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑂𝑃𝐸𝑋 − 𝐶𝐴𝑃𝐸𝑋 ∙ 1 − 𝑅¦ º − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 − 𝑇𝑎𝑥 

where 𝑅¦ º is the percent of capital funded by debt. The CDF of the equity NPV gives an 

indication of the probability that the project will meet or exceed the benchmark return.  

 

7.4.2 Debt	Service	Coverage	Ratio	

Lenders use the DSCR to determine whether or not the cash flows generated by a project will be 

sufficient to make loan payments. DSCR is the ratio of cash available to repay debt to the debt 

payment owed in a period. STEMM computes this indicator on a monthly basis as 
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𝐷𝑆𝐶𝑅 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒—𝑂𝑃𝐸𝑋 − 𝑇𝑎𝑥
𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 . 

A DSCR less than one indicates that the project cannot pay its debt from project revenues. 

Lenders typically want to have DSCRs in excess of at least 1.2 [134]. Examining the cumulative 

distribution function (CDF) of the minimum DSCR provides an estimation of the probability a 

project will miss payments or default on loans. 

 

7.4.3 Levelized	Cost	of	Energy	

LCOE provides a measure of the “per unit cost” of generating and delivering electricity on the 

microgrid. It is defined as the sum of operating costs and annualized capital costs, divided by the 

number of kWh consumed. The capital recovery factor used to annualize capital costs uses a 

user-specified discount rate. 

 

STEMM calculates the levelized cost of energy for electricity generated and delivered on the 

microgrid for each model year. This is because factors like demand, load factor and fuel cost are 

modeled as changing over time. The average LCOE is calculated as the average LCOE over 

model years weighted by kWh consumption. The general formulation is 

𝐿𝐶𝑂𝐸 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝐶𝑎𝑝𝑒𝑥 + 𝐴𝑛𝑛𝑢𝑎𝑙	𝑂𝑝𝑒𝑥

𝑇𝑜𝑡𝑎𝑙	𝑘𝑊ℎ	𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

where ‘opex’ includes all operating expenses but not tax and financing costs. An annualized 

capital cost is computed for each capital asset by applying a capital recovery factor 

𝐶𝑅𝐹 =
𝑖 1 + 𝑖 ,

1 + 𝑖 , − 1 

where 𝑖 is the discount rate and 𝑛 is the lifetime of the asset. For capital assets with lifetimes 

defined as a number of years of useful life, 𝑛 is equal to this lifetime. For generators and 
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batteries, whose lives are defined in terms of hours of runtime and Ah throughput, respectively, 

𝑛 is calculated by taking the total lifetime runtime/throughput divided by the total 

runtime/throughput during the year for which the LCOE is being calculated. The total annualized 

capital cost is then obtained by computing the sum of annualized capital costs for all capital 

assets, 𝐶𝑅𝐹	×	𝐶𝑎𝑝𝑒𝑥&gg+"g . 
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8 Appendix	B:	STEMM	Sensitivity	Analysis	model	inputs	
 
STEMM requires a large number of inputs. This section of the supplemental information 

documents the inputs and assumptions used in the case studies presented in this paper. 

8.1 Financial	Inputs	

8.1.1 Cost	Inputs	

Costs are divided into capital costs and operating costs which are treated differently in the tax 

model. Capital costs are capitalized and depreciated while operating costs directly offset taxable 

income. 

8.1.1.1 Capital	Costs	

The	capital	costs	used	are	deterministic	and	presented	in	Table	8-1.	

Table	8-1	Summary	of	capital	cost	assumptions.	

Input Value Units Description Source 
PV Array 2700 USD/kWp Capital cost of PV array inclusive of 

mounting and cabling 
[135] 

Inverters 500 USD/kW Capital cost of AC/DC power inverters [136] 
Meters 40 USD/unit Capital cost of customer electricity meters [75] 
LV Distribution 26.4 USD/m Capital cost of low voltage distribution 

network 
[98] 

LV network per 
Customer 

22 m Average low voltage network length per 
customer 

[98] 

Connection Cost 92 USD/unit Capital cost to connect a customer to the 
low voltage network 

[98] 

Number of 
Customers 

521 Unit Total number of customers on grid [98] 

Battery Cost 1320 USD/unit Capital cost per battery in battery bank [136] 
 

8.1.1.2 Asset	Lifetimes	

Asset lifetimes are used to determine when capital assets must be replaced. The assets in Table 

8-2 are set in years and, in these case studies, modeled deterministically. Batteries and diesel 
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generator lifetimes are calculated as a function of cumulative capacity fade and runtime, 

respectively, using the parameters in Table 8-3. 

	

Table	8-2	Summary	of	asset	lifetimes	for	asset	lives	set	in	year.	

Asset Value Units Source 
Distribution Network 30 yr [137] 
Meters 10 yr [138] 
Solar Array 25 yr [139] 
Inverters 15 yr [140] 

 

Table	8-3	Summary	of	probabilistic	asset	lifetimes.	

Asset Distribution Parameters Units Source 
Diesel Generators Triangular Min: 20,000 

Mode: 25,000 
Max: 30,000 

hours runtime  

Batteries Triangular Min: 0.0119 
Mode: 0.0121 
Max: 0.0196 

%/full cycle equivalent [99] 

 

8.1.1.3 Operating	Costs	

Except for fuel price, operating costs are modeled deterministically. Table 8-4 summarizes the 

inputs used in the cases. 

Table	8-4	Operating	cost	inputs.	

Input Value Units Description Source 
Initial Fuel Price 1.07 USD/L Retail price per liter of diesel fuel [141] 
Fuel Price Drift 0 %/yr Annual fuel price drift parameter in 

Geometric Brownian Motion model 
[92] 

Fuel Price 
Volatility 

20 %/yr Annual fuel price volatility parameter in 
Geometric Brownian Motion model 

[92] 

Fuel Transport 
Burn Rate 

12 L/h Fuel burn of fuel delivery vehicle [26] 

Fuel Delivery 
Transit Time 

1 h One way transit time for fuel delivery 
from retail source 

[26] 

Fuel Delivery 
Volume 

300 L Liters of fuel in one delivery [26] 

Generator O&M 120 RWF/h Diesel generator O&M cost per hour of [142] 
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generator runtime 
PV O&M 6500 RWF/kWp/yr PV array and battery bank maintenance 

cost 
[136] 

 

8.1.2 Financing	Inputs	

The financing structure assumes a 50:50 debt equity ratio with a ten-year debt tenor. Other 

assumptions are summarized in Table 8-5. 

Table	8-5	Summary	of	financing	inputs.	

Input Value Units Description 
Cost of Debt 10 %/yr Real cost of debt 
Leverage 50 % Percent of capital cost financed by debt 
Loan Currency USD  Currency in which debt finance is acquired 
Debt Tenor 10 yr Debt repayment period 
Accounting Currency RWF  Currency in which assets are depreciated 
Cost of Equity 15 %/yr Real cost of equity 
 

8.1.3 Tax/Depreciation	Inputs	

The tax rate used is the Rwandan corporate tax rate of 30% [143]. Assets are depreciated in local 

currency, converted from the currency it was acquired in on the acquisition date, over the period 

in Table 8-6. 

Table	8-6	Depreciation	periods	of	capital	assets.	

Asset Value Units 
Distribution Network 30 yr 
Meters 10 yr 
Solar Array 25 yr 
Inverters 15 yr 
Batteries 5 yr 
Diesel Generators 5 yr 
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8.1.4 CPI	and	Foreign	Exchange	Inputs	

The parameters of the consumer price index (CPI) and foreign exchange models described in 

section 7.3.4 where estimated using monthly time series data of Rwanda and US CPI data and 

Rwandan Franc (RWF) and US Dollar (USD) exchange rate data from February 2009 to July 

2016. These time series are plotted in Figure 8-1 and Figure 8-2. The parameters of the AR(1) 

series described in section 7.3.4 obtained by fitting the Wilkie Investment model to these data are 

summarized in Table 8-7. 

Table	8-7	AR(1)	parameters	for	CPI	and	foreign	exchange	models.	

Series Initial Value Constant Autoregressive 
Coefficient 

Variance 

Rwanda CPI 7.5% 2,430´10-6 0.350 195´10-6 
US CPI 1.0% 755´10-6 0.466 7.68´10-6 
XN (RWF/USD) 806.4 0 0.8913 375´10-6 
 

 

Figure	8-1	Time	series	plot	of	consumer	price	index	data	used	to	fit	inflation	model	parameters.		
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Figure	8-2	Time	series	plot	of	monthly	exchange	rate	data	used	to	fit	foreign	exchange	model	parameters.	

8.2 Technical	Inputs	

8.2.1 Scenario	Generator	Sizing	Method	

The generator sizings for the technology scenarios used in this paper are presented in Table 8-8. 

The scenarios were constructed using an iterative approach with HOMER [99] and STEMM. 

Initial sizing was fixed using HOMER and the load profile provided by REG found in Figure 8-3 

[98]. Tariffs where then set by finding the value in STEMM (in deterministic mode using median 

values of uncertain inputs) that provides an equity NPV approximately equal to zero to the 

nearest Rwandan franc. Because I rely on the load profile from the grid electricity supplier, I 

assume that such demand is representative of demand at the grid tariffs. STEMM adjusts the 

demand on the microgrid as a function of the energy tariff using a constant price elasticity of 

demand model. The level of demand at the tariff level determined in STEMM is then adjusted in 

HOMER and the optimization is re-run. The new configuration is then entered into STEMM and 

2010 2012 2014 2016

600

650

700

750

Year

R
W
F/
U
S
D

RWF/USD Exchange Rate



	

	 153	

a new tariff is determined. This process was repeated until the optimal generator sizing 

converged. Table 8-8 includes information about the tariffs used. 

Table	8-8	Summary	of	generation	technology	scenarios.	

Scenario Diesel Hybrid 
(small PV) 

Hybrid 
(large PV) Solar/Battery 

Diesel Gen 1 (kW) 50 50 50  
Diesel Gen 2 (kW) 25 25 25  
Diesel Gen 3 (kW) 25 25 25  
PV Array (kWp)  50 100 200 
Inverter (kW)  50 50 75 
Battery Strings  1 4 22 
Tariff (RWF/kWh) 1,137 1,137 1,219 1,665 
Diesel Weight 1 0.69 0.46 0 
Initial Capex (k$) 432.1 607.9 790.4 1,297 
1 USD is approx. 800 RWF 

 

Figure	8-3	Average	load	profile	for	a	typical	load	center	from	REG	electricity	master	plan.	

 
8.2.2 Meteorological	Inputs	

Solar Resource Data 

Solar resource data is drawn from the HelioClim-3 v5 database for the period from February 1, 

2004 to January 31, 2005 for the coordinates 2˚ S, 30˚ E located in central Rwanda [100]. I 

assumed a north-facing array with latitude tilt. Ideally, a longer time series would be available to 

account for inter-annual variability. Lacking this, a typical meteorological year would be 

appropriate to ensure the use of data that represents the long-term average solar resource. 

However, because the only available hourly time series for the location was a single year of 

measured data, I relied on such data for the case studies. 
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Solar Resource Uncertainty 

The uncertainty model for solar resource relies on validation studies of the HelioClim-3 database 

that compare the satellite derived data with ground based measurements from 65 sites around 

Europe, Africa, and South America [102]-[105]. The relative bias values from these sites fit a 

normal distribution as in Figure 8-4 and the relative standard deviation values fit to a lognormal 

distribution as in Figure 8-5. Distribution parameters are found in Table 8-9. 

	

Table	8-9	Solar	resource	uncertainty	parameters.	

Input Distribution Parameters Units Description Source 
Hourly Solar 
Resource 
Measurement 
Error 

LogNormal µ: 20.1 
s: 5.04 

% Measurement 
uncertainty of 
hourly solar 
resource 

[102]-[105] 

Solar Resource 
Bias 

Normal µ: 0.592 
s: 2.63 

% Bias of annual 
solar resource 
measurement 

[102]-[105] 

 

 

Figure	8-4	Distribution	of	relative	bias	of	HelioClim-3	v5	data	from	65	ground	measurement	sites.	
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Figure	8-5	Distribution	of	relative	standard	deviation	of	HelioClim-3	v5	data	from	65	ground	measurement	sites.	

 
 
 
Temperature Data 

Daily maximum and minimum temperatures used in the model are from the NASA SSE database 

[101]. This time series is from the same coordinates and time period as the solar irradiation data. 

Figure 8-6 shows the profiles of total daily solar insolation, and daily maximum and minimum 

ambient temperatures used in the case studies. Uncertainty parameters are in Table 8-10. 

Table	8-10	Temperature	uncertainty	parameters.	

Input Value Units Description Source 
Tamax 
Uncertainty 

3.1 ˚C Standard deviation of distribution of daily 
maximum ambient temperature 

[122] 

Tamin 
Uncertainty 

2.5 ˚C Standard deviation of distribution of daily 
minimum ambient temperature 

[122] 

 



	

	 156	

 

Figure	8-6	Daily	solar	and	temperature	profiles	used	in	case	studies.	
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8.2.3 Solar	Inputs	

Solar array and inverter inputs were taken primarily from data sheets for Trina solar modules and 

Fronius inverters, respectively. These inputs are found in Table 8-11. PV array output 

degradation and system losses are modeled probabilistically using the inputs in Table 8-12. 

Table	8-11	Deterministic	solar	array	inputs.	

Input Value Units Description Source 
Vmpp 30.3 V Maximum power point voltage of PV 

modules at STC 
[139] 

Impp 8.27 A Maximum power point current of PV 
modules at STC 

[139] 

Voc0 38 V Open circuit voltage of PV modules at 
STC 

[139] 

Isc0 8.79 A Closed circuit current of PV modules at 
STC 

[139] 

NOCT 44 ˚C Normal operating cell temperture [139] 
Power Temperature 
Coefficient 

0.41 %/˚C/yr Temperature dependence coefficient of 
PV model power output 

[139] 

Inverter Efficiency 96.5 % DC to AC conversion efficiency of 
inverters 

[144] 

 

Table	8-12	Probabilistic	solar	array	inputs.	

Input Distribution Parameters Units Description Source 
Annual PV 
Degradation 

Triangular Min: 0.2 
Mode: 0.5 
Max: 0.8 

%/yr Annual power output 
degradation of PV modules 

[111] 

DC PV Losses Beta a: 12.8 
b: 96.7 

% Energy losses in PV system 
from array to inverters 

[110] 
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8.2.4 Diesel	inputs	table	

Diesel generator inputs are summarized in Table 8-13. 

Table	8-13	Diesel	generator	inputs.	

Input Value Units Description Source 
No Load Fuel 
Consumption 

0.0911 ´ Gen. 
Capacity 

L/h Generator fuel consumption per hour 
regardless of electric output 

[142] 

Marginal Fuel 
Consumption 

0.264 L/kWh Generator fuel consumption in addition 
to no load fuel consumption per kWh 
generated 

[142] 

Minimum Load 
Factor 

30 % Minimum generator output while 
operating as percent of rated capacity 

[145] 

 

8.2.5 Load/distribution	inputs	table	

Load profile and distribution loss model inputs are found in Table 8-14 and Table 8-15. 

Table	8-14	Load	and	distribution	inputs	

Input Value Units Description Source 
Expected Load 
Tariff 

182 RWF/kWh Tariff assumption in constructing 
load profile 

[146] 

Demand 
Uncertainty 

20 % Relative standard deviation of mean 
daily electricity consumption 

Based on author 
experience 

Load Profile 
Uncertainty 

10 % Relative standard deviation of mean 
hourly electricity demand 

 

Timestep 
Variability 

8 % Relative standard deviation of hourly 
demand distributed around mean 
profile 

[147] 

Technical 
Losses 

5 % Technical losses incurred in 
distribution of electricity 

[148] 

 

Table	8-15	Load	and	distribution	input	distributions.	

Input Distribution Parameters Units Description Source 
Price Elasticity of 
Demand 

Triangular Min: -0.82 
Mode: -0.5 
Max: -0.17 

 Price elasticity of 
demand for electricity 

[149], [150] 

Non-Technical 
Losses 

Triangular Min: 0 
Mode: 2 
Max: 4 

% Non-technical losses 
due to non-payment 
and theft 

[109] 
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8.2.6 Battery	Inputs	

Battery model inputs are summarized in Table 8-16. 

Table	8-16	Battery	inputs.	

Input Value Units Description Source 
c (KiBaM) 0.254  Constant in KiBam model described in 

section 7.2.5.1 
[99] 

Ak 1.058  Constant in model for KiBaM reaction rate 
described in section 7.2.5.1 

 

Bk 44.16  Constant in model for KiBaM reaction rate 
described in section 7.2.5.1 

 

Ck 236.3  Constant in model for KiBaM reaction rate 
described in section 7.2.5.1 

 

20hr 
Capacity 

1350 Ah Capacity of battery at standard conditions 
at 20-hour discharge rate 

[99] 

Nominal 
Voltage 

4 V Nominal voltage of each battery [99] 

Batteries per 
String 

12  Number of batteries connected (in series) in 
a string 

 

Ah -0.0278  Constant in model of battery efficiency 
described in section 7.2.5.1 

 

Bh 0.822  Constant in model of battery efficiency 
described in section 7.2.5.1 

 

Min. SOC 40 % Minimum battery state of charge  
Battery 
Setpoint 
SOC 

90 % Battery state of charge when battery bank 
becomes available for discharge after 
reaching minimum SOC 

Typical 
value 

Rectifier 
Efficiency 

90 % AC to DC conversion rate of rectifier for 
battery charging 

[151] 

 

8.2.6.1 Capacity	fade	distribution	

The distribution for the battery capacity fade constant is derived from cycle life data in the 

HOMER database [99]. Table 8-17 shows the cycle life of the battery modeled at different 

depths of discharge. These cycles are then converted to full cycle equivalents and the capacity 

fade rate is calculated assuming the batteries reach end of life at the conventional 80% of original 

capacity. A triangular distribution is constructed using the maximum and minimum values with 

the distribution mode equal to the fade rate at the minimum depth of discharge being modeled. 
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There are limitations to this approach. For example, this does not account for variation in quality 

of manufacturing. However, due to a lack of data, this method has been used to approximate the 

uncertainty associated with battery capacity fade. 

Table	8-17		Implied	capacity	fade	rate	of	Surrette	4kS25P	battery	from	HOMER	database	[99].	

Surrette 4KS25P Cycle Life Data 
DOD Cycles Full Cycles Fade Fade Rate 

20 5,100 1,020 20% 0.0196% 
30 4,220 1,266 20% 0.0158% 
40 3,580 1,432 20% 0.0140% 
50 3,170 1,585 20% 0.0126% 
60 2,750 1,650 20% 0.0121% 
70 2,400 1,680 20% 0.0119% 
80 2,000 1,600 20% 0.0125% 
90 1,750 1,575 20% 0.0127% 

100 1,500 1,500 20% 0.0133% 
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9 Appendix	C:	Demand	model	supplemental	information	
 

Table	9-1	Summary	of	train	and	test	MSEs	on	1,000	train/test	data	splits	

  Combined Peak Off-peak 

  
Train 
MSE 

Test 
MSE 

Train 
MSE 

Test 
MSE 

Train 
MSE 

Test 
MSE 

OLS 
Mean 1.45 2.17 1.45 2.19 5.51 8.13 
Std 
Err. 0.16 0.43 0.19 0.52 0.39 1.19 

Ridge 
Mean 1.68 2.05 1.70 2.11 6.31 7.50 
Std 
Err. 0.17 0.43 0.20 0.55 0.42 1.14 

LASSO 
Mean 1.73 2.01 1.76 2.06 6.53 7.39 
Std 
Err. 0.21 0.43 0.25 0.54 0.50 1.15 

PCR 
Mean 1.72 2.11 1.75 2.19 6.68 7.65 
Std 
Err. 0.22 0.45 0.27 0.56 0.59 1.16 

Mean 
Mean 2.91 2.93 2.82 2.85 9.98 10.09 
Std 
Err. 0.22 0.51 0.24 0.57 0.60 1.41 

Rand. 
Forest 

Mean 0.31 2.14     
Std 
Err. 0.04 0.45     
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Table	9-2	Summary	of	model	MSEs,	tuning	parameters,	and	coefficients	for	1,000	train/test	splits	

 OLS Ridge 
 Peak Off-peak Peak Off-peak 

Tuning parameter     alpha alpha 
    0.575 0.000 0.874 0.000 

Intercept -3.419 0.796 -9.303 1.559 -3.686 0.432 -7.498 0.654 
Own Building -0.050 0.179 0.008 0.427 -0.025 0.093 -0.015 0.179 
Building Type         
Well Built Concrete -0.459 0.220 0.062 0.504 -0.065 0.050 0.128 0.090 
Brick/Mud Brick/Sticks & Mud/Wood -0.425 0.223 0.104 0.627 -0.114 0.045 -0.181 0.102 
Current Light/Electricity Source         
None/Kerosene Lamp -0.733 0.249 -0.266 0.510 -0.397 0.088 -0.525 0.166 
Solar Lantern -0.187 0.186 0.617 0.369 -0.136 0.065 -0.070 0.118 
Solar < 50W -0.220 0.240 0.320 0.375 -0.213 0.076 -0.214 0.118 
Solar > 50W 0.115 0.284 1.261 0.473 -0.113 0.085 0.188 0.107 
Generator/Mini-Grid 1.007 0.309 1.782 0.436 0.868 0.095 1.082 0.100 
Other 0.210 0.197 0.208 0.385 0.104 0.077 0.126 0.135 
Existing Appliances         
None -0.305 0.246 0.494 0.527 -0.150 0.083 0.094 0.143 
Computer/Refrigerator/Printer/Copier 0.333 0.372 0.621 0.557 0.237 0.229 0.445 0.261 
Television 0.576 0.202 0.792 0.377 0.377 0.067 0.436 0.096 
Radio -0.184 0.182 -0.250 0.338 0.047 0.071 0.067 0.111 
Phone Charger 0.014 0.183 -0.044 0.299 0.000 0.072 -0.018 0.107 
CD-DVD Player/Sound System -0.401 0.304 -0.198 0.445 0.100 0.127 0.369 0.135 
Other -0.387 0.199 -0.691 0.433 -0.167 0.101 -0.339 0.188 
Planned Appliance         
None -0.356 0.396 0.072 0.565 0.050 0.187 0.127 0.336 
Computer/Refrigerator/Printer/Copier 0.092 0.147 0.379 0.278 -0.023 0.071 0.070 0.109 
Television 0.301 0.157 0.942 0.382 0.010 0.067 0.112 0.119 
Radio 0.336 0.164 0.008 0.311 0.189 0.070 -0.007 0.112 
Phone Charger 0.271 0.163 0.228 0.302 0.173 0.072 0.048 0.114 
CD-DVD Player/Sound System -0.003 0.131 0.006 0.275 -0.013 0.067 -0.031 0.121 
Lights 0.039 0.153 0.293 0.299 -0.074 0.073 -0.063 0.116 
Other 0.156 0.169 0.228 0.295 0.059 0.083 0.137 0.121 
Customer Type         
Home 0.342 0.206 -0.486 0.354 -0.006 0.093 -0.419 0.106 
Restaurant/Bar 0.624 0.183 0.189 0.401 0.410 0.096 0.253 0.173 
Shop/Hair Salon/Guest House 0.179 0.168 0.431 0.304 0.102 0.092 0.349 0.121 
Other -0.298 0.308 -0.571 0.538 -0.463 0.157 -0.456 0.205 
Time of Use 10.998 2.061 16.297 3.101 0.286 0.057 0.606 0.081 
Numerical Variables         
Log Peak Tariff (TSH/kWh) -1.292 0.253   0.023 0.007   
Log Off-peak Tariff (TSH/kWh)   -1.974 0.421   0.067 0.012 
Log Airtime Spend (TSH) -0.083 0.087 0.010 0.161 -0.022 0.050 0.067 0.077 
Log Electricity Spend (TSH) 0.033 0.025 0.067 0.044 0.029 0.009 0.052 0.013 
Log Number of Existing Lights -0.203 0.132 0.190 0.274 0.037 0.042 0.238 0.072 
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	Table	9-2	Summary	of	model	MSEs,	tuning	parameters,	and	coefficients	for	1,000	train/test	splits	cont’d	

 LASSO PCR 
 Peak Off-peak Peak Off-peak 

Tuning parameter alpha alpha Num. Comp. Num. Comp. 
0.008 0.008 0.003 0.019 0.019 0.005 15.20 7.01 8.34 4.59 

Intercept -3.997 -4.007 0.249 -7.274 -7.294 0.374 -4.314 0.781 -8.032 0.959 
Own Building   0.000 0.032   -0.002 0.041 0.095 0.200 0.052 0.233 
Building Type                   
Well Built Concrete   -0.013 0.073   0.006 0.037 -0.050 0.169 0.273 0.117 
Brick/Mud Brick/Sticks & Mud/Wood   -0.023 0.087   -0.017 0.076 -0.110 0.146 -0.344 0.101 
Current Light/Electricity Source                   
None/Kerosene Lamp -0.151 -0.202 0.217 -0.103 -0.232 0.280 -0.354 0.229 -0.559 0.274 
Solar Lantern   -0.013 0.063   0.002 0.028 -0.137 0.099 -0.158 0.146 
Solar < 50W   -0.045 0.111   -0.019 0.069 -0.223 0.170 -0.324 0.232 
Solar > 50W   0.002 0.069   0.148 0.228 -0.148 0.169 0.068 0.183 
Generator/Mini-Grid 1.387 1.375 0.231 1.820 1.820 0.273 0.876 0.250 0.940 0.350 
Other   0.009 0.048   0.005 0.043 0.094 0.179 0.211 0.189 
Existing Appliances                   
None   -0.026 0.086   0.024 0.117 -0.076 0.141 -0.006 0.282 
Computer/Refrigerator/Printer/Copier   0.122 0.229   0.157 0.298 0.304 0.332 0.550 0.330 
Television 0.414 0.414 0.155 0.392 0.402 0.252 0.287 0.155 0.307 0.108 
Radio   0.005 0.052   -0.001 0.056 0.046 0.142 0.063 0.175 
Phone Charger   0.006 0.048   -0.005 0.042 0.001 0.106 0.003 0.133 
CD-DVD Player/Sound System   0.006 0.090   0.092 0.178 0.097 0.258 0.404 0.150 
Other   -0.045 0.115   -0.099 0.210 0.094 0.179 -0.245 0.317 
Planned Appliance                   
None   -0.006 0.069   -0.001 0.046 0.276 0.453 -0.089 0.569 
Computer/Refrigerator/Printer/Copier   0.006 0.044   0.011 0.059 -0.093 0.152 -0.074 0.152 
Television   0.017 0.070   0.028 0.129 -0.012 0.154 -0.069 0.183 
Radio   0.096 0.130   0.003 0.042 0.248 0.144 0.043 0.272 
Phone Charger 0.037 0.089 0.110   0.010 0.056 0.125 0.178 -0.195 0.156 
CD-DVD Player/Sound System   -0.001 0.032   -0.002 0.030 -0.019 0.124 -0.033 0.158 
Lights   0.002 0.046   0.004 0.048 -0.049 0.115 -0.170 0.143 
Other   0.006 0.041   0.021 0.080 0.011 0.139 0.092 0.178 
Customer Type                   
Home   0.017 0.093 -0.034 -0.146 0.204 0.020 0.181 -0.333 0.167 
Restaurant/Bar 0.231 0.236 0.186   0.039 0.116 0.664 0.210 0.567 0.395 
Shop/Hair Salon/Guest House   0.043 0.090 0.229 0.257 0.221 0.245 0.176 0.639 0.316 
Other -0.378 -0.364 0.250   -0.145 0.297 -0.698 0.292 -0.496 0.433 
Time of Use 0.462 0.869 2.052 1.413 1.450 0.877 1.513 3.785 0.564 0.703 
Numerical Variables                     
Log Peak Tariff (TSH/kWh)   -0.052 0.254      -0.124 0.466     
Log Off-peak Tariff (TSH/kWh)        -0.005 0.115     0.068 0.089 
Log Airtime Spend (TSH)   -0.004 0.026   0.004 0.028 0.022 0.097 0.161 0.095 
Log Electricity Spend (TSH)   0.010 0.017 0.001 0.018 0.026 0.040 0.012 0.057 0.017 
Log Number of Existing Lights   -0.001 0.038 0.208 0.216 0.165 0.114 0.121 0.286 0.103 
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Figure	9-1	Model	estimates	of	log	consumption	plotted	against	observed	values	in	the	test	data.	

 
Figure	9-2	Model	estimates	of	median	consumption	plotted	against	observed	values	in	the	test	data.	
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