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ABSTRACT 

 

 Motivated by the role of decarbonizing the electric power sector to mitigate climate 

change, I assess the economic and environmental merits of three key technologies for 

decarbonizing the electric power sector across four chapters in this thesis. These chapters explore 

how adding flexibility to power plants equipped with carbon capture and sequestration (CCS) 

affects system costs and carbon dioxide (CO2) emissions, how grid-scale electricity storage 

affects system CO2 emissions as a power system decarbonizes, and how distributed solar 

photovoltaic (distributed PV) electricity generation suppresses wholesale electricity prices. In 

each chapter, I address these questions through a combination of power system optimization, 

statistics, and techno-economic analysis, and tie my findings to policy implications.  

In Chapter 2, I compare the cost-effectiveness of “flexible” CCS retrofits to other 

compliance strategies with the U.S. Clean Power Plan (CPP) and a hypothetical stronger CPP. 

Relative to “normal” CCS, “flexible” CCS retrofits include solvent storage that allows the 

generator to temporarily eliminate the CCS parasitic load and increase the generator’s net 

efficiency, capacity, and ramp rate. Using a unit commitment and economic dispatch (UCED) 

model, I find that flexible CCS achieves more cost-effective emissions reductions than normal 

CCS under the CPP and stronger CPP, but that flexible CCS is less cost-effective than other 

compliance strategies under both reduction targets.  

In Chapter 3, I conduct a detailed comparison of how flexible versus normal CCS 

retrofits affect total system costs and CO2 emissions under a moderate and strong CO2 emission 

limit. Given that a key benefit of flexible CCS relative to normal CCS is increased reserve 

provision, I break total system costs into generation, reserve, and CCS capital costs. Using a 
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UCED model, I find that flexible CCS retrofits reduce total system costs relative to normal CCS 

retrofits under both emission limits. Furthermore, 40-80% of these cost reductions come from 

reserve cost reductions. Accounting for costs and CO2 emissions, though, flexible CCS poses a 

trade-off to policymakers under the moderate emission limit, as flexible CCS increases system 

CO2 emissions relative to normal CCS. No such trade-off exists under the stronger emission 

limit, as flexible CCS reduces system CO2 emissions and costs relative to normal CCS.  

In Chapter 4, I quantify how storage affects operational CO2 emissions as a power system 

decarbonizes under a moderate and strong CO2 emission limit through 2045. In so doing, I aim to 

better understand how storage transitions from increasing CO2 emissions in historic U.S. systems 

to enabling deeply decarbonized systems. Additionally, under each target I compare how storage 

affects CO2 emissions when participating in only energy, only reserve, and energy and reserve 

markets. Using a capacity expansion (CE) model to forecast fleet changes through 2045 and a 

UCED model to quantify how storage affects system CO2 emissions, I find that storage quickly 

transitions from increasing to decreasing CO2 emissions under the moderate and strong emission 

limits. Whether storage provides only energy, only reserves, or energy and reserves drives large 

differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.  

In Chapter 5, I quantify a benefit of distributed photovoltaic (PV) generation often 

overlooked by value of solar studies, namely the market price response. By displacing high-cost 

marginal generators, distributed PV generation reduces wholesale electricity prices, which in 

turn reduces utilities’ energy procurement costs. Using 2013 through 2015 data from California 

including a database of all distributed PV systems in the three California investor owned utilities, 

we estimate historic hourly distributed PV generation in California, then link that generation to 

reduced wholesale electricity prices via linear regression. From 2013 through 2015, we find that 
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distributed PV suppressed historic median hourly LMPs by up to $2.7-3.1/MWh, yielding 

avoided costs of up to $650-730 million. These avoided costs are smaller than but on the order of 

other avoided costs commonly included in value of solar studies, so merit inclusion in future 

studies to properly value distributed PV.  
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CHAPTER 1: INTRODUCTION 

 

 Climate change poses a serious threat to humans and natural systems [1], and already 

affects the U.S. [2]. International efforts to reduce greenhouse gas (GHG) emissions, the primary 

drivers of climate change [3], recently culminated in the 2015 Paris Agreement, under which 

nations submit self-determined GHG emission reduction targets for 2030 [4], [5]. However, even 

if all countries meet their targets, global energy- and industry-related GHG emissions will likely 

rise through 2030 and beyond [4], [6]. In comparison, limiting the global average temperature 

increase to 2 degrees Celsius as espoused by the Paris Agreement [7] would require reducing 

global GHG emissions by 40-70% from 2010 levels by 2050 and by 100% by 2100 [8]. 

 In the U.S., the electric power sector has historically emitted more GHGs than any other 

sector [9], although CO2 emissions from transportation surpassed those from the electric power 

sector in 2016 [10]. In 2015, the electric power sector accounted for 38% of total GHG emissions 

[9]. Consequently, decarbonizing the U.S. economy in line with global climate targets will 

require significant reductions in GHG emissions from the electric power sector [11]. To that end, 

in 2015 the U.S. Environmental Protection Agency promulgated the first federal regulations on 

CO2 emissions from new and existing fossil-fired power plants in New Source Performance 

Standards [12] and the Clean Power Plan [13], respectively, although the Trump administration 

published its plan to repeal the latter in October 2017 [14].  

 Environmental policies and regulations, such as Renewable Portfolio Standards and the 

Mercury and Air Toxics Standards, and market forces, particularly low natural gas prices and 

rapid growth in wind and solar energy, are transforming the U.S. electric power system. Natural 

gas prices fell from $8 to $3 per thousand cubic feet from 2005 to 2016 [15], driving an increase 
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in gas-fired generation, such that gas-fired generation surpassed coal-fired generation in 2017 for 

the first time in decades [10]. Coal-fired power plant retirements have surged in recent years: 14 

GW retired in 2015 alone [16] and another 51 GW have announced retirement or a switch to 

natural gas through 2030 [17]. Nuclear plants have also struggled economically, resulting in 

early retirements of at least five plants in recent years [18], [19]. At the same time, new 

technologies have gained momentum over the last decade. As of 2016, installed wind and solar 

capacity reached 82 [20] and 47 GW [21], respectively. Additionally, the first U.S. utility-scale 

power plant equipped with carbon capture and sequestration began operations in 2017 [22] and 

the first Generation 3+ nuclear reactors in the U.S. are under construction [23]. Overall, these 

changes contributed to a 20% reduction in GHG emissions from the electric power sector from 

2005 levels by 2015 [9]. While this reduction is significant, reductions on the order of 80-100% 

will likely be necessary to aggressively mitigate climate change [4], [11], [24].  

To that end, this thesis presents four research papers I wrote while at Carnegie Mellon 

University that focus on three key technologies for deep decarbonization of the electric power 

sector: carbon capture and sequestration (CCS), grid-scale electricity storage (simply referred to 

here as storage), and distributed solar photovoltaic (distributed PV). In recent years, concerns 

around all three technologies have arisen. High costs have plagued CCS, limiting its deployment 

and leading some experts to question its viability as a major decarbonization technology [25], 

[26]. Unlike for CCS, storage costs have fallen precipitously in recent years [27], but recent 

studies indicate storage may increase net system CO2 emissions in current U.S. power systems 

[28]–[30]. Finally, while distributed PV capacity has grown rapidly in recent years, debates 

around the value of distributed PV [31] could lead to policies that inhibit future growth. Through 

power system optimization, statistics, and techno-economic analysis, the research presented in 
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this thesis addresses each of these challenges facing CCS, storage, and distributed PV. Each 

chapter also leverages sensitivity analysis to test the robustness of results to key uncertainties, 

and links key results to specific policy implications or recommendations. 

In Chapters 2 and 3, I explore the system cost and emission implications in the upper 

Midwest of adding flexibility to CCS-equipped generators through on-site solvent storage. 

Added flexibility could allow a CCS-equipped generator to provide more grid services, e.g. 

reserves, increasing the system value of CCS and potentially making it an economic CO2 

reduction strategy. In both chapters, I compare system costs and emissions with flexible CCS 

versus other CO2 reduction strategies using a unit commitment and economic dispatch (UCED) 

model, a power system optimization model that enforces system- and unit-level constraints while 

minimizing operating costs. To capture the dynamic operations of flexible CCS, I develop a 

model of a flexible CCS generator and embed it in the UCED model.  

In Chapter 2, I compare the cost-effectiveness of reducing CO2 emissions with flexible 

CCS relative to wind, re-dispatching, and normal CCS under the U.S. Clean Power Plan (CPP) 

and a hypothetical stronger CPP. Using the UCED model, I find that flexible CCS tends to offer 

more cost-effective emission reductions than normal CCS. However, I also find that other CO2 

emission reduction technologies are more cost-effective than flexible CCS, suggesting CCS will 

play a minor role in complying with the CPP. Chapter 3 builds on Chapter 2 by providing a 

detailed accounting of system CO2 emissions and costs, including regulation reserve, generation, 

and start-up costs, with flexible versus normal CCS. In so doing, I find two key trade-offs 

between flexible and normal CCS. First, under a moderate emission limit similar to that of the 

CPP, flexible CCS reduces costs but increases emissions relative to normal CCS, posing a trade-

off between costs and emissions to policymakers. However, under a stronger emission limit, 
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flexible CCS reduces costs and CO2 emissions relative to normal CCS, thereby posing a trade-off 

between near-term and long-term priorities. Taken together, Chapters 2 and 3 indicate that while 

flexible CCS offers several advantages relative to normal CCS, it may also pose trade-offs 

between economic and environmental objectives. Furthermore, Chapters 2 and 3 indicate that 

flexible CCS does not fully resolve cost issues that have hindered CCS deployment thus far.  

In Chapter 4, I quantify how storage affects system CO2 emissions as the Texas power 

system decarbonizes over time. This research begins to fill the gap between two groups of 

papers: those that find storage would increase emissions in current U.S. power systems and those 

that find storage will be a key to deep decarbonization. I specifically quantify how storage affects 

CO2 emissions under a moderate and strong decarbonization target when participating in only 

energy, only reserve, and energy and reserve markets. To forecast generator fleet changes, I use a 

capacity expansion (CE) model, which determines generator additions and operations that 

minimize fixed and variable costs while meeting system- and unit-level constraints. I then use a 

UCED model to estimate how storage affects system CO2 emissions. I find that storage can 

contribute to CO2 emission reductions well before deep decarbonization, as early as 2025. 

Whether storage provides only energy, only reserves, or energy and reserves significantly affects 

the magnitude, but not direction, of the effect of storage on system CO2 emissions. Thus, 

policymakers have a key lever over how storage affects emissions through incentivizing storage 

to participate in certain markets.  

In Chapter 5, in order to improve the valuation of distributed PV generation in value of 

solar studies, I quantify an often overlooked benefit of distributed PV, namely the market price 

response. By offsetting some energy demand on-site, distributed PV generation reduces the need 

for electricity from marginal high-cost generators, which suppresses wholesale electricity prices 
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and reduces utility expenditures in wholesale energy markets. To quantify wholesale price 

reductions by distributed PV generation, we use 2013 through 2015 data from California, the 

state with the highest distributed PV capacity in the U.S. Using a database of all distributed PV 

systems in the three investor owned utilities (IOUs) in CA, we estimate hourly distributed PV 

generation from 2013 through 2015 using four methods, thereby hedging against potential biases 

associated with each and capturing heterogeneity in location and configuration among distributed 

PV systems. We then estimate wholesale price reductions due to our estimated distributed PV 

generation using linear regression. From 2013 through 2015, we find that distributed PV 

suppressed historic median hourly wholesale prices by up to $2.7-3.1/MWh, or by 7-8%, during 

peak daily PV generation (12-1 p.m. PST). Lower wholesale prices, in turn, reduced utility 

expenditures in wholesale markets by up to $650-730 million. These avoided costs are smaller 

than but on the order of other avoided costs commonly included in value of solar studies, so 

merit inclusion in future studies to properly value distributed PV.  

Mitigating climate change is one of the grand challenges of our time. Policy will likely 

play a fundamental role in this effort, but to do so, it must be grounded in sound, relevant 

analysis [32]. In each chapter in this thesis, I have taken a key decarbonization technology, 

identified a policy-relevant challenge or uncertainty associated with it, and addressed that 

uncertainty or challenge through rigorous, transparent analysis. In so doing, I hope to have 

helped inform effective policy for mitigating climate change and, in turn, contributed to the fight 

against climate change.  
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CHAPTER 2:  

THE ECONOMIC MERITS OF FLEXIBLE CARBON CAPTURE AND 

SEQUESTRATION AS A COMPLIANCE STRATEGY  

WITH THE CLEAN POWER PLAN 
 

2.1 ABSTRACT 

 Many studies indicate that carbon capture and sequestration (CCS) will be a key 

technology for achieving large CO2 emissions reductions. Relative to “normal” CCS, “flexible” 

CCS retrofits include solvent storage that allows the generator to temporarily eliminate the CCS 

parasitic load and increase the generator’s net efficiency, capacity, and ramp rate. Due to this 

flexibility, flexible CCS generators provide system benefits that normal CCS generators do not, 

which could make flexible CCS an economic CO2 emissions reduction strategy. Here, we 

estimate the system-level cost-effectiveness of reducing CO2 emissions with flexible CCS 

compared to re-dispatching, wind, and normal CCS under the Clean Power Plan (CPP) and a 

hypothetical “stronger CPP.” We rely on a unit commitment and economic dispatch (UCED) 

model, and find that flexible CCS achieves more cost-effective emissions reductions than normal 

CCS under the CPP and stronger CPP, indicating that policies that promote CCS should 

encourage flexible CCS. However, we find that flexible CCS is less cost-effective than wind 

under both reduction targets, and less and more cost-effective than re-dispatching under the CPP 

and stronger CPP, respectively. Thus, CCS will likely be a minor CPP compliance strategy, but 

may play a larger role under a stronger emission reduction target.  

 This chapter is published as Craig, M.T., P. Jaramillo, H. Zhai, and K. Klima. (2017). 

The economic merits of flexible carbon capture and sequestration as a compliance strategy with 

the Clean Power Plan. Environmental Science & Technology, 51, 1102-1109. 

doi:10.1021/acs.est.6b03652. 
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2.2 INTRODUCTION 

  Climate change poses a serious threat to humans and natural systems [1]. In order to 

avert large temperature increases under climate change, carbon dioxide (CO2) emissions from the 

electric power sector must decrease significantly [2]. Many studies suggest that large (>50%) 

CO2 emissions reductions will not be possible without carbon capture and sequestration (CCS) 

[3], [4]. Yet, only one utility-scale power plant equipped with CCS – the Boundary Dam plant – 

is currently operational in the world [5]. The Boundary Dam plant is equipped with amine-based 

post-combustion CCS, the most commercially-developed CCS system, which uses liquid amine 

to absorb and remove CO2 from the flue gas of a coal-fired electric generating unit (EGU). 

“Normal” CCS retrofits like the one at the Boundary Dam plant can reduce CO2 emissions, but 

consume significant amounts of energy due to large parasitic loads of the CO2 capture process, 

which in turn significantly reduces the net power capacity of the retrofitted EGU. Large capital 

costs of the retrofits and the increased operation costs associated with the large parasitic loads 

have hindered large-scale CCS deployment [6]. 

Relative to a normal CCS retrofit, a “flexible” CCS retrofit includes an additional feature 

– solvent storage – that allows the generator to temporarily eliminate most of the large parasitic 

loads of the CO2 capture process while maintaining a constant CO2 capture rate [7], [8]. This 

temporary reduction in the large parasitic loads allows a flexible CCS generator to temporarily 

increase its net capacity, net efficiency, and ramping capability [7], [9], which in turn yields 

system benefits that are not available in a normal CCS generator. Furthermore, this flexibility 

may be increasingly valuable as the penetration of renewables and other technologies increases 

[10]. Because of these system benefits, flexible CCS may be an economic strategy to reduce CO2 

emissions.  
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Prior research on flexible CCS with solvent storage can largely be divided into two 

groups. One group used profit-maximizing optimization models with exogenous electricity 

prices to determine the optimal operations and profitability of flexible CCS generators [7], [8], 

[11]. These papers demonstrated that flexible CCS units could use solvent storage to arbitrage 

electricity price variability throughout the day. However, this arbitrage only marginally increased 

profits in systems with very large intra-day price differentials [11]. Furthermore, adding amine 

solvent storage to a normal CCS generator tended to only increase the profitability of a CCS 

plant at low carbon prices, when construction of a CCS generator would not be justified [7], [8], 

[12]. 

Other research used cost-minimizing dispatch models that demonstrated system-wide 

benefits of flexible CCS generators. Van der Wijk et al. [9], for instance, found that solvent 

storage-equipped flexible CCS generators could provide four to ten times greater amounts of 

raise reserves than normal CCS generators, which would reduce reserve provision costs. They 

also demonstrated that flexible CCS could provide slight reductions in system emissions and 

wind curtailment compared to normal CCS. Conversely, Cohen et al. [13] demonstrated benefits 

from increased reserve provision by venting-equipped flexible CCS generators but not from 

adding solvent storage to those generators.  

Taken together, past research suggests that a weak case exists for private investment in 

flexible CCS, but system benefits of flexible CCS may make it an economic CO2 emissions 

reduction strategy. Yet, past papers did not compare flexible CCS to common CO2 emissions 

reductions strategies like re-dispatching (decreasing the capacity factors of coal-fired EGUs by 

increasing the capacity factors of less carbon-intensive EGUs, mainly natural gas) and building 

new wind capacity. Furthermore, neither Cohen et al. [13] nor Van der Wijk et al. [9] included 



11 

 

reserve provision costs in the optimization problem, which is necessary to fully value solvent 

storage. Thus, little information exists on the trade-offs between using flexible CCS and other 

strategies for reducing CO2 emissions. 

Here, we begin to fill these knowledge gaps by considering flexible CCS as an emissions 

reduction technology in the context of the Clean Power Plan (CPP) and a hypothetical “stronger 

CPP”. The CPP set the first federal limits on CO2 emissions from existing EGUs in the U.S. and 

aims to reduce CO2 emissions in 2030 by 870 million short tons, or 32% from 2005 levels [14]. 

While these targets are significant, they are likely insufficient to meet climate stabilization goals 

[15]. Thus, in this paper we also consider a hypothetical stronger CPP that would require a 50% 

reduction in existing EGU emissions (relative to 2005 levels) by 2030, using the same emissions 

reduction framework as the CPP.  

We assess the merits of flexible CCS as a CPP or stronger CPP compliance strategy with 

two metrics. First, we compare the cost-effectiveness of CO2 emissions reductions of flexible 

CCS retrofits to other CPP compliance strategies, namely re-dispatching, additional wind, and 

normal CCS retrofits. In this context, we define cost effectiveness as the total operational and 

capital costs per ton of CO2 emissions reduced. Second, we calculate the equivalent capital cost 

(ECC) for flexible CCS retrofits relative to each other compliance strategy, which indicates the 

capital cost of flexible CCS at which it would reach the same cost-effectiveness and quantity of 

CO2 emissions reductions as an alternative compliance strategy. 

 

2.3 METHODS 

The upper Midwest area of the Midcontinent Independent System Operator (MISO), 

which oversees a competitive wholesale market place, will likely face a large capacity of coal-
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fired plant retirements [16] and has good wind resources [17], making it an ideal study system 

for changes under the CPP. As such, we conduct our study in this region, which includes North 

Dakota, South Dakota, Minnesota, Iowa, Wisconsin, Michigan, Missouri, Illinois, and Indiana. 

   

2.3.1 Unit Commitment and Economic Dispatch Model 

We determine operational costs and emissions of each power plant fleet using a unit 

commitment and economic dispatch (UCED) model that minimizes total system electricity, 

reserve, start-up, and non-served energy costs subject to various system- and unit-level 

constraints. By including reserve costs in the objective function of our UCED, we capture the 

changes in operating costs that result from flexible CCS generators being able to provide system 

reserves. We constructed the UCED model in PLEXOS Version 7.2 [18], a commercially-

available software package commonly used in power system analyses [19], and solved it using 

CPLEX Version 12.6.1 [20]. We ignore transmission constraints within MISO and imports and 

exports to and from MISO to limit problem size [21]. Appendix A provides the complete UCED 

formulation and the 2030 demand profile used in the UCED. In order to allow curtailment of 

renewable resources, the UCED includes wind and solar generators as dispatchable resources 

with hourly capacity factors from the National Renewable Energy Laboratory (Appendix A) 

[22], [23]. 

Like MISO’s day-ahead market [24], we run the UCED model at hourly intervals for a 

24-hour period. Additionally, the optimization includes a 24-hour look-ahead period (in 6-hour 

intervals), which allows us to optimize dispatch decisions over a longer time horizon for a 

relatively light computational penalty. The solution for one 24-hour horizon serves as the initial 

conditions for the next day’s optimization. 
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Our UCED model includes reserve requirements and reserve costs. Given the large 

penetration of wind power in all of our scenarios, we set hourly spinning reserve requirements 

equal to 3% of maximum daily load plus 5% of hourly wind generation [21], [25]. In order to 

include reserve costs in the UCED objective function, a cost coefficient, or reserve offer price, 

must be included with each generator’s reserve offers. To determine this coefficient, we assume 

that reserve offer prices are proportional to the generator’s operating cost, or marginal cost of 

energy [26], [27]. Based on 2015 MISO energy [28] and spinning reserve offer prices [29], the 

capacity-weighted average proportion of spinning reserve to energy offer prices is approximately 

26%. As a result, we set spinning reserve offer prices to 26% of each generator’s operating cost. 

 

2.3.2 Base Generator Fleet 

We construct a base generator fleet for 2030 for the upper Midwest portion of MISO. The 

base fleet accounts for fleet changes through 2030, such as generator additions and retirements, 

expected under the CPP. However, generator additions and retirements characterized in this base 

fleet are not sufficient to comply with the CPP, as CPP compliance will be largely driven by re-

dispatching, i.e. scheduling lower-emitting plants to generate more electricity than they would in 

the absence of the CPP. As a result, while our base fleet accounts for power plant additions and 

retirements (some of which may be driven by the CPP), we define our compliance scenarios as 

the additional strategies that would enable the base fleet to comply with the CPP. Such strategies 

include re-dispatching, adding wind capacity, and/or adding normal or flexible CCS retrofits to 

this 2030 base fleet.  

It could be argued that adding our compliance strategies to a 2030 base fleet instead of a 

2015 fleet may underestimate the cost-effectiveness of these strategies because CCS could 
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replace some of the fleet changes we assume will occur between now and 2030 as states comply 

with the CPP. We suggest, however, that many of these fleet changes through 2030, particularly 

coal plant retirements and renewable capacity additions, would likely occur even without the 

CPP due to existing environmental regulations and state-level policies such as Renewable 

Portfolio Standards [30]. Furthermore, since the Clean Energy Incentive Program [14] under the 

CPP incentivizes early deployment of energy efficiency and renewables, these technologies will 

likely be deployed prior to CCS. Thus, our analysis considers CCS as a post-2030 CPP 

compliance strategy, which provides sufficient time to plan for CCS deployment. Finally, by also 

analyzing larger emissions reductions under a hypothetical stronger CPP with the same 2030 

base fleet, we capture the effect on costs and emissions from each compliance strategy in a 

generator fleet that has not already changed in response to an emissions reduction target, thereby 

eliminating any bias that may occur in our CPP analysis. 

To build our base fleet, we rely on a 2030 generator fleet [31] from the Environmental 

Protection Agency’s Integrated Planning Model (IPM), a cost-minimizing dispatch and capacity 

expansion optimization model for the U.S. electric power system that forecasts generator 

additions, retirements, control technology retrofits, and other changes in the power plant fleet in 

response to regulations [32]. We then alter the IPM fleet in several ways, including changing 

power plant heat rates and adding necessary unit commitment parameters like ramp rates, as 

further described in Appendix A. Our final base fleet consists of 1,232 generators with a total 

capacity of 164 GW. Appendix A includes a summary of installed capacity by fuel type, as well 

as fuel prices.  
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2.3.3 CPP Compliance Scenarios 

States can comply jointly with the CPP under a single rate- or mass-based target [14]. 

Given that states have extensive experience with the SO2 cap-and-trade program [33], we assume 

that states in our study region will comply jointly with the CPP or stronger CPP under a single 

regional mass-based limit that equals the sum of each state’s mass limit. Under the CPP, the 

regional CO2 emissions mass limit equals 346 million tons in 2030, or 32% below 2005 

emissions [34]. To test the sensitivity of our results to larger emissions reductions, we also assess 

a hypothetical “stronger CPP”, under which the regional CO2 emissions mass limit equals 249 

million tons in 2030, or 50% below 2005 emissions. Since the EPA projects that re-dispatching 

among affected EGUs in combination with building additional wind power capacity will account 

for the bulk of emissions reductions under the CPP [16], we include these as our first two 

strategies. Additionally, we include normal and flexible CCS retrofits.  

 

2.3.3.1 Re-dispatching among Affected EGUs 

Enforcing compliance with the CPP through a mass limit in our UCED model would be 

intractable, as it would require running the UCED for an entire year at once. Instead, we enforce 

re-dispatching among affected EGUs by including a shadow CO2 price on emissions from all 

affected EGUs as described in Oates and Jaramillo [35]. Appendix A describes our selection of 

affected EGUs. To calculate this shadow CO2 price we use a simple economic dispatch (ED) 

model. The ED model minimizes total energy costs subject to the constraints that supply equals 

demand and each generator’s electricity generation varies between zero and its maximum 

capacity, as described in Appendix A. To determine the shadow CO2 price, we increment a CO2 

price upwards from $0/ton in $1/ton increments until CO2 emissions from affected EGUs meet 
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the regional mass limit in the simple ED. We then include these shadow CO2 prices in the 

operating cost and reserve offer prices of affected EGUs in the full UCED.  

 

2.3.3.2 Normal and Flexible CCS Retrofits 

To evaluate CCS as a compliance mechanism, we model CCS systems with a 90% CO2 

capture rate, which maximizes the efficiency of the CO2 removal process in a cost-effective 

manner [36]. We select coal-fired generators for CCS retrofits based on four common attributes 

of coal-fired generators for which CCS retrofits are most economic: generators 1) younger than 

40 years old (as of 2020), 2) with net thermal efficiencies greater than 30%, 3) with net 

capacities greater than 300 MW, and 4) with SO2 scrubbers and selective catalytic reduction 

(SCR) for post-combustion NOx control [37]. From this group of eligible generators, we retrofit 

CCS on generators in order of decreasing net efficiency prior to the CCS retrofit because more 

efficient generators are more likely to be economically viable to operate, and therefore 

profitable, post-CCS retrofit.  

In order to examine how the cost-effectiveness of CO2 emissions reductions changes with 

increasing CCS deployment, we construct three normal and three flexible CCS compliance 

scenarios for the CPP and stronger CPP each (for a total of 12 CCS scenarios) by modeling CCS 

retrofits on coal-fired generators. The combined net CCS capacities in these scenarios are 2, 4.5, 

and 8.5 GW. After accounting for the net capacity penalty of CCS retrofits, the de-rated CCS-

equipped coal-fired capacities in these scenarios are 1.6, 3.9, and 6.2 GW, respectively, or up to 

4% of the total installed capacity of the base fleet. With 6.2 GW of CCS-equipped generators, 

the scenario complies with the CPP without a shadow CO2 price, so we do not test higher retrofit 

capacities. However, the other two scenarios require some re-dispatching in addition to the CCS 
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retrofits to comply with the CPP, so we also enforce re-dispatching via a shadow CO2 price in 

those scenarios. The same CCS installed capacities are also used in compliance scenarios with 

our hypothetical stronger CPP, as 8.5 GW entails retrofitting CCS at all eligible coal-fired 

generators per the four above criteria.  

 

2.3.3.3 Additional Wind Capacity 

In order to model compliance using wind power instead of CCS, we create three wind 

compliance scenarios under the CPP and stronger CPP each. To create each wind scenario, we 

add wind capacity to the 2030 base fleet until the scenario’s shadow CO2 price necessary to 

comply with the CPP equals that of a CCS scenario. By controlling for CO2 price between the 

CCS and wind compliance scenarios, we hold constant the effects of re-dispatching on emissions 

and costs, which allows for a direct comparison between additional wind and normal and flexible 

CCS retrofits as compliance strategies. Relative to the base fleet, which already includes 33 GW 

of installed wind capacity, this results in 2.5, 5.5, and 6.5 GW of additional wind power capacity 

under the CPP and 3, 9, and 14 GW of additional wind power capacity under the hypothetical 

stronger CPP. Appendix A provides the shadow CO2 price included in each compliance scenario. 

 

2.3.4 Normal and Flexible CCS Models 

In order to include CCS in our UCED model, we need operating parameters for 

retrofitted coal power plants. For this analysis, we assume the maximum fuel input to the boiler 

at a coal-fired generator remains constant before and after the CCS retrofit, and that no auxiliary 

boilers are installed. As such, the coal-fired generator must provide the entire parasitic load of 

the CCS system, meaning its net efficiency and capacity, and therefore ramp rate, decrease upon 
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CCS retrofit. Given elevated SO2 removal requirements of CCS, we also zero out SO2 emissions 

upon CCS retrofit. To estimate plant-specific CCS retrofit parameters, e.g. net capacity and heat 

rate penalties, we relied on linear regressions based on data from the Integrated Environmental 

Control Model (IECM), a power plant modeling tool [38], as detailed in Craig et al. [39] We 

used net heat rate as the independent parameter for these regressions and developed separate 

regression models for bituminous and sub-bituminous coal.   

A coal plant with flexible CCS has additional specific operating constraints compared to 

normal CCS. To account for these operating constraints, we develop a flexible CCS operational 

model that provides constraints that can be included in the UCED model and estimates 

operational costs and emissions across flexible CCS operations. This flexible CCS model 

disaggregates a single flexible CCS generator into eight separate proxy units that account for net 

electricity generation, costs, and emissions of the flexible CCS generator in different operational 

modes, e.g. while discharging stored lean solvent. Proxy unit operations are linked through 

numerous constraints. To estimate the values for flexible CCS design and operational parameters 

we relied on data in existing literature and regressions based on IECM data. Craig et al. [39] 

provide a detailed description of our flexible CCS model. 

 

2.3.5 Cost-Effectiveness and Equivalent Capital Cost Calculations 

The results of the UCED model provide the basis for comparing operational costs and 

benefits of our compliance scenarios. However, that model does not account for capital costs of 

new wind installations or CCS retrofits. In order to compare the effectiveness of our compliance 

scenarios, a consistent metric must be used that accounts for all costs and CO2 emissions 
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benefits. We therefore calculate the cost-effectiveness (CE) of reducing CO2 emissions for each 

compliance scenario (c) as: 

𝐶𝐸𝑐 =  
(𝑇𝑂𝐶𝑐+𝑇𝐶𝐶𝑐)−𝑇𝑂𝐶𝐵𝑎𝑠𝑒

𝐴𝐶𝐸𝑐−𝐴𝐶𝐸𝐵𝑎𝑠𝑒
   (Equation 2.1) 

where Base refers to the base fleet; TOC = total operational costs, or the sum of electricity 

generation, start-up, and reserve costs [$2011]; TCC = total annualized capital costs of additional 

wind capacity or CCS retrofits added in our compliance scenarios [$2011]; and ACE = total CO2 

emissions from affected EGUs [tons]. Appendix A specifies how we calculate TOC and the 

capital recovery factor (CRF) we use to annualize capital costs. We assume revenues collected 

through a carbon market are recycled into the economy, so do not constitute real economic costs. 

To account for uncertainty in capital costs of wind and CCS retrofits, we calculate cost-

effectiveness over a range of capital costs (Appendix A).   

With these cost-effectiveness estimates, we calculate a per-kW equivalent capital cost 

(ECC) for flexible CCS relative to each compliance strategy. Each ECC indicates the capital cost 

of flexible CCS retrofits at which such retrofits would reach the same cost-effectiveness and 

quantity of CO2 emissions reductions as an alternative compliance strategy. We calculate the 

ECC as: 

𝐸𝐶𝐶𝑓 =
(𝐶𝐸𝑎∗𝐴𝐶𝐸𝑎)−𝑇𝑂𝐶𝑓

𝐹𝐶𝐶𝑓
∗

1

𝐶𝑅𝐹𝑓
  (Equation 2.2) 

where f and a indicate flexible CCS and alternative compliance strategies, respectively, and FCC 

is the installed de-rated capacity of flexible CCS [MW]. We use the same CRF used to annualize 

capital costs for Equation 2.1.  
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2.4 RESULTS 

2.4.1 CO2 Emissions Reductions in Compliance Scenarios 

Figure 2.1 shows affected EGU CO2 emissions in each scenario under the CPP and 

stronger CPP in addition to both mass limits. This figure highlights that the base 2030 fleet does 

not, on its own, comply with either policy. However, since CO2 emissions under the base 

scenario are much closer to the CPP than stronger CPP mass limit, CO2 emissions reductions 

under the stronger CPP compliance scenarios are roughly five to seven times greater than those 

under the CPP compliance scenarios.  

Since we set the shadow CO2 price for each compliance scenario using a simple ED 

model that does not account for all system constraints, that price does not guarantee emissions 

reductions in the full UCED model. In fact, Figure 2.1 indicates that the scenario that reduces 

emissions solely through re-dispatching does not comply with the CPP, whereas the compliance 

scenarios that reduce emissions partly through additional wind or CCS retrofits do not comply 

with the stronger CPP. However, these instances of non-compliance are a construct of using a 

shadow CO2 price determined by a simplified ED model to comply with the relevant emission 

mass limits, not an indication that the strategy could not be used to comply with the mass limit. 

Indeed, affected EGU CO2 emissions under these scenarios only exceed the relevant mass limit 

by less than 2.5%. Thus, we subsequently analyze these scenarios in the same way as scenarios 

that comply with the relevant mass limit. 
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Figure 2.1: Total emissions from affected EGUs under the CPP (left) and stronger CPP (right) from our UCED model, plus each 

emissions mass limit (black line). * indicates wind and CCS compliance scenarios that include some re-dispatching. 
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2.4.2 Total Costs 

This section discusses the total annualized costs included in the cost-effectiveness 

calculation for each compliance scenario (see numerator of Equation 2.1). Electricity generation 

costs dominate total annualized costs under the CPP and stronger CPP. In the re-dispatch CPP 

compliance scenario, for instance, annual electricity generation costs equal $13.2 billion ($2011), 

whereas start-up and reserve costs equal $0.1 and $0.3 billion, respectively. Total annualized 

costs also include annualized capital costs of new wind or CCS added in the compliance 

scenarios, which account for 1% to 10% of total costs, depending on the scenario. 

Table 2.1 provides total annualized cost increases relative to the base scenario for each 

CPP and stronger CPP compliance scenario assuming best guess capital cost values. Among our 

CPP compliance scenarios, total annualized costs relative to the base scenario increase between 

$100 million in the re-dispatch scenario and $1.28 billion in the 6.2 GW normal CCS scenario. 

Given that re-dispatching increases costs the least, substituting re-dispatching with additional 

wind or CCS increases total annualized costs. Total costs increase less under wind, which 

provides zero marginal cost electricity, than flexible CCS. Flexible CCS, in turn, provides 

significantly more reserves than normal CCS and therefore further reduce reserve costs [39], 

resulting in lower total annualized costs than normal CCS. However, since reserve costs account 

for only a small fraction of total annualized costs, the latter costs are not significantly lower with 

flexible than normal CCS.  

 Under the stronger CPP, re-dispatch costs increase relative to the CPP as electricity 

generation increasingly shifts to units with lower CO2 emissions rates but higher operational 

costs. Unlike under the CPP, costs increase the most under re-dispatching, and substituting re-

dispatching with wind or normal or flexible CCS reduces total annualized costs. For the same 
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reasons as under the CPP, additional wind incurs the lowest cost increases, and flexible CCS 

increases costs less than normal CCS.  

 

Table 2.1: Incremental total annualized costs of each compliance scenario under the CPP and 

stronger CPP relative to the base scenario assuming best guess capital cost values.  
 

Compliance Scenario 

Total Annualized Compliance Cost (million $2011) 

CPP Stronger CPP 

Re-dispatch 100 2,770 

Normal CCS retrofits, 1.6 GW†* 350 2,580 

Flexible CCS retrofits, 1.6 GW†* 330 2,560 

Wind, 2.5 GW† 140 N/A 

Wind, 3 GW* N/A 2,320 

Normal CCS retrofits, 3.9 GW†* 840 2,450 

Flexible CCS retrofits, 3.9 GW†* 780 2,410 

Wind, 5.5 GW† 230 N/A 

Wind, 9 GW* N/A 1,840 

Normal CCS retrofits, 6.2 GW* 1,280 2,490 

Flexible CCS retrofits, 6.2 GW* 1,180 2,400 

Wind, 6.5 GW 270 N/A 

Wind, 14 GW* N/A 1,580 
 

† and * indicate wind and CCS compliance scenarios that include some re-dispatching under the 

CPP and stronger CPP, respectively. 

 

2.4.3 Cost-Effectiveness of CO2 Emissions Reductions 

2.4.3.1 CPP 

Our results indicate that the cost of complying with the CPP varies significantly among 

compliance strategies from $0 to $60 per ton of avoided CO2 (Figure 2.2). Depending on wind 

capital costs, re-dispatching or wind achieves the most cost-effective CO2 emissions reductions, 

whereas normal CCS achieves the least cost-effective reductions. Additionally, replacing re-

dispatching with wind or CCS increases the quantity of emissions reductions. Consequently, a 

trade-off exists between cost-effectiveness and quantity of emission reductions when substituting 

CCS or wind for re-dispatching, except at low wind capital costs (less than $1,650/kW). Among 
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CCS technologies, flexible CCS tends to achieve greater emissions reductions more cost-

effectively than normal CCS, with the exception of the 1.6 GW CCS scenarios, which have low 

utilization rates at one retrofit CCS plant [39].  

At each capacity of normal or flexible CCS retrofits, similar or greater reductions can be 

obtained more cost-effectively with additional wind capacity. For instance, the 5.5 and 6.5 GW 

wind scenarios achieve similar emissions reductions as the 6.2 GW CCS scenarios, but at 

roughly a fifth of the cost. Additionally, while the 1.6 GW CCS scenarios can achieve as cost-

effective emissions reductions as the 5.5 or 6.5 GW wind scenarios, the emissions reductions 

they achieve are roughly 13% lower.  

 

2.4.3.2 Stronger CPP 

Costs of compliance with the stronger CPP range from $7 to $23 per ton (Figure 2.2). Re-

dispatching achieves the most emissions reductions but is the least cost-effective, as the addition 

of wind or CCS increases cost-effectiveness (by up to 40%) and decreases emission reductions 

(by up to 7%). This trend opposes that under the CPP, indicating the increasing cost-

effectiveness of CCS and wind relative to re-dispatching under a stronger emission reduction 

target. Two factors mostly account for these opposing trends: higher re-dispatch costs and higher 

capacity factors of CCS-equipped generators under the stronger CPP [39]. Higher CCS capacity 

factors yield greater system benefits for the same capital cost, thereby increasing the cost-

effectiveness of CCS. 

Additional wind capacity tends to be a more economic compliance strategy than flexible 

and normal CCS, as under the CPP. The 9 and 14 GW wind scenarios provide similar emissions 

reductions at greater cost-effectiveness (by 20-35%) than the 3.9 and 6.2 GW normal and 
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flexible CCS scenarios. All wind scenarios also achieve more cost-effective emissions reductions 

than the 1.6 GW CCS scenarios, but the 1.6 GW CCS scenarios achieve more emissions 

reductions.  

Flexible CCS tends to be a more economic compliance strategy than normal CCS, as 

under the CPP. At all tested capacities, flexible CCS achieves more cost-effective emission 

reductions than normal CCS. Furthermore, at 1.6 and 3.9 GW of CCS retrofits, flexible CCS 

achieves greater emissions reductions than normal CCS. However, at 6.2 GW, flexible CCS 

achieves less emissions reductions due to less electricity generation by CCS-equipped generators 

[39].  

The cost-effectiveness values of individual compliance scenarios differ significantly 

under the two emission reduction targets. The re-dispatch compliance scenario is four times more 

cost-effective under the CPP than under the stronger CPP, whereas the wind and CCS 

compliance scenarios are less and more cost-effective, respectively, under the stronger CPP than 

under the CPP. Wind and CCS scenarios include more re-dispatching under the stronger CPP 

than CPP, so re-dispatch costs account for a larger proportion of total costs in those scenarios 

under the stronger CPP than CPP. Indeed, under the CPP, no re-dispatching occurs in the 6.5 

GW wind or 6.2 GW CCS scenarios. Due to greater re-dispatch costs, the wind scenarios are less 

cost-effective under the stronger CPP. Conversely, in the CCS scenarios, a mix of re-dispatch 

and CCS under the stronger CPP achieve more cost-effective emissions reductions than large or 

absolute reliance on CCS under the CPP, indicating CCS is more cost-effective when 

accompanied by other carbon mitigation strategies. 
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Figure 2.2: Cost per ton of CO2 emission reductions versus CO2 emissions reductions for each compliance scenario relative to the base 

scenario under the CPP (left) and stronger CPP (right). Error bars indicate cost per ton at low and high capital cost values, dashed 

vertical lines indicate the emissions reductions necessary to achieve each mass limit, and * indicates wind and CCS compliance 

scenarios that include some re-dispatching. 
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2.4.4 Flexible CCS ECCs 

The ECCs for flexible CCS with respect to each installed capacity of wind tested are 

negative or below the lowest flexible CCS capital cost estimate used in the cost-effectiveness 

analysis, or $1,160/kW, under the CPP and stronger CPP (Appendix A). Negative ECCs indicate 

that even if the capital cost of flexible CCS was zero, flexible CCS would still be more expensive 

than the alternative compliance strategy due to the energy penalty and consequently high 

operating cost of CCS. ECCs relative to re-dispatching are also negative under the CPP, but 

range from $2,000-$2,900/kW under the stronger CPP, well above the current estimates of the 

capital costs of flexible CCS (1,200 to 1,500 $2011 per net kW), indicating that flexible CCS 

would likely be a more cost-effective carbon mitigation strategy than re-dispatching under the 

stronger CPP. Across installed CCS capacities under the CPP and stronger CPP, ECCs relative to 

normal CCS range from $1,300-$1,600, some of which exceed the upper flexible CCS capital 

cost estimate of $1,490/kW, also indicating that flexible CCS would likely be a more cost-

effective carbon mitigation strategy than normal CCS given best guess flexible CCS capital cost 

estimates.  

 

2.5 DISCUSSION 

In order to better understand whether flexible CCS would be an economic strategy to 

reduce CO2 emissions, we compared the cost-effectiveness of CO2 emissions reductions with 

flexible CCS to that of three alternative emissions reduction strategies – re-dispatching, 

additional wind capacity, and normal CCS retrofits – under the CPP and a hypothetical stronger 

CPP. Under the CPP and stronger CPP, flexible CCS mostly achieved greater and more cost-

effective emissions reductions than normal CCS. Additionally, in many scenarios, flexible CCS 
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ECCs relative to normal CCS exceeded high capital cost estimates currently available for 

flexible CCS. This finding in conjunction with the cost-effectiveness results indicate that flexible 

CCS, due to its system benefits, would be a more economic CO2 reduction strategy than normal 

CCS from the perspective of the power system. Thus, public policies aimed at encouraging CCS 

deployment should prioritize support for flexible rather than normal CCS deployment.  

However, under the CPP and stronger CPP we found that flexible CCS was a less 

economic compliance strategy than wind, which achieved larger and more cost-effective CO2 

emissions reductions in most cases. Thus, under both reduction targets, wind would likely be a 

more common compliance strategy than CCS. The comparison between re-dispatching and 

flexible CCS is less clear. Under the CPP, re-dispatching achieved more cost-effective but less 

emissions reductions than flexible CCS, whereas the opposite was true under the stronger CPP. 

As such, CCS and re-dispatching pose a trade-off between the cost and quantity of emissions 

reductions under both targets. However, the fact that CCS proved more cost-effective than re-

dispatching only under the stronger CPP suggests CCS would be a more viable compliance 

strategy at higher emission reduction targets than those set forth under the CPP. Higher natural 

gas prices would improve the merits of CCS relative to re-dispatching. 

Nonetheless, given the existence of the CPP, our results indicate that deployment of CCS 

in the mid-term in our study system, the upper Midwest, will likely be limited, since at least one 

dominant emissions reduction strategy (wind) exists. ECCs of flexible CCS with respect to wind 

and re-dispatching reinforce this point, as they are either negative or well below low capital cost 

estimates for flexible CCS.  

This research could be expanded in several ways. First, our UCED model runs in hourly 

time steps, but shorter time steps may capture additional value from the flexibility of flexible 
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CCS generators and thereby increase the value of flexible CCS relative to other compliance 

strategies. Additionally, we ignore transmission costs associated with wind deployment, which 

could increase wind capital costs, or transportation and storage costs and enhanced oil recovery 

revenues associated with CCS, which could increase or decrease CCS costs. We also do not 

consider space limitations at coal-fired generators that could preclude normal or, given larger 

space requirements for solvent storage tanks, flexible CCS retrofits. Finally, flexible CCS may 

be more economic in systems with higher renewable penetration. Whereas wind generates 18% 

of annual electricity in our test system (Appendix A), California, for instance, has a mandate for 

33% electricity generation by 2020 [40]. Assessments of the value of flexible CCS in such high 

renewable systems would indicate whether those systems would be suitable early markets for 

flexible CCS deployment in the U.S. 

 

2.6 CONCLUSION 

The CPP is one of the main components of the U.S.’s Intended Nationally Determined 

Contribution (INDC) submitted at the 2015 Conference of Parties 21 in Paris [41], but meeting 

the targets set forth in the INDC will likely require further emissions reductions than those that 

would be achieved under the CPP [15] or stronger CPP. If the CPP is not strengthened, our 

analysis indicates that CCS will play little role in meeting the U.S. INDC. Even under a stronger 

CPP, though, our analysis indicates CCS would be more competitive but still likely play only a 

modest role. Yet, in the long-term, meeting a 2°C temperature increase limit would require more 

aggressive emissions reductions than those put forth by the INDCs submitted in Paris [42], and 

such reductions are likely not possible without CCS [3], [4]. Reconciling the poor mid-term 

deployment prospects of CCS that we found with long-term deployment needs to mitigate 
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climate change will likely require public funding or other support for CCS beyond the CPP in the 

upper Midwest, and potentially in the U.S. more broadly. 
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CHAPTER 3:  

TRADE-OFFS IN COST AND EMISSION REDUCTIONS BETWEEN  

FLEXIBLE AND NORMAL CARBON CAPTURE AND  

SEQUESTRATION UNDER CARBON DIOXIDE EMISSION CONSTRAINTS 
 

3.1 ABSTRACT 

Relative to “normal” amine-based post-combustion capture carbon and sequestration 

(CCS), flexible CCS adds a flue gas bypass and/or solvent storage system. Here, we focus on 

flexible CCS equipped with a solvent storage system. A primary advantage of flexible over 

normal CCS is increased reserve provision. However, no studies have quantified system-level 

cost savings from those reserves, which could drive the public benefits and rationale for policy 

support of flexible over normal CCS. Here, we quantify total power system costs, including 

generation, reserve, and capital costs, as well as carbon dioxide (CO2) emissions of generator 

fleets with flexible versus normal CCS. We do so under a moderate and strong CO2 emission 

limit. Relative to normal CCS, solvent storage-equipped flexible CCS reduces system-wide 

operational plus annualized CCS capital costs but increases system-wide CO2 emissions under 

the moderate limit, whereas it reduces system-wide costs and emissions under the strong limit. 

Under both limits, we find that reductions in reserve costs constitute 40-80% of the reductions in 

total operational costs with flexible CCS rather than normal CCS. Thus, flexible versus normal 

CCS deployment decisions pose cost and emissions tradeoffs to policymakers under a moderate 

emission limit as well as tradeoffs between near- and long-term policy objectives. 

This chapter is published as Craig, M.T., H. Zhai, P. Jaramillo, and K. Klima. (2017). 

Trade-offs in cost and emission reductions between flexible and normal carbon capture and 

sequestration under carbon dioxide emission constraints. International Journal of Greenhouse 

Gas Control, 66, 25-34. doi:10.1016/j.ijggc.2017.09.003. 
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3.2 INTRODUCTION 

Climate change could significantly affect human and natural systems [1]. To avert those 

effects, carbon dioxide (CO2) emissions from the electric power sector must decrease 

significantly [2]. Many studies indicate that achieving such large reductions will require 

widespread deployment of carbon capture and sequestration [3], yet high capital costs have 

largely hindered deployment of the technology [4]. In addition, operational costs in amine-based 

post-combustion carbon capture and sequestration (hereafter “CCS”) increase due to the large 

parasitic loads of the CO2 capture process that reduce the net power capacity and efficiency of 

CCS-equipped generators, and thus increase fuel costs. 

To address the cost barrier to CCS deployment, several papers have considered the merits 

of “flexible” CCS [5]–[8]. Flexible CCS differs from “normal” CCS in that it includes two 

additional features that allow the power plant to temporarily eliminate most of the large parasitic 

loads of the CO2 capture process: it can vent flue gas, which temporarily increases the 

generator’s CO2 emissions rate; or it can use stored solvent from a reservoir, which does not 

change the generator’s CO2 emissions rate [6], [9]. By mostly eliminating the large parasitic 

loads of the CO2 capture process, these two features allow a flexible CCS generator to 

temporarily increase its net capacity, net efficiency, and ramping capability relative to a normal 

CCS generator [6], [5].  

Past analyses of flexible CCS examined the private or system benefits of flexible CCS 

relative to normal CCS. To quantify private benefits, most papers used profit-maximizing 

optimization models with exogenous electricity prices to determine the profitability of generating 

electricity at flexible versus normal CCS generators across a range of CO2 prices [6], [9]–[11]. 

These papers found that adding amine solvent storage and/or venting to a normal CCS generator 
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tended to increase the profitability of a CCS plant at low carbon prices, but not at high carbon 

prices when construction of a CCS generator would be justified. Thus, these papers indicate that 

little private case exists for installing flexible rather than normal CCS based on profits from 

electricity generation. 

Other research used cost-minimizing dispatch models to determine how flexible CCS 

generators would operate in the context of a competitive wholesale electricity market. In general, 

these papers found that flexible CCS provides some system-wide benefits relative to normal CCS 

primarily through increased provision of system reserves. Van der Wijk et al. [5] found that 

solvent storage-equipped flexible CCS generators provided four to ten times more up reserves 

than normal CCS generators in the Dutch power system in 2020 and 2030 under high wind 

penetration. Cohen et al. [12] similarly documented a 10% to 30% increase in reserve provision 

by flexible CCS generators relative to normal CCS generators in a 2020 high-wind system, 

although adding solvent storage to venting-enabled flexible CCS units yielded little additional 

benefit. Although these system-level analyses [5], [12] found the primary benefit of flexible CCS 

to be through increased reserve provision, they did not capture the potential cost reductions from 

increased flexible CCS reserves. Quantifying these cost reductions is crucial to determining the 

net system value of flexible CCS, which in turn has important implications for public policy as 

well as for the prospects of near-term CCS deployment given ongoing cost constraints on CCS 

deployment. Craig et al. [13] aimed to fill this gap in the literature. Using a cost-minimizing 

dispatch model that included reserve costs, the authors compared the cost-effectiveness of 

flexible CCS to that of other CO2 mitigation strategies in meeting a moderate or aggressive CO2 

emission reduction target. They found that flexible CCS retrofits could achieve more cost-

effective emission reductions than normal CCS retrofits and re-dispatching from coal- to gas-
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fired generators in some cases, but achieve less cost-effective emission reductions than 

additional wind capacity in all cases. That work, however, did not include a detailed comparison 

of normal versus flexible CCS. Additionally, the authors did not consider the effect of solvent 

storage tank size, a key flexible CCS parameter, on the relative merits of flexible CCS. This 

paper aims to better understand the trade-offs between normal and flexible CCS. 

In this paper, we quantify the difference in total system CO2 emissions and costs of 

flexible versus normal CCS retrofits accounting for reserve procurement costs as well as 

electricity generation, start-up, and CCS retrofit capital costs. Using system costs and CO2 

emissions, we compare the net system value of flexible to normal CCS retrofits under two CO2 

emission constraints: a “moderate” emission limit that aims to reduce CO2 emissions from the 

U.S. electric power sector by 32% from 2005 levels by 2030; and a “strong” emission limit that 

increases the reduction target to 50%. Given our focus on the system value of flexible CCS under 

CO2 emission constraints, we focus on flexible CCS equipped with solvent storage in this paper, 

although our flexible CCS model also accommodates venting. We evaluate the sensitivity of our 

results to solvent storage tank size and natural gas price.  

 

3.3 METHODS 

3.3.1 Overview of Flexible CCS Operations 

Figure 3.1 provides a high-level overview of the operations of a flexible CCS generator 

equipped with solvent storage. A solvent-storage-equipped flexible CCS generator has three 

operational modes as described in Table 3.1. During “normal CCS operations,” a flexible CCS 

generator operates like a normal CCS generator. Specifically, it delivers electricity to the grid 

while simultaneously capturing CO2 with “continuous lean solvent,” which is continuously 
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regenerated from rich solvent, i.e. solvent bound to CO2. For a given fuel input quantity, 

continuously regenerating solvent imposes a significant net heat rate and net capacity penalty of 

roughly 30-45% and 25-30%, respectively, on the generator. A flexible CCS generator can also 

engage in “charging stored lean solvent” operations by delivering electricity to the grid while 

simultaneously capturing CO2 and regenerating some controllable mix of continuous lean and 

“stored” lean solvent. Stored lean solvent is regenerated from stored rich solvent. Per 

assumptions detailed below, regenerating stored solvent imposes the same net heat rate penalty 

and a slightly higher net capacity penalty on the generator as regenerating continuous solvent. A 

flexible CCS generator can also engage in “discharging stored lean solvent” operations, during 

which the generator delivers electricity to the grid while capturing CO2 with some controllable 

mix of continuous and stored lean solvent. The generator stores resulting rich solvent from the 

stored lean solvent stream for regeneration at some later time during “charging” operations. In 

deferring regeneration of the stored solvent, the generator reduces the CCS system’s net heat rate 

and net capacity penalties by up to 90% depending on the amount of stored solvent discharged, 

thereby allowing the generator to operate more efficiently and at a higher net capacity for a brief 

period of time. This flexibility can lead to greater profitability, e.g. by increasing net electricity 

output during peak price periods, or to increase system efficiency, e.g. by reducing curtailment of 

renewables. The maximum duration of the “charge” and “discharge” operational modes depends 

on the solvent storage tank size.  
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Table 3.1: Terms used to describe normal and flexible CCS operations. 
 

Term Description 

Normal CCS 

operational mode 

Net electricity output to the grid and CO2 capture operations, including 

solvent regeneration, that occur at a normal or flexible CCS generator 

during steady-state operations.  

 

Continuous 

solvent 

Rich and lean solvent that is continuously regenerated at a normal or 

flexible CCS generator in order to capture CO2 during normal operations.  

 

Stored solvent Rich or lean solvent stored in storage tanks at a flexible CCS generator. 

 

Charging stored 

lean solvent 

operational mode 

Passing stored CO2-rich solvent through the regenerator at a flexible CCS 

generator, and storing the regenerated CO2-lean solvent that can be used 

to absorb CO2 at some later time. Depending on the regenerator size, 

stored solvent passed through the regenerator may displace continuously 

regenerated solvent.  

 

Discharging 

stored lean 

solvent 

operational mode 

 

Passing stored CO2-lean solvent to the absorber in order to absorb CO2
 at 

a flexible CCS generator, then storing the resulting CO2-rich solvent in 

order to defer regeneration to some later time. Stored lean solvent passed 

to the absorber displaces some or all continuously regenerated solvent 

during “partial” or “full” discharging, respectively.  
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Figure 3.1: Schematic of a flexible CCS generator with solvent storage. The dashed box indicates the CO2 capture system. Dashed 

lines indicate the operational choice of using stored solvent in place of continuously-regenerated solvent. 
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3.3.2 Flexible CCS Generator Model 

For our previous work [13], we developed a model of a flexible CCS generator equipped 

with solvent storage and/or venting. However, given our focus on solvent-storage-equipped 

flexible CCS, this section describes our model for a flexible CCS generator equipped only with 

solvent storage. Appendix B provides a description of the venting components of our model. In 

modeling a solvent-storage-equipped flexible CCS generator, we make four design assumptions. 

(1) Versteeg et al. [10] found 1 hour of storage capacity to be optimal for amine-based CCS, 

while other work has shown some flexibility benefits with similar tank sizes [5], [12]. For this 

analysis, we thus assume that the solvent storage tanks can store sufficient lean solvent to enable 

maximum net electricity output while discharging stored lean solvent for either 1 or 2 hours. (2) 

We assume that the regenerator solvent throughput capacity of a flexible CCS generator equals 

that of a regenerator at a normal CCS generator of equal net power output capacity during 

normal operations [5], [6], [10], [12]. (3) We assume that discharging stored solvent can reduce 

the CCS system’s parasitic load by up to 90%, which corresponds to eliminating the parasitic 

load of the solvent regenerator and CO2 compressor [11]. (4) We assume that the coal-fired 

generator’s steam turbine and fuel input capacity are not modified when the generator is retrofit 

with CCS. Consequently, the steam turbine can provide the unit’s maximum net power capacity 

achievable while discharging stored lean solvent or venting. Appendix B includes further 

justification for each design assumption.  

Several operational features result from these assumptions. Per assumption (2), charging 

stored lean solvent necessarily reduces regeneration of continuous solvent. Consequently, in 

order to maintain a constant CO2 capture rate (i.e., to capture 90% of CO2 emissions) while 

charging, both fuel input and net electricity output to the grid must decrease. Additionally, per 
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assumption (3) and (4), discharging stored solvent enables greater net electricity output at greater 

efficiency than during normal CCS operations. Since discharging stored solvent increases net 

electricity generation by increasing the steam turbine load rather than fuel input, discharging 

stored solvent also allows for faster ramping than normal CCS operations.  

In order to incorporate all of these operational features in a unit commitment and 

economic dispatch (UCED) model of a power system, we develop a model of flexible CCS 

operations that simulates the dynamic nature of the net heat rate, net capacity, and emissions and 

ramp rates of a flexible CCS generator. This model disaggregates a single flexible CCS generator 

into proxy units and links their operations with a series of constraints. Each proxy unit accounts 

for net electricity output, reserve provision, costs, and emissions of the flexible CCS generator in 

a particular operational mode, e.g. while discharging stored lean solvent. As such, we 

parametrize each proxy unit according to the operational mode it represents. Furthermore, proxy 

units substitute for one another such that net electricity output, reserve provision, and emissions 

for a given time period are divided among the proxy units based on the operational mode of the 

flexible CCS generator (Figure 3.2). For instance, when discharging stored solvent, the discharge 

stored solvent proxy unit accounts for some or all net electricity output, costs, and emissions 

from the flexible CCS generator in that period. Finally, UCED models typically use generator-

specific net heat rates that are constant, i.e. they assume the ratio between fuel input and net 

electricity output does not change. However, this ratio varies significantly at a flexible CCS unit 

due to variability in CO2 capture operations. Consequently, we use gross instead of net heat rates 

for most flexible CCS proxy units. This requires separately accounting for energy used to capture 

CO2, which we do using specific proxy units.  
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We disaggregate a flexible CCS generator into five types of proxy units. Figure 3.2 

indicates which proxy units are on or off given the operational mode of the flexible CCS 

generator at any time. Two types of proxy units account for net electricity output and reserve 

provision: the base and discharge stored lean solvent units. The base proxy unit represents 

normal CCS operations in conjunction with the continuous solvent proxy unit, which accounts 

for the parasitic load of the CCS system during normal operations. The discharge stored lean 

solvent unit accounts for increased net electricity output and efficiency relative to normal CCS 

operations when discharging stored lean solvent. Like the continuous solvent proxy unit, the 

charge stored lean solvent proxy unit accounts for energy consumed by the CCS system to 

regenerate solvent. Finally, the stored solvent tank proxy unit tracks the mass balance of stored 

rich and lean solvent over time. The continuous solvent, charge stored lean solvent, and stored 

solvent tank proxy units do not generate electricity or provide reserves.  

 

 

Figure 3.2: Tree showing which proxy units are on or off given the operations of a flexible CCS 

generator at any given time. When the base proxy unit is on, the continuous solvent proxy unit is 

also on. 
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Continuous and stored solvent flows are represented in units of energy. For instance, the 

amount of energy used to capture CO2 and regenerate continuous lean solvent represent the 

continuous solvent flows in the model. Additionally, since proxy units in the model displace net 

electricity output from one another, the maximum capacity of the discharge proxy unit equals 

that of the flexible CCS generator while discharging stored lean solvent. To accomplish this, we 

determine the ratio of net electricity output while discharging stored lean solvent per unit of 

energy used to charge stored lean solvent using data from the Integrated Environmental Control 

Model (IECM) Version 8.0.2, a power plant modeling tool [14], as detailed in Appendix B. This 

ratio, which ranges from three to four depending on coal and plant type, roughly equals the ratio 

of net electricity output per unit of energy consumed by the CCS system’s parasitic load during 

normal CCS operations plus the fraction of the CCS system’s parasitic load transferred to net 

electricity output while discharging stored solvent (see assumption (3) above). The first 

component of the ratio allows the discharge proxy unit to displace net electricity output by the 

base proxy unit, and the second component of the ratio captures the incremental net electricity 

output of the flexible CCS generator while discharging stored solvent. Consequently, multiplying 

this ratio by the amount of stored lean solvent yields the net electricity output achievable by the 

discharge proxy unit when discharging that stored lean solvent.  

To parameterize our proxy units, we obtain generator-specific estimates of seven flexible 

CCS operational parameters by deriving linear regressions with data from the IECM. We use the 

same approach to estimate two normal CCS operational parameters. Each parameter is regressed 

against heat rate for bituminous and sub-bituminous coal separately, which allows us to obtain 

fitted parameter values for each coal-fired generator retrofit with normal or flexible CCS based 

on the generator’s heat rate and coal type. To generate each regression, we begin with a sub-, 
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super-, or ultra super-critical plant type, then model three plant configurations: no CCS, normal 

CCS, and flexible CCS. Per assumption (4) above, we maintain a constant fuel input among all 

three plant configurations. Appendix B details all operational parameters and regressions 

estimated through this process, and provides the full mathematical formulation of our flexible 

CCS model. 

 

3.3.3 Power System Modeling 

To understand flexible CCS operations in the context of a competitive wholesale 

electricity market, we embed our flexible CCS model in a UCED model. The UCED model 

dispatches generators under “moderate” and “strong” CO2 emission limits that would reduce CO2 

emissions by 32% and 50% from 2005 levels by 2030, respectively. The “moderate” emission 

limit mirrors the U.S. Clean Power Plan [15]. Like Craig et al. [13], we use the upper Midwest 

portion of the Midcontinent Independent System Operator (MISO) as our study system because 

of its large wind resources and expected coal-fired plant retirements in the near-term [16], [17]. 

Specifically, our study system includes North Dakota, South Dakota, Minnesota, Iowa, 

Wisconsin, Michigan, Missouri, Illinois, and Indiana.  

Our UCED model minimizes total system electricity, reserve, start-up, and non-served 

energy costs subject to various system- and unit-level constraints. The UCED runs at hourly time 

intervals for a 24-hour optimization window, like the day-ahead MISO market [18], plus a 24-

hour look-ahead period. Including the 24-hour look-ahead period allows us to optimize dispatch 

decisions over a longer timeframe, which is particularly important for accurately modeling day-

to-day storage of solvent. Hourly spinning reserve requirements equal 3% of maximum daily 

load plus 5% of hourly wind generation [19], [20]. In order to fully capture the benefits of any 
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increased reserve provision from flexible CCS generators, we include reserve costs in the 

objective function of our UCED using a reserve cost coefficient. Based on the ratio of energy to 

spinning reserve offer prices in MISO in 2015 [21], [22], we set this reserve cost coefficient to 

26% of each generator’s operating cost. The UCED model is constructed in PLEXOS Version 

7.2 [23] and solved using CPLEX Version 12.6.1 [24]. Additional information on the UCED, 

including its full formulation, is available in Craig et al. [13].  

Since the goal of this paper is to evaluate a future power plant fleet under carbon 

constraints, we insert normal or flexible CCS with a 90% CO2 capture rate into a “base” 2030 

generator fleet, and then run that fleet in our UCED model. Craig et al. [13] detail how we 

construct the base generator fleet, and Appendix B details the composition and fuel prices of the 

base fleet. To test the sensitivity of our results under the moderate emission limit to natural gas 

price, we consider a higher natural gas price scenario by increasing the generator fleet’s 

capacity-weighted natural gas price from $5.4 per MMBtu to $6.5 per MMBtu. Finally, to 

examine how CCS operations change with increasing capacity, we retrofit normal and flexible 

CCS on 2 and 4 GW of coal-fired generators, yielding 1.5 and 3 GW of de-rated CCS capacity. 

We retrofit CCS in order of decreasing efficiency on young (less than 40 years old), large (net 

capacities greater than 300 MW), and efficient (net thermal efficiency greater than 30%) coal-

fired generators with SO2 scrubbers and Selective Catalytic Reduction (SCR). Generators with 

these attributes typically provide the most economic CCS retrofit opportunities [25].  

For each generator fleet, we model compliance separately under a “moderate” and 

“strong” CO2 emission reduction target. In each case, we assume that states in our study region 

will comply jointly under a single regional mass-based limit. To ensure each generator fleet 

complies with a given emissions reduction target, we use a simple economic dispatch model to 
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determine a unique CO2 price that applies to fossil steam, integrated gasification combined cycle, 

and natural gas combined cycle units greater than 25 MW in capacity [13]. The resulting shadow 

CO2 prices, which are available in Appendix B, are included in the electricity generation and 

reserve provision costs of affected generators in the full UCED, and lead to re-dispatching from 

high- to low-CO2-emitting generators. These shadow CO2 prices serve as a mechanism to ensure 

compliance with the policies using a UCED model [26]. The shadow prices themselves are not 

the focus of this work and their meaning should not be overstated. Furthermore, shadow prices 

do not imply an actual financial transaction so we exclude shadow carbon costs from our cost 

calculations. 

 

3.3.4 Capital Costs of Solvent Storage  

To determine whether system-wide benefits of flexible versus normal CCS justify the 

additional capital costs of flexible CCS, we aggregate solvent storage capital cost estimates from 

a variety of sources [5], [6], [10], [11]. We annualize capital costs using a capital recovery factor 

(CRF):  

𝐶𝑅𝐹 =  
𝑖∗(1+𝑖)𝑛

(1+𝑖)𝑛−1
    (Equation 3.1) 

assuming a discount rate (i) of 7% [27] and that solvent storage lifetimes (n) are comparable to 

CCS retrofit lifetimes, or 30 years [25]. Ultimately, we estimate minimum, best guess, and 

maximum annualized solvent storage capital costs per hour of peak power output to equal $0.5, 

$1.5, and $4.5 per net kW per year.  
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3.4 RESULTS 

We provide results for normal and solvent-storage-equipped flexible CCS generators 

while varying three key parameters: installed CCS capacity (1.5 and 3 GW), solvent storage tank 

size (1 and 2 hours), and CO2 emission limit (moderate and strong). Table 3.2 summarizes our 

results, which are further discussed in the rest of the paper. In each subsection below, we first 

compare results with flexible versus normal CCS, then present the effect of shifting from the 

smaller to larger solvent storage tank. In order to demonstrate the capabilities of our flexible 

CCS model to capture venting operations, we assess operations of flexible CCS equipped with 

solvent storage and venting under both CO2 emission limits in Appendix B.  
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Table 3.2: Summary of major differences in CCS operations and system costs and emissions 

between normal and flexible CCS scenarios under the moderate and strong CO2 emission limits. 

Note that each cell provides the difference in the relevant result with flexible CCS relative to 

normal CCS. To contextualize these results, shadow CO2 prices range from $4-7 per ton under 

the moderate CO2 emission limit and $33-36 per ton under the strong CO2 emission limit with 

1.5-3 GW of retrofit CCS, respectively.  
Result with 

Flexible CCS 

Relative to 

Normal CCS 

Moderate CO2 Emission 

Limit 

Strong CO2 Emission 

Limit 

Change from Moderate to Strong 

CO2 Emission Limit 

Total net 

electricity 

output by CCS 

generators 

Smaller by 1% to greater 

than 4%. 

Smaller by 1%. Normal and flexible CCS net 

electricity output increase by 30% 

to 40% due to stronger CO2 

emission constraint. 

Net electricity 

output while 

discharging 

stored solvent  

Accounts for roughly 2% 

to 5% of total net 

electricity output by 

flexible CCS generators. 

Accounts for roughly 

0.1% to 0.5% of total net 

electricity output by 

flexible CCS generators. 

As net electricity output while 

discharging stored lean solvent 

increases, total net electricity output 

by flexible CCS generators 

decreases. At higher CO2 emission 

reduction targets, the system cost 

necessary to replace reduced net 

electricity output at flexible CCS 

generators increases.   

Total reserve 

provision by 

CCS generators 

Greater by 10 to 40 times. Greater by 500 to 700 

times. 

The amount of reserves provided by 

flexible CCS does not significantly 

change, but reserves provided by 

normal CCS decline.  

System costs Smaller by $20-50 million 

due to roughly equal 

reductions in electricity 

and reserve costs. 

Smaller by $12-40 

million due mostly to 

reduced reserve costs. 

System costs decrease less under the 

moderate than strong limit due to 

lower electricity cost reductions 

under the latter that are only 

partially offset by greater reserve 

cost reductions. 

System CO2 

emissions 

Larger by 0.3-0.6 million 

tons due to greater reserve 

provision by flexible 

relative to normal CCS 

generators, which increases 

net electricity output by 

high-CO2-emitting 

generators. 

Smaller by 0.1-0.2 

million tons due to 

greater reserve provision 

by flexible relative to 

normal CCS generators, 

which increases net 

electricity output by low-

CO2-emitting generators.  

Under both CO2 emission reduction 

targets, the change in emissions 

occurs as non-CCS generators shift 

from providing reserves to 

generating electricity. Under the 

moderate limit this shift occurs at 

high-CO2-emitting generators, but 

under the strong limit it occurs at 

low-CO2-emitting generators. 
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3.4.1 Flexible CCS Operations 

3.4.1.1 Flexible Versus Normal CCS 

 For flexible CCS generators equipped only with solvent storage under the moderate and 

strong emission limits, solvent storage is used almost exclusively for reserve provision across 

installed capacities of flexible CCS, as shown in Figure 3.3. Reserves enabled by solvent storage 

exceed reserves provided by normal CCS generators by roughly 10-40 times under the moderate 

emission limit and by 530-740 times under the strong emission limit across both solvent storage 

tank sizes. As a result, flexible CCS generators provide a significant share of system reserves 

under the moderate (14-37%) and strong (17-35%) emission limits, whereas normal CCS 

generators provide roughly 0.3-3.7% (moderate limit) and less than 0.1% (strong limit) of system 

reserves.  

Figure 3.3 also shows that total net electricity output by flexible CCS generators is 

slightly less than the output by normal CCS generators in most scenarios under the moderate and 

strong emission limits. Specifically, total net electricity output by flexible relative to normal CCS 

generators differs by -1-4% under the moderate limit and by -1% under the strong limit. Net 

electricity output by flexible CCS generators exceeds the output by normal CCS generators only 

with 3 GW of CCS under the moderate limit, when normal CCS shifts towards providing 

reserves at the expense of net electricity output. Both normal and flexible CCS generators meet 

roughly 1.5-3% and 2-4% of system electricity demand under the moderate and strong emission 

limits, respectively, while accounting for 1-2% of the generator fleet by capacity. Due mainly to 

the stronger CO2 emission constraint under the strong emission limit, total net electricity output 

by normal and flexible CCS generators increases from the moderate to strong limit by roughly 

32-45%. Like total net electricity output by normal and flexible CCS generators, the capacity 
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factor of each CCS-equipped generator increases from the moderate to strong limit, as described 

in Appendix B. 

Net electricity output while discharging stored lean solvent decreases from the moderate 

emission limit, when it accounts for roughly 2-5% of total CCS generation, to the strong 

emission limit, when it accounts for roughly 0.1-0.5% of total CCS generation. The physical 

intuition for this decrease is as follows. As discharging and subsequent charging decrease, total 

net electricity output by flexible CCS generators increases for two reasons. First, due to a limited 

regenerator size, a flexible CCS generator must reduce its net electricity output while charging. 

Second, since discharging does not fully eliminate the CCS system’s parasitic load, the round-

trip efficiency of charging and discharging is less than one. As CO2 emission reduction targets 

increase, electricity generation shifts from cheap, high-CO2-emitting generators to more 

expensive, lower-CO2-emitting generators, increasing the system cost to replace lower net 

electricity output from flexible CCS generators that charge and discharge stored solvent for 

electricity generation. Thus, in order to minimize system operational costs, flexible CCS 

generators maximize total net electricity output and therefore use stored solvent less for 

electricity generation at higher emission reduction targets.  

Unlike net electricity output, provision of reserves does not significantly increase from 

the moderate to strong emission limit for normal or flexible CCS. In the case of normal CCS, 

providing reserves requires spare generation capacity, so provided reserves decrease as net 

electricity output increases from the moderate to strong limit. Flexible CCS, though, provides 

significant and similar amounts of reserves under the moderate and strong limits for two reasons. 

First, nearly all flexible CCS reserves are provided with spare generating capacity achievable by 

discharging stored lean solvent, which is incremental to flexible CCS’s generating capacity 



51 

 

during normal operations. Furthermore, stored-solvent-enabled reserves have a lower marginal 

cost than electricity generation during normal operations, since the former reflect a reduced heat 

rate while discharging stored lean solvent.  

 

3.4.1.2 Effect of Solvent Storage Tank Size 

 Under the moderate emission limit, net electricity output by flexible CCS generators 

while discharging stored lean solvent increases by 70-100% when the configuration moves from 

the smaller to larger solvent storage tank. However, since net electricity output while discharging 

stored solvent makes up less than 5% of total flexible CCS net electricity output for either 

storage tank size (Figure 3.3a), overall flexible CCS net electricity output differs by less than 2% 

between the smaller and larger tank size. Reserve provision by flexible CCS generators also 

differs little (<3%) between tank sizes. As shown in Figure 3.3b, under the strong emission limit, 

similar but smaller trends take place: electricity generation while discharging stored lean solvent 

increases by 10-25% from the smaller to larger solvent storage tank, but overall flexible CCS 

electricity generation and reserve provision differ by less than 1% between tank sizes. Thus, 

while solvent storage tank size strongly affects the use of stored solvent for electricity 

generation, it does not significantly affect overall flexible CCS operations. 

   

  



52 

 

 

 

Figure 3.3: Annual net electricity output and reserve provision by operational mode for 1.5 and 3 GW of normal and flexible CCS 

generators under the (a) moderate and (b) strong emission limits. Flexible CCS generators have 1 or 2 hour solvent storage tank sizes. 
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3.4.1.3 Daily Profile of Stored Solvent Use 

 Figure 3.4 depicts the timing of charging and discharging stored solvent summed for all 

days in 2030 for all flexible CCS generators in the 1.5 GW scenario under the moderate emission 

limit. Charging tends to occur in the early morning, whereas discharging tends to occur at peak 

price and demand periods in the late afternoon. Thus, when stored solvent is discharged to enable 

greater net electricity output, it acts like an energy storage device by shifting energy from the 

early morning to late afternoon. Similar operational patterns occur under the strong limit. 

 

 

Figure 3.4: Sum of energy used to charge stored lean solvent (a) and net electricity output while 

discharging stored lean solvent (b) for each hour of the day in 2030 by all flexible CCS 

generators combined in the 1.5 GW scenario under the moderate emission limit.  
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3.4.2 System Costs and Emissions with Normal and Flexible CCS 

With 1.5 and 3 GW of flexible CCS capacity equipped with a 1 hour solvent storage tank, 

annualized solvent storage capital costs range from $1 to $7 million and $1.5 to $13.5 million, 

respectively, with best guess estimates of $2.3 and $4.5 million, respectively. We assume that 

using a 2-hour solvent storage tank doubles those capital costs, but discuss how economies of 

scale could affect our results below. 

 

3.4.2.1 Normal Versus Flexible CCS 

3.4.2.1.1 Moderate CO2 Emission Limit 

All CCS-equipped fleets comply with the moderate emission limit. However, system CO2 

emissions with flexible CCS exceed those with normal CCS by 0.31 to 0.56 million tons. From 

normal to flexible CCS, CCS-equipped generators emit more CO2 due to changes in net 

electricity output among CCS-equipped generators (Appendix B), but most (66-90%) of the 

increase in system CO2 emissions occurs at non-CCS-equipped generators, which generate 

electricity with additional capacity that is freed-up by the availability of flexible CCS as a 

reserve asset. Because installed CCS capacity accounts for a small (2%) part of the total 

generating fleet capacity, these differences in system CO2 emissions represent a small (<1%) 

fraction of total system CO2 emissions. However, in the context of meeting CO2 emission 

constraints, these differences in emissions matter, as they are similar to annual expected CO2 

emissions from a 75 MW natural gas combined cycle unit.  

Total annual system costs, which equal operational plus annualized solvent storage 

capital costs, decrease from normal to flexible CCS retrofits by roughly $20-47 million assuming 

best guess solvent storage capital costs, as shown in Figure 3.5a. Given the small installed CCS 
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capacity relative to the total fleet installed capacity, total annual system cost reductions from 

normal to flexible CCS account for less than 1% of total annual system costs. Operational cost 

reductions from normal to flexible CCS exceed solvent storage capital costs, reducing total 

system costs. Specifically, operational costs, which include electricity generation, reserve, and 

start-up costs, decline by $24-53 million from normal to flexible CCS. Electricity generation and 

reserve cost reductions contribute roughly equally to operational cost reductions. Greater reserve 

provision by flexible than normal CCS generators drive reserve cost reductions, whereas two 

factors drive electricity generation cost reductions: (1) greater net electricity output enabled by 

discharged stored lean solvent during peak demand hours, which displaces generation by high 

marginal cost units; and (2) greater reserve provision by flexible CCS generators, which frees 

capacity for electricity generation at non-CCS units that provided those reserves in the normal 

CCS scenarios. Note that we do not consider the shadow CO2 prices to be a true economic cost, 

so we do not include emission costs in system operational costs presented here. As previously 

described in the Methods, these shadow CO2 prices just serve as a mechanism to constrain the 

optimization model to meet the emission targets. 

 

3.4.2.1.2 Strong CO2 Emission Limit 

Unlike under the moderate limit, all CCS fleets (normal and flexible) slightly exceed the 

strong emission limit by 1-2%, indicating that more re-dispatch or greater installed capacity of 

CCS would be necessary to comply with the strong limit in our model. Furthermore, unlike the 

moderate limit results, annual system CO2 emissions decrease from normal to flexible CCS by 

0.09-0.18 million tons under the strong limit. Due to the low installed CCS capacity, this 

decrease accounts for less than 1% of system CO2 emissions, but indicates a shift in the value of 

flexible versus normal CCS under stronger emission constraints. Some (8-50%) of those system 
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CO2 emission reductions occur at CCS-equipped generators as net electricity output shifts among 

CCS-equipped generators from normal to flexible CCS, as described in Appendix B. However, 

most (50-92%) of those system CO2 emission reductions come from non-flexible-CCS 

generators. Due to greater reserve provision by flexible than normal CCS generators, non-CCS 

generators shift from reserve provision to net electricity output. Greater net electricity output 

from some non-CCS generators, in turn, reduces electricity output at other non-CCS generators. 

Since a modest shadow CO2 price is necessary to comply with the moderate limit, cheap high-

CO2-emitting sources that shift from reserve provision to net electricity output displace net 

electricity output from more costly lower-CO2-emitting sources, increasing overall system CO2 

emissions under the moderate limit. Conversely, a high shadow CO2 price is necessary to comply 

with the strong limit, increasing the cost of previously-cheap high-CO2-emitting sources. 

Consequently, these now-expensive high-CO2 emitting sources are displaced by now-cheaper 

low-CO2-emitting sources that shift from reserve provision to net electricity output, reducing 

overall system CO2 emissions under the strong limit.  

Assuming best guess solvent storage capital costs, Figure 3.5b shows that total annual 

system costs decrease from normal to flexible CCS by $12-39 million under the strong limit, as 

under the moderate limit. Due to the small installed CCS capacity, this cost reduction represents 

less than 1% of total annual system costs. Electricity generation cost reductions from normal to 

flexible CCS are lower under the strong limit ($3-11 million) than under the moderate limit ($14-

24 million) due to less net electricity output while discharging stored lean solvent under the 

strong limit. Conversely, reserve cost reductions from normal to flexible CCS are slightly greater 

under the strong limit ($13-32 million) than under the moderate limit ($11-27 million) because 
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flexible CCS displaces reserves from more expensive units. Consequently, reserve cost 

reductions exceed electricity cost reductions by a factor of 3-5 under the strong limit. 

 

3.4.2.2 Effect of Solvent Storage Tank Size 

Shifting from the smaller to larger solvent storage tank has a secondary but non-

negligible effect on system costs and CO2 emissions relative to shifting from normal to flexible 

CCS. With respect to system CO2 emissions, under the moderate limit, shifting from the smaller 

to larger solvent storage tank increases system CO2 emissions by 0.12-0.25 million tons. Under 

the strong limit, shifting from the smaller to larger solvent storage tank reduces system CO2 

emissions by 0.02-0.04 million tons. 

With respect to system costs under the moderate emission limit, operational costs 

decrease from the smaller to larger tank by $1-2 million (Figure 3.5a). However, accounting for 

stored solvent capital costs and assuming capital costs double when shifting from the smaller to 

larger tank, total system costs increase from the smaller to larger tank by $1-3 million. In order 

for total system costs to decrease from the smaller to larger tank, then economies of scale would 

need to reduce capital costs per unit of storage from the smaller to larger tank. Specifically, 

capital costs per unit of storage would need to decrease by roughly 33% from the smaller to 

larger tank in order for total system costs to decrease from the smaller to larger tank. Under the 

strong emission limit, operational and total system costs both increase from the smaller to larger 

tank by $1 and $3-6 million, respectively (Figure 3.5b). Because operational costs increase from 

the smaller to larger tank, economies of scale could not lead to total system cost reductions when 

shifting from the smaller to larger tank.  
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Figure 3.5: Change in electricity generation, start-up, and reserve costs, best guess annualized 

solvent storage capital costs, and the sum of all four (total annual system costs), with 1.5 or 3 

GW of flexible CCS instead of normal CCS under the (a) moderate and (b) strong emission 

limits. Flexible CCS generators are equipped with a 1 or 2 hour solvent storage tank size. 
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3.4.3 Net System Value of Flexible Versus Normal CCS  

3.4.3.1 Normal Versus Flexible CCS 

Figure 3.6 plots the change in total annual system costs, accounting for a range of 

annualized solvent storage capital costs, against the change in annual system CO2 emissions from 

normal to flexible CCS of equal installed capacities. Under the moderate CO2 emission limit 

(Figure 3.6a), total system costs from normal to flexible CCS decrease by $7-51 million 

depending on stored solvent capital costs, but system CO2 emissions increase by 0.31-0.56 

million tons. Thus, normal versus flexible CCS poses a trade-off under moderate emission limits 

between cost and CO2 emission reductions. Under the strong CO2 emission limit (Figure 3.6b), 

total system costs largely decrease from normal to flexible CCS. At high stored solvent capital 

costs, total costs increase by up to $2 million from normal to flexible CCS with 1.5 GW CCS 

installed and with the larger solvent storage tank size. Otherwise, total system costs decrease by 

$7-43 million across stored solvent capital costs from normal to flexible CCS. Additionally, 

whereas emissions increase from normal to flexible CCS under the moderate limit, emissions 

decrease from normal to flexible CCS under the strong limit by 0.09-0.18 million tons. Thus, the 

value of flexible CCS relative to normal CCS changes with increasing emission reduction 

targets: whereas flexible CCS reduces system costs less under the strong limit than moderate 

limit, flexible CCS shifts from increasing to reducing system CO2 emissions from the moderate 

to strong limit.  

 

3.4.3.2 Effect of Solvent Storage Tank Size 

As with shifting from normal to flexible CCS, the value of shifting from the smaller to 

larger solvent storage tank changes with CO2 emission limit. From the smaller to larger tank 
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under the moderate limit, annual system CO2 emissions increase by 0.12-0.25 million tons and 

total annual system costs increase by up to $16 million at all but the lowest stored solvent capital 

costs, as shown in Figure 3.6a. Thus, under the moderate limit, the smaller tank size yields better 

system results than the larger tank size. Under the stronger limit, though, system costs increase 

by $1.3-19 million and system CO2 emissions decrease by 0.02-0.04 million tons from the 

smaller to larger tank across stored solvent capital costs. Consequently, under the stronger limit, 

a tradeoff exists between system costs and CO2 emissions between solvent storage tank sizes. 

Additionally, the value of the larger solvent storage tank shifts from increasing to decreasing 

system CO2 emissions at stronger emission limits.  
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Figure 3.6: Annual change in total operational plus capital costs versus annual change in system 

CO2 emissions with an equal installed capacity of flexible CCS relative to normal CCS for 

solvent storage tank sizes under the (a) moderate and (b) strong emission limits. Negative values 

indicate reductions with flexible CCS relative to normal CCS. Error bars indicate uncertainty in 

solvent storage capital costs. Flexible CCS generators are equipped with 1 or 2 hour solvent 

storage tank sizes. 
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3.4.4 Sensitivity to High Natural Gas Prices 

By increasing the operational costs of natural gas-fired generators, higher natural gas 

prices generally improve the economics of normal and flexible CCS retrofits, particularly under 

CO2 emission constraints. Of interest here, though, is how higher natural gas prices affect the 

trade-offs between normal and flexible CCS. Given that we find a clear trade-off between normal 

and flexible CCS under the moderate emission limit (Figure 3.6), we test the sensitivity of our 

results to higher natural gas prices under the moderate emission limit by increasing the generator 

fleet’s capacity-weighted natural gas price from $5.4 per MMBtu to $6.5 per MMBtu. Since we 

focus here on comparing normal to flexible CCS, we only consider flexible CCS equipped with a 

2 hour solvent storage tank size.  

Appendix B provides a full analysis of the high natural gas price results. The shadow CO2 

prices necessary to comply with the moderate emission limit increase with natural gas price. 

Results in the high natural gas price scenarios largely confirm our prior results. Flexible CCS 

primarily uses stored solvent for reserve provision, such that reserve provision by CCS 

generators increases by 9-80 times from normal to flexible CCS. Greater reserve provision 

reduces reserve costs ($9-25 million) and largely reduces electricity generation costs ($13-40 

million) from normal to flexible CCS. Total annual system costs decrease from normal to 

flexible CCS by $5-65 million across stored solvent capital costs.  

At 3 GW CCS installed and high natural gas prices, system CO2 emissions increase by 1 

million tons from normal to flexible CCS, more than that observed under the lower natural gas 

price and moderate emission limit scenarios. As natural gas prices rise, coal-fired generators 

become more economic relative to gas-fired generators, so reserves provided by flexible CCS 

allow for greater coal-fired generation, increasing system CO2 emissions. At 1.5 GW CCS and 
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high natural gas prices, though, system CO2 emissions do not change from normal to flexible 

CCS. In this scenario, greater CCS utilization from normal to flexible CCS offsets the effect of 

greater natural gas prices on CO2 emissions. Overall, relative to lower natural gas prices, the shift 

from normal to flexible CCS produces similar results under high natural gas prices: total system 

costs decrease due to reductions in electricity generation and reserve costs, but system CO2 

emissions do not decrease, posing a trade-off between cost and CO2 emission reductions. Thus, 

higher natural gas prices do not change the trade-offs posed between normal and flexible CCS 

retrofits under the moderate emission limit.  

 

3.5 DISCUSSION 

To better understand the system value of flexible versus normal CCS under CO2 emission 

reduction targets, we quantified system operational costs and CO2 emissions of a generator fleet 

with flexible or normal CCS retrofits under a moderate and strong CO2 emission limit. For 

flexible CCS retrofits equipped only with solvent storage (excluding the option of CO2 venting), 

stored solvent was used primarily to provide reserves under the moderate and strong limits, as 

found in past studies [5], [12], resulting in significantly greater reserve provision by flexible than 

normal CCS generators. Unlike past studies, we further quantified system reserve costs, and 

found that greater reserve provision by flexible than normal CCS generators reduced reserve 

costs by tens of millions of dollars per year. Under the moderate limit, these system reserve cost 

reductions were comparable to electricity generation cost reductions that occur when shifting 

from normal to flexible CCS. Thus, while stored solvent is used primarily to provide reserves, 

cost reductions from net electricity output while discharging stored lean solvent can be a key 

contributor to total system cost savings with flexible CCS relative to normal CCS, especially at 
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high natural gas prices. However, under the strong limit, reserve cost reductions significantly 

exceeded electricity generation cost reductions when shifting from normal to flexible CCS due to 

decreased net electricity output with stored solvent. 

Effects of solvent storage tank size on system emissions and costs, while secondary to 

those of using flexible versus normal CCS, differed depending on the emissions reduction target. 

When moving from the smaller to larger tank, system costs and emissions increased under the 

moderate limit, mirroring studies that have found electric vehicles with larger batteries result in 

higher costs and emissions [28], [29]. Under the strong limit, though, costs increased and 

emissions decreased when shifting from the smaller to larger tank.  Thus, a trade-off exists in 

choosing solvent storage tank size to meet near- versus long-term deployment targets. Given that 

past studies have found a stronger private case for deployment of smaller solvent storage tanks 

[6], [10], public policies may be necessary to encourage larger tank size installation in order to 

accrue greater long-term public benefits.  

While we modeled reserve procurement here, we did not model the dispatch of those 

reserves. Dispatch of reserves offered by a flexible CCS generator would require discharging 

stored lean solvent, which would later need to be regenerated to return to the initial level of 

stored lean solvent. Regenerating discharged stored lean solvent would incur costs and therefore 

reduce the overall benefit of flexible CCS relative to normal CCS. Future research should 

simulate to what extent reserve dispatch would decrease the relative benefits of flexible CCS 

compared to normal CCS. Doing so would require an electricity and reserve dispatch model that 

simulates frequency and contingency events. Our model also does not include frequency 

regulation and other rapid response reserves, which can have high and volatile prices. Modeling 
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these reserves would likely improve the system value of flexible CCS relative to normal CCS 

and should also be a target of future research. 

In optimizing our UCED over a 48-hour window, we assume a perfect net-load forecast. 

In reality, though, most power system operators, including MISO, only clear markets 24 hours in 

advance. Optimizing flexible CCS operations over shorter time horizons would likely decrease 

the system value of flexible CCS. Our research also assumed sufficient space is available for 

CCS retrofits plus the deployment of solvent storage facilities at existing coal-fired generators, 

such that CCS retrofits can occur at the most economic generators. Future research should 

examine to what extent flexible CCS retrofits are precluded by space limitations, and how the 

relative merits of flexible to normal CCS may change for retrofits on less economic generators. 

Finally, the relative value of flexible CCS compared to normal CCS may vary across power 

systems, e.g. with differing renewables penetration and fast-ramping resources. High wind 

penetration, for instance, would likely increase the value of reserves provided by flexible CCS. 

Our model could be used to examine how high renewable penetration and other factors may 

affect the relative merits of shifting from normal to flexible CCS.   

 

3.6 CONCLUSION 

We found that retrofitting flexible instead of normal CCS reduced total system-wide costs 

but slightly increased system-wide CO2 emissions under a moderate CO2 emission limit in 

MISO, posing a tradeoff to policymakers. Under a strong CO2 emission limit, flexible CCS 

reduced total system-wide costs in nearly all scenarios and decreased system-wide CO2 

emissions in all scenarios. Consequently, while policies designed to meet near-term emission 

reduction targets may incentivize normal over flexible CCS deployment, such policies could lock 
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in sub-optimal investments for meeting long-term policy objectives. Policymakers should 

therefore carefully weigh near- and long-term policy objectives when designing policies that 

specifically incentivize CCS.  
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CHAPTER 4:  

CARBON DIOXIDE EMISSIONS EFFECTS OF GRID-SCALE ELECTRICITY 

STORAGE IN A DECARBONIZING POWER SYSTEM 
 

4.1 ABSTRACT 

While grid-scale electricity storage (hereafter “storage”) could be crucial for deeply 

decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in 

current systems across the United States. To better understand how storage transitions from 

increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational 

CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission 

reduction target through 2045. Under each target, we compare the effect of storage on CO2 

emissions when storage participates in only energy, only reserve, and energy and reserve 

markets. We conduct our study in Texas and use a capacity expansion model to forecast 

generator fleet changes and a unit commitment and economic dispatch model to quantify system 

CO2 emissions with and without storage. We find that storage would increase CO2 emissions in 

the current Texas system, but would decrease CO2 emissions in 2025 through 2045 under both 

decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired 

generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We 

further find that the market in which storage participates drives large differences in the 

magnitude, but not the direction, of the effect of storage on CO2 emissions.  

This paper is in review as Craig, M.T., P. Jaramillo, and B.-M. Hodge. (In review.) 

Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power 

system. Environmental Research Letters.  
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4.2 INTRODUCTION 

 In order to avert severe impacts of climate change on humans and natural systems, carbon 

dioxide (CO2) emissions from the electric power sector must rapidly decrease [1]. Grid-scale 

electricity storage (hereafter “storage”) could be a key technology for decarbonizing the electric 

power system [2]–[5]. At high penetrations of wind and solar, storage can reduce wind and solar 

curtailment by shifting generated electricity across time to meet demand [2]. Furthermore, due to 

its flexibility, storage can help maintain grid reliability by providing ancillary services, such as 

regulation reserves [4], [6]. In both cases, storage operations enable greater electricity generation 

by low-carbon technologies and, in turn, lower system CO2 emissions. Storage investment can 

also stimulate greater investment in low-carbon technologies [3], [7].  

 Conversely, several recent studies suggest that grid-scale and behind-the-meter storage 

would increase CO2 emissions in historic power systems [8]–[10]. Using 2009 to 2011 data, 

Hittinger and Azevedo [8] find that 90% efficient storage engaging in energy arbitrage would 

have increased CO2 emissions in wholesale power markets across the U.S. To determine how 

storage affects system emissions, these studies use marginal emissions factors (MEFs), which 

predict the emissions associated with a marginal increase in electricity demand [11]. Because 

MEFs are calculated using historic data, the findings of these studies pertain to a specific set of 

generation mixes and fuel prices. As such, these studies yield little insight into how storage will 

affect CO2 emissions as decarbonization efforts transform power systems. In light of this 

shortcoming, other papers have used dispatch models to quantify how storage affects emissions. 

For instance, Tuohy and O’Malley [12] find that storage would increase CO2 emissions while 

engaging in energy arbitrage in the Irish power system at high wind penetrations. 



71 

 

When engaging in energy arbitrage, storage’s effect on CO2 emissions depends on which 

power plants charge storage and which power plants storage displaces when discharging [13]. In 

historic and current systems, storage would typically charge at night and discharge during the 

day, when coal and natural gas are the respective marginal fuels [8]. By enabling a shift from 

gas-fired to coal-fired generation, storage would increase CO2 emissions [13]. However, as 

power systems decarbonize, the generation mix, marginal fuel types, and intra-day price 

differentials will change. These changes, in turn, may shift storage operations and their effects on 

system emissions, but the speed and extent to which such changes may occur remains unclear. 

Better understanding these dynamics would not only inform the long-term utility of storage in 

decarbonization efforts, but also have direct near-term relevance to policies promoting storage. 

Although most studies examine how storage affects emissions via energy arbitrage, 

storage often instead provides ancillary services [14], [15]. Given growing flexibility needs of 

decarbonizing power systems [16], this trend will likely continue. Prior research on storage’s 

effect on CO2 emissions when providing ancillary services has limited applicability to current or 

decarbonized systems, as it has been done on a 30-bus test system [17] or electric vehicles [18]. 

 In this paper, we quantify the operational effects of storage on system CO2 emissions 

through 2045 as a power system decarbonizes. We consider two decarbonization targets of 

reducing CO2 emissions from electricity generation by 50% and 70% below 2015 levels by 2050. 

Under each target, we compare the effect of storage on operational system CO2 emissions when 

storage participates in only energy, only reserve, and energy and reserve markets. Using scenario 

analysis, we test the sensitivity of our results to the type of decarbonization policy, natural gas 

price, coal-fired generator retirements, and storage capacity and efficiency.  
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4.3 METHODS 

 In order to capture detailed fleet composition and operational changes, we leverage two 

power system optimization models in sequence. First, we forecast changes in the generator fleet 

every 5 years from 2020 through 2045 using a capacity expansion (CE) model and 

accompanying heuristics. Second, using generator fleets output by the CE model, we quantify 

operational system CO2 emissions with and without storage with a unit commitment and 

economic dispatch (UCED) model. Given its high computational requirements, we run the 

UCED model every 10 years from 2025 through 2045. To ground our analysis, we also run the 

UCED with our initial generator fleet with and without storage in 2015. We construct the CE and 

UCED models in the General Algebraic Modeling System Version 24.4 [19] and solve them 

using CPLEX Version 12 [20]. 

We conduct our analysis in the Electricity Reliability Council of Texas (ERCOT) power 

system due to its plentiful wind and solar resources [21], diverse fuel mix [22], and negligible 

power flows with neighboring systems [22]. To construct our initial generator fleet, we modify 

the 2015 ERCOT generator fleet in the National Electric Energy Data System [23] (see 

Appendix C for full details). We obtain future fuel prices from the U.S. Energy Information 

Administration [24], [25] and Environmental Protection Agency [26] (Appendix C).  

The CE and UCED models share several features. First, given recent transmission 

buildouts in ERCOT to accommodate wind generation [27], we assume transmission will keep 

pace with generator additions, so ignore transmission in our analysis [28]. Second, since ERCOT 

has limited interconnections with neighboring systems [22], we ignore power imports and 

exports. Third, to capture spatial and temporal variability in wind and solar generation, we match 
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wind and solar plants to hourly simulated wind and solar generation profiles [29], [30] and 

include them as dispatchable resources (Appendix C).  

 

4.3.1 CE Model 

The CE model optimizes generator additions and electricity generation and reserve 

provision by added and existing generators in order to minimize costs under system- and 

generator-level unit commitment constraints (Appendix C). System constraints ensure hourly 

electricity generation and reserve provision meet electricity demand and reserve requirements, 

total installed capacity meets the current ERCOT planning margin target (13.75% above peak net 

demand) [31], and total annual CO2 emissions comply with a CO2 emission cap. Costs 

minimized by the CE model equal fixed operation and maintenance (O&M) and capital costs of 

added generators, plus variable electricity generation and start-up costs of added and existing 

generators. In order to isolate the effect of adding storage to our system and given significant 

uncertainty in future demand, we use 2015 hourly demand from ERCOT [32] (Appendix C) and 

assume no load growth over our study period, deferring analysis on how storage affects 

emissions under future demand scenarios to future work.  

In each time step, the CE model can add any number of coal steam with carbon capture 

and sequestration (CCS), natural gas combined cycle (NGCC), NGCC with CCS, nuclear, wind, 

and solar generators (see Appendix C for technology parameters). Given our focus on storage 

operations, we do not include storage in the CE model, but rather perform a parametric analysis 

of storage additions to the generator fleet optimized in the CE model. To account for generator 

retirements, we retire generators based on age before each CE run and based on economic 

performance before and after each CE run [33] (Appendix C).  
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To account for variable wind and solar generation and for generator and transmission 

outages, the CE model includes three reserve types [16] (Table 4.1) (Appendix C). Given grid 

flexibility challenges of insufficient generation and the ability to curtail excessive (i.e., under-

forecasted) renewable generation, we model all three reserve types as positive reserves, i.e. 

procure capacity for increasing generation [16]. Additionally, given current standard operations, 

only coal steam, oil and gas steam, and NGCC units can provide reserves [14].  For 

computational tractability, we run the CE model in hourly intervals for two representative 

contiguous days per season, the day with peak annual net demand, and the day with the peak 

annual change in hourly net demand, where net demand equals demand minus solar and wind 

generation (Appendix C). 

 

Table 4.1: Reserve types, response timeframes, and hourly requirements in the CE and UCED 

models. Reserve types and requirements equal those used in Lew et al.[16], who model similar 

renewable penetrations as we do. SR and WR indicate reserve requirement components based on 

wind and solar generation, respectively, and r and f index regulation and flexibility reserves. 

Reserve requirements vary hourly with load and wind and solar generation.  
 

Type Response Timeframe (min.) Hourly Requirement 

Regulation 5 √(1% ℎ𝑜𝑢𝑟𝑙𝑦 𝑙𝑜𝑎𝑑)2 + 𝑆𝑅𝑟
2 + 𝑊𝑅𝑟

2 

Flexibility 10 √𝑆𝑅𝑓
2 + 𝑊𝑅𝑓

2 

Contingency 30 3% ℎ𝑜𝑢𝑟𝑙𝑦 𝑙𝑜𝑎𝑑 
 

4.3.2 UCED Model 

 The UCED model optimizes electricity generation and reserve provision in order to 

minimize operational costs while meeting electricity demand, reserve requirement, and 

generator-level unit commitment constraints (Appendix C). The UCED model includes the same 

reserve types, timeframes, and requirements as the CE model (Table 4.1). Minimized operational 

costs equal variable electricity generation, regulation reserve provision, and start-up costs. 
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Regulation provision costs, which account for increased variable operation and maintenance 

costs and heat rate degradation, equal $10, $6, and $4 ($2012) per megawatt-hour (MWh) for coal, 

NGCC, and oil and gas steam units, respectively [14], [17], [34]. These regulation provision 

costs generally agree with the median day-ahead regulation up clearing price in ERCOT from 

2013 through 2015 of $5.9 per MWh (75% CI of [2.6,16.9] $/MWh) [35]. Since the UCED 

model determines the commitment but not dispatch of reserves, we provide a first-order estimate 

of the effect of emissions due to dispatching reserves provided by storage on our results 

(Appendix C).  

In order to account for inter-day generator operations, the UCED model runs hourly for a 

24-hour optimization window plus a 24-hour look-ahead period. The solution of the first 24-hour 

period determines the initial conditions for the following UCED run. Since we run the UCED 

model in overlapping 48-hour periods for an entire year, we cannot include a constraint on 

annual CO2 emissions. Consequently, from 2020 through 2045 when we enforce a CO2 emission 

limit, we convert the relevant annual CO2 emission limit to a shadow CO2 price using a simple 

economic dispatch model (Appendix C), then include that shadow CO2 price in generators’ 

operational costs in the UCED model. Note that these shadow CO2 prices do not represent real 

costs, but rather function as a compliance mechanism with the annual CO2 emission limit in the 

UCED model [28]. 

  

4.3.3 Storage Model  

We quantify system CO2 emissions with the UCED model without storage and with 

storage participating in only energy, only reserve, and energy and reserve markets. To reflect 

variable O&M costs [36], we assume electricity generation and regulation reserve provision 
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costs of storage equal $2/MWh [37]. To model initial large-scale storage deployment in ERCOT, 

we add 500 MW of storage to the fleet optimized in the CE model regardless of the market in 

which storage participates. This storage capacity equals less than 1% of our 2015 generator fleet 

and 40% of the 2020 California storage mandate [38], although we also parametrically model 1.5 

GW of storage as detailed below. Based on real-world storage applications, we parametrize 

storage as a pumped hydropower facility when participating only in the energy market [8] and as 

a lithium ion facility when participating in only reserve or energy and reserve markets [39] 

(Table 4.2).  

 

Table 4.2: Storage parameters given the market in which it participates, and which storage 

technology each set of parameters is based on given real-world applications of each technology 

[8], [39], [40]. Across markets in which storage participates, we set storage capacity to 500 MW 

and storage efficiency to 81%. 
 

Market(s) Storage 

Participates In 

Energy Capacity 

(MWh) 

Max Ramp Rate 

(MW/ minute) 

Represented 

Storage Technology 

Only Energy 4,000 8.3 Pumped hydropower 

Only Reserves 2,000 500 Lithium ion battery 

Energy and Reserves 2,000 500 Lithium ion battery 

 

 

4.3.4 Scenarios  

We assess moderate and strong power system decarbonization targets of 50% and 70% 

below 2015 levels by 2050, respectively. To ensure annual CO2 emission caps bind emissions 

each year, we estimate 2015 CO2 emissions from electricity generation in ERCOT as 175 million 

tons by running our UCED model with our 2015 fleet and no shadow CO2 price. The moderate 

(50%) decarbonization target roughly aligns with targets set by the U.S. Clean Power Plan (CPP) 

[41] extrapolated through 2050 and applied to our baseline emissions of 175 million tons, 
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although the Trump administration moved to repeal the CPP in late 2017 [42]. Notably, even 

without the CPP, preliminary analysis suggests U.S. power sector emissions may meet CPP 

targets [43].  

To test the sensitivity of our results to the type of decarbonization policy, we also 

consider two scenarios in which we enforce each decarbonization target in the CE but not UCED 

model. These scenarios approximate decarbonizing only through changes to fleet composition, 

e.g. with a Clean Energy Standard. To test the sensitivity of our results to key storage and fleet 

parameters under each decarbonization target, we also consider scenarios with early coal-fired 

generator retirements (at 45 rather than 65 years old), low natural gas prices (3.1-3.8 

$2012/MMBtu rather than 3.2-5.2 $2012/MMBtu from 2020-2045), and high storage capacity (1.5 

GW) and storage efficiency (90%) (Appendix C).  

 

4.4 RESULTS 

4.4.1 Annual Generation and Reserve Provision by Fuel Type without Storage 

 Figure 4.1 provides annual generation by fuel type output by our UCED model without 

storage across years and decarbonization targets. Our 2015 generation mix largely agrees with 

the observed 2015 generation mix in ERCOT of 48% NGCC, 28% coal, 11% nuclear, and 11% 

wind [44]. Coal-fired generation increases in 2025 under the moderate decarbonization target 

due to rising natural gas prices and a weak CO2 emission limit. Otherwise, as CO2 emission 

limits tighten, wind, solar, and NGCC generation gradually displace coal-fired generation. 

Without storage in the fleet, NGCC generators provide more than 80% of each reserve type 

across years and decarbonization targets, while coal-fired generators provide most of the 
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remainder (Appendix C). Through 2045, reserve provision by NGCC generators partially or fully 

displaces that by coal-fired generators, depending on the reserve type and decarbonization target.  

 In the scenarios without storage, tightening annual CO2 emission limits drive changes in 

electricity generation and reserve provision through changes in fleet composition and operations. 

Fleet capacity increases from 93 GW in 2015 to 100 and 104 GW in 2045 under the moderate 

and strong decarbonization targets, respectively, as combined wind and solar capacity grows 

from 14 GW to 32 and 37 GW, respectively, and coal-fired capacity shrinks from 19 GW to 8 

and 3 GW, respectively (Appendix C). Shadow CO2 prices, which capture operational changes in 

the UCED model, range from $0-13/ton and $0-43/ton under the moderate and strong 

decarbonization targets, respectively, from 2015 to 2045 (Appendix C).  

  

  

Figure 4.1: Electricity generation by fuel type in each analyzed year under the moderate (left) 

and strong (right) decarbonization target. 
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4.4.2 Storage Operations 

 Across years and decarbonization targets, utilization of storage is significantly less when 

it participates only in the energy market than when it participates only in reserve markets or in 

both energy and reserve markets (Figure 4.2). Furthermore, when participating in energy and 

reserve markets, storage provides 10-40 times more reserves than energy. When providing 

reserves, storage primarily provides regulation reserves due to its operational flexibility and low 

offer cost. In fact, storage provides 50-80% of regulation reserve requirements when 

participating in only reserve or both energy and reserve markets across years and 

decarbonization targets.  

 Over time, two shifts in storage operations occur that indicate increasing value of storage 

for load balancing. First, when participating in energy and reserve markets, storage provides 

progressively more energy and less reserves through 2045, such that provided energy increases 

from 2015 to 2045 by 4 and 5 times under the moderate and strong decarbonization targets, 

respectively (Figure 4.2). Second, when only participating in energy markets, daily peak 

discharge by storage shifts with daily peak net demand as increasing wind and solar generation 

shift the latter from late afternoon in 2015 to early evening in 2045 (Figure 4.3). When 

participating in both energy and reserve markets, peak daily discharge by storage occurs later in 

the evening than when only participating in energy markets in order to maintain a sufficient 

charge for reserve provision throughout the day (Figure 4.3). Notably, charging operations also 

change across years, as storage begins to charge mid-day in 2035 when participating in only 

energy and in both energy and reserve markets, paralleling growth in solar generation. 
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Figure 4.2: Storage electricity generation or flexibility, contingency, or regulation reserve 

provision under the moderate (left) and strong (right) decarbonization targets when storage 

participates in only energy (top row), only reserve (middle row), or energy and reserve (bottom 

row) markets. 
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Figure 4.3: Discharging (positive values) and charging (negative values) by storage for each hour of the day summed across all days in 

each year from 2015 through 2045 under the moderate decarbonization target when only participating in the energy market (top) and 

when participating in both energy and reserve markets (bottom). Similar results occur under the strong decarbonization target. Note 

that hours with charging and discharging do not indicate concurrent charging and discharging, but rather that over all days in the year, 

storage charges in that hour on some days and discharges in that hour on other days.  
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4.4.3 Effect of Storage on Generation by Fuel Type 

 Generator-level electricity generation output by our UCED model indicates that storage 

affects system CO2 emissions by changing other generators’ operations in several ways. When 

providing energy, charging and discharge storage enables a shift in power output between 

generators across time. Additionally, when providing reserves, storage offsets reserves from 

other generators. Consequently, economic generators may increase their generation, whereas 

uneconomic generators primarily online to provide reserves may turn off. 

 When participating in only the energy market, storage enables a shift from gas-fired to 

coal-fired generation in 2015 and 2025 under both decarbonization targets (Figure 4.4), when 

CO2 emission limits are weak. In 2035, storage switches to enabling a shift from coal-fired to 

gas-fired generation under the moderate target and from coal-fired to gas-fired, wind, and solar 

generation under the strong target. In 2045 under the moderate target, storage enables a shift 

from coal-fired to gas-fired generation to a greater extent than in 2035. In 2045 under the strong 

target, though, a tight CO2 emission limit and the near elimination of coal-fired generation leads 

storage to enable a switch from inefficient gas-fired to lower-CO2-emitting gas-fired, wind, and 

solar generation (Appendix C). Across years, storage reduces wind curtailment under both 

decarbonization targets and reduces solar curtailment under the strong target. Across years and 

decarbonization targets, storage reduces wind curtailment by 10-30% and solar curtailment by 0-

20% so that wind and solar curtailments are each less than 2% of total wind and solar generation. 

Reduced curtailments as a result of storage are higher for wind than solar due to wind’s higher 

generation share (Figure 4.1) and the lower correlation of demand with wind (-0.1) than solar 

(0.4) generation. As wind and solar penetration increase through 2045, storage tends to reduce 

wind and solar curtailment more.  



83 

 

 When participating only in reserve markets, storage enables a shift from gas-fired to coal-

fired generation in 2015 under both decarbonization targets (Figure 4.4). Specifically, reserves 

provided by storage allow economic coal-fired generators to shift from reserve provision to 

electricity generation. Furthermore, due to higher storage utilization in reserve than energy 

markets, storage increases coal-fired generation by an order of magnitude more in 2015 when 

providing reserves instead of energy. In 2025, storage switches to enabling a shift from coal-fired 

to gas-fired generation under both targets. Due to higher storage utilization in reserve than 

energy markets, storage increases gas-fired generation significantly more in 2025 and 2035 when 

providing reserves instead of energy. However, under the moderate target, storage shifting coal-

fired to gas-fired generation decreases each year through 2045, such that by 2045, storage has a 

smaller effect on generation by fuel type when participating in only reserve markets than in only 

the energy market. This downward trend reflects decreasing reserve provision by coal-fired 

generators (Appendix C). In 2045 under the strong decarbonization target, storage switches to 

causing a shift from inefficient gas-fired to lower-CO2-emitting gas-fired, wind, and solar 

generation (Appendix C).  

 When participating in reserve and energy markets, storage has similar but larger effects 

on generation by fuel type compared to when it participates in only energy or in only reserve 

markets across most years and decarbonization targets (Figure 4.4). In 2015, storage enables a 

shift from gas-fired to coal-fired generation, then switches in 2025 to enabling a shift from coal-

fired to gas-fired generation. In 2045 under the strong decarbonization target, storage further 

switches to enabling a shift from inefficient gas-fired to efficient gas-fired, wind, and solar 

generation (Appendix C). Notably, across years and decarbonization targets, storage also reduces 
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wind curtailments by 25-50% more and solar curtailments by 0-100% more when participating in 

energy and reserve markets than in only energy or in only reserve markets.  

 

 

Figure 4.4: Change in generation by fuel type with storage versus without storage under the 

moderate (left) and strong (right) decarbonization targets when storage participates in only 

energy (top row), only reserve (middle row), or energy and reserve (bottom row) markets. 

Positive values indicate storage increases generation. 
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4.4.4 Change in System CO2 Emissions 

 Storage’s effect on generation by fuel type as determined by our UCED model largely 

drives its effect on operational system CO2 emissions (see Appendix C for equation used to 

calculate change in CO2 emissions) (Figure 4.5). Across our analysis, storage only increases CO2 

emissions in 2015, when storage enables a shift from gas-fired to coal-fired generation (Figure 

4.4). Furthermore, in 2015, storage increases CO2 emissions by over an order of magnitude more 

when participating in only reserve or in both energy and reserve markets than in only the energy 

market. This result reflects large differences in how much storage increases coal-fired generation 

in 2015 when participating in different markets (Figure 4.4).  

 Under the moderate decarbonization target, storage decreases system CO2 emissions from 

2025 through 2045, regardless of the market in which it participates (Figure 4.5). When only 

participating in the energy market, storage enables progressively greater CO2 emission 

reductions through 2045. Conversely, when only participating in reserve markets, storage 

enables diminishing reductions in CO2 emissions through 2045. These results parallel trends in 

how storage reduces coal-fired generation (Figure 4.4). However, from 2025 to 2045 storage 

achieves the greatest system CO2 emission reductions when participating in both energy and 

reserve markets.  

 Under the strong decarbonization target, storage reduces CO2 emissions from 2025 

through 2045 regardless of the market in which it participates, like under the moderate 

decarbonization target (Figure 4.5). Furthermore, the effect of storage on CO2 emissions in 2025 

and 2035 is similar in relative and absolute magnitude across markets under both 

decarbonization targets. Unlike under the moderate target, though, CO2 emission reductions from 

storage are lower in 2045 than in 2035, by 75-85%. These diminishing reductions associated 
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with storage in the strong decarbonization target do not correspond to lower storage utilization 

(Figure 4.2), but rather to storage switching from enabling a shift from coal-fired to gas-fired, 

wind, and solar generation to enabling a shift from inefficient gas-fired to lower-CO2-emitting 

gas-fired, wind, and solar generation (Figure 4.4, Appendix C). 

Changes in CO2 emissions due to storage when participating in only reserve or in both 

energy and reserve markets shown in Figure 4.5 only account for commitment of reserves, but 

dispatching of reserves provided by storage could incur additional CO2 emissions. As detailed in 

Appendix C, we conduct a first-order analysis of emissions associated with the dispatch of 

regulation reserves provided by storage. From 2025 to 2045 under both decarbonization targets, 

these emissions would negate 6-51% of CO2 emission reductions due to storage when 

participating in only reserve or in both energy and reserve markets.   
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Figure 4.5: Change in system CO2 emissions with storage versus without storage under the 

moderate (left) and strong (right) decarbonization targets when storage participates in only 

energy (top row), only reserve (middle row), or energy and reserve (bottom row) markets. 

Positive values indicate storage increases CO2 emissions. 
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4.4.5 Sensitivity Analysis 

 To test the robustness of our results, we conduct several sensitivity analyses under the 

moderate and strong decarbonization targets (Appendix C). When we include CO2 emission 

limits in our CE model but do not include shadow CO2 prices in our UCED model, storage 

increases CO2 emissions through 2035 under both decarbonization targets and in 2045 under the 

moderate decarbonization target regardless of the market in which it participates. In these 

instances, although NGCC and renewable capacity supplant some coal-fired capacity over time, 

storage primarily enables a shift from gas-fired to cheaper coal-fired generation. While storage 

also reduces wind and solar curtailment, consequent emission reductions are less than emissions 

from greater coal-fired generation. Conversely, in 2045 under the strong decarbonization target, 

storage reduces CO2 emissions with no shadow CO2 price across markets in which it participates, 

as storage primarily enables a shift from gas-fired to wind and solar generation. Notably, in that 

year coal-fired generation is nearly eliminated and wind and solar generation account for a third 

of total electricity (Figure 4.1), roughly indicating the fleet mix at which storage would begin to 

reduce emissions when decarbonizing only via fleet composition changes.  

Under both decarbonization targets, tripling storage capacity from 0.5 to 1.5 GW 

amplifies the effect of storage on CO2 emissions. For example, under the moderate 

decarbonization target, 1.5 GW of storage increases CO2 emissions 1-4 times more in 2015 and 

decreases CO2 emissions 2-4 times more in 2025 through 2045 than 0.5 GW of storage. While 

these emission reductions account for less than 2% of total system emissions, increasing 

reductions with increasing storage capacity demonstrated here indicate further potential for 

emission reductions with even greater storage capacities, a potential topic for future research. At 

a higher capacity, storage provides more energy and reserves, which enables larger changes in 
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generation by fuel type in each year. Increasing storage efficiency from 81% to 90% does not 

significantly change how storage affects system CO2 emissions.  

Under both decarbonization targets, low natural gas prices also do not significantly 

change our results, as adding storage to the generator fleet reduces CO2 emissions from 2025 

through 2045. Across years, decarbonization targets, and which market storage participates in, 

these emission reductions are greater than, equal to, or less than those achieved by storage under 

the base scenarios. Under both decarbonization targets and low natural gas prices, gas-fired 

capacity, including with CCS under the strong decarbonization target, increases through 2045 

and fully displaces coal-fired capacity in 2045. Consequently, through 2035 storage reduces CO2 

emissions primarily by enabling a shift from coal-fired to gas-fired and wind generation, and in 

2045 reduces emissions primarily by enabling a shift from higher-CO2-emitting gas-fired to 

CCS-equipped gas-fired and wind generation. Although we do not test high (greater than 

$5.2/MMBtu) natural gas prices, reversing the differences observed at low versus moderate 

natural gas prices provides some indication of expected outcomes at high gas prices. 

Specifically, less gas-fired generation would occur at high gas prices than in the base scenarios, 

likely resulting in greater coal-fired (and renewable) generation in later years. Consequently, 

storage may achieve greater emission reductions at high gas prices than in the base scenarios.   

 In the early coal-fired generator retirements scenarios, storage leads to smaller CO2 

emission reductions than in the base scenarios under both decarbonization targets. Early coal-

fired retirements rapidly decrease coal-fired capacity and generation. Under the moderate 

decarbonization target, adding storage to the generator fleet increases coal-fired generation from 

remaining coal plants without exceeding the CO2 emission limit through 2045. Consequently, 

under the moderate target, storage either increases CO2 emissions or reduces them significantly 
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less than in the base scenario through 2045. Conversely, under the strong decarbonization target, 

storage reduces coal-fired generation from remaining coal plants due to the strong CO2 emission 

limits through 2045, like in the base scenario. Consequently, under the strong target, storage 

reduces CO2 emissions, albeit often by less than in the base scenario, through 2045.  

 

4.5 DISCUSSION 

 To better understand how storage affects operational system CO2 emissions as a power 

system decarbonizes, we quantified how storage affects CO2 emissions from 2015 through 2045 

under CO2 emission reduction targets of 50% and 70% below 2015 levels by 2050. Like prior 

studies [8], [9], we found that storage would increase CO2 emissions in the 2015 ERCOT system. 

However, under both decarbonization targets, we found that storage would reduce CO2 emissions 

within 10-20 years, well before deep decarbonization. Storage achieves these emission 

reductions by enabling a shift from coal-fired to gas-fired generation and, to a lesser extent, by 

reducing wind curtailment. Furthermore, we found that storage achieved greater emission 

reductions in systems with significant coal-fired capacity than in systems where gas-fired, wind, 

and solar capacity had nearly eliminated coal-fired capacity. Thus, storage can further 

decarbonization efforts not only in deeply decarbonized systems with high renewable 

penetrations, but also in moderately decarbonized power systems with high coal-fired capacity 

and relatively low renewable penetrations.  

 Given that storage units will participate in reserve markets rather than or in addition to 

the energy market, we also compared how storage affects CO2 emissions while participating in 

only energy, only reserve, or energy and reserve markets. We found that the market in which 

storage participates can significantly change the magnitude, but not the direction, of the effect of 
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storage on system CO2 emissions. Across years and decarbonization targets, storage reduces CO2 

emissions the most when participating in both energy and reserve markets.  

Via sensitivity analysis, we found that decarbonizing only through fleet composition (and 

not operational) changes flipped storage from a net-negative to net-positive CO2 emission 

technology except when coal-fired generation was nearly eliminated and wind and solar 

generated a third of total electricity. Thus, storage may have significantly different effects on 

CO2 emissions in systems with decarbonization policies that affect system composition and 

operation, e.g. a carbon tax, versus only system composition, e.g. a Clean Energy Standard. We 

also found that early coal-fired generator retirements, by reducing CO2 emissions and 

consequently the implicit cost of CO2 emissions under an emission limit, could reduce or negate 

the emission benefits of storage, although storage applications in other contexts, e.g. co-located 

with wind farms, may still yield emission benefits. Conversely, our results were robust to higher 

storage capacity and efficiency and lower natural gas prices.  

 Our analysis has several limitations that could be addressed in future work. First, we do 

not optimize for storage deployment in our CE model, which would likely increase wind and 

solar deployment [3], [7]. Higher renewable penetrations would likely cause storage to reduce 

renewable curtailment and emissions more. However, it would also reduce the implicit CO2 

emission cost under the cap and, consequently, potentially reduce the shift from coal- to gas-fired 

generation enabled by storage. Thus, the net effect of optimizing storage deployment in our CE 

model on how storage affects operational system CO2 emissions is uncertain. Future research 

could address this question by translating by translating constraints on storage operations from 

our UCED model to CE model, although subsequent CE model simplifications may be necessary 

for computational tractability. 
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Second, we estimate storage energy losses and emissions associated with dispatching of 

reserves after rather than within the UCED model, which could lead to overestimation of 

reserves provided by storage. Third, by dispatching generators at an hourly resolution, we may 

underestimate renewable energy curtailment and renewable integration benefits of storage. 

Fourth, transmission constraints, which we ignore here, could drive spatial heterogeneity in the 

effects of storage on system CO2 emissions. Fifth, we do not consider load growth through 2045 

here, deferring that to future analysis. Meeting growing demand while imposing the same 

decarbonization targets would require greater deployment of renewables, CCS, and/or nuclear, 

which could alter how storage affects generation by fuel type and, in turn, emissions. In 

particular, storage would likely provide greater curtailment benefits at higher renewable 

penetrations, and could even reduce curtailment of relatively-inflexible CCS and nuclear 

generators if deployed at high capacities.  

Finally, considering system operational costs in addition to emissions associated with 

storage could highlight win-wins or trade-offs between the two and further inform policymaking. 

For instance, in the near-term, our analysis indicates that using storage to provide energy leads to 

a smaller increase in emissions compared to using storage only for reserves or for energy and 

reserves. If storage used only for energy also leads to lower costs, then given a storage 

deployment mandate, policies encouraging storage to participate in energy rather than reserve 

markets could yield best possible cost and emission outcomes. 

 

4.6 CONCLUSION 

 Our results indicate that policies promoting storage can yield operational CO2 emission 

reductions in the mid-term if comprehensive decarbonization policies, like a carbon tax, exist. 
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Furthermore, policies can significantly change how storage affects CO2 emissions by 

encouraging participation in energy and/or reserve markets. Thus, storage can play a significant 

role in decarbonization efforts in the mid- and long-term, but storage-specific and 

decarbonization policies play a key role in determining whether and to what extent this occurs. 
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CHAPTER 5: A RETROSPECTIVE ANALYSIS OF THE MARKET PRICE 

RESPONSE TO DISTRIBUTED PHOTOVOLTAIC GENERATION IN 

CALIFORNIA 
 

5.1 ABSTRACT 

In response to rapid growth of distributed solar photovoltaic (PV) capacity in the U.S., numerous 

“value of solar” studies have attempted to quantify avoided costs associated with distributed PV. 

One such avoided cost that has received little attention is the market price response, or how 

distributed PV generation reduces utilities’ procurement costs and, consequently, consumers’ 

costs through reduced wholesale electricity prices in the short-term. Here, we quantify the 

reduction in day-ahead wholesale electricity prices to distributed PV generation in California 

(CA) from 2013 through 2015. Using a database of all distributed PV systems in the three CA 

investor owned utilities, we estimate historic hourly distributed PV generation using three 

methods that we validate with metered generation from 205 PV systems. Via multiple linear 

regression, we then estimate electricity price reductions due to distributed PV generation. Across 

the three methods used to estimate PV generation, we find that distributed PV generation 

reduced hourly median (mean) wholesale electricity prices by up to $2.7-3.1/MWh ($2.9-

3.2/MWh) ($2015), or by 7-8% (8-9%). Lower wholesale prices, in turn, reduced utilities’ energy 

procurement costs in the day-ahead market by up to $650-730 million ($2015) from 2013 through 

2015. These avoided costs are similar to other avoided costs commonly included in value of solar 

studies.  

This paper is being prepared for submission with co-authors Paulina Jaramillo, Bri-

Mathias Hodge, Nathan Williams, and Edson Severnini.  
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5.2 INTRODUCTION 

Installed solar photovoltaic (PV) capacity has grown rapidly in recent years, increasing 

from 2.5 to 21.7 GW in the U.S. from 2010 to 2015 [1], [2] and from 10 to 230 GW globally 

over the same period [3]. In the U.S., numerous factors have driven this growth, including falling 

PV panel and balance-of-system costs [4] and policy support such as deployment mandates and 

financial incentives [5], [6]. Forecasts project continued rapid growth in installed PV capacity in 

the U.S. [7] and globally [8].  

PV projects can be broadly categorized as utility-scale or distributed PV. Utility-scale PV 

typically connects to the transmission grid, while distributed PV, also known as behind-the-meter 

or rooftop solar, generates electricity to be consumed on-site by industrial, commercial, or 

residential facilities. In the U.S., utility-scale PV capacities typically range from 1-20 MW [9], 

whereas residential distributed PV capacities typically range from 2-10 kW [10]. As of 2015, 

distributed PV accounted for 45% of installed PV capacity in the U.S. [1].  

Rapid growth of distributed PV has led to questions regarding its costs and benefits. In 

response, numerous “value of solar” studies have attempted to quantify incurred and avoided 

system costs associated with distributed PV generation in order to determine how to compensate 

distributed PV generation [11]–[13]. While avoided and incurred costs included in these studies 

vary widely [11], [12], avoided costs can include avoided power system costs, such as through 

deferred or reduced grid infrastructure investment, reduced system losses, and avoided 

generation [11], [12], [14]; avoided environmental and health costs due to reduced global and 

local air emissions [11], [15], [16]; and social and reliability benefits [11], [12]. Incurred costs 

can include grid integration costs, such as grid infrastructure upgrades and higher ancillary 
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service requirements, and subsidies [11], [12]. Avoided and incurred costs of distributed PV vary 

significantly by location, PV penetration, and other variables [15], [17], [18]. 

This paper focuses on one avoided cost associated with distributed PV that has received 

less attention than other benefits [11], [12], namely the market price response to distributed PV 

generation, or how distributed PV generation suppresses wholesale electricity prices in the short-

term. Since electricity generated by distributed PV partially or fully meets on-site electricity 

demand, distributed PV reduces net electricity demand. In the near-term, given a static supply 

curve, reduced demand eliminates the need for marginal, high cost generation, thus suppressing 

wholesale electricity prices [19]. Lower wholesale prices, in turn, reduce utility expenditures in 

wholesale markets, which should ultimately reduce consumers’ costs through lower retail rates.  

Notably, short-term reductions in electricity prices due to distributed PV generation may 

alter generator retirements and investments, which can affect electricity prices in the long-term. 

Additionally, revenues originally obtained by producers in wholesale energy markets may 

instead move to capacity markets or similar mechanisms [20].  Such long-term effects may 

reduce (or eliminate) short-term avoided costs due to reduced wholesale electricity prices. To 

understand the extent of short-term price effects and potential long-term market shifts due to 

distributed PV, here we quantify short-term price reductions and avoided costs, deferring long-

term analyses to future work.  

Numerous studies have examined how renewables affect wholesale electricity prices 

[19], [21]–[27], but most have focused on utility-scale renewables or have not differentiated 

between utility-scale and distributed facilities. Studies on wholesale price, or “merit-order”, 

effects of utility-scale renewables fall into two groups. One group conducts retrospective or ex-

post analyses using empirical data [22]–[25]. Due to the rapid deployment of renewables in 
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response to feed-in tariffs and other policies, most studies in this group have focused on 

European nations [23]–[25]. Conversely, Woo et al. [22] focused on California. Using multiple 

linear regression, they found that each hourly GWh increase in utility-scale solar and wind 

generation decreased day-ahead locational marginal prices by $2-5/MWh and $1-3/MWh, 

respectively, from 2013 through 2015. The second group of studies assesses merit-order effects 

of utility-scale renewables with dispatch models or simulation [19], [26], [27]. Bode and 

Groscurth [26], for instance, used a simplified dispatch model to estimate how parametrically 

increasing capacities of PV would depress future electricity prices relative to no additional PV. 

Similar analyses have also been conducted on energy efficiency, where wholesale price effects 

are called “demand reduction induced price effects” [28], [29]. 

Unlike the above studies, McConnell et al. [30] conducted a retrospective analysis 

focused on the market price response to distributed PV in Australia. The authors estimated 

electricity generation by a representative PV system in four state capitals with historic 

meteorological and solar irradiance data, then scaled generation from those four PV systems to 

estimate generation by an assumed 1 to 5 GW of installed PV. By coupling these generation 

estimates with a dispatch model, they found that distributed PV would reduce wholesale 

electricity prices throughout the year but particularly in the summer, yielding total cost savings 

of $310-970 million and $150-550 million ($2015) in 2009 and 2010, respectively, with 1-5 GW 

of distributed PV. Notably, by estimating generation by a single representative system in only 

four locations, McConnell et al. ignored heterogeneity among distributed PV systems’ 

orientations and locations. Additionally, rather than using historic PV capacity and market data, 

McConnell et al. simulated the effects of parametrically increasing distributed PV capacities.  



101 

 

In this paper, we quantify the market price response to distributed PV generation in 

California from 2013 through 2015. As of 2015, California installed 7.3 GW of utility-scale 

thermal and PV capacity [31] and 3.4 GW of distributed PV capacity (Table 5.1). Using a 

database of all distributed PV systems (439,010) in the three California investor owned utilities 

(IOUs), namely Pacific Gas and Electric (PGE), Southern California Edison (SCE), and San 

Diego Gas and Electric (SDGE), we estimate historic hourly generation by each distributed PV 

system while accounting for heterogeneity in PV system orientation and location. Using historic 

price data and multiple linear regression, we then estimate how distributed PV generation 

reduced wholesale electricity prices in the day-ahead market. We also test the sensitivity of our 

results to PV efficiency degradation and high inverter loading ratios.  

 

5.3 METHODS 

5.3.1 Estimating Distributed PV Generation 

From the Net Energy Metering (“NEM”) dataset, we obtain system information, 

including zip code, capacity, orientation, and interconnection date, for all commercial, 

residential, and industrial distributed PV systems in PGE, SCE, and SDGE approved for 

interconnection as of 2016 [10] (see Table 5.1 for summary statistics and Appendix D.1 for 

histograms of PV system orientations). Since we lack metered generation, we estimate hourly 

electricity generation by each PV system in the NEM dataset from 2013 through 2015. To do so, 

we validate four methods (summarized in Table 5.2) with metered generation from 205 

distributed PV systems, then apply the three most accurate methods to estimate generation by all 

distributed PV systems. In so doing, we hedge against biases of any single method. Across 

methods, we assume PV systems begin generating electricity on their interconnection approval 
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date. Given that 99.5% of PV systems with tracking data in the NEM dataset are fixed array 

systems, we also assume all PV systems are fixed array systems. 

  

Table 5.1: Summary statistics for distributed PV systems in the NEM and CSI datasets 

interconnected through 2015, the end of our period of analysis. 

Summary Statistic Value in NEM 

Dataset 

Value in CSI 

Dataset 

Total number of PV systems 439,010 492 

Total capacity of PV systems [MW] 3,434 3 

Average PV system capacity [kW] 8 5.9  

Median interconnection date Apr. 9, 2014 Sep. 3, 2008 

Average nominal efficiency of 10 most common 

panels [%] 

16.6 15.8 

Percent of PV systems with tracking data that are 

fixed array [%] 

99.7 94 

Minimum / average / maximum azimuth [degrees] 0 / 174 / 360 0 / 191 / 355 

Minimum / average / maximum tilt [degrees] 0 / 18 / 90 0 / 21 / 75 

Number of PV systems in PGE / SCE / SDGE 211,026 / 156,423 

/ 71,561 

201 / 188 /  

103 

Total capacity of PV systems in PGE / SCE / SDGE 

[MW] 

1,772 / 1,210 / 451 1.4 / 0.9 / 0.6  

   

Table 5.2: Summary of methods we use to estimate distributed PV generation. Based on our 

validation of each method, we use all but the specific configuration method to estimate 

generation by all distributed PV systems.   

Method Name Method Description 

Scale up  Scale up metered generation from subset of PV systems 

Specific configuration Input location-specific historic solar irradiance and 

meteorology into a PV system performance model, using 

each PV system’s specific panel and inverter configuration 

Generic configuration Input location-specific historic solar irradiance and 

meteorology into a PV system performance model, using a 

generic configuration for all PV systems 

Adjusted generic configuration Modify generation estimates from the generic 

configuration method using hour-of-day correction factors 
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5.3.1.1 Method Type 1: Scale-up Metered Generation  

In our first method (the scale up method), we estimate hourly generation by distributed 

PV systems by scaling up 15-minute metered generation from 492 distributed PV systems in 

PGE, SCE, and SDGE collected through the California Solar Initiative (“CSI”) [32] (see Table 

5.1 for summary statistics and Appendix D.2 for histograms of system orientations). To 

maximize metered generation availability, we conduct our analysis through 2015. Given our 

focus on day-ahead hourly electricity prices, we sum 15-minute to hourly generation. Due to data 

gaps, each PV system on average lacks 25% of hourly metered generation over our study period 

(Appendix D.2). 

To scale up metered generation from 492 distributed PV systems in the CSI dataset to the 

439,010 distributed PV systems in the NEM dataset, we assume nearby distributed PV systems 

share meteorology and solar irradiance and, consequently, generation profiles. The finest spatial 

resolution in the NEM and CSI datasets is zip code. As such, using metered generation we 

calculate average historic hourly capacity factors (CFs) by zip code, then use the nearest zip-

code-level CFs to each PV system in the NEM dataset to estimate its historic hourly generation 

(see Appendix D.3 for flowchart). For roughly 86% of PV systems in the NEM dataset, the 

nearest zip code with CFs is within 20 km, distances at which hourly solar generation between 

PV plants is highly correlated [33], [34]. While we do not account for PV system orientation in 

this method, PV systems in the CSI and NEM datasets have similar distributions of azimuths and 

tilts (Appendices A.1 and A.2), so this omission should not significantly bias our results. We fill 

gaps in zip-code-level hourly CFs, which on average account for 8% of hours from 2013 through 

2015, with IOU-level average hourly CFs (Appendix D.3).  
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5.3.1.2 Methods that Input Solar Irradiance and Meteorology into a PV System 

Performance Model 

In our other three methods (the specific configuration, generic configuration, and 

adjusted generic configuration methods), we estimate hourly generation by each distributed PV 

system using location-specific historic meteorology and solar irradiance and PVLib [35], a PV 

system performance model. We obtain hourly meteorology (wind speed and temperature) and 

solar irradiance (diffuse horizontal, direct normal, and global horizontal irradiance) by zip code 

from 2013 through 2015 from the National Solar Radiation Database (NSRDB) [36] (see 

Appendix D.4 for summary statistics). NSRDB meteorology and solar irradiance are based on 

remote sensing and satellite imagery, respectively, and are provided at hourly and 4x4 km 

resolution [37]. Given user-input meteorology and solar irradiance, PVLib [35] uses the Sandia 

PV Array Performance Model to simulate electricity generation by a user-defined PV system 

model. Each PV system model requires location, orientation, panel, and inverter information.  

To set panel and inverter information, we use a different approach in the specific 

configuration method than in the generic and adjusted generic configuration methods. In the 

specific configuration method, we use each PV system’s given panel and inverter names and 

numbers. Conversely, in the generic and adjusted generic configuration methods, we use a 

generic panel and inverter configuration (Table 5.3) and scale this configuration’s generation by 

each system’s actual DC capacity divided by the configuration’s DC capacity. By scaling 

generation, we incorporate each PV system’s capacity in the NEM dataset. The generic 

configuration uses a panel with a similar efficiency (16.9%) as common panels in the NEM 

dataset (Table 5.1) and a standard inverter loading, i.e. DC to AC, ratio of 1.2. 
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During validation (Section 5.4.1), estimated generation with the generic configuration 

method exhibits biases relative to metered generation. To correct for those biases, which vary by 

hour of day and IOU, the adjusted generic configuration method uses hour-of-day- and IOU-

specific correction factors (F) that equal the median normalized error between IOU-level hourly 

metered generation and estimated generation during validation, or: 

𝐹ℎ𝑑,𝐼𝑂𝑈 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑝𝑡,𝐼𝑂𝑈

𝑀𝑒𝑡𝑒𝑟𝑒𝑑 − 𝑝𝑡,𝐼𝑂𝑈
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑝𝑡,𝐼𝑂𝑈
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

 )            ∀  𝑡 ∈ ℎ𝑑          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where t, IOU, and hd index hour, IOU, and hour of day, respectively; pMetered = hourly metered 

generation [kWh]; and pEstimated = hourly estimated generation using the generic configuration 

method [kWh]. These correction factors indirectly account for variables not captured in our data, 

such as shading, that could bias the generic configuration method. With these correction factors, 

we estimate “adjusted” generation (pAdjusted) as:  

𝑝𝑡,𝐼𝑂𝑈
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑

= 𝑝𝑡,𝐼𝑂𝑈
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ∗ (1 + 𝐹ℎ𝑑,𝐼𝑂𝑈)            ∀  𝑡 ∈ ℎ𝑑          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

Using cross-validation, we demonstrate these correction factors do not result in overfitting 

(Appendix D.5). 

In the specific, generic, and adjusted generic configuration methods, we assume DC 

generation losses of 4.4% per the Solar Advisor Model [38]. Additionally, we use each PV 

system’s azimuth and tilt when given in the NEM dataset or a randomly sampled azimuth and tilt 

from the NEM dataset in each PV system’s IOU (Appendix D.1) to capture variability in actual 

PV systems’ orientations. Finally, we set PV systems’ locations by zip codes in the NEM dataset.  
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Table 5.3: PV system configuration used in the generic and adjusted generic configuration 

methods. 

System Parameter Value 

Panel name SunPower SPR-210-WHT 

Panel type Crystalline silicon 

Inverter name iPower SHO 5-2 

Number of panels 28 

Number of inverters 1 

Number of strings per inverter 4 

Inverter loading ratio 1.16 

  

  

5.3.1.3 Sensitivity Analyses on Distributed PV Generation 

By modifying the generic configuration method, we test the sensitivity of our distributed 

PV generation estimates to two PV system parameters. First, to test the effect of efficiency 

degradation, we assume each system’s efficiency decreases by 0.5% annually [39]. Second, to 

test the effect of a higher inverter loading ratio, we use an iPower SHO 4-6 inverter in the 

generic configuration, yielding an inverter loading ratio of 1.30. 

 

5.3.2 Estimating the Response of Day-Ahead Wholesale Electricity Prices to 

Distributed PV Generation 

The California Independent System Operator (CAISO) operates the electric grid that 

provides roughly 80% of California electricity [40]. In order to balance supply and demand, 

CAISO operates a day-ahead market (DAM) and a real-time market. Over 95% of total energy 

procured by PGE, SCE, and SDGE, including through long-term bilateral contracts, passes 

through the DAM [41]. DAM wholesale electricity prices take the form of hourly locational 

marginal prices (LMPs), which account for energy, congestion, and transmission losses. Changes 

in LMPs as a result of distributed PV generation would affect the costs PGE, SCE, and SDGE 

incur to meet their customer’s demand for electricity. To capture this change in costs, between 
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2013 and 2015 we calculate the difference between historic LMPs and counterfactual LMPs that 

would have occurred if distributed PV generation had not met some electricity demand. To 

estimate counterfactual LMPs, we first fit two regressions on historic net demand and supply-

related variables [22] since supply and demand drive LMP formation. We then use those 

regressions to predict LMPs after replacing net demand with total demand, which we estimate as 

net demand plus distributed PV generation. We provide all monetary results in 2015 dollars 

using the Producer Price Index for electric utilities [42].  

Our two regressions are: 

 

𝐿𝑀𝑃𝑡
𝑁𝑃15 = 𝛼1 ∗ 𝐷𝑡

𝑁𝑃15 + 𝛼2 ∗ 𝐷𝑡
𝑆𝑃15 + 𝛼3 ∗ 𝑊𝑡

𝑁𝑃15 + 𝛼4 ∗ 𝑆𝑡
𝑁𝑃15 + 𝛼5 ∗ 𝑊𝑡

𝑆𝑃15 + 𝛼6 ∗ 𝑆𝑡
𝑆𝑃15

+ 𝛼7 ∗ 𝑉𝑡 + 𝛼8 ∗ 𝐶𝑡 + 𝛼9 ∗ 𝑁𝐺𝑡 + 𝛼10 ∗ 𝐾𝑅𝑡 + 𝛼11 ∗ 𝑆𝑅𝑡 + 𝛼12 ∗ 𝐻𝐼𝑡

+ (𝛽1 ∗ 𝐻𝐷2 + ⋯ + 𝛽23 ∗ 𝐻𝐷24 +  𝛽24 ∗ 𝐷𝑊2 + ⋯ + 𝛽29 ∗ 𝐷𝑊7 + 𝛽30 ∗ 𝑀2 + ⋯

+ 𝛽40 ∗ 𝑀12 + 𝛽41 ∗ 𝑌2014 +  𝛽42 ∗ 𝑌2015) + 𝜀𝑡                           (𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 1) 

𝐿𝑀𝑃𝑡
𝑆𝑃15 = 𝛾1 ∗ 𝐷𝑡

𝑁𝑃15 + 𝛾2 ∗ 𝐷𝑡
𝑆𝑃15 + 𝛾3 ∗ 𝑊𝑡

𝑁𝑃15 + 𝛾4 ∗ 𝑆𝑡
𝑁𝑃15 + 𝛾5 ∗ 𝑊𝑡

𝑆𝑃15 + 𝛾6 ∗ 𝑆𝑡
𝑆𝑃15

+ 𝛾7 ∗ 𝑉𝑡 + 𝛾8 ∗ 𝐶𝑡 + 𝛾9 ∗ 𝑁𝐺𝑡 + 𝛾10 ∗ 𝐾𝑅𝑡 + 𝛾11 ∗ 𝑆𝑅𝑡 + 𝛾12 ∗ 𝐻𝐼𝑡

+ (𝜃1 ∗ 𝐻𝐷2 + ⋯ + 𝜃23 ∗ 𝐻𝐷24 +  𝜃24 ∗ 𝐷𝑊2 + ⋯ + 𝜃29 ∗ 𝐷𝑊7 + 𝜃30 ∗ 𝑀2 + ⋯

+ 𝜃40 ∗ 𝑀12 + 𝜃41 ∗ 𝑌2014 + 𝜃42 ∗ 𝑌2015) + 𝜏𝑡                             (𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 2) 

 

where t indexes hour and NP15 and SP15 index CAISO zones; LMP = forecasted average, or 

trading hub, LMP [$2015/MWh] [43]; D = forecasted net demand [MWh] [44]; W = forecasted 

utility-scale wind generation [MWh] [45]; S = forecasted utility-scale solar generation [MWh] 

[45]; V = Palo Verde nuclear plant generation [MWh] [46]; C = Diablo Canyon nuclear plant 

generation [MWh] [46]; NG = Henry Hub natural gas price [$2015/MMBtu] [47]; KR = Klamath 
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River flow [ft3/s] [48]; SR = Sacramento River flow [ft3/s] [49]; HI = average California stream 

flow index [1-7] [50]; HD, DW, M, and Y = dummy variables for hour of day, day of week, 

month, and year, respectively; ε and τ = random errors; and α, β, γ, and θ = coefficients.  

 Non-dummy variables capture the effect of generation by major fuel types [51] and of net 

demand on LMPs. Based on the availability of utility-scale wind and solar generation, we begin 

our analysis in 2013. Since PGE, SCE, and SDGE serve most demand in their respective zones 

[22], we approximate forecasted net demand in NP15 and SP15 as that in PGE and SCE plus 

SDGE, respectively. Augmented Dickey-Fuller tests [52] indicate all dependent and independent 

variables are stationary over our study period (p-values < 0.02). Furthermore, all non-dummy 

variables except HI (average California stream flow index) and V (Palo Verde nuclear plant 

generation) pass the Granger causality test (p-values < 0.01), although we retain both for price 

estimation. Dummy variables account for temporal trends in power system operations (see SI for 

specification without year dummy variables). Appendix D.6 further discusses and provides 

descriptive statistics for each variable. 

Table 5.4 reports the results of Regressions 1 (R2 = 0.77) and 2 (R2 = 0.79). To account 

for autocorrelation in the residuals of Regressions 1 and 2 (Appendix D.6), we provide Newey-

West standard errors [53] (Table 5.4) and block bootstrapped standard errors (Appendix D.6). 

Regressions 1 and 2 accurately predict most prices, but underestimate peak prices over our study 

period (Appendix D.6). While we use our regressions for prediction rather than causal inference, 

we note that all variables have statistically significant coefficients (p-value < 0.01) except HI 

and, in Regression 1, SNP15. Furthermore, consistent with Woo et al. [22], coefficients indicate 

greater load and natural gas prices increase LMPs, while greater utility-scale wind and solar, 

nuclear, and hydropower generation decrease LMPs.  
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Table 5.4: Coefficients and standard errors for Regressions 1 and 2 using Newey-West standard 

errors with a maximum time lag of 4(T/100)2/9, where T = the number of observations in our 

dataset (26,280) [54]. For clarity, we provide regression results for data standardized as (X/(XMAX 

– XMIN)), where XMAX and XMIN equal the maximum and minimum variable value, respectively, 

and for dependent variables (LMPs) scaled to $2015/GWh. Bold values indicate statistical 

significance (p-value < 0.01). Appendix D.6 provides coefficients on dummy variables and 

bootstrapped standard errors. 

 Regression 1 Regression 2 

Variable: definition Coeff. 

Std.  

Error Coeff. 

Std. 

Error 

𝑊𝑡
𝑁𝑃15: Hourly forecasted wind generation in NP15 -20.92 3.08 -12.7 3.45 

𝑆𝑡
𝑁𝑃15: Hourly forecasted solar generation in NP15 -5.22 3.88 -12.9 4.23 

𝑊𝑡
𝑆𝑃15: Hourly forecasted wind generation in SP15 -13.21 2.47 -37.2 3.15 

𝑆𝑡
𝑆𝑃15: Hourly forecasted solar generation in SP15 -34.59 2.42 -81.0 3.37 

𝐷𝑡
𝑁𝑃15: Hourly forecasted net demand in PGE 317.23 32.14 227.9 24.70 

𝐷𝑡
𝑆𝑃15: Hourly forecasted net demand in SCE + SDGE 56.58 16.08 189.9 16.15 

𝐶𝑡: Daily generation by Diablo Canyon -26.12 3.50 -33.5 3.29 

𝑉𝑡: Daily generation by Palo Verde -26.06 3.35 -15.5 3.35 

𝑁𝐺𝑡: Daily natural gas Henry Hub price 244.96 18.56 235.3 17.58 

𝐻𝐼𝑡: Daily California hydro index -5.28 7.89 9.6 7.65 

𝐾𝑅𝑡: Hourly Klamath river flow -29.37 10.47 -23.9 9.29 

𝑆𝑅𝑡: Hourly Sacramento river flow -18.85 3.47 -22.7 3.81 

 

 

5.4 RESULTS 

5.4.1 Validation of Methods for Estimating Historic Distributed PV Generation 

 Using hourly metered generation from 2010 through 2016 for 205 distributed PV systems 

with a total capacity of 1.1 MW spread across 173 zip codes in SCE, SDGE, and PGE, we 

validate our four methods for estimating hourly distributed PV generation (Table 5.2). We select 

these 205 systems because we can model each system with the specific configuration method, 

meaning these systems are fixed array systems with a numeric azimuth and tilt, a single type of 

panel and inverter, and a panel and inverter that we can match to entries in the California Energy 

Commission Inverter and Sandia Module databases.  To validate the scale up method, we 
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estimate generation by each of the 205 PV systems using the generation profile from the zip code 

nearest each PV system. Notably, when historic generation is available in a PV system’s own zip 

code, the scale up method uses that generation. During validation, however, to understand error 

introduced from using generation profiles in nearby zip codes, we do not use generation profiles 

from a PV systems’ own zip codes in the scale up method.  

 On average across individual PV systems, the generic and adjusted generic configuration 

methods estimate historic generation with less error relative to metered generation than the scale 

up or specific configuration methods (Table 5.5). Summing distributed PV generation by IOU 

improves the performance of each method (Table 5.6). Specifically, normalized root mean 

square errors (NMRSEs) decrease by 31-66% across the four methods when aggregating 

generation at the IOU level. Reduced error could be due to averaging out uncontrolled variables, 

e.g. shading, and/or to spatiotemporal smoothing, as generation errors between PV systems are 

not perfectly correlated. The generic and adjusted generic configuration methods estimate 

generation at the IOU level with less error relative to metered generation than the other two 

methods (Table 5.6). Lower accuracy with the specific than generic configuration method could 

be due to imperfect mapping from the NEM dataset to inverter and module databases used with 

PVLib and missing configuration details (e.g., strings per inverter). 

 

Table 5.5: Means and standard deviations for root mean square errors (RMSEs) and normalized 

RMSEs (NRMSEs) during daytime hours between hourly metered and estimated generation 

across individual PV systems by method used to estimate generation.  

Method 

Mean (standard deviation) 

of RMSEs [kWh] 

Mean (standard deviation) 

of NRMSEs 

Specific configuration 0.89 (1.3) 0.16 (0.06) 

Generic configuration 0.78 (1.1) 0.15 (0.05) 

Adjusted generic configuration 0.74 (1.0) 0.14 (0.05) 

Scale up  0.87 (1.0) 0.16 (0.06) 
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Table 5.6: Normalized root mean square errors (NRMSE) and mean bias errors (MBE) during 

daytime hours between hourly metered and estimated generation at the IOU level by method 

used to estimate generation. 

 

Specific Config. 

Method 

Generic Config. 

Method 

Adjusted Generic 

Config. Method 

Scale Up 

Method 

IOU NRMSE 

MBE 

[kWh] NRMSE 

MBE 

[kWh] NRMSE 

MBE 

[kWh] NRMSE 

MBE 

[kWh] 

PGE 0.09 31.1 0.05 8.7 0.04 0.7 0.11 -39.2 

SCE 0.07 18.6 0.05 -1.4 0.03 0.6 0.07 -17.6 

SDGE 0.09 9.9 0.06 0.18 0.05 -0.4 0.06 -6.2 

 

Mean bias errors (MBEs) for estimated versus metered generation at the IOU level (Table 

5.6) indicate that the specific, generic, and adjusted generic configuration methods tend to 

overestimate generation, while the scale up method tends to underestimate generation. The 

generic and adjusted generic configuration methods have lower MBEs than the specific 

configuration and scale up methods, further indicating the former two estimate metered 

generation with less error than the latter two. We observe similar biases for each method when 

estimating total generation by individual PV systems (Appendix D.7). Biases in generation at the 

IOU level vary throughout the day (Figure 5.1). For instance, the specific and generic 

configuration methods overestimate generation most in the late afternoon, which could be driven 

by shading not captured in our data. Due to hour-of-day correction factors, the adjusted generic 

configuration method has zero median error across hours and IOUs.  
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Figure 5.1: Box plots of metered generation (unshaded boxes) and the error in estimated 

generation (defined as estimated minus metered generation) (shaded boxes) by hour of day and 

IOU for the specific configuration (first row), generic configuration (second row), adjusted 

generic configuration (third row), and scale up method (fourth row). Boxes indicate the first, 

second, and third quartiles, while whiskers extend to 1.5 times the first and third quartiles. 

 

 Given that the specific, generic, and adjusted generic configuration methods use a similar 

approach to estimate distributed PV generation and that the latter two estimate generation with 

less error than the former, we do not use the specific configuration method to estimate generation 

by all distributed PV in California. While the scale up method also estimated generation with 

more error than the generic and adjusted generic configuration methods, it uses a significantly 

different approach than the generic configuration methods. Additionally, whereas the generic 

configuration method tends to overestimate generation, the scale up method tends to 



113 

 

underestimate generation. Thus, by using the generic configuration, adjusted generic 

configuration, and scale up methods to estimate generation by all distributed PV systems, we 

may bound historic distributed PV generation. 

 

5.4.2 Generation by All Distributed PV Systems in Each IOU 

 Having validated our methods for estimating distributed PV generation against metered 

generation for a subset of PV systems, we now use the generic configuration, adjusted generic 

configuration, and scale up methods to estimate hourly generation by all distributed PV systems 

in PGE, SCE, and SDGE (Table 5.1). Across those three methods, total distributed PV 

generation from 2013 through 2015 in PGE, SCE, and SDGE ranges from 5.3-6.2, 3.8-3.9, and 

1.3-1.4 TWh, respectively (Table 5.7). These generation levels correspond to capacity factors of 

18-21% across IOUs, similar to the 21% average capacity factor of distributed PV in California 

in  2016 [55]. Decreasing generation from PGE to SCE to SDGE is consistent with decreasing 

distributed PV capacities (Table 5.1). As during validation, the scale up method estimates the 

least distributed PV generation across IOUs, while the generic configuration method estimates 

the greatest generation in PGE and SDGE while the adjusted generic configuration method 

estimates the greatest generation in SCE. Thus, as during validation, generation estimates with 

these methods may bound historic distributed PV generation.  

 

Table 5.7: Total distributed PV generation from 2013 through 2015 in PGE, SCE, and SDGE by 

method used to estimate generation. 

Method Used to Estimate Distributed 

PV Generation 

Total Distributed PV Generation (TWh) 

PGE SCE SDGE 

Generic Configuration 6.21 3.92 1.40 

Adjusted Generic Configuration 5.92 4.00 1.38 

Scale Up 5.33 3.83 1.35 
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All three methods estimate a similar daily median generation profile that begins at 6 a.m., 

peaks around noon, and ends at 6 p.m. PST (Figure 5.2). For a given hour of the day, hourly 

distributed PV generation varies significantly between days (Figure 5.2, Appendix D.8) due to 

variable irradiance and meteorology. Across estimation methods, max hourly distributed PV 

generation over our study period equals 1.20-1.30, 0.87-0.90, and 0.32-0.34 GW in PGE, SCE, 

and SDGE, respectively, on the order of utility-scale generators. For context, net demand in 

PGE, SCE, and SDGE ranges from 8.3-23.2, 7.9-24.0, and 1.6-4.9 GW, respectively, over our 

study period. In addition to significant daily variability, distributed PV generation also varies 

seasonally in magnitude and duration (Appendix D.8). 

 

 

Figure 5.2: Median electricity generation (dark lines) +/- 1 standard deviation (faded lines) for all 

distributed PV systems in PGE, SCE, and SDGE by hour of day and method used to estimate 

generation from 2013 through 2015. 
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5.4.3 Wholesale Electricity Price Response to Distributed PV Generation 

 To estimate the wholesale electricity price response to distributed PV generation, we 

calculate the difference between LMPs based on historic net demand and total demand. We 

estimate total demand as net demand plus estimated distributed PV generation, where distributed 

PV generation in NP15 and SP15 equal that in PGE and in SCE plus SDGE, respectively. 

Median LMP reductions due to distributed PV generation are similar in magnitude and daily 

profile between zones (Figure 5.3). The greatest reductions in median (mean) LMPs, which 

range from $2.7-3.1/MWh ($2.9-3.2/MWh) ($2015) across methods used to estimate generation 

(Figure 5.3), coincide with peak distributed PV generation from 12-1 p.m. PST (Figure 5.2). 

LMP reductions are greater in the summer than winter due to greater distributed PV generation 

(Appendix D.9). Consistent with total distributed PV generation estimates across IOUs (Table 

5.7), LMP reductions are greatest with the generic configuration method, followed in decreasing 

order by the adjusted generic configuration and scale up methods (Figure 5.3). For context, from 

2013 through 2015 median (mean) LMPs in each hour of the day ranged from $29-48/MWh 

($29-49/MWh) ($2015) in NP15 and $29-52/MWh ($29-50/MWh) ($2015) in SP15 (Appendix 

D.9). Over our study period, distributed PV generation reduced median (mean) LMPs from 12-1 

p.m. PST by 7-8% (8-9%) across zones and methods used to estimate generation.   
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Figure 5.3: Median change in NP15 and SP15 LMPs (dark lines) +/- 1 standard deviation (faded 

lines) due to distributed PV generation by hour of day and method used to estimate generation 

from 2013 through 2015. 

 

 By reducing LMPs, distributed PV generation reduces the short-term cost to utilities of 

purchasing energy in the DAM, which translates to avoided consumer costs. To estimate these 

avoided costs, we multiply hourly LMP reductions due to distributed PV generation by historic 

hourly net demand, implicitly assuming California IOUs procure all of their energy in the DAM. 

In reality, California IOUs also procure energy via long-term bilateral contracts [41], so we 

likely overestimate actual avoided costs here. Under this “best case” assumption, avoided costs 

by IOUs in the DAM from 2013 through 2015 due to the market price response to distributed PV 

range from $650-730 million ($2015) across methods used to estimate distributed PV generation 

(Table 5.8). For comparison, assuming IOUs purchased all energy required to meet net demand 

in the DAM, total energy procurement costs from 2013 through 2015 equaled $12.3 and $15.1 
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billion ($2015) in NP15 and SP15, respectively. On a per-generation and per-capacity basis 

(accounting for varying interconnection times), avoided costs equal 6 cents/kWh of distributed 

PV generation and 100-120 $/kW of distributed PV capacity across methods used to estimate 

generation over our study period (see Appendix D.10 for calculation details). Avoided costs are 

larger in SP15 than NP15 (Table 5.8) due to higher LMP reductions (Figure 5.3) and net demand 

(Appendix D.6).  

 

Table 5.8: Avoided costs from 2013 through 2015 by zone due to LMP reductions from, i.e. the 

market price response to, distributed PV generation. Avoided costs equal the sum of hourly LMP 

reductions due to distributed PV generation multiplied by historic hourly net demand. 

Method Used to Estimate 

Distributed PV Generation 

Avoided Cost due to 

Market Price Response in 

NP15 (million $2015) 

Avoided Cost due to 

Market Price Response in 

SP15 (million $2015) 

Generic Configuration 330 400 

Adjusted Generic Configuration 310 390 

Scale Up 290 360 

 

5.4.4 Sensitivity Analysis 

 Via sensitivity analysis, we find our results with the generic configuration method are 

robust to accounting for annual module efficiency degradation of 0.5% (versus 0%) and a higher 

inverter loading ratio of 1.3 (versus 1.16) (Appendix D.11). Since PV systems in our analysis 

have a median interconnection date of April 2014 (Table 5.1), accounting for PV system 

efficiency degradation of 0.5% per year reduces total distributed PV generation across IOUs by 

2%.  Using an inverter loading, i.e. DC to AC, ratio of 1.30 similarly reduces total distributed PV 

generation across IOUs by 2%, as a lower inverter capacity (and fixed module capacity) results 

in greater clipping. In both sensitivities, reduced distributed PV generation results in reduced 

total avoided costs of 1-2%.   
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5.5 DISCUSSION 

To better understand a little-studied avoided cost of distributed PV, we quantified the 

market price response, or decrease in wholesale electricity prices, due to distributed PV 

generation in California from 2013 through 2015. To do so, we estimated hourly distributed PV 

generation in PGE, SCE, and SDGE using three methods that accounted for heterogeneity among 

PV systems’ locations and orientations. Across those three methods, distributed PV generation 

totaled 5.33-6.21, 3.83-4.00, and 1.35-1.40 TWh in PGE, SCE, and SDGE, respectively, from 

2013 through 2015. To determine how this distributed PV generation reduced wholesale 

electricity prices, we linked hourly LMPs in the DAM to electricity demand and other variables 

via multiple linear regression. By comparing LMPs predicted on net demand versus total 

demand, or net demand plus distributed PV generation, we found distributed PV generation 

reduced historic hourly median (mean) LMPs by $2.7-3.1/MWh ($2.9-3.2/MWh) ($2015), or by 7-

8% (8-9%), during peak distributed PV generation hours (12-1 p.m. PST). LMP reductions 

throughout the day reduced IOUs’ expenditures in the DAM by $650-730 million ($2015) from 

2013 through 2015, assuming IOUs procured all their energy through the DAM. 

 Our avoided cost estimate is lower than that of McConnell et al. [30], who projected 

annual avoided costs due to the market price response to 5 GW of distributed PV would equal 

$110-200/kW ($2015). One large driver of this difference could be greater installed solar capacity 

in California over our study period (up to 10.4 GW) than in Australia over McConnell et al.’s 

study period (up to 500 MW [56]), as increasing solar capacity yields diminishing returns to 

electricity price reductions [30]. Differences in avoided costs could also reflect differing 

methods, as they used a dispatch model with hypothetical distributed PV capacities, and differing 
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market conditions, as the Australian energy market is an energy-only [57], fossil-heavy market 

[58]. 

Our estimates of avoided costs due to the market price response to distributed PV 

generation are similar to other avoided costs commonly included in value of solar studies. In 16 

value of solar studies (including 5 in California) compiled by Hansen et al. [11], avoided costs of 

reduced generation, deferred generation capacity, and deferred transmission and distribution 

upgrades averaged about 10, 5, and 5 cents/kWh ($2015), respectively, comparable to our avoided 

costs of 6 cents/kWh. Vaishnav et al. [15] estimated annual avoided costs due to reduced local 

and global air pollution as roughly $50/kW ($2015) in California, half our estimated annual 

avoided costs of $100-120/kW. Relative to median installed prices of residential distributed PV 

of $5,000/kW and $4,000/kW ($2015) in 2013 and 2015, respectively [4], our avoided costs are 

small.  

 Although we focused here on how distributed PV affected electricity prices in the short-

term, distributed PV can also affect prices in the long-term by changing the economics of 

generator entry and exit. If frequently dispatched units retire, as is the case with many retiring 

nuclear and coal plants [59], then electricity prices would likely increase, partly counteracting 

short-term price reductions quantified here. Concurrently, rising wholesale prices would increase 

wholesale price reductions due to distributed PV generation, tempering such long-term 

reductions in avoided costs. Also in the long-term, in order for generators to meet revenue 

requirements, decreasing wholesale prices may shift costs from energy to capacity markets [20]. 

Our analysis indicates such a shift could entail hundreds of millions of dollars. 

 Our study has several limitations. First, due to data gaps and limitations, we could not 

model key parameters like soiling and shading, which could significantly reduce distributed PV 
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generation in the early morning and/or late afternoon, or each system’s specific panel and 

inverter configuration. Doing so would yield a more accurate estimate of distributed PV 

generation. The findings of our study also depend on meteorology, solar irradiance, and 

electricity system and market data specific to California, so our findings may not be applicable to 

other power systems. By running our analysis on zonal rather than nodal LMPs, we may 

underestimate avoided costs of some distributed PV systems, as in areas with elevated LMPs due 

to transmission congestion.   

Finally, past studies suggest increasing solar penetration has diminishing returns to 

decreasing electricity prices [19], [30]. To that end, distributed PV capacity increased in 

California from 3.4 to 5.4 GW from 2015 through September 2017 [60] and total installed solar 

capacity reached 10.2 GW in August 2017 [61]. High solar capacities have contributed to 

negative LMPs in 106 and 132 hours in NP15 and SP15, respectively, in 2017 as of October, 

versus 0 and 26 hours in NP15 and SP15, respectively, over our study period [43], [62]. Thus, on 

a per-capacity or per-generation basis, distributed PV likely has a smaller effect on wholesale 

electricity prices now than in our analysis. 

 

5.6 CONCLUSION 

In the short-term, the market price response, or reduction in wholesale electricity prices, 

due to distributed PV generation can reduce consumer costs. We quantified these avoided costs 

in California from 2013 through 2015 as $650-730 million ($2015) or $100-120/kW, similar to 

other avoided costs commonly included in value of solar studies. In the long-term, price 

increases or greater capacity market payments may offset these avoided costs. Thus, when 

valuing or considering policies related to distributed PV, policymakers and regulators should 
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consider short-term avoided costs quantified here and how those costs may affect long-term 

market conditions. 
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CHAPTER 6: CONCLUSION 

 

Effectively mitigating climate change will require reducing CO2 emissions from the 

electric power sector by 80% or more. Achieving these reductions will require large-scale 

deployment of numerous low-carbon technologies, which could in turn require significant policy 

support. In this thesis, I considered three low-carbon technologies that could play an instrumental 

role in decarbonizing power systems: carbon capture and sequestration (CCS), grid-scale 

electricity storage, and distributed solar photovoltaic.  

One stumbling block to widespread CCS deployment has been high capital and 

operational costs. To overcome cost issues, prior papers have proposed adding flexibility to 

amine-based CCS systems by adding on-site solvent storage. These prior papers found “flexible” 

CCS offers several advantages over “normal” CCS, particularly through increased reserve 

provision, but did not fully monetize these benefits. Furthermore, in 2015 the U.S. promulgated 

the Clean Power Plan (CPP), the first national regulation on CO2 emissions from existing power 

plants. At that time, it was unclear whether flexible CCS could be an economic compliance 

strategy with the CPP.  

In Chapters 2 and 3, I addressed these questions. In both chapters, I quantified system 

emissions and costs, including reserve costs, with flexible CCS retrofits versus other low-carbon 

technologies. In Chapter 2, I specifically compared the cost-effectiveness of reducing carbon 

emissions to comply with the CPP with flexible CCS retrofits versus normal CCS retrofits, re-

dispatching from coal- to gas-fired generators, and additional wind. Using a unit commitment 

and economic dispatch (UCED) model, a power system optimization model that meets system 

electricity demand at least cost, I found in Chapter 2 that flexible CCS does not achieve as cost-
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effective emissions reductions under the CPP as additional wind and, depending on the CO2 

reduction target, re-dispatching. In Chapter 3, I found that flexible CCS offers a trade-off 

between system cost and emission reductions under a moderate decarbonization target relative to 

normal CCS. However, under a stronger decarbonization target, I found that flexible CCS 

reduces costs and emissions more than normal CCS.  

Grid-scale electricity storage is widely seen as a key decarbonization technology, as it 

can shift supply from variable and uncertain renewables to meet demand. However, several 

recent studies have indicated that storage would increase carbon emissions from current power 

systems. In Chapter 4, I quantified how storage would affect carbon emissions as a power system 

decarbonizes over time, bridging the gap between research on storage in current and 

decarbonized power systems. I found that under even a moderate decarbonization policy, storage 

would reduce carbon emissions in the mid-term, e.g. by around 2025. Furthermore, I found that 

whether storage provides only energy, only reserves, or both can significantly change the 

magnitude of the effect of storage on system emissions.  

Distributed PV has grown rapidly in the U.S. in recent years. To determine fair 

compensation for distributed PV, regulators and policymakers have commissioned numerous 

value of solar studies. In Chapter 5, I quantified a little-studied avoided cost of distributed PV, 

namely the market price response, or how distributed PV reduces wholesale electricity prices 

and, in turn, utilities’ energy procurement costs in the short-term. Using 2013 through 2015 data 

from California, I found that the market price response reduced utility expenditures in the day-

ahead market by up to $650-730 million from 2013 through 2015. These avoided costs are 

similar to other avoided costs commonly included in value of solar studies.  
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Several policy recommendations result from the research presented in this thesis. 

Chapters 2 and 3 suggest that for CCS to play a significant role in deep decarbonization of the 

electric power sector, carbon emission limits set by the CPP will not sufficiently incentivize CCS 

deployment. Thus, additional policy support, either through deployment mandates or financial 

incentives, will be necessary, some of which already exist. Chapter 3 also suggests that 

policymakers should carefully weigh near- versus long-term goals when incentivizing flexible 

versus normal CCS, as the former may reduce carbon emissions less but reduce costs more than 

the latter in the near-term.  

Chapter 4 indicates that grid-scale electricity storage can contribute to decarbonization 

efforts prior to deep decarbonization under comprehensive carbon policies that affect system 

operation and composition. However, in the absence of comprehensive carbon policies, storage 

may increase carbon emissions. Thus, policymakers should carefully consider storage incentives 

and mandates in the context of other existing carbon policies. If policymakers want to promote 

storage deployment in the near-term while ensuring it reduces carbon emissions, then 

comprehensive carbon policies should also be put in place or regulations restricting storage 

operations to, for instance, reducing renewable curtailment. Chapter 4 also indicates that which 

market storage participates in can change the extent to which storage affects carbon emissions. 

This provides policymakers a key lever, as they can incentivize storage to participate in energy 

versus reserve markets.  

Finally, Chapter 5 contributes to ongoing debates around the value of distributed PV 

generation by indicating that avoided costs due to the market price response to distributed PV are 

similar to other avoided costs commonly included in value of solar studies. Thus, in order to 
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fully value distributed PV and set compensation for optimal investment levels, policymakers and 

regulators should include the market price response in future value of solar studies.  

Overall, these policy implications indicate roles for policymakers at all levels of 

government. Given the current political environment at the federal level, significant advances in 

federal climate policy seem unlikely in the near-term. Conversely, many states and cities are 

leading the way on climate action in the U.S. by enacting aggressive climate policies and goals, 

including 100% renewable energy goals, state and regional cap-and-trade programs, renewable 

energy and storage mandates, and policies aimed at reducing costs and uncertainty associated 

with CCS. To further these efforts, this thesis illuminates additional actions state and regional 

policymakers can take to mitigate climate change, such as by supporting flexible CCS, designing 

storage policies for near- and mid-term emission reductions, and improving value of solar 

studies. While state- and city-level policies may seem insignificant relative to the grand 

challenge of mitigating climate change, the accretion of such policies can provide a strong 

foundation on which further climate mitigation actions can be based.  

 

  

 

  



130 

 

APPENDIX A:  

SUPPLEMENTAL INFORMATION FOR CHAPTER 2 
 

A.1: UNIT COMMITMENT AND ECONOMIC DISPATCH FORMULATION  

 This appendix provides the complete formulation of the unit commitment and economic 

dispatch (UCED) model that we use to determine operational costs and emissions of each of our 

power plant fleets. The UCED model is built and run in PLEXOS [1], a commercial software 

package. The constraints of our flexible carbon capture and sequestration (CCS) model [2] are 

added to the UCED formulation provided in this section. 

 

A.1.1: Definition of Variables, Sets and Parameters 

Table A.1: Variables, parameters and sets used in the UCED formulation. 
 

Variable Definition 

cUP
i,t Increase in electricity generation at generator i in time t (MWh) 

cDOWN
i,t Decrease in electricity generation at generator i in time t (MWh) 

nset Non-served energy at time t (MWh) 

pi,t Electricity generation by generator i at time t (MWh) 

ri,t
 Provided spinning reserves by generator i at time t (MW) 

sri,t Spare spinning reserves of generator i at time t (MW) 

ui,t Binary variable indicating on/off state of generator i at time t, where 1 

indicates on {0,1} 

vi,t Binary variable indicating generator i turns on at time t {0,1} 

wi,t Binary variable indicating generator i turns off at time t {0,1} 

  

Parameter Definition 

CNSE Cost of non-served energy ($/MWh) 

ERi
CO2 Emissions rate for generator i of CO2 (ton/MWh) 

ECCO2 Emissions cost for CO2 ($/ton) 

FCi Fuel cost for generator i ($/MMBtu)  

HRi Heat rate for generator i (MMBtu/MWh) 

MDTi Minimum down time for generator i, which indicates the number of hours that 

must elapse before a generator can turn on once it shuts off (hours) 

OCi Operating cost of generator i ($/MWh) 

OQi
TYPE Offered quantity of reserves of a given type by generator i in time t (MW) 

Pi Electricity generation by generator i in the last period of the prior 

optimization horizon (MWh) 
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PD
t Electricity demand at time t (MWh) 

PMAX
i Maximum electricity generation capacity of generator i (MWh) 

PMIN
i Minimum stable load of generator i (MW) 

Rt Required spinning reserves at time t (MW) 

RLi Ramping limit of generator i (MW) 

ROS Reserve offer scalar for spinning reserves 

SUi Start-up cost for generator i ($) 

Ui On/off state of generator i in the last period of the prior optimization horizon 

{0,1} 

VOMi Variable operations and maintenance cost of generator i ($/MWh) 

  

Set Definition 

F Offline generators eligible to provide replacement reserves 

I Generators in the fleet 

Ki Number of hours before which a generator can turn on in the current 

optimization horizon. K = MDTi – (24-H-1), where H equals the last hour 

in which the generator turned off in the prior optimization period. K is 

used to enforce the MDT for a generator for shut-off decisions in the last 

optimization period (hours) 

N Online generators eligible to provide regulation and spinning reserves 

T Time periods in the optimization horizon 

 

A.1.2: Objective Function 

 The UCED model minimizes total operational costs, which include costs of electricity 

generation, reserves, start-ups, and non-served energy. The UCED runs over a 24-hour 

optimization horizon in hourly increments and includes an additional 24-hour period in 6-hour 

increments. The second 24-hour period is a “look-ahead period”, in that solutions to variables in 

that period of time are not fixed in the final UCED solution, but rather are re-solved for in the 

subsequent UCED run. In this way, the additional 24-hour period functions only to bring 

additional information into the current 24-hour optimization horizon.  

For intervals in the 24-hour look-ahead period, objective function coefficients are 

multiplied by 6, the number of hours in each interval. Demand for each interval equals the 

average demand over the 6-hour period.  

Total operational costs (TC) are calculated as: 



132 

 

𝑇𝐶 = ∑ [𝑝𝑖,𝑡 ∗ 𝑂𝐶𝑖 + 𝑟𝑖,𝑡 ∗ 𝑂𝐶𝑖 ∗ 𝑅𝑂𝑆 + 𝑣𝑖,𝑡 ∗ 𝑆𝑈𝑖]𝑖,𝑡 + ∑ 𝑛𝑠𝑒𝑡 ∗ 𝐶𝑁𝑆𝐸𝑡           ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (1) 

where i and t index generators and hours, respectively; p = electricity generation [MWh]; OC = 

operating cost [$/MWh], as defined in Equation 2; r = provided spinning reserves [MWh]; ROS 

= reserve offer scalar [$/MWh], or the ratio of operating cost to reserve offer cost (0.26); v = 

binary indicator of whether the unit turned on; SU = start-up costs [$]; nse = non-served energy 

[MWh]; and CNSE = the cost of non-served energy [$/MWh]. Operating costs (OC) equal: 

𝑂𝐶𝑖 = 𝐻𝑅𝑖 ∗ 𝐹𝐶𝑖 + 𝐸𝑅𝑖
𝐶𝑂2 ∗ 𝐸𝐶𝐶𝑂2 + 𝑉𝑂𝑀𝑖   (2) 

where HR = heat rate [MMBtu/MWh]; FC = fuel cost [$/MMBtu]; ERCO2 = CO2 emissions rate 

[kg/MWh]; ECCO2 = CO2 emissions price [$/kg]; and VOM = variable operations and 

maintenance [$/MWh]. 

 

A.1.3: System-wide Electricity Demand and Reserve Requirement Constraints 

 Combined electricity generation plus non-served energy must equal system-wide demand 

(PD [MWh]) in each time period: 

∑ 𝑝𝑖,𝑡𝑖 + 𝑛𝑠𝑒𝑡 = 𝑃𝑡
𝐷          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼   (3) 

Provided reserves must equal system reserve requirements (R [MWh]) in each time period for 

each type of reserve: 

∑ 𝑟𝑖,𝑡𝑖 = 𝑅𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (4) 

Given the large penetration of wind power in our scenarios, we set hourly spinning reserve 

requirements equal to 3% of maximum daily load plus 5% of hourly wind generation [3], [4]. 

Spinning reserves in our model have a 10-minute response time.  
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A.1.4: Reserve Provision Constraints 

 Provided spinning reserves from online generators cannot exceed spare reserves (sr 

[MWh]) of each generator: 

𝑟𝑖,𝑡 ≤ 𝑠𝑟𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (5) 

Provided spinning reserves of each generator also cannot exceed the maximum reserve offer 

quantity (OQ [MWh]) of each generator, which is set based on the ramp rate of the generator and 

the reserve timeframe: 

𝑟𝑖,𝑡 ≤ 𝑂𝑄𝑖 ∗ 𝑢𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (6) 

where u = binary indicator of whether the generator is on or off. Spare reserves are non-zero for 

online generators, and cannot exceed the spare capacity at the generator, defined as the 

difference between the maximum capacity (PMAX [MWh]) and the electricity generation at the 

generator at time t: 

𝑠𝑟𝑖,𝑡 ≤ 𝑃𝑖
𝑀𝐴𝑋 ∗ 𝑢𝑖,𝑡 − 𝑝𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (7) 

 

A.1.5: Generator-Specific Operational Constraints 

A.1.5.1: Maximum and Minimum Electricity Generation Constraints 

Several operational constraints are applied at the generator level. Electricity generation 

cannot exceed maximum capacity: 

𝑝𝑖,𝑡 ≤ 𝑃𝑖
𝑀𝐴𝑋 ∗ 𝑢𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (8) 

Electricity generation must be greater than the minimum stable load (PMIN [MWh]): 

𝑝𝑖,𝑡 ≥ 𝑃𝑖
𝑀𝐼𝑁 ∗ 𝑢𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (9) 
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A.1.5.2: Ramping Constraints 

Up (cUP [MWh]) and down (cDOWN [MWh]) ramps are defined by the change in electricity 

generation from one hour to the next: 

𝑐𝑖,𝑡
𝑈𝑃 − 𝑐𝑖,𝑡

𝐷𝑂𝑊𝑁 = 𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1         ∀𝑡 > 1, 𝑖 ∈ 𝐼    (10) 

𝑐𝑖,𝑡
𝑈𝑃 − 𝑐𝑖,𝑡

𝐷𝑂𝑊𝑁 = 𝑝𝑖,𝑡 − 𝑃𝑖         ∀𝑡 = 1, 𝑖 ∈ 𝐼    (11) 

At t=1, the electricity generation of the unit in the last period of the prior optimization is input. In 

the case of the very first hour of the entire optimization period (e.g., the first hour in 2030 when 

running the UCED for all of 2030), the right-hand side of the constraint is set equal to zero.  

Increases in electricity generation from one time period to the next (i.e., ramp ups) must 

be less than the ramping limit plus the minimum stable load of the generator if the generator 

turned on at time t: 

𝑐𝑖,𝑡
𝑈𝑃 − 𝑐𝑖,𝑡

𝐷𝑂𝑊𝑁 ≤ 𝑅𝐿𝑖 ∗ 𝑢𝑖,𝑡 + 𝑃𝑖
𝑀𝐼𝑁 ∗ 𝑣𝑖,𝑡         ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (12) 

Ramp downs must be less than the ramping limit (RL [MWh]) plus the minimum stable load of 

the generator if the generator turned off at time t (w):  

𝑐𝑖,𝑡
𝐷𝑂𝑊𝑁 − 𝑐𝑖,𝑡

𝑈𝑃 ≤ 𝑅𝐿𝑖 ∗ 𝑢𝑖,𝑡−1 + 𝑃𝑖
𝑀𝐼𝑁 ∗ 𝑤𝑖,𝑡         ∀𝑡 > 1, 𝑖 ∈ 𝐼   (13) 

At t=1, whether the unit was on or off in the last period (U) of the prior optimization horizon is 

input instead.  

𝑐𝑖,𝑡
𝐷𝑂𝑊𝑁 − 𝑐𝑖,𝑡

𝑈𝑃 ≤ 𝑅𝐿𝑖 ∗ 𝑈𝑖 + 𝑃𝑖
𝑀𝐼𝑁 ∗ 𝑤𝑖,𝑡         ∀𝑡 = 1, 𝑖 ∈ 𝐼    (14) 

In the very first hour of the entire optimization period, U is set equal to 1: 

 

A.1.5.3: On/Off Constraints 

The unit must be marked as on if the unit turns on in that hour: 

𝑢𝑖,𝑡 ≥ 𝑣𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼    (15) 
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The unit also cannot turn off if it is not on in the prior hour: 

𝑢𝑖,𝑡−1 + 𝑣𝑖,𝑡 ≤ 1          ∀𝑡 > 1, 𝑖 ∈ 𝐼    (16) 

At t=1, the on/off state in the last period of the prior optimization horizon is input: 

𝑈𝑖 + 𝑣𝑖,𝑡 ≤ 1          ∀𝑡 = 1, 𝑖 ∈ 𝐼    (17) 

The following constraint defines when the unit turns off; it cannot turn off in the same hour it 

turns on, and cannot turn off if the unit was not on in the prior hour: 

𝑤𝑖,𝑡 = 𝑢𝑖,𝑡−1 − 𝑢𝑖,𝑡 + 𝑣𝑖,𝑡          ∀𝑡 > 1, 𝑖 ∈ 𝐼    (18) 

At t=1, the on/off state in the last period of the prior optimization horizon is input: 

𝑤𝑖,𝑡 = 𝑈𝑖 − 𝑢𝑖,𝑡 + 𝑣𝑖,𝑡        ∀𝑡 = 1, 𝑖 ∈ 𝐼    (19) 

A minimum down time (MDT [hr]) is enforced on each generator, such that it cannot turn off 

twice within its minimum down time period. Several constraints are used to enforce the MDT. 

When t is greater than or equal to MDT, then the generator can only turn off once in a period 

determined by the MDT, and cannot be on in any hour within that period: 

𝑢𝑖,𝑡 + 𝑤𝑖,𝑡−(𝑀𝐷𝑇𝑖−1) + 𝑤𝑖,𝑡−(𝑀𝐷𝑇𝑖−2) + ⋯ + 𝑤𝑖,𝑡 ≤ 1        ∀𝑡 ≥ 𝑀𝐷𝑇𝑖, 𝑖 ∈ 𝐼    (20) 

At t<MDT, the number of intervals included in the optimization is reduced, and an extra 

constraint is included that forces the unit off for a given number of hours, K, where K is 

determined by the most recent hour in the prior optimization window in which the generator 

turned off: 

𝑢𝑖,𝑡 + 𝑤𝑖,1 + ⋯ + 𝑤𝑖,𝑡 ≤ 1        ∀𝑡 < 𝑀𝐷𝑇𝑖 , 𝑖 ∈ 𝐼    (21) 

𝑢𝑖,𝑡 ≤ 0        ∀𝑡 = 𝐾𝑖 , 𝑖 ∈ 𝐼    (22) 
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A.2: MODIFICATIONS TO IPM FLEET 

We make several modifications to the Integrated Planning Model (IPM) fleet in order to 

derive our 2030 base fleet. First, the IPM forecasts heat rate improvements and control 

technology retrofits, but does not adjust heat rates to reflect these modifications in the parsed 

file. We adjust generator heat rates downwards to account for heat rate improvements by 4.3%, 

the value assumed in the CPP [5], and upwards to account for control technology retrofits, such 

as Selective Catalytic Reduction, using heat rate penalties as a function of generator heat rate 

from the IPM [6].  

New generators forecast by the IPM can be very small (<10 MW) and very large (>1 

GW) units. To obtain more realistic generator sizes, we divide new generators greater than 800 

MW into 250 MW units, with any remaining capacity split evenly among the newly-created 250 

MW units, and remove new fossil units smaller than 10 MW. Most of these deleted units are 

much smaller than 10 MW, such that the combined capacity of deleted units is 12 MW.  

The IPM model forecasts roughly 2 GW of added hydropower capacity in our study 

region. However, less than 30 MW of hydropower was built in our study region from 2005 

through 2015 [7]. Thus, we remove these added hydropower plants from our fleet. We also 

remove 2.5 GW of pumped hydropower units from our fleet given the small size of these units 

relative to our fleet and the lack of necessary public data, e.g. round-trip efficiency, essential to 

model these units. Table A.2 provides capacity by fuel type of the base fleet. 

 

Table A.2: Capacity by fuel type of the base fleet. 
 

Fuel Type Coal Natural Gas Oil Nuclear Wind Solar Other Total 

Capacity (GW) 50.7 53.8 5.8 18 33.1 1.2 1.5 164.1 
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A.3: PARAMETERS ADDED TO IPM FLEET 

Several parameters must be added to the base fleet so it can be run in the UCED model. We 

add variable operations and maintenance costs and heat rates for new generators using data from 

the IPM documentation [6].  

Three unit commitment parameters – minimum stable load (MSL), minimum down time, 

and start-up costs – are added based on values in PHORUM [8], a price-validated reduced form 

UCED model of PJM [9]. Unit commitment parameters are assigned based on fuel type and, in 

some instances, plant type and plant size in order to capture nonlinearities in unit commitment 

parameter values for some plant types, e.g. coal-fired generators. With respect to ramp rates, we 

rely on several sources for hourly values specific to fuel and plant type [10]–[13]. However, our 

UCED model requires per-minute ramp rates to model sub-hourly reserves. To obtain per-minute 

ramp rates, we scale up PHORUM ramp rates such that they are in agreement with the hourly 

ramp rates obtained from other sources. Table A.3 provides the unit commitment parameter 

values used in our model.   

 

Table A.3: Unit commitment parameter values by plant and fuel type and plant size, if 

applicable, used in our model. 

Unit 

Commitment 

Parameter Plant and Fuel Type Plant Size Value 

Minimum Stable 

Load (% of total 

capacity) 

Oil-fired combustion turbine All 25% 

Oil-fired O/G steam turbine All 25% 

Hydropower  All 0% 

Nuclear  All 90% 

All other generators All 40% 

Ramp Rate (Up 

and Down) (% 

of total capacity) 

Coal >150 MW 1.5%/min. 

Coal 

Natural gas combined cycle 

Natural gas combined cycle 

Combustion turbine (natural gas and oil) 

O/G steam turbine (natural gas and oil) 

<150 MW 

>100 MW 

<100 MW 

All 

All 

2.9%/min. 

2.7%/min. 

5.3%/min. 

2.9%/min. 

1.9%/min. 
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Landfill gas, municipal solid waste, biomass, 

hydropower, fossil waste 

All 8.3%/min. 

Nuclear  All 0.7%/min. 

Startup Costs ($, 

as multiple of 

nameplate 

capacity) 

Coal All 100x 

Natural gas combined cycle All 100x 

Combustion turbine (natural gas and oil) All 25x 

Hydropower  All 0 

Fossil waste All 100x 

Municipal solid waste All 100x 

Landfill gas All 50x 

Nuclear  All 500x 

O/G Steam (natural gas and oil) All 100x 

Minimum Down 

Time (hours) 

Coal >150 MW 12 

Coal <150 MW 6 

Nuclear  All 20 

Natural gas combined cycle All 4 

Combustion turbine (natural gas and oil) <60 MW 1 

Combustion turbine (natural gas and oil) 60-140 MW 2 

Combustion turbine (natural gas and oil) >140 MW 3 

Landfill gas All 4 

Municipal solid waste All 4 

Fossil waste All 8 

O/G Steam (natural gas and oil) All 7 

 

We also add fuel prices and CO2, NOx and SO2 emissions rates using data from the IPM 

[14]. We calculate generator-specific values where possible, including for all coal-fired 

generators (accounting for coal type), using total annual electricity generation, fuel input, and 

emissions values. Those data are not available for generators that do not generate electricity (i.e., 

are not dispatched) in the IPM, which tend to be generators with high operational costs. For these 

generators, we use a capacity-weighted average value for generators of the same fuel and plant 

type, e.g. natural gas combustion turbines. Oil-fired generators do not generate any electricity in 

the IPM, so external fuel and emissions rates values are obtained from Oates [15] and the U.S. 

Environmental Protection Agency’s (EPA’s) AP-42 [16] (specifically for distillate-oil fired 
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stationary gas turbines). Table A.4 provides the capacity-weighted fuel price by fuel type of the 

base fleet. 

 

Table A.4: Capacity-weighted fuel prices for the base fleet. 
 

Fuel Fuel Price ($/GJ) 

Coal 2.4 

Natural Gas 5.7 

Nuclear 0.9 

Oil 24.4 

Biomass 4 

Landfill gas, municipal solid waste, fossil waste 0 

Petroleum coke 2.9 

 

Forecasted NOx and SO2 emission prices under the Cross-State Air Pollution Rule 

(CSAPR) are added to generators covered by CSAPR. The CSAPR applies to oil-, coal-, and 

natural gas-fired generators over 25 MW in capacity for all states in our region except North and 

South Dakota [17]. We apply a NOx permit price of $600/ton to those generators, and SO2 prices 

of $700/ton and $1,100/ton to generators in Minnesota and all other states, respectively, to reflect 

different SO2 pricing groups under CSAPR [17].  

 

A.4: GENERATION PROFILES FOR HYDROPOWER, WIND, AND SOLAR PLANTS  

Rather than use seasonal capacity factors as in the IPM to determine electricity 

generation at hydropower plants remaining in our fleet (as reported in Oates et al. [18]), we set 

hourly electricity generation by hydropower plants using plant-specific average monthly capacity 

factors from 2008 to 2013 [19]. We reduce demand in the UCED model by generation from 

these hydropower plants (estimate net load) and can thus remove them from our fleet to reduce 

the fleet size for the optimization problem.  
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In order to capture spatial and temporal variability in output among wind and solar farms, 

we match wind and solar power plants in the parsed file to simulated wind and solar generation 

profiles from the National Renewable Energy Laboratory (NREL) [20], [21]. These wind and 

solar generation databases provide simulated generation profiles for hypothetical plants at 10- 

and 5-minute increments, respectively. We downscale generation data to hourly increments by 

calculating the average generation values for all time steps in each hour [3]. For each state in our 

system, we then calculate the installed capacity of wind in our base fleet, and add wind farms in 

the NREL dataset in that state to our fleet in order of decreasing capacity factor. We perform the 

same process for solar. The resulting wind and solar plants in our fleet have capacity factors 

between 30-45% and 13-16%, respectively. Given that each wind and solar generator varies only 

by capacity and generation profile once included in our UCED model (as we do not include the 

transmission system), we then collapse all wind and solar generators into a single generator of 

each type by combining their capacities and hourly generation profiles.  

 

A.5: BASE FLEET SIMPLIFICATIONS FOR COMPUTATIONAL EFFICIENCY 

After the above modifications, running the UCED model with the base fleet takes a 

prohibitively long time given the hundreds of runs necessary for our analysis. As such, we 

simplify our base fleet by aggregating plants for some generator types.  

Oil-fired combustion turbine generators are rarely dispatched due to high fuel costs and 

emissions, whereas municipal solid waste and landfill gas generators are almost always operated 

because they have no fuel cost in our model. Thus, we can group oil-fired combustion turbine 

generators as a single power plant, and also aggregate landfill gas and municipal solid waste 

generators while minimally affecting our UCED model. We also aggregate inefficient natural 



141 

 

gas-fired combustion turbine generators with heat rates above 18 MMBtu/MWh, as these 

generators would be infrequently dispatched due to low efficiencies. We only aggregate units 

less than 50 MW in capacity and differentiate by heat rate to preserve some differentiation by 

efficiency. For instance, we aggregate natural gas-fired combustion turbine generators with heat 

rates between 18 and 20 MMBtu/MWh, 20 and 22 MMBtu/MWh, and so on. These heat rate 

intervals strike a compromise between reduction in fleet size and maintaining some 

differentiation in efficiency among units. Table A.5 provides the heat rate intervals used for all 

unit types. Note that natural gas-fired combustion turbines with heat rates below 18,000 

Btu/kWh are not aggregated together, as these plants may be dispatched regularly given their 

greater efficiency.  

 

Table A.5: Heat rate intervals (Btu/kWh) for each type of unit aggregated in the base fleet. 
 

Unit Type 

Heat Rate Intervals (Btu/kWh) 

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Oil-fired combustion 

turbine  

1-10,000 10,000-

12,000 

12,000-

16,000 

16,000-

20,000 

>20,000 

Landfill gas  1-14,000 14,000-

18,000 

18,000-

20,000 

>20,000 N/A 

Municipal solid waste  1-10,000 10,000-

20,000 

>20,000 N/A N/A 

Natural gas-fired 

combustion turbine  

18,000-

20,000 

20,000-

22,000 

22,000-

24,000 

>24,000 N/A 

 

 

A.6: HOURLY DEMAND PROFILE IN 2030 

Demand in our study system increased from 2004 through 2008, then held largely 

constant from 2009 to 2013 (Table A.6) [22]. To forecast future demand in our region, rather 

than rely on aggressive sustained energy efficiency assumptions by the EPA, we instead assume 
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a continuation of historic demand growth for our region of analysis. Specifically, we assume 

0.5% per year incremental energy efficiency savings across the region from 2022-2030 (the 

phase-in period of the CPP) relative to business as usual load growth as forecast by the EPA 

[23]. Under this assumption, total and peak demand in 2030 equals 673 TWh and 117.4 GW, 

respectively. The combined hourly profiles of each state in our study system [6] are scaled up 

such that annual demand equals forecasted 2030 demand, thereby maintaining the shape of the 

regional demand curve.  

   

Table A.6: Combined annual demand from 2004 to 2013 of the states included in our study 

system, based on data from the Energy Information Administration Form 861 [22]. 
 

Year 

Total Annual 

Demand (TWh) 

Year-to-

Year 

Growth (%) 

2013 646 0.2% 

2012 645 -0.2% 

2011 646 -0.1% 

2010 647 5.8% 

2009 612 -5.8% 

2008 650 -1.2% 

2007 658 2.9% 

2006 639 -0.5% 

2005 643 4.5% 

2004 615 0.7% 

 

A.7: DETERMINING AFFECTED EGUS FOR APPLICATION OF SHADOW CO2 

PRICE 

We apply the shadow CO2 price that enforces re-dispatching in our fleet only to affected 

EGUs under the CPP. Specifically, we include the shadow CO2 price in the operating cost and 

reserve offer prices of affected EGUs. This section details the selection of affected EGUs in our 
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fleets by first describing how the EPA defines affected EGUs in the CPP final rule, then 

specifying how we operationalize that definition.  

In the final CPP, the Environmental Protection Agency (EPA) defines affected electricity 

generating units (EGUs) as steam generating units, integrated gasification combined cycle units 

(IGCCs), or stationary combustion turbines that are larger than 25 MW in size, have a fuel burn 

capability greater than 250 MMBtu per hour of fossil fuel, and began construction before 

January 8, 2014 [5]. Stationary combustion turbines are only included under the rule if they are 

either combined cycle units that burn natural gas or combined heat and power combustion 

turbines. 

 To account for unit size and fuel burn capability, unit type, and fuel type requirements, 

we identify units in our base fleet of the above generator types (fossil steam, IGCC, or natural 

gas combined cycle) that have a capacity greater than 25 MW and fuel burn capability greater 

than 250 MMBtu per hour. Fossil waste units are listed as steam units in Form 860 from the 

Energy Information Administration (EIA) [7], so we classify fossil waste units as affected units. 

Petroleum coke and waste coal units are labeled as steam units in the IPM’s parsed file output 

[14] that we use as the basis for our base fleet, so units of either fuel type are also considered 

affected units. Landfill gas is not classified as an affected EGU in our model, as it is not defined 

as natural gas in the CPP [5]. Since all coal-fired generators retrofit with CCS in our compliance 

scenarios are over 300 MW in size, all flexible CCS generators – including the associated 

generators – are also considered affected units in our fleets.  

 None of the parsed IPM file [14], the National Electric Energy Data System [24], and 

EIA Form 923 [19] contain the date at which generators began construction. As such, we cannot 

directly determine which generators began construction before January 8, 2014 in order to 
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account for the start of construction deadline in the CPP. However, according to the National 

Energy Technology Laboratory [25] and the National Renewable Energy Laboratory [26], 

natural gas combined cycle (NGCCs) units take roughly 3 years to build, and furthermore have 

shorter construction times than fossil steam or IGCC units. This information, in conjunction with 

the year each generator came online in the NEEDS dataset [24], yields a year in which 

construction began for each generator. If this year is 2013 or earlier, we considered it an affected 

EGU. 

 

A.8: ECONOMIC DISPATCH MODEL TO DETERMINE SHADOW CO2 PRICE 

We use a simple economic dispatch (ED) model to determine a shadow CO2 price for 

each compliance fleet such that total CO2 emissions from affected EGUs meet the regional mass 

limit. The ED model minimizes total energy costs subject to the constraints that supply equals 

demand and each generator’s electricity generation varies between zero and its maximum 

capacity [18]. Total energy costs are defined as: 

𝑇𝐶 =  ∑ 𝑝𝑖,𝑡 ∗ 𝑂𝐶𝑖

𝑖,𝑡

 

where i and t index generators and time; p = electricity generation; and OC = the operating cost 

of each generator in each period, which accounts for fuel, variable operations and maintenance, 

and emissions costs. We remove wind and solar generation from demand prior to running the ED 

model. 
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A.9: CAPITAL RECOVERY FACTOR AND TOTAL OPERATIONAL COST IN COST-

EFFECTIVENESS CALCULATION 

To compare capital costs to operational costs and emissions reductions in a single 

modeling year, we annualize capital costs using a capital recovery factor (CRF) assuming a 

discount rate of 7% [27], a lifetime for wind of 20 years [28], and a lifetime for CCS retrofits of 

30 years [29]. We calculate the CRF as: 

𝐶𝑅𝐹 =  
𝑖 ∗ (1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 

Total operational costs (TOC) are defined as: 

𝑇𝑂𝐶 =  ∑(𝑝𝑖,𝑡 ∗ 𝑂𝐶𝑖 + 𝑟𝑖,𝑡
𝑗

∗ 𝑅𝑂𝑃𝑖
𝑗

+ 𝑣𝑖,𝑡 ∗ 𝑆𝐶𝑖)

𝑖,𝑗,𝑡

+ ∑ 𝑛𝑠𝑒𝑡 ∗ 𝐶𝑁𝑆𝐸

𝑡

 

where i, j and t index generators, reserve types, and time; p = electricity generation [MWh]; OC 

= operating cost [$/MWh]; r = provided reserves [MWh]; ROP = reserve offer price [$/MWh]; v 

= start-ups; SC = start-up costs [$]; nse = non-served energy [MWh]; and CNSE = cost of non-

served energy [$/MWh].   

 

A.10: CAPITAL COSTS USED IN COST-EFFECTIVENESS AND BREAK-EVEN 

CALCULATIONS 

 In order to account for uncertainty in capital costs, we calculate cost-effectiveness across 

a range of capital costs. Table A.7 provides the minimum, best guess, and maximum capital costs 

for wind and normal and flexible CCS used in our analysis. These values are also used when 

calculating the flexible CCS break-even capital cost. 
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Table A.7: Range of capital costs included in cost-effectiveness calculations. Flexible CCS 

capital costs equal the sum of normal CCS and solvent storage capital costs. Normal CCS capital 

costs from the IECM [30] and National Energy Technology Laboratory [31] include a retrofit 

factor of 1.25 [29]. 
 

Technology 

Capital Cost (Minimum / 

Best Guess / Maximum) 

($2011/net kW) 

Annualized Capital Cost 

(Minimum / Best Guess / 

Maximum) ($2011/net kW) Sources 

Wind 1,300 / 1,800 / 2,270 126 / 170 / 214 [6], [32], 

[33] 

Normal CCS Retrofit 1,160 / 1,270 / 1,380 93 / 102 / 111 [30], [31], 

[34] 

Solvent Storage 7 / 32 / 110 1 / 3 / 9 [35]–[38] 

Flexible CCS 

Retrofit 

1,167 / 1,302 / 1,490 94 / 105 / 120 [30], [34]–

[38] 

 

 

A.11: SHADOW CO2 PRICES NECESSARY TO ACHIEVE COMPLIANCE WITH THE 

CLEAN POWER PLAN OR STRONGER CLEAN POWER PLAN 

Table A.8 provides the shadow CO2 price necessary for each compliance scenario to 

comply with the CPP or stronger CPP. 

 

 

Table A.8: CO2 price necessary for each compliance scenario to comply with the CPP or stronger 

CPP. Provided CCS retrofit capacities are de-rated capacities that account for the energy penalty 

of the CCS system. Scenarios with a CO2 price include re-dispatching based on that CO2 price. 

N/As indicate the compliance scenarios that are not analyzed under either the CPP or stronger 

CPP. 
 

Compliance Scenarios 

CO2 Price to Comply 

with the CPP ($/ton) 

CO2 Price to Comply with 

the Stronger CPP ($/ton) 

Re-dispatch 9 39 

Normal CCS retrofits, 1.6 GW 7 36 

Flexible CCS retrofits, 1.6 GW  7 36 

Wind, 2.5 GW 7 N/A 

Wind, 3 GW N/A 36 

Normal CCS retrofits, 3.9 GW 3 31 

Flexible CCS retrofits, 3.9 GW 3 31 

Wind, 5.5 GW 3 N/A 
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Wind, 9 GW N/A 31 

Normal CCS retrofits, 6.2 GW 0 27 

Flexible CCS retrofits, 6.2 GW 0 27 

Wind, 6.5 GW 0 N/A 

Wind, 14 GW N/A 27 

 

 

A.12: GENERATION MIX OF CLEAN POWER PLAN AND STRONGER CLEAN 

POWER PLAN SCENARIOS  

 Figure A.1 provides the 2030 generation mix for the base and compliance scenarios with 

the Clean Power Plan and hypothetical stronger Clean Power Plan.  
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Figure A.1: Generation mix for base and compliance scenarios with the Clean Power Plan (top) 

and stronger Clean Power Plan (bottom) for 2030. * denotes wind or CCS compliance scenarios 

that include some re-dispatching. 

 

 

A.13: FLEXIBLE CCS EQUIVALENT CAPITAL COSTS  

 Table A.9 and Table A.10 provide equivalent capital costs (ECCs) for flexible CCS under 

the CPP and stronger CPP, respectively, relative to additional wind capacity and normal CCS 

retrofits. Each ECC indicates the flexible CCS capital cost at which flexible CCS would achieve 

as cost-effective CO2 emissions reductions as, and thereby be competitive with, an alternative 

compliance strategy. Higher ECCs are better, while negative ECCs suggest that even if the 

capital costs of flexible CCS were zero, flexible CCS would still be less desirable than the 

alternative compliance strategy. 
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Table A.9: ECCs for flexible CCS to achieve as cost-effective emissions reductions as additional 

wind or normal CCS retrofits under the CPP. ECCs are provided for low, best guess and high 

capital costs for wind or normal CCS. 
 

Alternative 

Compliance Scenario 

ECC at Low Capital 

Cost ($/kW) 

ECC at Best Guess 

Capital Cost ($/kW) 

ECC at High Capital 

Cost ($/kW) 

Wind, 2.5 GW -1,120 -240 650 

Wind, 5.5 GW -1,230 -460 310 

Wind, 6.5 GW -1,130 -550 30 

Normal CCS, 1.6 GW 1,350 1,460 1,570 

Normal CCS, 3.9 GW 1,360 1,470 1,580 

Normal CCS, 6.2 GW 1,370 1,480 1,590 

 

Table A.10: ECCs for flexible CCS to achieve as cost-effective emissions reductions as 

additional wind or normal CCS retrofits under the stronger CPP. ECCs are provided for low, best 

guess and high capital costs for wind or normal CCS. 
 

Alternative 

Compliance Scenario 

ECC at Low Capital 

Cost ($/kW) 

ECC at Best Guess 

Capital Cost ($/kW) 

ECC at High Capital 

Cost ($/kW) 

Wind, 3 GW -1,710 -650 410 

Wind, 9 GW -1,770 -510 750 

Wind, 14 GW -1,610 -370 880 

Normal CCS, 1.6 GW 1,310 1,420 1,530 

Normal CCS, 3.9 GW 1,300 1,410 1,530 

Normal CCS, 6.2 GW 1,360 1,470 1,580 

 

A.14: REFERENCES 

[1] Energy Exemplar, “PLEXOS Integrated Energy Model. Version 7.2,” 2015. 

[2] M. Craig, P. Jaramillo, H. Zhai, and K. Klima, “The economic merits of flexible carbon 

capture and sequestration as a compliance strategy with the Clean Power Plan,” Environ. 

Sci. Technol., vol. 51, pp. 1102–1109, 2017. 

[3] D. L. Oates and P. Jaramillo, “Production cost and air emissions impacts of coal cycling in 

power systems with large-scale wind penetration,” Environ. Res. Lett., vol. 8, no. 2, p. 

24022, Jun. 2013. 

[4] D. Lew, “Western Wind and Solar Integration Study,” 2010. 

[5] U.S. Environmental Protection Agency, “Carbon pollution emission guidelines for 

existing stationary sources: Electric utility generating units. Federal Register Vol. 80: 

64661-65120,” 2015. 

[6] U.S. Environmental Protection Agency, “Documentation for EPA Base Case v.5.13 Using 



150 

 

the Integrated Planning Model,” 2013. 

[7] U.S. Energy Information Administration, “Form EIA-860,” EIA.gov, 2015. [Online]. 

Available: https://www.eia.gov/electricity/data/eia860/. 

[8] R. Lueken, “PJM Hourly Open-source Reduced-form Unit Commitment Model 

(PHORUM),” 2013. [Online]. Available: https://github.com/rlueken/PHORUM. 

[Accessed: 12-Mar-2015]. 

[9] R. Lueken, “Reducing Carbon Intensity in Restructured Markets: Challenges and Potential 

Solutions,” Carnegie Mellon University, 2014. 

[10] U.S. National Energy Technology Laboratory, “Impact of Load Following on Power Plant 

Cost and Performance: Literature Review and Industry Interviews,” 2012. 

[11] IEAGHG, “Operating Flexibility of Power Plants with CCS,” 2012. 

[12] MIT Energy Initiative, “Symposium on Managing Large-scale Penetration of Intermittent 

Renewables: Findings in brief,” 2011. 

[13] E. McDonald-Buller, Y. Kimura, M. Craig, G. McGaughey, D. Allen, and M. Webster, 

“Dynamic Management of NOx and SO2 Emissions in the Texas and Mid-Atlantic 

Electric Power Systems and Implications for Air Quality,” Environ. Sci. Technol., vol. 50, 

no. x, pp. 1611–1619, 2016. 

[14] U.S. Environmental Protection Agency, “Parsed File: Mass-Based, 2030. Docket No. 

EPA-HQ-OAR-2013-0602,” 2015. 

[15] D. L. Oates, “Low Carbon Policy and Technology in the Power Sector: Evaluating 

Economic and Environmental Effects,” Carnegie Mellon University, 2015. 

[16] U.S. Environmental Protection Agency, “Stationary Gas Turbines,” in Compilation of Air 

Pollutant Emissions Factors, Volume 1: Stationary Point and Area Sources, AP-42, 5th 

ed., 2000. 

[17] U.S. Environmental Protection Agency, “Federal Implementation Plans: Interstate 

Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals, 76 

Federal Register 152 (8 Aug 2011), pp. 48207-48712.,” 2011. 

[18] D. L. Oates and P. Jaramillo, “State cooperation under the EPA’s proposed clean power 

plan,” Electr. J., vol. 28, no. 3, pp. 26–40, 2015. 

[19] U.S. Energy Information Administration, “Form EIA-923,” 2015. 

[20] U.S. National Renewable Energy Laboratory, “Transmission Grid Integration: Eastern 

Wind Dataset,” 2012. 

[21] U.S. National Renewable Energy Laboratory, “Transmission Grid Integration: Solar 

Power Data for Integration Studies Dataset,” 2010. 

[22] U.S. Energy Information Administration, “Form EIA-861,” 2015. 

[23] U.S. Environmental Protection Agency, “Data File: Demand-Side Energy Efficiency 

Appendix – Illustrative 3% Scenario.” 2015. 



151 

 

[24] U.S. Environmental Protection Agency, “National Electric Energy Data System (Version 

5.15).” 2015. 

[25] U.S. National Energy Technology Laboratory, “NGCC Plant – Combined Cycle,” 2007. 

[Online]. Available: http://www.netl.doe.gov/KMD/cds/disk50/NGCC Plant 

Case_FClass_051607.pdf. 

[26] U.S. National Renewable Energy Laboratory, “Annual Technology Baseline 2015,” 2015. 

[27] The White House Office of Management and Budget, “Guidelines and discount rates for 

benefit-cost analysis of federal programs. Circular No. A-94 Revised.,” 1992. 

[28] J. Lamy, I. L. Azevedo, and P. Jaramillo, “The role of energy storage in accessing remote 

wind resources in the Midwest,” Energy Policy, vol. 68, no. 2006, pp. 123–131, 2014. 

[29] H. Zhai, Y. Ou, and E. S. Rubin, “Opportunities for decarbonizing existing U.S. coal-fired 

power plants via CO2 capture, utilization and storage,” Environ. Sci. Technol., vol. 49, no. 

13, pp. 7571–9, 2015. 

[30] Carnegie Mellon University, “Integrated Environmental Control Model. Version 8.0.2.” 

2015. 

[31] U.S. National Energy Technology Laboratory, “Cost and Performance Baseline for Fossil 

Energy Plants. Volume 1,” 2013. 

[32] Lazard, “Lazard’s Levelized Cost of Energy Analysis. Version 8.0,” 2014. 

[33] U.S. Energy Information Administration, “Updated Capital Cost Estimates for Utility 

Scale Electricity Generating Plants,” 2013. 

[34] S. Specker, J. Phillips, and D. Dillon, “The Potential Growing Role of Post-combustion 

CO2 Capture Retrofits in Early Commercial Applications of CCS to Coal-fired Power 

Plants,” 2009. 

[35] P. C. Van der Wijk, A. S. Brouwer, M. Van den Broek, T. Slot, G. Stienstra, W. Van der 

Veen, and A. P. C. Faaij, “Benefits of coal-fired power generation with flexible CCS in a 

future northwest European power system with large scale wind power,” Int. J. Greenh. 

Gas Control, vol. 28, pp. 216–233, 2014. 

[36] D. L. Oates, P. Versteeg, E. Hittinger, and P. Jaramillo, “Profitability of CCS with flue gas 

bypass and solvent storage,” Int. J. Greenh. Gas Control, vol. 27, pp. 279–288, 2014. 

[37] P. Versteeg, D. L. Oates, E. Hittinger, and E. S. Rubin, “Cycling coal and natural gas-fired 

power plants with CCS,” Energy Procedia, vol. 37, pp. 2676–2683, 2013. 

[38] D. Patiño-Echeverri and D. C. Hoppock, “Reducing the energy penalty costs of 

postcombustion CCS systems with amine-storage,” Environ. Sci. Technol., vol. 46, pp. 

1243–1252, 2012. 

 

 



152 

 

APPENDIX B:  

SUPPLEMENTAL INFORMATION FOR CHAPTER 3 
 

B.1: DESCRIPTION OF VENTING COMPONENTS OF FLEXIBLE CCS MODEL 

While we do not assess flexible CCS with venting in the main text of this paper, we do 

assess operations of flexible CCS with solvent storage and venting in Section B.7. Additionally, 

providing the option to include venting capabilities in our flexible CCS model affects the 

structure of our model for flexible CCS generators equipped only with solvent storage, as 

discussed in Section B.4. For both reasons, we explain the venting components of our flexible 

CCS model in this section. These venting components can be modeled together or separate from 

the solvent storage components. 

Figure B.1 provides a schematic of a flexible CCS generator that includes a flue gas 

bypass and solvent storage system. With respect to design assumptions, as when discharging 

stored solvent, we assume that venting can reduce the CCS system’s parasitic load by up to 90%, 

which corresponds to eliminating the parasitic load of the solvent regenerator and CO2 

compressor [1]. Also, as when discharging stored solvent, venting flue gas while not charging 

stored solvent enables greater net electricity output at greater efficiency than during normal CCS 

operations. In this operational mode, venting allows for faster ramping than during normal CCS 

operations, as venting entails increasing the steam turbine load rather than fuel input. We also 

allow our flexible CCS generator to vent CO2 emissions while charging stored solvent. Doing so 

results in a lower CO2 capture rate, but allows a flexible CCS generator to maintain constant fuel 

input and net electricity output relative to normal CCS operations.  

To represent flexible CCS operations while venting, we use two proxy units, vent and 

vent while charging. Figure B.2 provides a tree depicting which venting and solvent storage 
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proxy units are on or off given flexible CCS operations. The vent proxy unit accounts for 

increased net electricity output and efficiency relative to normal CCS operations when venting. 

Conversely, the vent while charging unit allows for the same net electricity output as during 

normal CCS operations when venting while charging stored lean solvent. As for stored solvent 

proxy units, we parametrize venting proxy units with IECM-derived linear regressions, as 

described in Section B.3. The full mathematical formulation of our flexible CCS model, provided 

in Section B.4, accounts for venting operations as well as solvent storage. 
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Figure B.1: A full schematic of a flexible CCS generator equipped with a flue gas bypass and solvent storage system. The dashed box 

indicates the CO2 capture system. Dashed lines indicate operational choices at the generator: venting flue gas or using stored solvent 

in place of continuously-regenerated solvent. 
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Figure B.2: Tree showing which venting and solvent storage proxy units are on or off given the operations of a flexible CCS generator  

equipped with a flue gas bypass and solvent storage system at any given time. When the base proxy unit is on, the continuous solvent 

proxy unit is also on.  
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B.2: JUSTIFICATION OF FLEXIBLE CCS DESIGN PARAMETERS 

This section details the justification of the flexible CCS design parameters.  We assume 

CCS retrofits occur at existing coal-fired power generators.  

Maximum power output of steam turbine: We assume the only modification to the 

steam turbine during a CCS retrofit is the installation of a steam extractor. As such, the 

maximum power output of the steam turbine at each coal-fired generator retrofit with CCS 

equals the net capacity of the generator prior to the CCS retrofit.  

Solvent storage tank capacity: The solvent storage tanks’ capacities determine how 

many hours of full load the stored lean solvent can enable while maintaining a 90% capture rate. 

Previous papers on flexible CCS have used stored solvent capacities ranging from 1 to 4 hours 

[2]–[4]. For this model, we assume solvent storage tank sizes of 1 or 2 hours.   

Regenerator size: The solvent throughput capacity of the regenerator train affects 

operations while charging stored lean solvent by limiting the amount of continuous and stored 

solvent that can be regenerated at once. At a normal CCS generator, only continuous solvent 

passes through the regenerator train, so the throughput capacity of the train can be set to the 

maximum flow rate of continuous solvent. But at a flexible CCS generator, two solvent streams 

– continuous and stored rich solvent – can pass through the regenerator train. The solvent 

throughput capacity of the train dictates whether the two solvent streams can be regenerated 

simultaneously or if one displaces the other. For instance, an “over-sized” solvent regenerator 

train – that is, a regenerator train at a flexible CCS generator with a greater solvent throughput 

capacity than that of a train at a normal CCS facility of the same net power output capacity 

during normal operations – could regenerate some stored lean solvent while simultaneously 

regenerating continuous lean solvent at its maximum flow rate. If, on the other hand, the 
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throughput solvent capacity of the regenerator train at a flexible CCS generator equals that of a 

train at a normal CCS generator of equal net power output capacity – which we call an “equally-

sized” solvent regenerator train – stored rich solvent sent to the regenerator train displaces 

continuous rich solvent.  

Wijk et al. [4] assume two solvent regenerator train throughput capacities, equally-sized 

and 25% over-sized, whereas Cohen et al. [5] base their decision to use an over-sized solvent 

regenerator train on a simple solvent discharge potential heuristic. Alternatively, Versteeg et al. 

[3] and Oates et al. [2] use profit-maximizing optimization models to determine the optimal 

solvent regenerator throughput capacity. Under complete information, Versteeg et al. [3] 

determine the optimal throughput capacity as equally-sized, whereas Oates et al. [2] determine 

that an under-sized solvent regenerator is optimal. However, these profit-maximizing 

optimization models may neglect public (i.e., system) benefits of flexible CCS that we aim to 

quantify and therefore may undervalue larger regenerators. As such, we model an equally-sized 

solvent regenerator in this research. With an equally-sized solvent regenerator, charging stored 

lean solvent necessarily reduces regeneration of continuous solvent, which in turn necessitates a 

reduction in fuel input and net electricity to the grid in order to maintain a constant CO2 capture 

rate (i.e., in order to continue capturing 90% of CO2 emissions).  

Maximum achievable reduction in parasitic load while discharging: Patiño-Echeverri and 

Hoppock [1] summarize the results of three studies that divide the parasitic load, or overall 

energy penalty in net plant efficiency, of a CCS system among its components. They find that 

pumps, fans, and other losses account for roughly 8-9% of the total parasitic load of the CCS 

system, whereas the solvent regenerator and CO2 compressor largely account for the remainder. 

Like Patiño-Echeverri and Hoppock [1], we assume that discharging stored lean solvent can 
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eliminate the parasitic load of the solvent regenerator and CO2 compressor. Consequently, while 

discharging stored lean solvent, the portion of the parasitic load from pumps, fans and other 

losses would remain. We set this remaining parasitic load to 10% of the total parasitic load of the 

CCS system, or 10% of the overall energy penalty in net plant efficiency of the CCS system. 

 

B.3: REGRESSIONS BASED ON DATA FROM THE INTEGRATED 

ENVIRONMENTAL CONTROL MODEL 

To estimate seven normal and/or flexible CCS parameters (Table B.1), we constructed 

linear regression models with output from the Integrated Environmental Control Model (IECM), 

a computational tool for evaluating fossil fuel-fired power plants with and without CCS [6]. 

More specifically, we regress each parameter separately against heat rate for bituminous and sub-

bituminous fuel, which then allows us to estimate the parameter value for retrofitting a given 

generator as a function of heat rate and fuel type. In this section, we first discuss how we obtain 

the necessary data from the IECM, then further define each parameter estimated this way, and 

finally provide the linear regressions.  

 

Table B.1: Flexible and, in some cases, normal CCS operational parameters estimated using 

regressions based on data from the IECM.  
 

CCS Type Parameter Based on IECM Data 

Normal and 

flexible 

Net capacity penalty from normal or flexible CCS retrofit during normal 

operations (%) 

 

Normal and 

flexible 

Net heat rate penalty from normal or flexible CCS retrofit during normal 

operations (%) 

 

Flexible Net capacity penalty at maximum achievable reduction of CO2 capture system 

parasitic load while discharging stored solvent or venting (%) 
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Flexible Net heat rate penalty at maximum achievable reduction of CO2 capture system 

parasitic load while discharging stored solvent or venting (%) 

 

Flexible Net electricity delivered to grid per unit of thermal and electric energy 

(hereafter “equivalent energy”) used by CO2 capture system during normal 

operations (MWh) 

 

Flexible Net electricity delivered to grid enabled by discharging stored lean solvent per 

unit of equivalent energy used to store lean solvent (MWh) 

 

Flexible Equivalent energy required to regenerate continuous lean solvent in order to 

capture CO2 emissions from fuel input to regenerate stored lean solvent per 

unit of equivalent energy used to store lean solvent (MWh) 

 

 B.3.1: Obtaining Data from IECM 

To obtain data from IECM for use in our regressions, we construct three generator 

configurations for a given generator efficiency: 1) a non-CCS coal-fired generator, 2) a CCS-

retrofitted coal-fired generator, and 3) a flexible CCS coal-fired generator engaged in full 

discharge of its stored solvent. We construct these three model generators for each of sub-, 

super- and ultrasuper-critical coal-fired power plant types, thereby yielding parameter values 

across different heat rates. We repeat this process using bituminous (Illinois #6 coal) and sub-

bituminous (Wyoming Powder River Basin coal) coal types.  

 We begin with the default IECM coal-fired generator to model the non-CCS coal-fired 

generator. The non-CCS coal-fired generator is equipped with in-furnace NOx controls, hot-side 

selective catalytic reduction (SCR), cold-side electrostatic precipitator (ESP), wet flue gas 

desulfurization (FGD), and carbon injection control technologies, as our CCS retrofit criteria 

assumes installation of these control technologies, and the generator uses once-through cooling. 

The base non-CCS coal-fired generator has a gross output of 650 MW.  

 We then build the CCS-retrofit coal-fired generator. Crucially, we assume constant fuel 

input capacity at the generator post-CCS retrofit. Thus, to model a CCS-retrofit generator with 
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the same fuel input as the non-CCS generator, we install an amine CO2 capture system on the 

non-CCS generator, and then reduce its gross output until the fuel input equals that of the non-

CCS generator.  

 To construct the flexible CCS generator while fully discharging stored lean solvent, we 

begin with the CCS-retrofit generator and set its gross electrical output to 650 MW. Since we 

assume a 90% reduction in the parasitic load of the CO2 capture system while fully discharging 

stored solvent based Patiño-Echeverri and Hoppock (2012), we reduce the energy requirements 

of the CO2 capture system to mirror eliminating 90% of the parasitic load of the CO2 capture 

system while discharging stored lean solvent. Specifically, we set the solvent regenerator heat 

requirement to 0, and then simultaneously vary the amine scrubber power requirement and CO2 

unit compression energy values until the energy use of the CO2 capture system equals roughly 

10% of the CO2 capture system energy use of the CCS-retrofit generator. Note that when the 

total CO2 capture system energy use equals 10% of that for the CCS-retrofit generator, the amine 

scrubber power requirement and CO2 unit compression energy may not necessarily equal 10% of 

those values for the CCS-retrofit generator. Table B.2 provides the CO2 unit compression energy 

and amine scrubber power requirement values used for each generator.  

 

Table B.2: Amine scrubber power requirement and CO2 unit compression energy values used to 

model flexible CCS generators during full discharging of stored lean solvent in the IECM. 
 

IECM Field Coal 

Type 

Coal-Fired 

Plant Type 

Normal CCS  

Value 

Flexible CCS 

Value 

Amine Scrubber Power 

Requirement (% MWg) 

Subbit Subcritical 10.6 2.1 

CO2 Unit Compression 

Energy (kWh/ton CO2) 

Subbit Subcritical 84.4 16.9 

Amine Scrubber Power 

Requirement (% MWg) 

Subbit Supercritical 9.7 1.9 
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CO2 Unit Compression 

Energy (kWh/ton CO2) 

Subbit Supercritical 84.4 16.9 

Amine Scrubber Power 

Requirement (% MWg) 

Subbit Ultra-

supercritical 

8.7 1.7 

CO2 Unit Compression 

Energy (kWh/ton CO2) 

Subbit Ultra-

supercritical 

84.4 16.9 

Amine Scrubber Power 

Requirement (% MWg) 

Bit Subcritical 9.5 1.9 

CO2 Unit Compression 

Energy (kWh/ton CO2) 

Bit Subcritical 84.4 16.9 

Amine Scrubber Power 

Requirement (% MWg) 

Bit Supercritical 8.8 1.8 

CO2 Unit Compression 

Energy (kWh/ton CO2) 

Bit Supercritical 84.4 16.9 

Amine Scrubber Power 

Requirement (% MWg) 

Bit Ultra-

supercritical 

7.9 1.6 

CO2 Unit Compression 

Energy (kWh/ton CO2) 

Bit Ultra-

supercritical 

84.4 16.9 

 

 B.3.2: Description of Parameters Estimated with Regressions 

 From these 18 generators (3 types of plants for each of 3 heat rates and 2 fuel types), we 

extract several design values that we use to estimate the desired parameters. We calculate the 

capacity and net heat rate penalties as: 

𝐻𝑅𝑃𝐶𝐶𝑆𝑅𝑒𝑡𝑟𝑜𝑓𝑖𝑡 =
𝐻𝑅𝐶𝐶𝑆𝑅𝑒𝑡𝑟𝑜𝑓𝑖𝑡−𝐻𝑅𝑁𝑜𝐶𝐶𝑆

𝐻𝑅𝑁𝑜𝐶𝐶𝑆      (1) 

𝐶𝑃𝐶𝐶𝑆𝑅𝑒𝑡𝑟𝑜𝑓𝑖𝑡 =
�̅�𝐶𝐶𝑆𝑅𝑒𝑡𝑟𝑜𝑓𝑖𝑡−�̅�𝑁𝑜𝐶𝐶𝑆

�̅�𝑁𝑜𝐶𝐶𝑆            (2) 

𝐻𝑅𝑃𝐹𝑢𝑙𝑙𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 =
𝐻𝑅𝐹𝑢𝑙𝑙𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔−𝐻𝑅𝑁𝑜𝐶𝐶𝑆

𝐻𝑅𝑁𝑜𝐶𝐶𝑆       (3) 

𝐶𝑃𝐹𝑢𝑙𝑙𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 =
�̅�𝐹𝑢𝑙𝑙𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔−�̅�𝑁𝑜𝐶𝐶𝑆

�̅�𝑁𝑜𝐶𝐶𝑆         (4) 

where CCSRetrofit refers to the coal-fired generator after CCS retrofit, FullDischarging refers to 

the coal-fired generator retrofit with flexible CCS while fully discharging stored solvent, NoCCS 

refers to the coal-fired generator prior to CCS retrofit, HR = net heat rate (MMBtu/MWh), HRP 
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= net heat rate penalty (MMBtu/MWh), CP = capacity penalty (as fraction of maximum 

capacity), and �̅� = maximum capacity (MW).  

 We extract three other parameters from the IECM data and include them in the unit 

constraints detailed below. We use two of these parameters to calculate net output to the grid 

during stored solvent charging: (1) electricity delivered to the grid during normal CCS operations 

per unit of energy used to capture CO2 and (2) energy used to continuously regenerate solvent to 

capture CO2 emissions from the fuel used to store solvent per unit of energy used to store 

solvent. We calculate the former parameter by dividing the net electricity output of the normal 

CCS IECM generator by the CCS net capacity penalty. To calculate the latter parameter, we 

begin by calculating the tons of fuel to provide the energy to regenerate each ton of solvent at the 

normal CCS generator: 

𝑇𝑜𝑛𝑠 𝐹𝑢𝑒𝑙 𝑓𝑜𝑟 𝐸𝑛𝑒𝑟𝑔𝑦

𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 1 𝑇𝑜𝑛 𝑆𝑜𝑙𝑣𝑒𝑛𝑡
=

𝐺𝑟𝑜𝑠𝑠 𝐻𝑅

𝑆𝑜𝑙𝑣𝑒𝑛𝑡 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒
𝐸 𝑡𝑜 𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒

 

With that value, we know the tons of fuel that need to be input for each ton of solvent 

regenerated to be stored. We then need to calculate the amount of solvent that needs to be 

regenerated to capture the CO2 emissions from that fuel. To do so, we divide the total solvent 

flow rate by the total fuel input for the normal CCS generator.   

𝑇𝑜𝑛𝑠 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 1 𝑇𝑜𝑛 𝐹𝑢𝑒𝑙′𝑠 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
=

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝐹𝑢𝑒𝑙 𝐼𝑛𝑝𝑢𝑡
 

Finally, we can calculate the tons of extra solvent that needs to be continuously regenerated to 

capture the CO2 emissions from the fuel used to store each ton of solvent. If we let X = tons fuel 

to regenerate 1 ton of solvent, Z = tons solvent to capture 1 ton of fuel’s CO2 emissions, B = tons 

of solvent to be stored, and A = tons of extra solvent to be continuously regenerated, then: 

𝑇𝑜𝑡𝑎𝑙 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝑋 ∗ 𝐴 + 𝑋 ∗ 𝐵 
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Since only A captures CO2 emissions: 

𝑇𝑜𝑛𝑠 𝐹𝑢𝑒𝑙′𝑠 𝐶𝑂2𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑡𝑜 𝑏𝑒 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑 = 𝐴 ∗
1

𝑍
 

If all CO2 emissions are captured, then they must be captured by A, as B does not capture CO2:  

𝐴 ∗
1

𝑍
= 𝑋 ∗ 𝐴 + 𝑋 ∗ 𝐵 

𝐴 ∗
1

𝑍
= 𝑋 ∗ 𝐴 + 𝑋 ∗ 𝐵 

𝐴 ∗ (
1

𝑍
− 𝑋) = 𝑋 ∗ 𝐵 

𝐴 =
𝑋 ∗ 𝐵

1
𝑍 − 𝑋

 

𝐴

𝐵
=

𝑋

1
𝑍 − 𝑋

 

Or: 

𝑇𝑜𝑛 𝐸𝑥𝑡𝑟𝑎 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑆𝑜𝑙𝑣𝑒𝑛𝑡

𝑇𝑜𝑛 𝑆𝑡𝑜𝑟𝑒𝑑 𝑆𝑜𝑙𝑣𝑒𝑛𝑡

=

𝑇𝑜𝑛𝑠 𝐹𝑢𝑒𝑙 
𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 1 𝑇𝑜𝑛 𝑆𝑜𝑙𝑣𝑒𝑛𝑡

1
𝑇𝑜𝑛𝑠 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 1 𝑇𝑜𝑛 𝐹𝑢𝑒𝑙′𝑠 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

−
𝑇𝑜𝑛𝑠 𝐹𝑢𝑒𝑙 

𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 1 𝑇𝑜𝑛 𝑆𝑜𝑙𝑣𝑒𝑛𝑡

                   (5) 

Note that the energy required to regenerate a ton of solvent is the same for continuously 

regenerated and stored solvent. As a result, tons of extra continuous solvent per ton of stored 

solvent is equivalent to energy required to continuously regenerate solvent per energy required to 

regenerate stored solvent.  

The third of the remaining IECM-derived parameters, energy delivered to the grid while 

discharging stored solvent per energy used to store lean solvent, determines how much energy 
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can be output while discharging stored lean solvent for each unit of energy input to store solvent 

during charging. We calculate this value using data from the normal and solvent discharging 

CCS IECM generators: 

𝐸 𝑡𝑜 𝐺𝑟𝑖𝑑 𝑊ℎ𝑖𝑙𝑒 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑆𝑡𝑜𝑟𝑒𝑑 𝑆𝑜𝑙𝑣𝑒𝑛𝑡

𝐸 𝑈𝑠𝑒𝑑 𝑡𝑜 𝑆𝑡𝑜𝑟𝑒 𝑆𝑜𝑙𝑣𝑒𝑛𝑡

=
𝑇𝑜𝑛𝑠 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 𝑅𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝐸 𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒
∗

𝐸 𝑡𝑜 𝐺𝑟𝑖𝑑 𝑊ℎ𝑖𝑙𝑒 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑖𝑛𝑔

𝑇𝑜𝑛 𝑆𝑜𝑙𝑣𝑒𝑛𝑡 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑
                  (6) 

 

 B.3.3: Regressions 

The regressions of the previously described seven parameters estimated from the IECM 

data are provided in Figure B.3.  
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Figure B.3: Regressions of various CCS operational and design parameters estimated using data 

from the IECM. 

 

Using these regressions, we estimate a unique value for each of the seven parameters for 

each coal generator retrofit with CCS. We determine the coal type for each generator in our 

power plant fleet using data from the IPM parsed files and use the regressions for that fuel type. 

We estimate the CCS capacity and heat rate penalties with the generator’s pre-CCS retrofit heat 

rate, and the other five parameters using the generator’s net heat rate post-CCS retrofit. Most of 

the pre-CCS net heat rates of the generators retrofit with CCS fall within the range of heat rates 

of the IECM generators used in the above regressions, as shown in Figure B.4. 

 

y = -0.0002x + 6.2562

R² = 0.9995

y = -0.0003x + 6.8824

R² = 0.9995

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

10000 12000 14000 16000

N
et

 E
le

ct
ri

ci
ty

 t
o
 G

ri
d

 W
h

il
e 

D
is

ch
a
rg

in
g
 S

to
re

d
 S

o
lv

en
t 

P
er

 U
n

it
 o

f 
E

n
er

g
y
 U

se
d

 t
o
 

S
to

re
 S

o
lv

en
t 

(M
W

h
/M

W
h

)

Net HR after CCS Retrofit (Btu/kWh)

Subbit
Bit
Linear (Subbit)
Linear (Bit)



168 

 

 

Figure B.4: Net heat rates pre-CCS retrofit of coal-fired generators eligible for CCS retrofits in 

our fleet (blue dots) and of coal-fired generators modeled in IECM to derive our CCS parameters 

(orange dots). 

 

 

B.4: MATHEMATICAL FORMULATION OF FLEXIBLE CCS MODEL 

 This section provides a detailed mathematical formulation of our model of a flexible CCS 

generator equipped with solvent storage and venting. To model a flexible CCS generator 

equipped only with solvent storage, as done for the analysis in this paper, the venting 

components of our model are removed. Table B.3 provides the definitions of variables and 

parameters used in the subsequent parametrization of proxy units and proxy unit constraints.  

 

Table B.3: Definitions of variables and parameters used in flexible CCS model formulation. Note 

that “equivalent energy” equals thermal and electric energy.  

 

Decision 

Variable 

Definition 

ci,t Change in power output from generator i at time t (MW) 

ei,t Equivalent energy consumed by generator i at time t (MWh) 

evLEAN
i,t Amount of solvent lean stored in tank i at the end of time t (MWh) 
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fi,t Stored lean solvent inflow at generator i and time t (MWh) 

mi,t Equivalent energy consumed to charge stored lean solvent by generator i at time t 

(MWh) 

nHEAD
i,t Electricity consumed in pumping water into reservoir head at pumped 

hydropower facility i in hour t (MWh) 

nTAILi
,t Electricity generated by releasing water into reservoir tail from reservoir head at 

pumped hydropower facility i in hour t (MWh) 

oi,t Stored lean solvent outflow at generator i and time t (MWh) 

pi,t Net electricity generation by generator i at time t (MWh) 

ri,t Provided reserves of given type by generator i at time t(MW) 

ui,t Binary variable indicating on/off state of generator i at time t, where 1 indicates 

on {0,1} 

  

Parameter Definition 

CMAX
i Max ramp rate in up and down direction of generator i (MW/min.) 

CPCCS Net capacity penalty from normal or flexible CCS retrofit during normal 

operations (%) (estimated with IECM) 

CPDischarge Net capacity penalty at maximum achievable reduction of CO2 capture system 

parasitic load while discharging stored solvent or venting (%) (estimated with 

IECM) 

EGrid Net electricity delivered to grid per unit of equivalent energy used by CO2 capture 

system during normal operations (MWh) (estimated with IECM) 

EDischarge Net electricity delivered to grid enabled by discharging stored lean solvent per 

unit of equivalent energy used to store lean solvent (MWh) (estimated with 

IECM) 

EContSolvent Equivalent energy required to regenerate continuous lean solvent in order to 

capture CO2 emissions from fuel input to regenerate stored lean solvent per unit 

of energy used to store lean solvent (MWh) (estimated with IECM) 

EMAX
i Maximum equivalent energy consumption capacity by generator i (MWh) 

ERi
 CO2 emissions rate for generator i (ton/MWh) 

ERRCCS Emissions rate reduction from CCS retrofit (fraction) 

EVMAX,Lean
i,t Max amount of lean solvent that can be stored in tank i (MWh) 

FMAX
i Maximum stored lean solvent inflow (MWh) 

HRi Heat rate of generator i used in UCED model (MMBtu/MWh) 

HRGROSS
i Gross heat rate of generator i (MMBtu/MWh) 

HRPCCS Net heat rate penalty from normal or flexible CCS retrofit during normal 

operations (%) (estimated with IECM) 

HRPDischarge Net heat rate penalty at maximum achievable reduction of CO2 capture system 

parasitic load while discharging stored solvent or venting (%) (estimated with 

IECM) 

MMAX
i Maximum capacity to charge stored lean solvent by generator i (MWh) 

OMAX
i Maximum stored lean solvent outflow (MWh) 

PMAX
i Maximum net electricity generation capacity of generator i (MWh) 

PMIN
i,ST Minimum stable load of the steam turbine at generator i (MWh) 

PMIN
i,Boiler Minimum stable load of the boiler at generator i (MWh) 
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PCi Maximum pump capacity of pumped hydropower facility i (MWh) 

RMAX Maximum reserve offer for a given reserve type by generator i (MW) 

RRi Ramp rate for generator i (%/min.) 

 

B.4.1: Proxy Unit Structure and Parametrization 

B.4.1.1: Division of Solvent Storage Proxy Units 

While charging stored solvent at a constant CO2 capture rate, continuously regenerated 

solvent must capture CO2 emissions from fuel combustion to regenerate stored lean solvent 

(EContSolvent). The thermal energy required by this additional continuously regenerated solvent 

reduces available energy to be converted to electricity and delivered to the grid. If emissions are 

vented while charging, though, this additional penalty on net electricity generation is not 

incurred. As a result, the maximum amount of stored lean solvent that can be charged in a given 

period of time differs depending on whether venting occurs. In order to accommodate varying 

CO2 capture rates while charging, our model includes two sets of tank and charge proxy units, as 

well as two sets of discharge proxy units that correspond with each tank proxy unit. 

 

B.4.1.2: Parametrization of Proxy Units 

We determine proxy unit-specific values for six parameters: maximum capacity, heat 

rate, CO2 and SO2 emission rates, ramp rate, and minimum stable load (MSL). Table B.4 details 

how we calculate the capacity, heat rate, and CO2 emissions rate of each flexible CCS proxy 

unit.  

Heat rates and capacities of the vent and discharge proxy units reflect the capacity and 

net heat rate penalties while venting and discharging stored lean solvent. As such, fuel 

consumption by the vent and discharge proxy units at maximum capacity equals that by the base 

plus continuous solvent units at maximum capacity. Because all proxy units besides the vent and 
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solvent storage discharge units indicate operations in which electricity is generated and solvent is 

regenerated, the other proxy units’ heat rates equal that of the base unit, or the gross heat rate of 

the generator prior to CCS retrofit. Since the vent while charging unit can only substitute for the 

base unit during charging, the vent while charging capacity equals that of the base unit.  

Gradual stored solvent charging over many hours would manifest as charging only at the 

first charging proxy unit, which is linked to electricity generation by the first discharging proxy 

unit. Thus, to allow maximum electricity generation while discharging stored lean solvent under 

such a charging profile, we set the maximum capacity of the first discharging unit equal to the 

maximum capacity achievable while discharging. The maximum electricity generation capacity 

of the second discharge unit is scaled down from the capacity of the first discharge unit to reflect 

the smaller storage capacity of the second tank relative to the first. Solvent outflow capacities of 

the tank proxy units allow each discharge proxy unit to reach its maximum capacity.  

The charging capacity of the first tank unit equals the amount of charging that can occur 

without venting emissions before net electricity generation by the flexible CCS generator equals 

zero. At the combined charging capacities of both charge proxy units, charging lean solvent 

accounts for the entire throughput capacity of the regenerator.  

CO2 emissions rates of proxy units primarily reflect whether CO2 is captured in each 

operational mode. Since we model emissions rates in units of emissions per unit of electricity 

generation, emissions rates also vary according to unit capacity. However, emissions rates of the 

charging and discharging units are the same, as the two sets of units jointly represent the same 

operations. Similarly, we set the emissions rates of the base CCS and continuous solvent proxy 

units to be equal, as both contribute to emissions under normal operations. We zero out SO2 
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emissions for all but the two vent units to capture SO2 removal requirements while using the 

CCS system.   

Two other key parameters for the proxy units are their MSL and ramp rates. In order to 

allow the proxy units to substitute for one another when generating electricity, we set the MSL 

for each proxy unit to zero and instead enforce MSL constraints on groups of proxy units. 

Regarding ramp rates, we set the ramping capability of the discharge and venting generators to 

4% of net capacity per minute [3]–[5], [7], which exceeds the ramp rate (1.5-1.7%) of the less-

flexible base proxy unit.  

 

Table B.4: Key parameters for flexible CCS proxy units and coal-fired generator pre-CCS 

retrofit. 

 
Unit in Model Maximum Capacity (MWh) Heat Rate 

(MMBtu/MWh) 

CO2 Emissions Rate 

(ton/MWh) 

Coal-Fired 

Generator  Pre-

CCS Retrofit 

PMAX
PreCCS

 HRGROSS
PreCCS

 ERPreCCS
 

Flexible CCS Proxy Units 

Base CCS PMAX
CCS = PMAX

PreCCS * (1 - 

CPCCS)  

HRCCS = 

HRGROSS
PreCCS 

ERCCS =  ERPreCCS * (1-

ERRCCS) * PMAX
PreCCS / 

(PMAX
CCS + EMAX

ContSolvent) 

Continuous 

Solvent  

EMAX
ContSolvent = PMAX

CCS/EGrid HRContSolvent = 

HRCCS 

ERContSolvent = ERCCS
 

Discharge Stored 

Lean Solvent 1 

PMAX
Discharge1 = PMAX

PreCCS * (1 - 

CPDischarge) 

HRDischarge1 = 

HRCCS * (1 + 

HRPDischarge) 

ERDischarge1 =  ERPreCCS * 

(1-ERRCCS) * PMAX
PreCCS / 

PMAX
Discharge1  

Stored Lean 

Solvent Tank 1 

FMAX
Tank1

 = (PMAX
CCS-1) / EGrid / 

(1 + EContSolvent)† 

 

OMAX
Tank1 = PMAX

Discharge1 / 

EDischarge 

HRLean1 = 1 0 

Charge Stored 

Lean Solvent 1 

MMAX
Charge1 = FMAX

Tank1
 HRCharge1 = 

HRCCS 

ERCharge1 = ERCCS 

Stored Lean 

Solvent Tank 2 

OMAX
Tank2 = FMAX

Tank2 = 

EMAX
ContSolvent – FMAX

Tank1 

HRLean2 = 1 0 

Charge Stored 

Lean Solvent 2 

MMAX
Charge2 = FMAX

Tank2
 HRCharge2 = 

HRCCS 

ERCharge2 = ERCharge1 

Discharge Stored 

Lean Solvent 2 

PMAX
Discharge2 = PMAX

Discharge1 * 

FMAX
Tank2

 / (FMAX
Tank1+FMAX

Tank2)  

HRDischarge2 = 

HRDischarge1
 

ERDischarge2 = ERDischarge1 
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Vent PMAX
Vent = PMAX

PreCCS * (1 - 

CPDischarge) †† 

HRVent = 

HRDischarge1  

ERVent = ERPreCCS * 

PMAX
PreCCS / PMAX

Vent 

Vent while 

Charging 

PMAX
VentCharge = PMAX

CCS HRVentCharge = 

HRCCS 

ERVentCharge =  ERPreCCS * 

PMAX
PreCCS / PMAX

VentCharge – 

ERCharge1 * (MMAX
Charge1 + 

MMAX
Charge2) / PMAX

VentCharge 
 

† We subtract 1 from PMAX
CCS to avoid shutting down the base CCS proxy unit, which would 

force the shutdown of all proxy units at the flexible CCS generator, per the below constraints. 

 

B.4.2: Proxy Unit Operational Constraints 

In order to force the ten proxy units to jointly operate like a single flexible CCS 

generator, we formulate a series of constraints on groups of proxy units. These constraints act in 

addition to individual unit constraints, such as that electricity generation by each proxy unit 

cannot exceed its maximum capacity.  

 

B.4.2.1: Electricity Generation and Solvent Regeneration Constraints 

Since generation at the base proxy unit represents net electricity generation while 

capturing CO2, generation at the base unit decreases with stored lean solvent charging at the first 

tank unit, which decreases continuous solvent regeneration.  

𝑝𝐶𝐶𝑆,𝑡 ≤ 𝑃𝐶𝐶𝑆
𝑀𝐴𝑋 − 𝐸𝐺𝑟𝑖𝑑 ∗ (1 + 𝐸𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡) ∗ 𝑓𝑇𝑎𝑛𝑘1,𝑡    (1) 

In order to account for energy used in to capture CO2 emissions, continuous solvent regeneration 

increases with net electricity generation at the base CCS proxy unit and charging of stored lean 

solvent at the first tank proxy unit. Charging at the second tank proxy unit, though, directly 

replaces continuous solvent regeneration.  

𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 =
1

𝐸𝐺𝑟𝑖𝑑 ∗ 𝑝𝐶𝐶𝑆,𝑡 + 𝐸𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡 ∗ 𝑓𝑇𝑎𝑛𝑘1,𝑡 − 𝑓𝑇𝑎𝑛𝑘2,𝑡   (2) 

Net electricity generation at the discharge proxy units reflect stored lean solvent outflows at the 

tank proxy units.  
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𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 = 𝐸𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑜𝑇𝑎𝑛𝑘1,𝑡       (3) 

𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 = 𝐸𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∗ 𝑜𝑇𝑎𝑛𝑘2,𝑡       (4) 

Energy consumption while charging at the charge proxy units reflect stored lean solvent inflows 

at the tank proxy units.  

𝑚𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 = 𝑓𝑇𝑎𝑛𝑘1,𝑡         (5) 

𝑚𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡 = 𝑓𝑇𝑎𝑛𝑘2,𝑡         (6) 

Stored lean solvent inflows and outflows and continuously regenerated solvent must be less than 

the regenerator throughput capacity, or the continuous solvent unit capacity. 

𝑓𝑇𝑎𝑛𝑘1,𝑡 + 𝑜𝑇𝑎𝑛𝑘1,𝑡 + 𝑓𝑇𝑎𝑛𝑘2,𝑡 + 𝑜𝑇𝑎𝑛𝑘2,𝑡 + 𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 ≤ 𝑂𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡
𝑀𝐴𝑋   (7) 

 

B.4.2.2: Reserve Provision Constraints 

 The final set of constraints limit the reserves provided by the flexible CCS units. First, 

the tank, charging, and continuous solvent units cannot provide any reserves, as none of these 

units provide electricity to the grid. 

𝑟𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 = 𝑟𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡 = 0        (8) 

𝑟𝑇𝑎𝑛𝑘1,𝑡 = 𝑟𝑇𝑎𝑛𝑘2,𝑡 = 0        (9) 

𝑟𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 = 0         (10) 

The discharge units cannot offer more reserves than the volume of stored lean solvent; any 

reserves in excess of that value they would unable to be able to provide if called upon.     

𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 ≤ 𝑒𝑣𝐿𝑒𝑎𝑛1,𝑡        (11) 

𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤ 𝑒𝑣𝐿𝑒𝑎𝑛2.𝑡        (12) 

Reserves that can be offered by the base proxy unit are constrained by the spare 

throughput capacity of the solvent regenerator: 
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𝑟𝐶𝐶𝑆,𝑡 ≤ (𝐸𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡
𝑀𝐴𝑋 − 𝑒𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 − 𝑚𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 − 𝑚𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡) ∗ 𝐸𝐺𝑟𝑖𝑑  (13) 

Note that in the next constraint, energy consumed by the charging units – which equals energy 

stored in the tank units – can be offered as reserves at the discharge units. To avoid double 

counting this energy consumption in reserves, we do not allow the base CCS unit to provide 

reserves based on energy consumed at the charging units.  

We also create several group reserve provision constraints, such that reserves offered by 

all units cannot exceed the offer value of the solvent storage discharge components, the most 

flexible components of a flexible CCS system. Implicit in the inclusion of this constraint is that 

we assume that during charging, the generator can still offer reserves at the solvent storage 

discharge generators. These reserves, moreover, would be met by reducing the CO2 capture 

system load, i.e. by reducing continuously regenerated solvent and possibly solvent being 

regenerated for storage. If we assume that energy used to charge solvent cannot be used in 

reserve offers, then the constraints below would not include a term on the right-hand side for the 

pump load at pump units 1 and 2.  

For the discharging units, offered reserves embody two sources of greater electricity: 

shifting energy from solvent regeneration to electricity generation and increased generation at the 

CCS unit, which also leads to greater continuous solvent generation that can be shifted to 

electricity generation during discharging. For every increase in electricity output at the CCS unit, 

energy use at the continuous solvent unit increases by: 

∆𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡 = ∆𝑝𝐶𝐶𝑆 ∗
1

𝐸𝐺𝑟𝑖𝑑
        (14) 

Possible reserves from discharging or venting are therefore: 

𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = ∆𝑝𝐶𝐶𝑆 + ∆𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡 + 𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡 = ∆𝑝𝐶𝐶𝑆 ∗ (1 +
1

𝐸𝐺𝑟𝑖𝑑
) + 𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡   

(15) 
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Substituting the maximum possible increase in CCS generation during the reserve timeframe 

yields the max reserves that can be supplied by the discharge unit. However, the max possible 

increase in CCS could either be based on its spare capacity, if spare capacity is less than its ramp 

rate over the reserve timeframe, or its max ramp rate over the reserve timeframe. We translate 

this, which is essentially a minimum function, into two constraints: 

𝑟𝐶𝐶𝑆,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤ 𝑅𝐶𝐶𝑆
𝑀𝐴𝑋 ∗ (1 +

1

𝐸𝐺𝑟𝑖𝑑) + 𝑜𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 + 𝑜𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 +

                              𝑜𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡             (16) 

𝑟𝐶𝐶𝑆,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤ (𝑃𝐶𝐶𝑆
𝑀𝐴𝑋 − 𝑝𝐶𝐶𝑆,𝑡) ∗ (1 +

1

𝐸𝐺𝑟𝑖𝑑) + 𝑝𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 +

                              𝑜𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑜𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡       (17) 

 Finally, we include a group reserve constraint limiting reserves from all proxy units to the 

maximum reserves that could be offered by the discharge unit. 

𝑟𝐶𝐶𝑆,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤ 𝑅𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1
𝑀𝐴𝑋      (18) 

This ensures that reserves provided by the flexible CCS generator do not exceed the maximum 

reserves that can be offered by the most flexible component of the flexible CCS generator, 

namely the solvent storage discharge unit.  

 

B.4.2.3: Electricity Generation and Reserve Provision Constraint 

Net electricity generation and reserve provision by all eligible units are limited to the 

maximum electricity generation of the first discharge unit, i.e. the maximum achievable net 

output by the flexible CCS generator in any operational mode.  

𝑝𝐶𝐶𝑆,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 + 𝑟𝐶𝐶𝑆,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤

                𝑃𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1
𝑀𝐴𝑋          (19) 
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The prior constraint also ensures that generation and reserves provided by the two discharging 

units does not exceed the capacity of discharge unit 1, which equals the capacity of the venting 

unit.  

 

B.4.2.4: Total Energy Use Constraint 

In order to limit reserve provision by the discharge unit during normal operations, we 

constrain total net electricity generation, provided reserves, and CO2 capture energy consumption 

by the maximum energy input during normal operations plus the extra generation achievable by 

discharging stored solvent relative to normal operations.  

𝑝𝐶𝐶𝑆,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 + 𝑟𝐶𝐶𝑆,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑟𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 +

                            𝑒𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 + 𝑚𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑚𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤ 𝑃𝐵𝑎𝑠𝑒
𝑀𝐴𝑋 + 𝑂𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡

𝑀𝐴𝑋 +

                           (𝑃𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1
𝑀𝐴𝑋 − 𝑃𝐵𝑎𝑠𝑒

𝑀𝐴𝑋) = 𝑂𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡
𝑀𝐴𝑋 + 𝑃𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1

𝑀𝐴𝑋     (20) 

 

B.4.2.5: Volume of Stored Lean Solvent 

As previously discussed, the storage volume of pump unit 1 is set equal to the maximum 

capacity of stored solvent at the flexible CCS generator, and the storage volume of pump unit 2 

is set equal to 2 hours of full pump load at pump unit 2. As such, the total storage volume at both 

pump units is greater than the desired maximum capacity of stored solvent based on our 2-hour 

storage assumption. Thus, a constraint is included that limits stored solvent at pump units 1 and 2 

to the desired stored volume capacity.  

𝑒𝑣𝑇𝑎𝑛𝑘1,𝑡
𝐿𝑒𝑎𝑛 + 𝑒𝑣𝑇𝑎𝑛𝑘2,𝑡

𝐿𝑒𝑎𝑛 ≤ 𝐸𝑉𝑇𝑎𝑛𝑘1
𝑀𝐴𝑋,𝐿𝑒𝑎𝑛

       (21) 
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B.4.2.6: On/Off Constraints 

 Several constraints limit when the flexible CCS proxy units can be turned on. For one, all 

flexible CCS units can only turn on when the base CCS unit is on. 

𝑢𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 − 𝑢𝐶𝐶𝑆,𝑡 ≤ 0        (22) 

𝑢𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 − 𝑢𝐶𝐶𝑆,𝑡 ≤ 0         (23) 

𝑢𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 − 𝑢𝐶𝐶𝑆,𝑡 ≤ 0        (24) 

Each solvent storage tank unit can only be on when the base CCS unit is on, and each tank unit 

can only either charge or discharge solvent at once. 

𝑢𝑇𝑎𝑛𝑘1,𝑡
𝑃𝑢𝑚𝑝 + 𝑢𝑇𝑎𝑛𝑘1,𝑡

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 ≤ 𝑢𝐶𝐶𝑆,𝑡       (25) 

𝑢𝑇𝑎𝑛𝑘2,𝑡
𝑃𝑢𝑚𝑝 + 𝑢𝑇𝑎𝑛𝑘2,𝑡

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 ≤ 𝑢𝐶𝐶𝑆.𝑡       (26) 

Finally, the second charge unit cannot turn on until the first charge unit is at maximum capacity. 

The denominator of the oCharge1 term includes a small adjustment to account for any rounding 

errors that may occur that would prevent the second charging unit from ever turning on.  

𝑢𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡 −
𝑜𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡

(𝑂𝐶ℎ𝑎𝑟𝑔𝑒1
𝑀𝐴𝑋 −0.05)

≤ 0       (27) 

 

 B.4.2.7: Minimum Load Constraints 

Several constraints enforce minimum stable loads on proxy units. For one, net electricity 

generation at all proxy units must exceed the generator’s steam turbine minimum load (30% of 

base unit capacity).  

𝑝𝐶𝐶𝑆,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 + 𝑝𝑉𝑒𝑛𝑡,𝑡 + 𝑝𝑉𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑔𝑒,𝑡  ≥ 𝑃𝐶𝐶𝑆,𝑆𝑇
𝑀𝐼𝑁 ∗ 𝑢𝐶𝐶𝑆,𝑡  

            (28) 
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Additionally, all energy input to the flexible CCS generator must exceed the generator’s boiler 

minimum load (40% of base unit capacity).  

𝑝𝐶𝐶𝑆,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑝𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 + 𝑝𝑉𝑒𝑛𝑡,𝑡 + 𝑝𝑉𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑔𝑒,𝑡 + 𝑒𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 +

                             𝑚𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑚𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡 ≥ 𝑃𝐶𝐶𝑆,𝐵𝑖𝑙𝑒𝑟
𝑀𝐼𝑁 ∗ 𝑢𝐶𝐶𝑆,𝑡    (29) 

During discharging, the minimum load of the base unit must be adjusted to a minimal non-zero 

value since discharging units displace generation at the base unit.  

𝑝𝐶𝐶𝑆,𝑡 ≥ 𝑃𝐶𝐶𝑆,𝑆𝑇
𝑀𝐼𝑁 ∗ 𝑢𝐶𝐶𝑆,𝑡 − (𝑢𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 +  𝑢𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡) ∗ (𝑃𝐶𝐶𝑆,𝑆𝑇

𝑀𝐼𝑁 − 1)  (30) 

 

 B.4.2.8: Ramping Constraints 

In our flexible CCS model, decreases in electricity generation at the base unit offset by an 

increase in electricity generation at the discharge unit implies no ramping at the flexible CCS 

generator as a whole. We therefore constrain ramping of proxy units in the aggregate.  

𝑐𝐶𝐶𝑆,𝑡 + 𝑐𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑐𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡 + 𝑐𝑉𝑒𝑛𝑡,𝑡 + 𝑐𝑉𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑔𝑒,𝑡 + 𝑐𝐶𝑜𝑛𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡,𝑡 +

                             𝑐𝐶ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑐𝐶ℎ𝑎𝑟𝑔𝑒2,𝑡 ≤ 𝐶𝐶𝐶𝑆
𝑀𝐴𝑋      (31) 

We also modify the constraint on ramping of the base CCS proxy unit depending on whether 

other flexible components are on. 

𝑐𝐶𝐶𝑆,𝑡 ≤ 𝐶𝐶𝐶𝑆
𝑀𝐴𝑋 + (𝑢𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1,𝑡 + 𝑢𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2,𝑡) ∗ 𝑃𝐶𝐶𝑆

𝑀𝐴𝑋    (32) 

 

B.4.2.9: Modeling Solvent Storage-Only Flexible CCS Generators 

In order to model flexible CCS equipped only with solvent storage, and not venting, we 

add one constraint to the model that prohibits the venting and venting while charging proxy units 

from turning on. 

𝑢𝑉𝑒𝑛𝑡,𝑡 + 𝑢𝑉𝑒𝑛𝑡𝐶ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ 0        (33) 
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B.4.2.10: Generic Pumped Hydropower Operational Constraints 

 This section provides the generic constraints on pumped hydropower operations included 

in our UCED model. We model solvent storage systems at each flexible CCS generator as a 

pumped hydropower facility. The head, or reservoir, of the pumped hydropower facility 

corresponds to the stored lean solvent, whereas the tail corresponds to stored rich solvent. 

Electricity generated while releasing water from the reservoir at the pumped hydropower facility 

is analogous to generating electricity while discharging stored lean solvent. Conversely, energy 

consumed in pumping water into the reservoir is analogous to energy consumed while charging 

stored lean solvent.  

 The inflow of water to the reservoir head is determined by the pump load. Note that in 

our solvent storage model, we set the heat rate (HR) and pump efficiency (PE) of the pumped 

hydropower unit to 1.  

𝑛𝑖,𝑡
𝐻𝐸𝐴𝐷 = 𝐻𝑅𝑖 ∗ 𝑃𝐸𝑖 ∗ 𝑚𝑖,𝑡        (34) 

𝑒𝑖,𝑡
𝑇𝐴𝐼𝐿 = 𝐻𝑅𝑖 ∗ 𝑃𝐸𝑖 ∗ 𝑚𝑖,𝑡        (35) 

The amount of water released from the reservoir determines the amount of electricity generated.  

𝑒𝑖,𝑡
𝐻𝐸𝐴𝐷 = 𝐻𝑅𝑖 ∗ 𝑝𝑖,𝑡         (36) 

𝑛𝑖,𝑡
𝑇𝐴𝐼𝐿 = 𝐻𝑅𝑖 ∗ 𝑝𝑖,𝑡          (37) 

The amount of energy left in the reservoir depends on inflows and outflows to and from the 

reservoir in time t and the end volume of the prior period. At t=1, the end volume of the last 

period of the prior optimization is input instead. For the first hour of the entire period for analysis 

with the UCED, e.g. hour 1 of 2030, EVi
HEAD equals the initial volume of the reservoir. 

𝑒𝑣𝑖,𝑡−1
𝐻𝐸𝐴𝐷 − 𝑒𝑣𝑖,𝑡

𝐻𝐸𝐴𝐷 − 𝑒𝑖,𝑡
𝐻𝐸𝐴𝐷 + 𝑛𝑖,𝑡

𝐻𝐸𝐴𝐷 = 0     ∀ 𝑡 > 1    (38) 
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𝐸𝑉𝑖
𝐻𝐸𝐴𝐷 − 𝑒𝑣𝑖,𝑡

𝐻𝐸𝐴𝐷 − 𝑒𝑖,𝑡
𝐻𝐸𝐴𝐷 + 𝑛𝑖,𝑡

𝐻𝐸𝐴𝐷 = 0     ∀ 𝑡 = 1    (39) 

The pump load is constrained by the pump capacity (PC), and pumping cannot occur if the pump 

unit is not on.  

𝑚𝑖,𝑡 ≤ 𝑃𝐶𝑖 ∗ 𝑢𝑖,𝑡
𝑃𝑢𝑚𝑝

         (40) 

The pump load cannot be less than zero. 

𝑚𝑖,𝑡 ≥ 0          (41) 

The pump and electricity generation units at the pumped hydropower facility cannot both be on 

at the same time. 

𝑢𝑖,𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 + 𝑢𝑖,𝑡

𝑃𝑢𝑚𝑝 ≤ 1        (42) 

 

B.5: GENERATOR FLEET CHARACTERISTICS  

 Table B.5 details the number and key parameters by generator type in the generator fleet. 

For a full description of how we construct the generator fleet, see Craig et al. [8]. 

 

Table B.5: Number of generators, average capacity, and capacity-weighted heat rate and CO2 

emission rate for each non-renewable generator type in the base fleet after generator aggregation, 

based on data from the U.S. Environmental Protection Agency [9]–[11]. 
 

Generator Type Fuel Type 

Number of 

Generators 

Average 

Capacity 

(MW) 

Capacity-

Weighted 

Heat Rate 

(Btu/kWh) 

Capacity-

Weighted CO2 

Emission Rate 

(kg/MWh) 

Biomass Biomass 26 25 15,090 1,410 

Coal Steam Coal 178 280 10,110 950 

Combined Cycle Natural Gas 171 135 7,370 420 

Combustion 

Turbine 

Oil 

32 172 17,060 1,220 

Combustion 

Turbine 

Natural Gas 

717 38 12,980 690 

Fossil Waste Fossil Waste 2 43 18,700 2,720 

IGCC Coal 6 163 8,920 740 
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Landfill Gas Landfill Gas 4 105 14,220 0 

Municipal Solid 

Waste 

Municipal Solid 

Waste 3 75 15,200 790 

Non-Fossil Waste Non-Fossil 23 5 8,270 0 

Nuclear Uranium 19 948 10,510 0 

O/G Steam Oil 5 51 14,870 1,060 

O/G Steam Natural Gas 43 73 13,000 1,030 

  

Table B.6 provides the total installed capacity and average fuel price by fuel type of the 

2030 base generator fleet to which we add normal or flexible CCS. Coal and natural gas fuel 

prices vary by generator. 

 

Table B.6: Total installed average fuel price and capacity by fuel type of the base fleet. 
 

Fuel Type Coal Natural Gas Oil Nuclear Wind Solar Other 

Fuel Price ($/GJ) 2.4 5.7 24.4 0.9 0 0 Varies 

Capacity (GW) 50.7 53.8 5.8 18 33.1 1.2 1.5 

 

 

B.6: CO2 PRICES USED TO ACHIEVE COMPLIANCE WITH THE MODERATE AND 

STRONG CO2 EMISSION LIMITS 

Table B.7 provides the CO2 prices necessary to comply with the moderate and strong 

CO2 emission limits for each installed capacity of normal or flexible CCS retrofits.  

 

Table B.7: CO2 price necessary to comply with the moderate or strong CO2 emission limit via re-

dispatching at each de-rated installed capacity of flexible or normal CCS. 

 

De-Rated Normal or 

Flexible CCS Capacity in 

Fleet (GW) 

CO2 Price to Comply with 

Moderate Emission Limit 

($/ton) 

CO2 Price to Comply with 

Strong Emission Limit 

($/ton) 

1.5 7 36 

3 4 33 
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B.7: FLEXIBLE CCS OPERATIONS WITH SOLVENT STORAGE AND VENTING  

 In order to demonstrate the venting capabilities of our flexible CCS model, here we 

describe the operations of flexible CCS equipped with venting and solvent storage under the 

moderate and strong CO2 emission constraints. Under the moderate constraint, re-dispatching 

from high- to low-CO2-emitting generators (due to the shadow CO2 price included in the UCED 

model) provides a sufficient and low cost means of meeting the CO2 emissions limit, so venting 

flue gas in order to operate the flexible CCS generator like a coal-fired generator without CCS 

minimizes system operational costs. Consequently, over 99% of net electricity output by flexible 

CCS generators occurs while venting CO2 emissions. Note that in the main text of this paper, 

flexible CCS does not have the option to vent CO2 emissions, so using the flexible CCS 

generator to provide net electricity and reserves to the grid while capturing CO2 minimizes 

system operational costs. Unlike the moderate emission limit, the strong emission limit results in 

higher re-dispatch costs, so flexible CCS becomes an economic strategy for reducing CO2 

emissions. Under this stronger emission constraint, more than 99% of net electricity output by 

flexible CCS generators equipped with venting and solvent storage occurs while they are not 

venting CO2 emissions.  

 

B.8: CAPACITY FACTORS OF CCS GENERATORS 

 Figure B.5 provides the capacity factors of each generator retrofit with normal and 

flexible CCS under the moderate and strong CO2 emission limits. Because the CO2 price 

increases from the moderate to strong limit, the capacity factors of all CCS-equipped generators 

increase from the moderate to strong limit. Within a given scenario, individual units’ capacity 

factors vary depending on various parameters used by the unit commitment and economic 
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dispatch model in dispatching generators, e.g. marginal cost and minimum stable load. For 

instance, CCS generator “4078-4” generates the least electricity of all CCS generators under the 

moderate emission limit (Figure B.5) because it has the highest marginal cost of all CCS 

generators. 

 

 

Figure B.5: Capacity factors for each coal-fired generator retrofit with normal and flexible CCS 

at 1.5 or 3 GW of total installed CCS under the moderate CO2 emission limit (top) and strong 

CO2 emission limit (bottom).  
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B.9: SENSITIVITY TO HIGH NATURAL GAS PRICES 

In order to better understand the trade-off between normal and flexible CCS under the 

moderate emission limit, we test the sensitivity of our results to high natural gas prices by 

increasing the generator fleet’s capacity-weighted natural gas price from $5.4 per MMBtu to 

$6.5 per MMBtu. For this sensitivity analysis, we only consider flexible CCS equipped with a 2 

hour solvent storage tank size. By making coal-fired generators more economic relative to 

natural gas-fired generators, higher natural gas prices lead to greater shadow CO2 prices 

necessary to comply with the moderate emission limit. Shadow CO2 prices equal $15 and $7 per 

ton with 1.5 and 3 GW of CCS installed, respectively. Note that the former shadow CO2 price 

exceeds those under the lower natural gas price moderate emission limit scenarios, whereas the 

latter CO2 price equals that in the lower natural gas price, 3 GW CCS, moderate emission limit 

scenario.  

Utilization of normal and flexible CCS generators increases with natural gas price (Figure 

B.6). Notably, with 1.5 GW CCS installed, utilization of generator ‘4078-4’ increases by roughly 

20% from normal to flexible CCS, a greater increase than at the lower natural gas price (Figure 

B.5). As in other scenarios, flexible CCS generators primarily use stored solvent for reserve 

provision under high natural gas prices (Figure B.7). Consequently, reserve provision by flexible 

CCS generators exceeds that by normal CCS generators by 9 to 80 times. With respect to 

electricity generation, at 3 GW CCS, flexible CCS generators use stored solvent for some 

electricity generation, but most (96-99%) electricity generation occurs during normal operations 

(i.e., not while discharging stored solvent). Overall electricity generation by CCS generators 

increases from normal to flexible CCS by roughly 6% with 1.5 GW CCS installed, primarily due 
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to increased utilization of generator ‘4078-4.’ Conversely, electricity generation by CCS 

generators decreases from normal to flexible CCS by roughly 2% with 3 GW CCS installed.  

 At best guess solvent storage capital costs, annual total system costs decrease by $19-58 

million from normal to flexible CCS (Figure B.8). Unlike at lower natural gas prices, electricity 

generation cost reductions ($13-40 million) exceed reserve cost reductions ($9-25 million). High 

natural gas prices increase electricity generation costs more than reserve provision costs.  

Consequently, while greater reserve provision from normal to flexible CCS reduces reserve 

costs, the shift from reserve provision to electricity generation by non-CCS generators yields a 

greater reduction in electricity generation costs. Total operational cost reductions significantly 

exceed stored solvent capital costs, resulting in reduced total system costs.  

 System CO2 emissions increase by 1 million ton from normal to flexible CCS at 3 GW 

CCS installed, but remain largely unchanged at 1.5 GW CCS. Utilization of CCS generators, 

which is driven by natural gas and shadow CO2 price, explains these divergent outcomes. At 1.5 

GW CCS, utilization of CCS generators, particularly ‘4078-4’, significantly increases from 

normal to flexible CCS. Since CCS generators have lower CO2 emission rates than non-CCS 

coal- or gas-fired generation, greater CCS generation reduces system CO2 emissions. At the 

same time, greater reserve provision from normal to flexible CCS enables greater electricity 

generation by coal-fired generators, increasing CO2 emissions. These two effects offset each 

other, leading to no change in system CO2 emissions. At 3 GW CCS, however, utilization of 

CCS generators does not significantly increase from normal to flexible CCS. Thus, greater 

electricity generation and consequent CO2 emissions by coal-fired generators leads to an overall 

increase in system CO2 emissions, as seen under the moderate emission limit at lower natural gas 

prices.  
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 Figure B.9 compares changes in system CO2 emissions and total costs, including 

uncertainty in stored solvent capital costs, from normal to flexible CCS. Across solvent storage 

capital costs, annual total system costs decrease from normal to flexible CCS by $5-65 million, 

while CO2 emissions do not change and increase by 1 million ton with 1.5 and 3 GW CCS 

installed, respectively. Thus, in the 3 GW CCS and high natural gas price scenario, system CO2 

emissions increase more and system costs decrease more from normal to flexible CCS relative to 

the moderate emission limit scenarios at lower natural gas prices. In the 1.5 GW CCS high 

natural gas price scenario, though, system CO2 emissions increase less and system costs decrease 

less from normal to flexible CCS relative to the moderate emission limit scenarios at lower 

natural gas prices. However, given that the shadow CO2 price in the 1.5 GW CCS high natural 

gas price scenario ($15/ton) exceeds those at the moderate emission limit and lower natural gas 

price scenarios ($7/ton and $3/ton), the 1.5 GW CCS and high natural gas price scenario is not 

directly comparable to the moderate emission limit scenarios at lower natural gas prices. Rather, 

the 1.5 GW CCS and high natural gas price scenario actually lies between the lower natural gas 

price moderate and strong emission limit scenarios. In fact, changes in system costs and CO2 

emissions from normal to flexible CCS in the 1.5 GW CCS high natural gas price scenario 

bridge those under the moderate and strong emission limits at lower natural gas prices.  
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Figure B.6: Capacity factors for each coal-fired generator retrofit with normal and flexible CCS 

at 1.5 or 3 GW of total installed CCS under moderate emission limit and high natural gas price. 

 

 

Figure B.7: Annual net electricity output and reserve provision by operational mode for 1.5 and 3 

GW of normal and flexible CCS generators under the moderate emission limit and high natural 

gas price.  
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Figure B.8: Change in electricity generation, start-up, and reserve costs, best guess annualized 

solvent storage capital costs, and the sum of all four (annual total system costs), with 1.5 or 3 

GW of flexible CCS instead of normal CCS under the moderate emission limit and high natural 

gas prices. 

 

Figure B.9: Annual change in total operational plus capital costs versus annual change in CO2 

emissions with an equal installed capacity of flexible CCS relative to normal CCS for solvent 

storage tank sizes under the moderate emission limit and high natural gas prices. Negative values 

indicate reductions with flexible CCS relative to normal CCS. Error bars indicate uncertainty in 

solvent storage capital costs.  
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APPENDIX C:  

SUPPLEMENTAL INFORMATION FOR CHAPTER 4 
 

C.1: INITIAL GENERATOR FLEET 

 C.1.1: Parameters Added to Initial Generator Fleet 

To construct our 2015 generator fleet, we begin with generators located in ERCOT and 

operational in 2015 in the National Electric Energy Data System (NEEDS) Version 5.15 [1]. 

Because NEEDS lacks data required in our capacity expansion and unit commitment and 

economic dispatch models, we add carbon dioxide (CO2) emission rates [2], variable operation 

and maintenance (O&M) costs [3], and unit commitment parameters (i.e., ramp rate, minimum 

down time, start cost, and minimum stable level) [4] to generators.  

We obtain unit commitment parameters – minimum stable load (MSL), minimum down 

time, start-up costs, and ramp rates – for existing generators from PHORUM [4], a price-

validated reduced form UCED model of PJM [5]. Unit commitment parameters vary by plant 

and fuel type and, in some cases in order to capture nonlinearities in unit commitment parameter 

values for some plant types, plant size. Table C.1 provides the unit commitment parameter 

values used in our model.   

 

Table C.1: Unit commitment parameter values by plant and fuel type and plant size, if 

applicable, used in our model. Parameters for coal-fired and natural gas combined cycle 

generators pertain to coal-fired generators without and with CCS. 
 

Unit 

Commitment 

Parameter Plant and Fuel Type Plant Size Value 

Minimum Stable 

Load (% of total 

capacity) 

Oil-fired combustion and O/G steam turbine All 25% 

Wind and solar PV All 0% 

Nuclear  All 90% 
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All other generators All 40% 

Ramp Rate (Up 

and Down) (% 

of total capacity) 

Coal  >150 MW 0.3%/min. 

Coal  

Natural gas combined cycle 

Natural gas combined cycle 

Combustion turbine (natural gas and oil) 

O/G steam turbine (natural gas and oil) 

Landfill gas, biomass, non-fossil waste, wind, 

and solar PV 

<150 MW 

>100 MW 

<100 MW 

All 

All 

All 

0.6%/min. 

0.5%/min. 

1.1%/min. 

0.6%/min. 

0.4%/min. 

1.7%/min. 

Nuclear All 0.1%/min. 

Startup Costs 

($2012, as 

multiple of 

nameplate 

capacity) 

Coal All 100x 

Natural gas combined cycle All 100x 

Combustion turbine (natural gas and oil) All 25x 

Wind and solar PV All 0 

Non-fossil waste All 100x 

Landfill gas All 50x 

Biomass All 100x 

Nuclear  All 500x 

O/G Steam (natural gas and oil) All 100x 

Minimum Down 

Time (hours) 

Coal >150 MW 12 

Coal <150 MW 6 

Nuclear  All 20 

Natural gas combined cycle All 4 

Combustion turbine (natural gas and oil) <60 MW 1 

Combustion turbine (natural gas and oil) 60-140 MW 2 

Combustion turbine (natural gas and oil) >140 MW 3 

Landfill gas All 4 

Biomass All 4 

Non-fossil waste All 4 

Wind and solar PV All 0 

O/G Steam (natural gas and oil) All 7 

 

We assign variable operation and maintenance (VOM) costs to generators in the initial 

fleet using plant-type-specific values from the Annual Energy Outlook (AEO) (Table C.2) [6]. 

We assume O/G steam generators have the same VOM cost as coal steam generators and that 

landfill gas and non-fossil waste generators have the same VOM cost as municipal solid waste 

generators.  
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Table C.2: VOM costs by plant type. 
 

Plant Type Capacity-weighted VOM Cost ($2012/MWh) 

Coal Steam 4.5 

Wind 0 

Solar PV 0 

NGCC 3.6 

Non-Fossil Waste 5.3 

Nuclear 2.1 

Landfill Gas 8.8 

Biomass 5.3 

O/G Steam 4.5 

CT 15.5 

 

C.1.2: Hydropower Operations 

Given the small installed capacity of hydropower (0.5 GW) in our generator fleet and the 

significant computational requirements to model hydro-thermal coordination, we subtract hourly 

hydropower generation from demand, then remove hydropower generators from the initial 

generator fleet. To calculate hourly hydropower generation, we determine average monthly 

generation for each hydropower plant from 2011 to 2014 [7] and assume each generator operates 

at a constant capacity factor across hours in each month [8]. 

 

C.1.3: Fleet Compression 

After removing hydropower generators, we compress the initial generator fleet by 

aggregating small (<75 MW) generators into combined generators less than 300 MW in size. We 

aggregate generators based on two features. First, we aggregate generators within each of the 

following plant types: landfill gas, natural gas-fired combustion turbine (CT), oil-fired CT, 

natural gas-fired O/G steam turbine, oil-fired O/G steam turbine, and natural gas combined cycle. 

Second, in order to model age-based retirements of combined generators, we aggregate 

generators that came online in the same decade beginning with 1975 – 1985. Heat rates and CO2 
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emission rates of combined generators equal the capacity-weighted heat rates and CO2 emission 

rates of their constituent generators. We assign all other parameters to combined generators 

based on their plant and fuel types.  

 

C.1.4: Summary Statistics for Initial Generator Fleet 

Table C.3 provides key summary statistics by plant type of the initial generator fleet after 

compression. The fleet consists of 319 generators with a total capacity of 92.6 GW. Combustion 

turbines are 99.5% natural-gas-fired and 0.5% oil-fired by capacity.  

 

Table C.3: Key summary statistics for initial generator fleet after compression. NGCC and CT 

stand for natural gas combined cycle and combustion turbine, respectively. 
 

Plant Type 

Total 

Installed 

Capacity 

(GW) 

Number of 

Generators 

Average 

Capacity 

(MW) 

Capacity-

weighted 

Heat Rate 

(Btu/kWh) 

Capacity-

weighted CO2 

Emissions 

Rate 

(lb/MMBtu) 

Coal Steam 19 34 559 10,560 226 

Wind 13.8 94 147 0 0 

Solar PV 0.3 15 22 0 0 

NGCC 33.2 99 335 7,520 118 

Non-Fossil Waste 0.1 8 14 11,770 213 

Nuclear 5 4 1240 10,460 0 

Landfill Gas 0.1 3 32 13,770 118 

Biomass 0.2 2 106 14,530 0 

O/G Steam 15.1 40 377 12,170 119 

CT 5.8 20 291 12,290 118 

 

 

C.2: FUEL PRICES 

 Table C.4 provides fuel prices used in our analysis. We obtain uranium prices from the 

AEO 2015 reference case [9]; landfill gas and non-fossil waste prices from the U.S. 
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Environmental Protection Agency’s Integrated Planning Model documentation [10]; and all other 

prices from the AEO 2016 reference case [3].  

 

Table C.4: Fuel prices by year used in our analysis. 
 

Fuel Prices ($2012/MMBtu) 2015 2025 2035 2045 

Coal 2.1 2.2 2.2 2.3 

Natural gas 3.2 5.2 5.2 5.2 

Oil 14.6 20.6 25.6 28.5 

Uranium 0.8 0.9 1.0 1.0 

Landfill gas 0.0 0.0 0.0 0.0 

Non-fossil waste 0.0 0.0 0.0 0.0 

Biomass 1.8 1.8 1.8 1.8 

  

 

C.3: ANALYSIS OF REPRESENTATIVENESS OF 2015 DEMAND PROFILE 

 Since we ground our analysis in 2015, we use 2015 hourly demand for ERCOT in our 

analysis. This section compares ERCOT hourly demand in 2013 [11], 2014 [12], and 2015 [13] 

to understand how representative 2015 demand is of demand in other years. Table C.5 provides 

annual total and peak hourly demand for each year. Total and peak demand are less than 5% 

greater in 2015 than in 2013 and 2014, respectively. Figure C.1 provides monthly total demand 

for each year. Monthly demand in 2014 and 2015 differs by at most 4% in all months except 

July, when 2015 demand exceeds that in 2014 by 7%. Monthly demand in 2013 tends to be 

lower than 2014 and 2015, such that total demand in January and July are 13% and 10% lower, 

respectively, in 2013 than 2015.  

Comparing hourly data, Figure C.2 provides average demand by hour of day for each 

year. Average hourly demand profiles share a similar shape between years, indicating daily 

demand patterns do not significantly differ between years. Hourly demand in 2015 is also highly 



196 

 

correlated with that in 2013 (0.79) and 2014 (0.80). Overall, aggregate and hourly demand is 

similar between 2013, 2014, and 2015, indicating that 2015 demand is broadly representative of 

demand in other years.  

 

Table C.5: Annual total and hourly peak electricity demand in ERCOT in 2013, 2014, and 2015. 
 

Year Annual Total Demand (thousand GWh) Annual Peak Hourly Demand (GWh) 

2013 331.7 67.3 

2014 340.1 66.5 

2015 347.5 69.6 
 

 

Figure C.1: Total electricity demand by month in 2013, 2014, and 2015 in ERCOT. 
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Figure C.2: Average demand by hour of day for the entire year in 2013, 2014, and 2015. For 

instance, in 2015, average demand at noon across all days equaled roughly 42 GWh.  

 

 

C.4: CAPACITY EXPANSION (CE) MODEL FORMULATION 

 In order to account for variable wind and solar generation in generator addition decisions, 

our CE model includes unit commitment constraints using a grouped integer approach [14]. 

Additionally, since we set regulation and flexibility reserve requirements based on wind and 

solar generation, the CE model includes regulation and flexibility reserve requirements as 

variables. 

Table C.6: Variables, parameters, and sets used in CE formulation. 
 

Variable Definition 

nc Number of new generators built of plant type c 

gc,t Electricity generation above minimum stable load by all new generators of 

plant type c at time t (MWh) 

gi,t Electricity generation above minimum stable load by generator i at time t 

(MWh) 

pc,t Electricity generation by all new generators of plant type c at time t (MWh) 

pi,t Electricity generation by generator i at time t (MWh) 

rc,t
CNT Contingency reserves provided by all new generators of plant type c at time t 

(MWh) 

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
v
er

ag
e 

H
o
u
rl

y
 D

em
an

d
 

(G
W

h
)

Hour of Day

2013

2014

2015



198 

 

rc,t
CNT Contingency reserves provided by generator i at time t (MWh) 

rc,t
FLX Flexibility reserves provided by all new generators of plant type c at time t 

(MWh) 

rc,t
FLX Flexibility reserves provided by generator i at time t 

rc,t
REG Regulation up reserves provided by all new generators of plant type c at time 

t (MWh) 

ri,t
REG Regulation up reserves provided by generator i at time t (MWh) 

rrt
CNT Required contingency reserves at time t (MWh) 

rrt
FLX Required flexibility reserves at time t (MWh) 

rrt
REG Required regulation up reserves at time t (MWh) 

uc,t Number of new generators of plant type c that are on at time t 

ui,t Binary variable indicating on/off state of generator i at time t, where 1 

indicates on {0,1} 

vc,t Number of new generators of plant type c that turn on at time t 

vi,t Binary variable indicating generator i turns on at time t {0,1} 

wc,t Number of new generators of plant type c that turn off at time t 

wi,t Binary variable indicating generator i turns off at time t {0,1} 

  

Parameter Definition 

CFcr,t
 Capacity factor of renewable plant type cr at time t 

CRFc Capital recovery factor of plant type c 

Dc Lifetime of plant type c (year) 

ECO2

MAX Annual CO2 emission cap (tons) 

ERc
CO2  CO2 emission rate of plant type c (ton/MMBtu) 

ERi
CO2  CO2 emission rate for generator i (ton/MMBtu) 

FCc Fuel cost of plant type c ($/MMBtu)  

FCi Fuel cost for generator i ($/MMBtu)  

FOMc Annual fixed operation and maintenance costs of plant type c ($/MW) 

HRc Heat rate of plant type c (MMBtu/MWh) 

HRi Heat rate for generator i (MMBtu/MWh) 

M Planning reserve margin as fraction of demand 

Nc
MAX Maximum number of new generators that can be built of plant type c 

OCc Operating cost of plant type c ($/MWh) 

OCi Operating cost of generator i ($/MWh) 

OCCc Overnight capital cost of plant type c ($/MW) 

Pt
D Electricity demand at time t (MWh) 

Pc
MAX Maximum electricity generation capacity of plant type c (MWh) 

Pi
MAX

 Maximum electricity generation capacity of generator i (MWh) 

Pt
MAX,SOLAR Maximum electricity generation by all existing solar generators at time t 

(MWh) 

Pt
MAX,WIND Maximum electricity generation by all existing wind generators at time t 

(MWh) 

Pc
MIN Minimum stable load of plant type c (MWh) 

Pi
MIN Minimum stable load of generator i (MWh) 

Q Discount rate 
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Rt
FLX Required flexibility reserves at time t without additional wind or solar 

capacity (MWh) 

Rt
REG Required regulation up reserves at time t without additional wind or solar 

capacity (MWh) 

REc
CNT Plant type c eligible (1) or not (0) to provide contingency reserves 

REi
CNT Generator i eligible (1) or not (0) to provide contingency reserves 

REc
FLX Plant type c eligible (1) or not (0) to provide flexibility reserves 

REi
FLX Generator i eligible (1) or not (0) to provide flexibility reserves 

REc
REG Plant type c eligible (1) or not (0) to provide regulation up reserves 

REi
REG Generator i eligible (1) or not (0) to provide regulation up reserves 

RIt
FLX,SOLAR Incremental flexibility reserve requirement per MW of additional solar 

capacity (MWh/MW) 

RIt
FLX,WIND Incremental flexibility reserve requirement per MW of additional wind 

capacity (MWh/MW) 

RIt
REG,SOLAR Incremental regulation up reserve requirement per MW of additional solar 

capacity (MWh/MW) 

RIt
REG,WIND Incremental regulation up reserve requirement per MW of additional wind 

capacity (MWh/MW) 

RLc Hourly ramp limit of plant type c (MWh) 

RLi Hourly ramp limit of generator i (MWh) 

RRt
CNT Required contingency reserves at time t (MWh) 

RSCNT Scalar that translates hourly ramp limit to ramp limit over contingency 

reserve timeframe 

RSFLX Scalar that translates hourly ramp limit to ramp limit over flexibility reserve 

timeframe 

RSREG Scalar that translates hourly ramp limit to ramp limit over regulation reserve 

timeframe 

SUc Start-up cost for plant type c ($) 

SUi Start-up cost for generator i ($) 

Ui,b Binary parameter indicating whether generator is on or off in hour preceding 

time block b 

VOMc Variable operation and maintenance costs of plant type c ($/MWh) 

VOMi Variable operation and maintenance costs of generator i ($/MWh) 

Wb Scaling factor from number of representative hours included in CE model for 

time block b to number of total hours in time block b 

  

Set Definition 

b Time blocks (peak net demand and ramp days plus four seasons); b∈B 

c Potential new plant types; c∈C 

cr Potential new renewable plant types; subset of C 

ct Potential new thermal plant types; subset of C 

cw Potential new wind plant type; subset of C 

cs Potential new solar plant type; subset of C 

i Existing generators in fleet; i ∈ I 
io Existing solar generators in fleet; subset of I 

iw Existing wind generators in fleet; subset of I 
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t Time indices in optimization horizon; t∈T 

tb Time indices in time block b; subset of T 

tp Time index of peak demand; subset of T 

 

C.4.1: Objective Function 

The CE model minimizes annual total cost (TC [$]), which equals fixed plus variable 

electricity generation and start-up costs: 

𝑇𝐶 =  ∑ 𝑛𝑐 ∗ 𝑃𝑐
𝑀𝐴𝑋 ∗ (𝐹𝑂𝑀𝑐 + 𝑂𝐶𝐶𝑐 ∗ 𝐶𝑅𝐹𝑐)

𝑐

+ ∑ (𝑊𝑏 ∑ (∑ 𝑝𝑐,𝑡𝑏
∗ 𝑂𝐶𝑐 +  𝑣𝑐,𝑡𝑏

∗ 𝑆𝑈𝑐

𝑐𝑡𝑏∈𝑇𝑏𝑏

+ ∑ 𝑝𝑖,𝑡𝑏
∗ 𝑂𝐶𝑖 + 𝑣𝑖,𝑡𝑏

∗ 𝑆𝑈𝑖

𝑖

))                ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶          (1) 

where c, b, t, and i index potential new plant types, time blocks, time intervals, and existing 

generators, respectively; n = number of new generators built; PMAX = maximum capacity [MW]; 

FOM = fixed operation and maintenance (O&M) costs [$/MW/year]; OCC = overnight capital 

cost [$/MW]; CRF = capital recovery factor; W = scaling factor from number of representative to 

total hours in time block; p = electricity generation [MWh]; OC = operational cost [$/MWh]; vi = 

binary variable indicating generator turns on; vc = number of generators that turn on; and SU = 

start-up cost [$]. OC is defined for new and existing generators as: 

𝑂𝐶 = 𝑉𝑂𝑀 + 𝐻𝑅 ∗ 𝐹𝐶          (2) 

where VOM = variable O&M costs [$/MWh], HR = heat rate [MMBtu/MWh], and FC = fuel 

cost [$/MMBtu]. CRF is defined as: 

𝐶𝑅𝐹𝑐 =
𝑄

1 − (
1

(1 + 𝑄)𝐷𝑐
)

          (3) 
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where Q = discount rate and D = plant lifetime. 

  

C.4.2: System Build, Generation, Capacity, and Reserve Constraints 

The number of new generators built of plant type c is limited to a maximum value 

(NMAX): 

𝑛𝑐 ≤ 𝑁𝑐
𝑀𝐴𝑋         ∀𝑐 ∈ 𝐶          (4) 

Electricity generation must equal demand (PD [MWh]): 

𝑃𝑡
𝐷 = ∑ 𝑝𝑖,𝑡

𝑖

+ ∑ 𝑝𝑐,𝑡

𝑐

           ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶          (5) 

Additionally, sufficient capacity must exist to meet the planning reserve margin: 

(1 + 𝑀) ∗ 𝑃𝑡
𝐷 ≤ ∑ 𝑃𝑐𝑡

𝑀𝐴𝑋 ∗ 𝑛𝑐𝑡

𝑐𝑡∈𝐶𝑡

+ ∑ 𝑃𝑐𝑟
𝑀𝐴𝑋 ∗ 𝑛𝑐𝑟

∗ 𝐶𝐹𝑐𝑟,𝑡

𝑐𝑟∈𝐶𝑟

+ ∑ 𝑃𝑖
𝑀𝐴𝑋

𝑖∈(𝐼−𝐼𝑤−𝐼𝑜)

+ 𝑃𝑡
𝑀𝐴𝑋,𝑆𝑂𝐿𝐴𝑅

+ 𝑃𝑡
𝑀𝐴𝑋,𝑊𝐼𝑁𝐷         ∀ 𝑡 = 𝑇𝑝          (6) 

where ct and cr index new thermal and renewable plant types, respectively; iw and io index 

existing wind and solar generators, respectively; M = a fraction of peak demand; CF = capacity 

factor; PMAX,SOLAR = maximum aggregate generation by existing solar generators [MWh]; and 

PMAX, WIND = maximum aggregate generation by existing wind generators [MWh]. 

Provided regulation (rREG [MWh]), flexibility (rFLX [MWh]), and contingency (rCNT 

[MWh]) reserves must equal or exceed system requirements for regulation (rrREG [MWh]), 

flexibility (rrFLX [MWh]), and contingency (RRCNT [MWh]), respectively: 

∑ 𝑟𝑖,𝑡
𝑅𝐸𝐺

𝑖

+ ∑ 𝑟𝑐,𝑡
𝑅𝐸𝐺

𝑐

≥ 𝑟𝑟𝑡
𝑅𝐸𝐺           ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶           (7) 

∑ 𝑟𝑖,𝑡
𝐹𝐿𝑋

𝑖

+ ∑ 𝑟𝑐,𝑡
𝐹𝐿𝑋

𝑐

≥ 𝑟𝑟𝑡
𝐹𝐿𝑋          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶           (8) 
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∑ 𝑟𝑖,𝑡
𝐶𝑁𝑇

𝑖

+ ∑ 𝑟𝑐,𝑡
𝐶𝑁𝑇

𝑐

≥ 𝑅𝑅𝑡
𝐶𝑁𝑇          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶           (9) 

Regulation and flexibility reserve requirements vary with added wind and solar capacity:  

𝑟𝑟𝑡
𝑅𝐸𝐺 = 𝑅𝐼𝑡

𝑅𝐸𝐺,𝑆𝑂𝐿𝐴𝑅 ∗ 𝑛𝑐𝑠
∗ 𝑃𝑐𝑠

𝑀𝐴𝑋 + 𝑅𝐼𝑡
𝑅𝐸𝐺,𝑊𝐼𝑁𝐷 ∗ 𝑛𝑐𝑤

∗ 𝑃𝑐𝑤
𝑀𝐴𝑋 + 𝑅𝑡

𝑅𝐸𝐺       ∀𝑡 ∈ 𝑇, 𝑐𝑤 ∈ 𝐶𝑤, 𝑐𝑠

∈ 𝐶𝑠          (10) 

𝑟𝑟𝑡
𝐹𝐿𝑋 = 𝑅𝐼𝑡

𝐹𝐿𝑋,𝑆𝑂𝐿𝐴𝑅 ∗ 𝑛𝑐𝑠
∗ 𝑃𝑐𝑠

𝑀𝐴𝑋 + 𝑅𝐼𝑡
𝐹𝐿𝑋,𝑊𝐼𝑁𝐷 ∗ 𝑛𝑐𝑤

∗ 𝑃𝑐𝑤
𝑀𝐴𝑋 + 𝑅𝑡

𝐹𝐿𝑋        ∀𝑡 ∈ 𝑇, 𝑐𝑤 ∈ 𝐶𝑤, 𝑐𝑠

∈ 𝐶𝑠          (11) 

where cw and cs index new wind and solar plant types; RI = incremental regulation or flexibility 

reserve requirement per MW of additional wind or solar capacity [MWh/MW]; and R = initial 

regulation or flexibility reserve requirement [MWh].  

 

 C.4.3: Annual CO2 Emissions Cap 

Total CO2 emissions from new and existing generators cannot exceed the annual CO2 

emission cap (𝐸𝐶𝑂2

𝑀𝐴𝑋 [tons]): 

𝐸𝐶𝑂2

𝑀𝐴𝑋 ≥ ∑ (𝑊𝑏 ∑ (∑ 𝑝𝑖,𝑡 ∗ 𝐻𝑅𝑖 ∗ 𝐸𝑅𝑖
𝐶𝑂2

𝑖

+ ∑ 𝑝𝑐,𝑡 ∗ 𝐻𝑅𝑐 ∗ 𝐸𝑅𝑐
𝐶𝑂2

𝑐

)

𝑡∈𝑇𝑏

)

𝑏

   ∀ 𝑏 ∈ 𝐵, 𝑖 ∈ 𝐼, 𝑐

∈ 𝐶            (12) 

where 𝐸𝑅𝐶𝑂2 = CO2 emission rate [ton/MMBtu]. 

 

C.4.4: Generator-Specific Generation Constraints 

For existing generators, electricity generation is represented by two variables, total 

electricity generation (p [MWh]) and electricity generation above minimum stable load (g 

[MWh]) [15]: 
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𝑝𝑖,𝑡 = 𝑃𝑖
𝑀𝐼𝑁 ∗ 𝑢𝑖,𝑡 + 𝑔𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (13) 

𝑔𝑖,𝑡 ≤ (𝑃𝑖
𝑀𝐴𝑋 − 𝑃𝑖

𝑀𝐼𝑁) ∗ 𝑢𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (14) 

where PMIN = minimum stable load [MWh] and u = binary variable indicating the generator is on.  

Combined electricity generation by existing wind and solar generators is limited to aggregate 

wind and solar generation profiles: 

∑ 𝑝𝑖𝑤,𝑡

𝑖𝑤

≤ 𝑃𝑡
𝑀𝐴𝑋,𝑊𝐼𝑁𝐷          ∀ 𝑡 ∈ 𝑇, 𝑖𝑤 ∈ 𝐼𝑤          (15) 

∑ 𝑝𝑖𝑜,𝑡

𝑖𝑜

≤ 𝑃𝑡
𝑀𝐴𝑋,𝑆𝑂𝐿𝐴𝑅           ∀ 𝑡 ∈ 𝑇, 𝑖𝑜 ∈ 𝐼𝑜          (16) 

Existing generators’ electricity generation plus provided regulation, flexibility, and contingency 

reserves cannot exceed their maximum capacity: 

𝑝𝑖,𝑡 + 𝑟𝑖,𝑡
𝑅𝐸𝐺 + 𝑟𝑖,𝑡

𝐹𝐿𝑋 + 𝑟𝑖,𝑡
𝐶𝑁𝑇 ≤ 𝑃𝑖

𝑀𝐴𝑋          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (17) 

As with existing units, total electricity generation and electricity generation above 

minimum stable load represent electricity generation by new units. To implement a grouped 

integer unit commitment approach, combined electricity generation by all new generators of each 

plant type depends on the number of generators online (u): 

𝑝𝑐,𝑡 = 𝑃𝑐
𝑀𝐼𝑁 ∗ 𝑢𝑐,𝑡 + 𝑔𝑐,𝑡          ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶          (18) 

𝑔𝑐,𝑡 ≤ (𝑃𝑐
𝑀𝐴𝑋 − 𝑃𝑐

𝑀𝐼𝑁) ∗ 𝑢𝑐,𝑡          ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶          (19) 

Electricity generation by new renewable generators is constrained by capacity factors: 

𝑝𝑐𝑟,𝑡 ≤ 𝑢𝑐𝑟
∗ 𝑃𝑐𝑟

𝑀𝐴𝑋 ∗ 𝐶𝐹𝑐𝑟,𝑡                 ∀ 𝑡 ∈ 𝑇, 𝑐𝑟 ∈ 𝐶𝑟          (20) 

New generators’ electricity generation plus provided regulation, flexibility, and contingency 

reserves cannot exceed the combined maximum capacity of online generators: 

𝑝𝑐,𝑡 + 𝑟𝑐,𝑡
𝑅𝐸𝐺 + 𝑟𝑐,𝑡

𝐹𝐿𝑋 + 𝑟𝑐,𝑡
𝐶𝑁𝑇 ≤ 𝑃𝑐

𝑀𝐴𝑋 ∗ 𝑢𝑐,𝑡          ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶          (21)     
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C.4.5: Generator-Specific Reserve Provision Constraints  

Existing generators must be online and eligible to provide regulation, flexibility, or 

contingency reserves, and provided regulation, flexibility, and contingency reserves cannot 

exceed each generator’s ramp limit over the reserve timeframe: 

𝑟𝑖,𝑡
𝑅𝐸𝐺 ≤ 𝑅𝐸𝑖

𝑅𝐸𝐺 ∗ 𝑅𝐿𝑖 ∗ 𝑅𝑆𝑅𝐸𝐺 ∗ 𝑢𝑖,𝑡          ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇          (22) 

𝑟𝑖,𝑡
𝐹𝐿𝑋 ≤ 𝑅𝐸𝑖

𝐹𝐿𝑋 ∗ 𝑅𝐿𝑖 ∗ 𝑅𝑆𝐹𝐿𝑋 ∗ 𝑢𝑖,𝑡          ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇          (23) 

𝑟𝑖,𝑡
𝐶𝑁𝑇 ≤ 𝑅𝐸𝑖

𝐶𝑁𝑇 ∗ 𝑅𝐿𝑖 ∗ 𝑅𝑆𝐶𝑁𝑇 ∗ 𝑢𝑖,𝑡          ∀ 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇          (24) 

where RE = binary parameter indicating the generator can provide regulation, flexibility, or 

contingency reserves; RL = hourly ramp limit [MWh]; and RS = scalar that translate hourly ramp 

limit to ramp limit over the timeframe for regulation, flexibility, or contingency reserves.  

 Reserve provision constraints for new generators are similar to those for existing 

generators: 

𝑟𝑐,𝑡
𝑅𝐸𝐺 ≤ 𝑅𝐸𝑐

𝑅𝐸𝐺 ∗ 𝑅𝐿𝑖 ∗ 𝑅𝑆𝑅𝐸𝐺 ∗ 𝑢𝑐,𝑡          ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇          (25) 

𝑟𝑐,𝑡
𝐹𝐿𝑋 ≤ 𝑅𝐸𝑐

𝐹𝐿𝑋 ∗ 𝑅𝐿𝑖 ∗ 𝑅𝑆𝐹𝐿𝑋 ∗ 𝑢𝑐,𝑡          ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇          (26) 

𝑟𝑐,𝑡
𝐶𝑁𝑇 ≤ 𝑅𝐸𝑐

𝐶𝑁𝑇 ∗ 𝑅𝐿𝑖 ∗ 𝑅𝑆𝐶𝑁𝑇 ∗ 𝑢𝑐,𝑡          ∀ 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇          (27) 

 

 C.4.6: Ramp Constraints 

 Ramping constraints for new and existing generators are enforced between time periods 

within each time block b, but not between time blocks. For each existing generator, increases in 

electricity generation plus provided reserves cannot exceed the ramp limit: 

(𝑔𝑖,𝑡𝑏
+ 𝑟𝑖,𝑡𝑏

𝑅𝐸𝐺 + 𝑟𝑖,𝑡𝑏

𝐹𝐿𝑋 + 𝑟𝑖,𝑡𝑏

𝐶𝑁𝑇) − 𝑔𝑖,𝑡𝑏−1 ≤ 𝑅𝐿𝑖         ∀𝑡𝑏 > 1, 𝑖 ∈ 𝐼          (28) 

Decreases in electricity generation also cannot exceed the ramp limit: 

𝑔𝑖,𝑡𝑏−1 − 𝑔𝑖,𝑡𝑏
≤ 𝑅𝐿𝑖           ∀𝑡𝑏 > 1, 𝑖 ∈ 𝐼          (29) 
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For new generators, ramp up and down constraints account for the number of new 

generators that turn on (v) and off (w), respectively, and both account for the number of new 

generators online: 

(𝑔𝑐,𝑡𝑏
+ 𝑟𝑐,𝑡𝑏

𝑅𝐸𝐺 + 𝑟𝑐,𝑡𝑏

𝐹𝐿𝑋 + 𝑟𝑐,𝑡𝑏

𝐶𝑁𝑇) − 𝑔𝑐,𝑡𝑏−1 ≤ 𝑅𝐿𝑐 ∗ 𝑢𝑐,𝑡𝑏
+ 𝑃𝑐

𝑀𝐴𝑋 ∗ 𝑣𝑐,𝑡𝑏
         ∀𝑡𝑏 > 1, 𝑐

∈ 𝐶          (30) 

𝑔𝑐,𝑡𝑏−1 − 𝑔𝑐,𝑡𝑏
≤ 𝑅𝐿𝑐 ∗ 𝑢𝑐,𝑡𝑏

+ 𝑃𝑐
𝑀𝐴𝑋 ∗ 𝑤𝑐,𝑡𝑏

           ∀𝑡𝑏 > 1, 𝑐 ∈ 𝐶          (31) 

 

 C.4.7: Unit Commitment Constraints 

As with ramping constraints, unit commitment constraints are enforced between periods 

in each time block b, but not between time blocks. The commitment state (u) of each generator 

must be the same in the first and last period of each time block. For existing generators, the 

commitment state is linked to turn on and off decisions: 

𝑢𝑖,𝑡𝑏
= 𝑢𝑖,𝑡𝑏−1 + 𝑣𝑖,𝑡𝑏

− 𝑤𝑖,𝑡𝑏
          ∀𝑡𝑏 > 1, 𝑖 ∈ 𝐼          (32) 

where w = binary variable indicating the generator turns off. For tb = 1 in each time block, we set 

ut-1 equal to a fixed value (U) determined via a simple economic dispatch model that meets 

demand in that hour at least cost subject to generator-specific capacity constraints. This serves as 

a rough heuristic for whether generator i would be on or off at the beginning of each time block.  

𝑢𝑖,𝑡𝑏
= 𝑈𝑖,𝑏 + 𝑣𝑖,𝑡𝑏

− 𝑤𝑖,𝑡𝑏
          ∀𝑡𝑏 = 1, 𝑖 ∈ 𝐼          (33) 

In each time block, generators also cannot turn on until they reach their minimum down time 

(MDT [hours]):  

1 − 𝑢𝑖,𝑡𝑏
≥ 𝑤𝑖,𝑡𝑏−(𝑀𝐷𝑇𝑖−1) + 𝑤𝑖,𝑡𝑏−(𝑀𝐷𝑇𝑖−2) + ⋯ + 𝑤𝑖,𝑡𝑏

        ∀𝑡𝑏 > 𝑀𝐷𝑇𝑖 , 𝑖 ∈ 𝐼          (34) 

For new generators, a similar unit commitment constraint applies, but with integer rather 

than binary commitment variables: 
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𝑢𝑐,𝑡𝑏
= 𝑢𝑐,𝑡𝑏−1 + 𝑣𝑐,𝑡𝑏

− 𝑤𝑐,𝑡𝑏
          ∀𝑡𝑏 > 1, 𝑐 ∈ 𝐶          (35) 

Additionally, the number of new generators online cannot exceed the number of new generators 

built: 

𝑢𝑐,𝑡 ≤  𝑛𝑐          ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶          (36) 

Minimum down time constraints also apply to new generators: 

1 − 𝑢𝑐,𝑡𝑏
≥ 𝑤𝑐,𝑡𝑏−(𝑀𝐷𝑇𝑐−1) + 𝑤𝑐,𝑡𝑏−(𝑀𝐷𝑇𝑐−2) + ⋯ + 𝑤𝑐,𝑡𝑏

        ∀𝑡𝑏 > 𝑀𝐷𝑇𝑐, 𝑐 ∈ 𝐶          (37) 

 

 

C.5: PARAMETERS OF GENERATORS THAT CAN BE ADDED IN CE MODEL  

 The CE model determines generator additions of six plant types: coal steam with 

carbon capture and sequestration (CCS), natural gas combined cycle (NGCC), NGCC with CCS, 

nuclear, wind, and solar photovoltaic. Given New Source Performance Standards for CO2 

emissions that prohibit new construction of coal-fired generators without CCS [16], we do not 

allow for construction of new coal-fired generators without CCS in our model. Table C.7 and 

Table C.8 detail the parameters of each plant type eligible for addition in the CE model below. 

We obtain overnight capital costs, CO2 emission rates, fixed and variable operation and 

maintenance (O&M) costs, and heat rates from the National Renewable Energy Laboratory’s 

Annual Technology Baseline (ATB) [17]. Given Texas’s excellent wind resources [18], wind 

data used here corresponds to mid-range cost forecasts for onshore wind in techno-resource 

group 3. Solar PV used here corresponds to mid-range estimates for utility solar PV. Since 

capital expenditure and fixed O&M costs in the ATB decline over time to reflect declining costs 

of new technologies, we present 2025 and 2045 values as a range in Table C.7. To account for 

the Investment Tax Credit, we reduce ATB wind capital expenditures in 2020 by 21%, the 
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average credit available to large wind units from 2016 through 2019, and reduce ATB solar 

capital expenditures by 30% and 10% in and after 2020, respectively [19]. Wind and solar capital 

expenditure values in Table C.7 do not reflect these cost reductions.  

Given greater emphasis on flexible operational capabilities for new builds relative to 

existing generators, we obtain new-build-specific ramp rate and minimum load values from 

Black & Veatch [20]. Generator capacities equal those used in the U.S. Energy Information 

Administration’s AEO 2013 [6]. Finally, start cost & minimum down times are obtained from 

PHORUM [4], a price-validated reduced form UCED model of PJM [5].  

 

Table C.7: Key parameters of new technologies that can be added to the generator fleet by the 

CE model. Provided ranges are for 2020 to 2045 values. Capital expenditure values do not reflect 

the Investment Tax Credit. 
 

Plant Type 

Fuel 

Type 

Capacity 

(MW) 

Heat Rate 

(Btu/ 

kWh) 

Capital 

Expenditure 

(thousand 

$2012/MW) 

Fixed O&M 

(thousand 

$2012/MW/ 

year) 

Variable 

O&M 

($2012/MWh) 

Coal Steam 

CCS 

Coal 650 8,060 7,040 - 6,000 72 8.7 

NGCC Natural 

Gas 

400 6,370 1,000 - 900 14 2.9 

NGCC CCS Natural 

Gas 

340 7,270 2,040 - 1,660 31 6.8 

Nuclear Uranium 1117 10,170 6,180 - 5,420 92 1.9 

Wind Wind 100 0 1,650 - 1,550 49 - 46 0 

Solar PV Solar 20 0 1,410 - 870 8 0 
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Table C.8: Additional key parameters of new technologies that can be added to the generator 

fleet by the CE model. 
 

Plant Type 

CO2 Emissions 

Rate 

(lb/MMBtu) 

Minimum 

down time 

(hours) 

Ramp rate 

(MW/hour) 

Minimum 

load (MW) 

Start cost 

(thousand $2012) 

Coal Steam 

CCS 

20.5 12 780 260 66 

NGCC 119 4 1200 200 41 

NGCC CCS 11.9 4 1020 170 35 

Nuclear 0 20 3350 560 57 

Wind 0 0 100 0 0 

Solar PV 0 0 20 0 0 

 

Since the CE model runs for a single year, we annualize capital expenditures prior to 

input to the CE model using a capital recovery factor (CRF) for each plant type. We calculate the 

CRF as: 

𝐶𝑅𝐹𝑐 =  
𝑟 ∗ (1 + 𝑟)𝑛𝑐

(1 + 𝑟)𝑛𝑐 − 1
 

where c indexes plant type; r = discount rate (7%) [21]; and nc = plant lifetime (years). 

 

C.6: GENERATOR RETIREMENTS IN THE CE MODEL 

In order to account for generator retirements, we use two heuristics. First, we retire 

generators based on age before each CE run. Second, we retire generators based on economic 

performance before and after each CE run [22]. Age-based retirements occur when a generator’s 

age exceeds its lifetime. Table C.9 below provides lifetime by plant type for new and existing 

generators [23]. Since pre-existing transmission interconnections and other infrastructure would 

reduce development costs, we immediately replace wind, solar, geothermal, biomass, and 

hydropower units that retire with identical units [22]. Given the recent wave of coal-plant 

retirements driven by challenging economics [24] and the need to balance fixed costs with 
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operating profits, economic-based retirements occur only for coal-fired generators [22]. After 

each CE run, coal-fired generators retire when their capacity factor in the CE run is less than 0.3 

and the remaining fleet capacity would exceed the planning margin. This retirement threshold 

reflects that nearly 90% of coal-fired generators in ERCOT had capacity factors above 0.5 in 

2014 [2]. If a coal-fired generator should retire but doing so would prevent the system from 

maintaining the planning margin, that generator retires immediately prior to the next CE run. 

 

Table C.9: Lifetimes of new and existing generators by plant type. 

Plant Type 

Lifetime 

(years) 

Coal Steam 65 

Coal Steam CCS 65 

Combined Cycle 55 

Combined Cycle CCS 55 

Combustion Turbine 20 

Nuclear 60 

Biomass 40 

Wind 30 

Solar PV 20 

Non-Fossil Waste 40 

O/G Steam 55 

Landfill Gas 20 

 

C.7: SOLAR AND WIND ELECTRICITY GENERATION 

In order to capture spatial and temporal variability in output among wind and solar farms, 

we match wind and solar power plants to simulated wind and solar generation profiles from the 

U.S. National Renewable Energy Laboratory (NREL) [25], [26]. These wind and solar 

generation databases provide simulated generation profiles for hypothetical plants in Texas at 10- 

and 5-minute increments, respectively, for 2004-2006 and 2006, respectively. Given that the 

minimum, average, and maximum of average annual CFs across wind plants are similar in 2004 

(0.41, 0.44, and 0.47, respectively), 2005 (0.40, 0.44, and 0.47, respectively), and 2006 (0.39, 



210 

 

0.44, and 0.48, respectively), we use 2005 wind generation data. We aggregate generation data to 

hourly increments by calculating the average generation values for all time steps in each hour 

[27]. After excluding several solar plants with no generation data, hourly capacity factors for 

hypothetical wind and solar plants in Texas in the NREL dataset range from 41-46% and 15-

23%, respectively.  

For existing wind units in the CE and UCED models, we calculate the installed capacity 

of wind in our base fleet, and add wind farms from the NREL dataset to our fleet in order of 

decreasing capacity factor. Note that existing wind units in each CE and UCED model run 

include wind units added in previous CE runs. For instance, a wind unit added in the 2020 CE 

run is considered an existing wind unit in the 2025 CE and UCED runs. We perform the same 

process for existing solar units, which also include solar units added in CE runs prior to each CE 

and UCED run. Since we do not account for transmission in our CE and UCED models, each 

existing wind and solar unit varies only by capacity and hourly generation profile. As such, in 

order to improve the computational efficiency of both models, we combine existing wind and 

solar units into a single wind and solar unit by summing their capacities and hourly generation 

profiles.  

In order to maintain computational tractability, rather than inputting numerous potential 

new wind and solar units with unique generation profiles to the CE model, we instead determine 

capacity additions for one representative wind unit and one representative solar unit in the CE 

model. These representative units each have an hourly generation profile. To determine these 

generation profiles, we estimate capacity-weighted generation profiles for assumed capacities of 

wind and solar incremental to the existing capacities of wind and solar. We set these assumed 

capacities equal to 3 GW in order to balance two competing factors: first, the generation profile 
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should represent marginal investment in wind and solar, i.e. the next MW of additional wind and 

solar, but second, the CE model runs in 5-year intervals, so wind and solar investment in each 

period will be on the order of gigawatts.  To calculate the generation profiles for 3 GW of 

incremental wind and solar capacities, we temporarily remove wind and solar farms from the 

NREL datasets with a combined capacity equal to the existing fleet capacity in order of 

decreasing capacity factor. From the remaining wind and solar farms in the NREL datasets, we 

obtain hourly generation profiles for 3 GW of wind and solar in order of decreasing capacity 

factor, then calculate the capacity-weighted average hourly generation profile for those 

generators.  As discussed above, once wind or solar capacity is added by a CE model run, that 

wind and solar capacity is treated as “existing” capacity in future CE and UCED model runs. 

Consequently, that added wind and solar capacity is assigned a generation profile in future CE 

and UCED model runs per the prior paragraph. 

Note that in several scenarios, installed wind and/or solar capacities ultimately exceed 

total capacity in the NREL databases. In those cases, we cannot obtain generation profiles for 

additional wind and/or solar capacity for the CE model from the NREL databases, as no wind 

and/or solar capacities incremental to existing wind and solar capacities exists in the NREL 

databases. Consequently, we instead estimate generation profiles for additional wind and/or solar 

capacities as the capacity-weighted generation profiles of existing wind and/or solar units. 

Essentially, once total installed wind and/or solar capacities equal those in the NREL databases, 

we assume all future wind and/or solar investments will have the same generation profile as the 

capacity-weighted generation profile of all installed wind and solar.  
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C.8: CALCULATING RESERVE REQUIREMENTS  

To accommodate variable generation from wind and solar, the CE and UCED models 

include two reserve types, regulation and flexibility, that vary hourly based on wind and solar 

generation. Since the CE model optimizes for wind and solar additions, it considers regulation 

and flexibility reserve requirements as variables that depend on added wind and solar capacity. 

In the UCED model, when wind and solar capacity are fixed, regulation and flexibility reserve 

requirements are treated as parameters. To account for generator and transmission outages, the 

CE model also procures contingency reserves that vary with hourly load.   

To calculate hourly regulation, contingency, and flexibility reserve requirements used in 

our CE and UCED models, we follow the framework put forth in NREL’s Western Wind and 

Solar Integration Study (WWSIS) (Table C.10) [28]. The remainder of this section specifies how 

we calculate the wind and solar components in regulation and flexibility reserve requirements. 

The key inputs to the analyses are generation profiles for wind and solar based on NREL data, 

which differ between existing and new generators (see Section C.7).  

Since we input generation profiles for new and existing wind and solar generators into the 

CE model (but only for existing wind and solar generators into the UCED model), we use the 

same analytical framework described below to determine reserve requirements for existing and 

new generators. However, the form of reserve requirements differs between existing and new 

generators. For existing generators in the UCED and CE models, since installed capacity is fixed, 

the analytic framework below outputs total hourly reserve requirements for all existing wind and 

solar generators. For new generators, the CE model optimizes how much new wind and solar 

should be built. Consequently, reserve requirements output by the analytic framework below 

must accommodate a to-be-determined capacity of new wind and solar. To that end, we calculate 
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reserve requirements per unit of added wind and solar using the analytic framework below. 

Specifically, per Section C.7, in the CE model we calculate hourly reserve requirements for an 

assumed 3 GW of added wind and solar capacity using the below analytic framework, then 

divide those hourly reserve requirements by the assumed added capacity value of 3 GW.  

 

Table C.10: Formula and time scale of data used to calculate hourly reserve requirement for each 

reserve type included in the CE and UCED models. SR and WR indicate solar and wind 

components, whereas r and f index regulation and flexibility reserves. NA indicates not 

applicable.  
 

Type 

Formula to Calculate Reserve 

Requirement 

Demand 

Time 

Scale 

Wind 

Generation 

Time Scale 

Solar 

Generation 

Time Scale 

Regulation √(1% 𝑑𝑒𝑚𝑎𝑛𝑑)2 + 𝑆𝑅𝑟
2 + 𝑊𝑅𝑟

2 Hourly 10-minute 5-minute 

Flexibility 
√𝑆𝑅𝑓

2 + 𝑊𝑅𝑓
2 

NA Hourly Hourly 

Contingency 3% 𝑑𝑒𝑚𝑎𝑛𝑑 Hourly NA NA 

 

 

C.8.1: Wind Reserve Components 

To calculate the wind component in hourly regulation reserve requirements (WRr), we 

estimate the 2.5th percentile of wind power output forecast errors (hereafter “wind forecast 

errors”) as a function of wind power output. To estimate wind forecast error, we assume a 

persistence forecast [29], i.e. that wind power output will not change from one time period to the 

next [28]. With this assumption, wind forecast error equals the change in wind power output 

from one 10-minute period to the next. We pair each wind forecast error with total wind power 

output at the latter time period (e.g., we pair the wind forecast error from t=3 to t=4 with total 

wind power output at t=4). Doing so reveals that wind forecast error varies significantly with 

wind power output (Figure C.3). To account for the dependence of wind forecast error on wind 
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power output, we sort wind forecast error by wind power output, then segment the dataset into 10 

groups with equal numbers of wind forecast errors. For each group, we calculate the average 

power output and the 2.5th percentile of wind forecast error. (Note that regulation up must 

account for over-forecasts of wind power. Here, we define wind forecast error as the change in 

wind power output from one period to the next. Thus, over-forecasts equal negative error values 

in our calculation, so regulation up reserves correspond to the 2.5th, not 97.5th, percentile.) For 

each 10-minute wind power output value, we then interpolate between average power output 

values to obtain a power-output-specific estimate of the 2.5th percentile of wind forecast error. 

Since we interpolate between average values, many wind power output values are less than the 

minimum of the 10 average power output values we calculate. Similarly, many wind power 

output values are greater than the maximum of the 10 average power output values we calculate. 

In these cases, we cannot interpolate between average power output values to determine a power-

output-specific estimate of the 2.5th percentile of wind forecast error. Instead, we use the 2.5th 

percentile of wind forecast error for the closest average power output value. For instance, for 

wind power output values smaller than the minimum average power output value, we use the 

2.5th percentile of wind forecast error estimate for the minimum average power output value. 

Finally, we set hourly regulation reserve requirements equal to the absolute value of the 

minimum 2.5th percentile value in each hour. We use the same process as above to set the wind 

component in hourly flexibility reserve requirements (WRf), but use hourly wind power output 

data and the 15th percentile of wind forecast error.  
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Figure C.3: Wind power output forecast errors for a year of 10-minute wind power output data 

for 13.8 GW of wind capacity. Assuming a persistence forecast, we estimate wind forecast errors 

as the change in power output from one time period to the next.  
 

C.8.2: Solar Reserve Components 

To calculate the solar component in hourly regulation reserve requirements (SRr), we 

estimate the 2.5th percentile of solar power output forecast errors (hereafter “solar forecast 

errors”) as a function of relative time of day. To estimate solar forecast error, we assume a 

persistence forecast, so solar forecast error equals the change in solar power output from one 5-

minute period to the next. To account for predictable daily changes in solar generation (e.g., 

around sunrise and sunset) (Figure C.4), we exclude forecast errors overnight and around sunrise 

and sunset from further analysis. To do so, we divide our data into pairs of months, set sunrise 

and sunset as the earliest and latest times at which solar power output occurs in each month pair, 
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and exclude the 5 and 8 5-minute time periods succeeding and preceding sunrise and sunset, 

respectively. Given disparate trends in solar forecast errors pre- and post-midday (Figure C.4), 

we split the remaining errors in each month pair by whether they occur pre- or post-midday. For 

pre- and post-midday errors in each month pair, we estimate the 2.5th percentile of solar forecast 

error. We then set regulation reserve requirements for each hour equal to the absolute value of 

the 2.5th percentile of solar forecast error corresponding to the hour’s month and whether it falls 

pre- or post-midday. For hours straddling midday, we set the regulation reserve requirement 

equal to the greater regulation reserve requirement. We use the same process as above to set the 

solar component in hourly flexibility reserve requirements (SRf), but use hourly solar power 

output data; exclude 1 and 2 time periods succeeding and preceding sunrise and sunset, 

respectively; and use the 15th percentile of solar forecast error. 
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Figure C.4: Solar power output forecast errors for 326 MW solar for a year of 5-minute solar 

power output data by hour of day and grouped in pairs of months. Assuming a persistence 

forecast, we estimate solar forecast errors as the change in power output from one time period to 

the next. Boxes indicate 25th and 75th percentiles and whiskers indicate 0.5th and 99.5th percentile 

errors. 

 

 C.8.3: Time Series of Wind and Solar Generation and Reserve Requirements 

 Figure C.5 and Figure C.6 provide a sample time series of the wind and solar components 

of regulation and flexibility reserves, respectively, adjacent to wind and solar generation profiles. 

The solar component of both reserves assumes two values over the course of the day for pre- and 

post-midday hours. The solar component is greater post-midday than pre-midday because solar 

power output declines through sunset, leading to more over-forecasts of solar power output. The 
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solar component of both reserves equals zero overnight. The wind component of regulation and 

flexibility reserves varies with total wind power output, and is greatest at moderate wind power 

output values when forecast error is greatest (Figure C.3). Finally, Figure C.7 overlays 

regulation, flexibility, and contingency reserves. Over the illustrated period, contingency 

reserves tend to exceed flexibility reserves, which in turn exceed regulation reserves. 

 

Figure C.5: Time series of wind component of regulation reserve requirement (top), wind 

generation (second from top), solar component of regulation reserve requirement (second from 

bottom), and solar generation (bottom). Time series is for January 5th to 10th. 
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Figure C.6: Time series of wind component of flexibility reserve requirement (top), wind 

generation (second from top), solar component of flexibility reserve requirement (second from 

bottom), and solar generation (bottom). Time series is for January 5th to 10th. 



220 

 

 

Figure C.7: Time series of hourly regulation, flexibility, contingency, and total reserve 

requirements (top); hourly electricity demand (2nd from top); hourly wind generation (3rd from 

top); and hourly solar generation (bottom). 
 

 

C.9: SELECTION OF REPRESENTATIVE DAYS PER SEASON INCLUDED IN CE 

MODEL 

For computational tractability, we run the CE model in hourly intervals for two 

representative contiguous days per season, the day with peak annual net demand, and the day 

with the peak annual change in hourly net demand, where net demand equals demand minus 

solar and wind generation. By using net rather than total demand, we implicitly value the time-
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varying capacity of wind and solar units and the need for investment in flexible generation [30]. 

To select the representative days per season included in our CE model, we first divide the year 

into four seasons: winter (December - February), spring (March - May), summer (June - August), 

and fall (September - November). Since we already include peak annual demand and ramp days 

in the CE model, we remove them from the relevant season(s). For each season, we then 

determine the net load duration curve (NLDC) for the entire season and for each pair of 

contiguous days using wind and solar generation profiles. The pair of contiguous days with the 

lowest RMSE between their NLDC and the season’s NLDC [31], [32] serve as the representative 

days for that season in the CE model. Normalized RMSEs for all seasons and scenarios in our 

analysis range from 2-5%. To scale costs and emissions in the CE model to annual values, we 

multiply costs and emissions on each pair of representative days by the quotient of total demand 

over the representative days and the season [23]. 

 

 

C.10: UNIT COMMITMENT AND ECONOMIC DISPATCH (UCED) FORMULATION 

 Here, we provide the UCED formulation including storage units. For UCED runs without 

storage, storage sets, parameters, and constraints are eliminated. Like our CE model, our UCED 

model includes three reserve types (regulation, flexibility, and contingency). Our UCED model 

co-optimizes for regulation reserves. 

Table C.11: Variables, parameters, and sets used in UCED formulation. 

 

Variable Definition 

fis,t Energy inflows at storage unit is at time t (MWh) 

gi,t Electricity generation above minimum stable load by generator i at time t 

(MWh) 

nset Non-served energy at time t (MWh) 

pi,t Electricity generation by generator i at time t (MWh) 
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ri,t
CNT Contingency reserves provided by generator i at time t (MWh) 

ri,t
FLX Flexibility reserves provided by generator i at time t (MWh) 

ri,t
REG Regulation up reserves provided by generator i at time t (MWh) 

ui,t Binary variable indicating on/off state of generator i at time t, where 1 

indicates on {0,1} 

vi,t Binary variable indicating generator i turns on at time t {0,1} 

wi,t Binary variable indicating generator i turns off at time t {0,1} 

xis,t State of charge of storage unit is at time t (MWh) 

  

Parameter Definition 

CNSE Cost of non-served energy ($/MWh) 

ERi
CO2  CO2 emission rate for generator i (ton/MMBtu) 

ECCO2  CO2 emission cost ($/ton) 

Fis

MAX Maximum energy inflow capacity of storage unit is (MWh) 

FCi Fuel cost for generator i ($/MMBtu)  

Gi Electricity generation above minimum stable load by generator i in last hour 

of prior optimization period (MWh) 

HRi Heat rate for generator i (MMBtu/MWh) 

K Number of hours before which a generator can turn on in the current 

optimization horizon, based on when it shut off in the last optimization 

period and its MDT 

MDTi Minimum down time for generator i, which indicates the number of hours that 

must elapse before a generator can turn on once it shuts off (hours) 

OCi Operating cost of generator i ($/MWh) 

Pi Electricity generation by generator i in the last period of the prior 

optimization horizon (MWh) 

Pt
D Electricity demand at time t (MWh) 

Pi
MAX

 Maximum electricity generation capacity of generator i (MWh) 

Pt
MAX,SOLAR Maximum electricity generation by all solar generators at time t (MWh) 

Pt
MAX,WIND Maximum electricity generation by all wind generators at time t (MWh) 

Pi
MIN Minimum stable load of generator i (MWh) 

Rt
CNT Required contingency reserves at time t (MWh) 

Rt
FLX Required flexibility reserves at time t (MWh) 

Rt
REG Required regulation up reserves at time t (MWh) 

RCi
 Regulation up provision cost for generator i ($/MWh) 

REi
CNT Generator i eligible (1) or not (0) to provide contingency reserves 

REi
FLX Generator i eligible (1) or not (0) to provide flexibility reserves 

REi
REG Generator i eligible (1) or not (0) to provide regulation up reserves 

RLi Hourly ramp limit of generator i (MWh) 

RSCNT Scalar that translates hourly ramp limit to ramp limit over contingency 

reserve timeframe 

RSFLX Scalar that translates hourly ramp limit to ramp limit over flexibility reserve 

timeframe 

RSREG Scalar that translates hourly ramp limit to ramp limit over regulation reserve 

timeframe 

SUi Start-up cost for generator i ($) 
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Ui On/off state of generator i in the last period of the prior optimization horizon 

{0,1} 

VOMi Variable operation and maintenance cost of generator i ($/MWh) 

Xis  State of charge of storage unit is in the last period of the prior optimization 

horizon (MWh) 

Xis

MAX Max state of charge, i.e. electricity storage capacity, of storage unit is (MWh) 

Xis

MIN Minimum state of charge of storage unit is (MWh) 

ηis  Round-trip efficiency of storage unit is 

  

Set Definition 

i Generators in fleet; i∈I 

io Solar generators in fleet; subset of I 

in Non-storage generators in fleet; subset of I 

is Storage generators in fleet; subset of I 

iw Wind generators in fleet; subset of I 

t Time indices in optimization horizon; t∈T 

 

  

C.10.1: Objective Function 

 The UCED model minimizes total operational costs (TC), or the sum of electricity 

generation, reserve, start-up, and non-served energy costs: 

𝑇𝐶 = ∑ 𝑝𝑖,𝑡 ∗ 𝑂𝐶𝑖 + 𝑣𝑖,𝑡 ∗ 𝑆𝑈𝑖 +  𝑟𝑖,𝑡
𝑅𝐸𝐺 ∗ 𝑅𝐶𝑖

𝑖,𝑡

+ ∑ 𝑛𝑠𝑒𝑡 ∗ 𝐶𝑁𝑆𝐸

𝑡

          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (1)  

where i and t index generators and time, respectively; p = electricity generation [MWh]; OC = 

operating cost [$/MWh]; v = binary variable indicating the generator turns on; SU = start-up cost 

[$]; rREG = provided regulation up reserves [MWh]; RC = regulation up reserve cost [$/MWh]; 

nse = non-served energy [MWh]; and CNSE = cost of non-served energy [$/MWh]. Operating 

costs (OC) equal: 

𝑂𝐶𝑖 = 𝐻𝑅𝑖 ∗ (𝐹𝐶𝑖 + 𝐸𝑅𝑖
𝐶𝑂2 ∗ 𝐸𝐶𝐶𝑂2) + 𝑉𝑂𝑀𝑖          (2)  

where HR = heat rate [MMBtu/MWh]; FC = fuel cost [$/MMBtu]; 𝐸𝑅𝐶𝑂2 = CO2 emission rate 

[ton/MMBtu]; 𝐸𝐶𝐶𝑂2= CO2 emission cost [$/ton]; and VOM = variable operation and 

maintenance costs [$/MWh]. 
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C.10.2: System-wide Electricity Demand and Reserve Requirement Constraints 

 Electricity generation plus non-served energy must equal system-wide demand (PD 

[MWh]) plus energy inflows to storage units (f [MWh]) in each time period: 

∑ 𝑝𝑖,𝑡

𝑖∈𝐼

+ 𝑛𝑠𝑒𝑡 = 𝑃𝑡
𝐷 + ∑ 𝑓𝑖𝑠,𝑡

𝑖𝑠∈𝐼𝑠

          ∀𝑡 ∈ 𝑇          (3) 

Provided regulation, flexibility (rFLX [MWh]), and contingency (rCNT [MWh]) reserves must 

equal or exceed required regulation (RREG [MWh]), flexibility (RFLX [MWh]), and contingency 

(RCNT [MWh]) reserves, respectively, in each time period: 

∑ 𝑟𝑖,𝑡
𝑅𝐸𝐺

𝑖

≥ 𝑅𝑡
𝑅𝐸𝐺           ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼           (4) 

∑ 𝑟𝑖,𝑡
𝐹𝐿𝑋

𝑖

≥ 𝑅𝑡
𝐹𝐿𝑋          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (5) 

∑ 𝑟𝑖,𝑡
𝐶𝑁𝑇

𝑖

≥ 𝑅𝑡
𝐶𝑁𝑇          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼           (6) 

 

C.10.3: Generator-Specific Generation Constraints 

Electricity generation is represented by two variables, total generation (p [MWh]) and 

generation above minimum stable load (g [MWh]) [15]: 

𝑝𝑖,𝑡 = 𝑃𝑖
𝑀𝐼𝑁 ∗ 𝑢𝑖,𝑡 + 𝑔𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (7) 

𝑔𝑖,𝑡 ≤ (𝑃𝑖
𝑀𝐴𝑋 − 𝑃𝑖

𝑀𝐼𝑁) ∗ 𝑢𝑖,𝑡          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼          (8) 

where PMIN = minimum stable load [MWh] and u = binary variable indicating the generator is on 

(1) or off (0). Combined electricity generation by wind (Iw) and solar (Io) generators is limited to 

aggregate wind (PMAX,WIND [MWh]) and solar (PMAX,SOLAR [MWh]) generation profiles: 

∑ 𝑝𝑖𝑤,𝑡

𝑖𝑤

≤ 𝑃𝑡
𝑀𝐴𝑋,𝑊𝐼𝑁𝐷          ∀ 𝑖𝑤 ∈ 𝐼𝑤, 𝑡 ∈ 𝑇          (9) 
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∑ 𝑝𝑖𝑜,𝑡

𝑖𝑜

≤ 𝑃𝑡
𝑀𝐴𝑋,𝑆𝑂𝐿𝐴𝑅           ∀𝑖𝑜 ∈ 𝐼𝑜 , 𝑡 ∈ 𝑇          (10) 

For each generator, electricity generation plus regulation, flexibility, and contingency reserve 

provision cannot exceed maximum capacity: 

𝑝𝑖,𝑡 + 𝑟𝑖,𝑡
𝑅𝐸𝐺 + 𝑟𝑖,𝑡

𝐹𝐿𝑋 + 𝑟𝑖,𝑡
𝐶𝑁𝑇 ≤ 𝑃𝑖

𝑀𝐴𝑋          ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼           (11)   

 

 C.10.4: Generator-Specific Reserve Provision Constraints for Non-Storage Units 

Non-storage generators must be online and eligible to provide regulation, flexibility, or 

contingency reserves, and cannot provide reserves in excess of their ramp limit over the reserve 

timeframe: 

𝑟𝑖𝑛,𝑡
𝑅𝐸𝐺 ≤ 𝑅𝐸𝑖𝑛

𝑅𝐸𝐺 ∗ 𝑅𝐿𝑖𝑛
∗ 𝑅𝑆𝑅𝐸𝐺 ∗ 𝑢𝑖𝑛,𝑡          ∀ 𝑖𝑛 ∈ 𝐼𝑛, 𝑡 ∈ 𝑇          (12) 

𝑟𝑖𝑛,𝑡
𝐹𝐿𝑋 ≤ 𝑅𝐸𝑖𝑛

𝐹𝐿𝑋 ∗ 𝑅𝐿𝑖𝑛
∗ 𝑅𝑆𝐹𝐿𝑋 ∗ 𝑢𝑖𝑛,𝑡          ∀ 𝑖𝑛 ∈ 𝐼𝑛, 𝑡 ∈ 𝑇          (13) 

𝑟𝑖𝑛,𝑡
𝐶𝑁𝑇 ≤ 𝑅𝐸𝑖𝑛

𝐶𝑁𝑇 ∗ 𝑅𝐿𝑖𝑛
∗ 𝑅𝑆𝐶𝑁𝑇 ∗ 𝑢𝑖𝑛,𝑡          ∀ 𝑖𝑛 ∈ 𝐼𝑛, 𝑡 ∈ 𝑇          (14) 

where RE = binary parameter indicating a generator can provide regulation, flexibility, or 

contingency reserves; RL = hourly ramp limit [MWh]; and RS = scalar that translates an hourly 

ramp limit to a ramp limit over the timeframe of regulation, flexibility, or contingency reserves.  

 

 C.10.5: Ramp Constraints 

 Up and down ramp constraints limit changes in electricity generation above minimum 

stable load plus provided regulation, flexibility, and contingency reserves: 

(𝑔𝑖,𝑡 + 𝑟𝑖,𝑡
𝑅𝐸𝐺 + 𝑟𝑖,𝑡

𝐹𝐿𝑋 + 𝑟𝑖,𝑡
𝐶𝑁𝑇) − 𝑔𝑖,𝑡−1 ≤ 𝑅𝐿𝑖         ∀𝑡 > 1, 𝑖 ∈ 𝐼          (15) 

𝑔𝑖,𝑡−1 − 𝑔𝑖,𝑡 ≤ 𝑅𝐿𝑖           ∀𝑡 > 1, 𝑖 ∈ 𝐼          (16) 
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In the first time period, electricity generation above minimum stable load in the prior period 

equals generation above minimum stable load from the final hour of the last optimization horizon 

(G [MWh]): 

(𝑔𝑖,𝑡 + 𝑟𝑖,𝑡
𝑅𝐸𝐺 + 𝑟𝑖,𝑡

𝐹𝐿𝑋 + 𝑟𝑖,𝑡
𝐶𝑁𝑇) − 𝐺𝑖 ≤ 𝑅𝐿𝑖         ∀𝑡 = 1, 𝑖 ∈ 𝐼          (17) 

𝐺𝑖 − 𝑔𝑖,𝑡 ≤ 𝑅𝐿𝑖           ∀𝑡 = 1, 𝑖 ∈ 𝐼          (18) 

In the first UC run, Gi equals zero for all generators.  

 

 C.10.6: Unit Commitment Constraints 

Whether a generator is on or off depends on turn on and turn off decisions: 

𝑢𝑖,𝑡 = 𝑢𝑖,𝑡−1 + 𝑣𝑖,𝑡 − 𝑤𝑖,𝑡          ∀𝑡 > 1, 𝑖 ∈ 𝐼          (19) 

where w = binary variable indicating the generator turns off. In the first period, the commitment 

state in the prior period equals the commitment state in the last period of the prior UC run (U): 

𝑢𝑖,𝑡 = 𝑈𝑖,𝑡 + 𝑣𝑖,𝑡 − 𝑤𝑖,𝑡          ∀𝑡 = 1, 𝑖 ∈ 𝐼          (20) 

In the first UC run, Ui,t equals zero for all generators. Generators also cannot turn on until they 

reach their minimum down time (MDT [hours]):  

1 − 𝑢𝑖,𝑡 ≥ 𝑤𝑖,𝑡−(𝑀𝐷𝑇𝑖−1) + 𝑤𝑖,𝑡−(𝑀𝐷𝑇𝑖−2) + ⋯ + 𝑤𝑖,𝑡        ∀𝑡 > 𝐾𝑖, 𝑖 ∈ 𝐼          (21) 

To account for shut downs in the prior optimization window, carried hours of minimum down 

time from the prior UC run (K) are enforced:  

𝑢𝑖,𝑡 ≤ 0        ∀𝑡 ≤ 𝐾𝑖, 𝑖 ∈ 𝐼           (22)   

 

 C.10.7: Storage Constraints 

 For storage units (Is), state of charge (x [MWh]) depends on the prior period’s state of 

charge, electricity discharge (p [MWh]), and energy inflow times round-trip efficiency (𝜂): 
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𝑥𝑖𝑠,𝑡 = 𝑥𝑖𝑠,𝑡−1 − 𝑝𝑖𝑠,𝑡 + 𝜂 ∗ 𝑓𝑖𝑠,𝑡          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 > 1          (23) 

In hour 1, the state of charge in the prior period equals the state of charge in the final period of 

the prior UC run (X [MWh]): 

𝑥𝑖𝑠,𝑡 = 𝑋𝑖𝑠
− 𝑝𝑖𝑠,𝑡 + 𝜂 ∗ 𝑓𝑖𝑠,𝑡          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 = 1          (24) 

In the first UC run, X equals half of each unit’s maximum state of charge. The state of charge can 

vary between maximum (XMAX [MWh]) and minimum (XMIN [MWh]) values: 

𝑥𝑖𝑠,𝑡 ≤ 𝑋𝑖𝑠

𝑀𝐴𝑋          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 ∈ 𝑇          (25) 

𝑥𝑖𝑠,𝑡 ≥ 𝑋𝑖𝑠

𝑀𝐼𝑁          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 ∈ 𝑇          (26) 

Energy inflows cannot exceed maximum values (FMAX [MWh]), and can only occur when the 

storage unit is not generating electricity: 

𝑓𝑖𝑠,𝑡 ≤ 𝐹𝑖𝑠

𝑀𝐴𝑋 ∗ (1 − 𝑢𝑖𝑠,𝑡)          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 ∈ 𝑇          (27) 

For each storage unit, energy inflow capacity equals electricity generation capacity.   

Electricity discharge plus regulation, flexibility, and contingency reserve provision 

cannot exceed the state of charge: 

𝑝𝑖𝑠,𝑡 + 𝑟𝑖𝑠,𝑡
𝑅𝐸𝐺 + 𝑟𝑖𝑠,𝑡

𝐹𝐿𝑋 + 𝑟𝑖𝑠,𝑡
𝐶𝑁𝑇 ≤ 𝑥𝑖𝑠,𝑡          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 ∈ 𝑇          (28) 

Like other units, reserve provision by storage units is limited by ramp limits over the reserve 

timeframe. However, unlike other units, storage units do not have to be online to provide 

reserves: 

𝑟𝑖𝑠,𝑡
𝑅𝐸𝐺 ≤ 𝑅𝐸𝑖𝑠

𝑅𝐸𝐺 ∗ 𝑅𝐿𝑖𝑠
∗ 𝑅𝑆𝑅𝐸𝐺           ∀𝑡 ∈ 𝑇,  𝑖𝑠 ∈ 𝐼𝑠           (29) 

𝑟𝑖𝑠,𝑡
𝐹𝐿𝑋 ≤ 𝑅𝐸𝑖𝑠

𝐹𝐿𝑋 ∗ 𝑅𝐿𝑖𝑠
∗ 𝑅𝑆𝐹𝐿𝑋          ∀𝑡 ∈ 𝑇,  𝑖𝑠 ∈ 𝐼𝑠          (30)   

𝑟𝑖𝑠,𝑡
𝐶𝑁𝑇 ≤ 𝑅𝐸𝑖𝑠

𝐶𝑁𝑇 ∗ 𝑅𝐿𝑖𝑠
∗ 𝑅𝑆𝐶𝑁𝑇          ∀𝑡 ∈ 𝑇,  𝑖𝑠 ∈ 𝐼𝑠           (31)   



228 

 

Rather, storage units can provide reserves while charging and discharging electricity. 

Specifically, provided reserves cannot exceed energy inflows plus spare electricity discharge 

capacity: 

𝑟𝑖𝑠,𝑡
𝑅𝐸𝐺 + 𝑟𝑖𝑠,𝑡

𝐹𝐿𝑋 + 𝑟𝑖𝑠,𝑡
𝐶𝑁𝑇 ≤ (𝑢𝑖𝑠,𝑡 ∗ 𝑃𝑖𝑠,𝑡

𝑀𝐴𝑋 − 𝑝𝑖𝑠,𝑡) + 𝑓𝑖𝑠,𝑡          ∀ 𝑖𝑠 ∈ 𝐼𝑠, 𝑡 ∈ 𝑇          (32) 

 

 

C.11: ECONOMIC DISPATCH MODEL FOR CONVERTING CO2 CAP TO CO2 PRICE 

In order to account for carbon constraints in the UCED model, we use a simple economic 

dispatch (ED) model to convert each year’s CO2 emission limit to a shadow CO2 price input to 

the UCED model [8]. Specifically, the ED model determines the shadow CO2 price at which 

annual CO2 emissions comply with the relevant annual CO2 emission limit.  The ED model 

minimizes total energy costs subject to the constraints that supply equals demand and each 

generator’s electricity generation varies between zero and its maximum capacity [8], [33]. Total 

energy costs are defined as: 

𝑇𝐶 =  ∑ 𝑝𝑖,𝑡 ∗ 𝑂𝐶𝑖

𝑖,𝑡

 

where i and t index generators and time; p = electricity generation [MWh]; and OC = operating 

cost [$/MWh], which accounts for fuel, variable operations and maintenance, and CO2 emission 

costs. We determine hourly wind and solar generation using the same hourly capacity factors 

from the National Renewable Energy Laboratory as used in the UCED model [25], [26], and 

remove wind and solar generation from demand prior to running the ED model.  
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C.12: SCENARIO DETAILS 

Table C.12 provides the annual CO2 emission limit imposed in the CE model in each year 

under the moderate and strong decarbonization targets.  

 

Table C.12: Annual CO2 emission limit (in million tons) imposed under each decarbonization 

target by year in the CE model. No CO2 emission limit is enforced in 2015. 
 

Decarbonization Target 2020 2025 2030 2035 2040 2045 

Moderate 162.9 150.4 137.8 125.3 112.8 100.2 

Strong 157.9 140.3 122.8 105.3 87.7 70.2 

 

For the low natural gas scenario, Table C.13 provides the natural gas prices used in our 

analysis, which we obtain from AEO 2016’s high oil and gas scenario [3].    

 

Table C.13: Natural gas prices in the low natural gas price scenario. 
 

Year 2020 2025 2030 2035 2040 2045 

Natural Gas Price ($2012/MMBtu) 3.4 3.5 3.8 3.5 3.1 3.1 

 

 For the high storage capacity scenario, in which we deploy 1.5 GW storage rather than 

0.5 GW storage, we assume the storage unit has the same power to energy ratio as in the 0.5 GW 

scenarios. Consequently, when participating only in the energy market, we assume an 81% 

efficient 1.5 GW / 12 GWh storage unit. When participating in only reserve markets and in both 

energy and reserve markets, we assume an 81% efficient 1.5 GW / 6 GWh storage unit. 
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C.13: SHADOW CO2 PRICES ENFORCED IN AND ANNUAL CO2 EMISSIONS 

OUTPUT BY UCED MODEL 

 Table C.14 provides the shadow CO2 prices enforced in the UCED model for each year. 

Since we enforce no CO2 emission limit in 2015, shadow CO2 prices in that year equal zero. 

Under the moderate decarbonization target, shadow CO2 prices decrease over time as wind, 

solar, and natural gas combined cycle (NGCC) capacities increase. Under the strong 

decarbonization target, though, the shadow CO2 price increases despite growth in wind, solar, 

and NGCC capacities in order to meet the tight CO2 emission limit.  Since we determine shadow 

CO2 prices by running the UCED model without storage, they do not change based on whether 

storage is included in the fleet or based on which market storage participates in. 

 

Table C.14: Shadow CO2 price (in $/ton) enforced in the UCED model in each year and 

decarbonization target in order to comply with the annual CO2 emission limit. 
 

Decarbonization Target 2015 2025 2035 2045 

Moderate 0 13 12 11 

Strong 0 16 17 43 

 

Table C.15 provides annual CO2 emissions output by the UCED model without storage 

for each year and decarbonization target. Annual CO2 emissions output by the UCED model 

exceed the relevant CO2 emission limit (see Table C.12) in 2025 and 2045 under the moderate 

decarbonization target and in 2045 under the strong decarbonization target by 1%, 2%, and 4%, 

respectively. In all other years, annual CO2 emissions from the UCED model meet the annual 

CO2 emission limit.  
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Table C.15: Annual CO2 emissions (in million tons) output by the UCED model without storage 

in each year and decarbonization target. 
 

Decarbonization Target 2015 2025 2035 2045 

Moderate 175.6 153.7 124.8 103.9 

Strong 175.6 138.8 99.3 70.8 

 

 

C.14: GENERATOR FLEET COMPOSITION OVER TIME 

 Figure C.8 provides the generator fleet composition over time optimized by the CE model 

under each decarbonization target. While we run the CE model every five years, we provide the 

fleet composition here in the years that we run the UCED model, or every ten years. In both 

decarbonization targets, installed NGCC and renewable capacity increases at the expense of 

coal-fired capacity. No new construction of generators equipped with carbon capture and 

sequestration or nuclear generators occurs under either decarbonization target.  
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Figure C.8: Installed capacity by generator type output by our CE model each decade under the 

moderate (left) and strong (right) decarbonization targets. 

 

 

C.15: RESERVE PROVISION BY GENERATOR TYPE WITHOUT STORAGE 

 Figure C.9 and Figure C.10 detail provided reserves by fuel type under the moderate and 

strong decarbonization targets, respectively, without storage in the generator fleet. Note that we 

do not allow reserve provision by wind and solar generators. Across years and decarbonization 

targets, only coal-fired and NGCC generators provide reserves. Regulation and flexibility reserve 

requirements, which vary with wind and solar generation, increase from 2015 through 2045 as 

wind and solar generation grows. Contingency reserve requirements, which vary with hourly 

demand, do not increase over time because we assume demand does not change across years.  
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Figure C.9: Provided regulation, flexibility, and contingency reserves by fuel type and year under 

the moderate decarbonization target without storage in the generator fleet. 
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Figure C.10: Provided regulation, flexibility, and contingency reserves by fuel type and year 

under the strong decarbonization target without storage in the generator fleet. 
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C.16: EQUATION USED TO CALCULATE EFFECT OF STORAGE ON SYSTEM CO2 

EMISSIONS 

To calculate how storage affects system CO2 emissions, we use the following equation: 

∆𝐸𝐶𝑂2 = ∑ ∆𝑝𝑖,𝑡 ∗ 𝐻𝑅𝑖 ∗  𝐸𝑅𝑖
𝐶𝑂2

𝑖,𝑡

 

where i and t index generators and time, respectively; ∆𝐸𝐶𝑂2 = change in annual system CO2 

emissions with storage relative to without storage [tons]; ∆𝑝 = change in electricity generation 

with storage relative to without storage [MWh]; HR = heat rate [MMBtu/MWh]; and 𝐸𝑅
𝐶𝑂2 = 

CO2 emissions rate [ton/MMBtu]. Note that we use the UCED model to determine electricity 

generation by each generator in the fleet with and without storage. Sections C.1 and C.5 provide 

information on generator heat rates and CO2 emission rates. 

 

 

C.17: RE-DISPATCHING AMONG GAS-FIRED GENERATORS DUE TO STORAGE 

 Figure C.11 provides the change in cumulative generation by NGCC generators with 

versus without storage against the NGCC generators’ CO2 emission rates under the strong 

decarbonization target in 2045. Storage shifts generation from high to low-CO2-emitting NGCC 

generators.  
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Figure C.11: Change in cumulative generation by NGCC generators with versus without storage 

against each generator’s CO2 emission rate under the strong decarbonization target in 2045 when 

storage participates in only energy (top), only reserve (middle), or energy and reserve (bottom) 

markets.  
 

C.18: ESTIMATING SYSTEM CO2 EMISSIONS DUE TO DISPATCHING OF 

REGULATION RESERVES PROVIDED BY STORAGE 

Here, we provide a first-order estimate of CO2 emissions due to the dispatch of regulation 

reserves provided by storage. In the absence of public data on the dispatch of regulation reserves 

in ERCOT, we assume an energy neutral regulation signal each hour, such that the integral of 

dispatched regulation up and down reserves equals zero each hour, as in PJM [34], [35]. Under 

an energy neutral regulation signal, dispatching regulation reserves provided by a storage unit 

reduces the unit’s state of charge due to its round-trip efficiency penalty. To make up for lost 

energy, additional electricity must be generated to charge the storage device, which incurs CO2 

emissions when such additional electricity is not provided by a zero-emissions generator. Note 

that under an energy neutral regulation signal, dispatching reserves provided by thermal units 

does not change hourly CO2 emissions of that thermal unit, as the sum of the change in 
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electricity generation (and therefore CO2 emissions) equals zero over the hour. Thus, we only 

estimate emissions from dispatching reserves provided by storage here.  

Using one year of regulation signal data from PJM, Fisher and Apt [34] estimate that 

roughly 13% of committed regulation up reserves are dispatched on an average hourly basis. 

Thus, if a storage unit commits 100 MW of regulation reserves in an hour, roughly 13 MWh 

would be dispatched. At 81% efficiency, dispatching 13 MWh would yield losses of roughly 

2.47 MWh. Consequently, the storage unit’s state of charge would decline by 2.47 over the hour.  

 With the value from Fisher and Apt [34], we estimate annual additional electricity 

generation needed to make up for state of charge losses at storage units due to the dispatch of 

regulation reserves. We then provide a first-order approximation of CO2 emissions from that 

additional electricity generation by assuming all additional electricity is generated by a coal-fired 

or NGCC generator. The coal-fired generator represents a worst-case estimate, whereas the 

NGCC generator represents an optimistic but not lower-bound estimate, as zero-carbon 

electricity generators could provide some of the additional electricity. Based on average CO2 

emission rates of our initial generator fleet, we assign CO2 emission rates of 1.2 and 0.5 ton per 

MWh to the coal-fired and natural gas fired generators, respectively. 

Under the moderate decarbonization target, storage provides at most roughly 4.3 TWh of 

regulation reserves across years when participating in only reserve or both energy and reserve 

markets. Given the above assumptions and an 81% round-trip storage efficiency, annual energy 

losses by storage from dispatched regulation reserves equal 106 GWh. Assuming the 

hypothetical coal-fired or NGCC generator compensates for those losses, total annual CO2 

emissions equal 0.13 or 0.05 million tons per year, respectively. Under the moderate 

decarbonization target, these emissions would negate roughly 6-33% of emission reductions due 
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to storage when participating in only reserve or both energy and reserve markets from 2025 

through 2045. Thus, from 2025 through 2045 under the moderate decarbonization scenario, 

storage would still reduce CO2 emissions when participating in only reserve or both energy and 

reserve markets even when accounting for emissions associated with the dispatching of reserves.  

Similarly, from 2025 through 2045 under the strong decarbonization target, emissions 

associated with dispatching reserves provided by storage would negate roughly 6-51% of 

emission reductions due to storage when participating in only reserve or both energy and reserve 

markets. Since coal-fired generation is nearly eliminated from the generator fleet in 2045 under 

the strong decarbonization target, we only use emissions associated with the hypothetical NGCC 

generator (0.05 million tons) in that year. Thus, even when accounting for emissions due to 

dispatching reserves provided by storage, storage still reduces CO2 emissions when participating 

in only reserve or both energy and reserve markets under the strong decarbonization target, as 

under the moderate target.  

 

 

C.19: SENSITIVITY ANALYSIS RESULTS 

 Figure C.12 and Figure C.13 provide the effect of storage on system CO2 emissions for 

each of our sensitivity analyses under the moderate and strong decarbonization targets, 

respectively.  
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Figure C.12: Change in system CO2 emissions with storage versus without storage when storage 

participates in only energy (top left), only reserve (top right), and energy and reserve (bottom) 

markets for each sensitivity analysis under the moderate decarbonization target. “Base scenario” 

refers to the base moderate decarbonization scenario. Positive values indicate storage increases 

system CO2 emissions. 
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Figure C.13: Change in system CO2 emissions with storage versus without storage when storage 

participates in only energy (top left), only reserve (top right), and energy and reserve (bottom) 

markets for each sensitivity analysis under the strong decarbonization target. “Base scenario” 

refers to the base strong decarbonization scenario. Positive values indicate storage increases 

system CO2 emissions. 
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APPENDIX D:  

SUPPLEMENTAL INFORMATION FOR CHAPTER 5 
 

D.1: HISTOGRAMS OF PV SYSTEM AZIMUTHS AND TILTS IN NEM DATASET 

Figure D.1 provides histograms of azimuths and tilts for fixed array PV systems 

interconnected through 2015, the end of our period of analysis, in the NEM dataset. Many (more 

than 11,000) PV systems in PGE have an azimuth and tilt of 0 degrees in the NEM dataset, 

which we attribute to spurious data collection or entry so do not include them in the histograms 

below. In each utility (PGE, SCE, and SDGE), the azimuth mode is 180 degrees, around which 

azimuths roughly follow a normal distribution. However, azimuths of 90 and 270 degrees are 

also common in all three utilities. With respect to tilt, most PV systems have tilts of 15-25 

degrees across utilities. 
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Figure D.1: Histograms of azimuths (top) and tilts (bottom) for fixed array PV systems 

interconnected through 2015 in the NEM dataset by IOU.  

 

 

D.2: SUPPLEMENTAL DESCRIPTION OF METERED GENERATION AND PV 

SYSTEMS IN THE CSI DATASET 

 D.2.1: Histogram of PV System Azimuths and Tilts in CSI Dataset 

Figure D.2 provides histograms of azimuths and tilts of the 492 PV systems with metered 

generation in the CSI dataset. Of these 492 PV systems, 20% and 13% have non-numerical 

azimuths and tilts, respectively, because of missing data and systems that use either tracking or 
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multiple orientations. Like in the NEM dataset (Figure D.1), in PGE, SCE, and SDGE the 

azimuth mode is 180 degrees, around which most azimuths extend from roughly 90 to 290 

degrees. The high occurrence of azimuths of 90 and 270 degrees in the NEM dataset is not 

reflected in the CSI dataset.  

Tilts in PGE and SCE are most common between 15 and 25 degrees (Figure D.2), as in 

the NEM dataset (Figure D.1). However, in SDGE, tilts between 30 and 35 degrees are most 

common in the CSI dataset versus between 15 and 25 degrees in the NEM dataset.  

 

 

Figure D.2: Histograms of azimuths (top) and tilts (bottom) for PV systems in the CSI dataset 

with metered generation by IOU.  
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 D.2.2: Time Series of Metered Generation Availability 

 Figure D.3 provides time series indicating availability of hourly metered generation in the 

CSI dataset from 2013 through 2015, our period of analysis. On average, each PV system lacks 

25% of hourly metered generation over our study period. 

 

Figure D.3: Time series indicating availability of metered generation for each PV system in the 

CSI dataset from 2013 through 2015. Each line indicates data availability for one PV system. 
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D.3: DETAILS AND SENSITIVITY ANALYSIS ON SCALE UP METERED 

GENERATION METHOD 

 D.3.1: Method Details 

Here, we further detail the scale up method for estimating distributed PV generation. 

Figure D.4 provides a flowchart of the method.  

 

 

Figure D.4: Schematic for estimating hourly generation by each PV system in the NEM dataset 

from 2013 through 2015 by scaling up metered generation in the CSI dataset. 

 

 Among PV systems in the NEM dataset, roughly 44% are located in zip codes with 

average hourly capacity factors (CFs) calculated with metered generation in the CSI dataset. For 
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the remaining 56% of PV systems, we estimate their generation using CFs in the nearest zip code 

with metered generation in the CSI dataset. To calculate distances between zip codes, we obtain 

a central latitude and longitude for each zip code from Google’s Geocoding API and calculate 

the distance between each pair of zip codes using the Haversine formula: 

𝑑 = 2 ∗ 𝑅 ∗ asin (√sin2 (
𝑙𝑎𝑡1 − 𝑙𝑎𝑡2

2
) + cos(𝑙𝑎𝑡1) ∗ cos(𝑙𝑎𝑡2) ∗ sin2 (

𝑙𝑜𝑛1 − 𝑙𝑜𝑛2

2
))           (1) 

where d = distance [km]; R = Earth’s radius, or 6,371 km; lat1 and lat2 = latitude of points 1 and 

2, respectively; and lon1 and lon2 = longitude of points 1 and 2, respectively.  

 To fill gaps in zip-code level average hourly CFs, we use average CFs by IOU. In SDGE, 

no IOU-level average CFs exist from November 4-10, 2013, so we instead use IOU-level 

average CFs for the same hours in the following year.  

 Figure D.5 provides a histogram of the distance between each PV system in the NEM 

dataset and the zip code from which we obtain metered generation to estimate the PV system’s 

generation in the scale up method. Most (57%) of PV systems are within 5 km of the 

corresponding zip code, but many (14%) of PV systems are further than 20 km away from the 

corresponding zip code. Klima and Apt [1] find that correlation between hourly generation of 

solar plants in Gujarat, India, decreases from 0.8-0.9 at less than 5 km between plants to roughly 

0.6 at roughly 20 km between plants. Long and Ackerman [2] find better correlation between 30-

minute generation of solar plants in Wisconsin of 0.95 at roughly 20 km between plants. Based 

on these studies and distances between PV systems and corresponding zip codes in the scale up 

method (Figure D.5), we expect a high correlation between each PV system’s actual historic 

generation and the generation profile we use to estimate its historic generation in the scale up 

method. Thus, using the scale up method is appropriate for most PV systems in our dataset.  
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Figure D.5: Histogram of distance between PV systems in the NEM dataset and the zip code 

from which we obtain metered generation for each PV system in the scale up method.  

 

D.3.2: Sensitivity of Scale Up Method to Distance 

Here, we test the sensitivity of the scale up method to utilizing CFs from zip codes at 

increasing distances from each PV system. For this sensitivity analysis, we use the same data as 

during validation, i.e. metered generation from 2010 through 2016 for 205 distributed PV 

systems in PGE, SCE, and SDGE. To test the effect of increasing distance, we use the scale up 

method to estimate generation when we use CFs from the 1st, 2nd
, 3

rd, 6th, and 10th nearest zip 

codes to each PV system excluding the PV system’s own zip code. In each scenario, we then 

calculate the error between estimated generation and metered generation.  

For each scenario, Figure D.6 provides distances between PV systems and the zip codes 

from which we obtain CFs. From the 1st to 10th nearest zip code scenarios, median distances 

increase from 6.4 to 26.2 km in PGE, 5.5 to 17.7 km in SDGE, and 5.6 to 25.1 km in SCE. 
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Figure D.6: Histograms of distances between PV systems and zip codes from which we obtain 

CFs in PGE (top), SCE (middle), and SDGE (bottom) when using CFs from the 1st, 2nd, 3rd, 6th, 

and 10th nearest zip code to each PV system (excluding each PV system’s own zip code). 
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Figure D.7 provides the normalized root mean square error (NRMSE) for each scenario 

in PGE, SCE, and SDGE. NRMSEs do not monotonically increase as we use CFs from 

increasingly distant zip codes. For instance, NRMSEs in PGE and SDGE decrease from the 1st to 

2nd nearest zip code scenarios, and in SCE decrease from the 6th to 10th nearest zip code 

scenarios. This suggests that errors between metered and estimated generation due to differences 

in uncontrolled PV system parameters in the scale up method, such as orientation, panel 

efficiency, and shading, outweigh errors due to differences in meteorology and solar irradiance 

between PV systems’ locations and the zip codes from which we obtain CFs.  

 

 

Figure D.7: NRMSEs in PGE, SCE, and SDGE when using CFs from the 1st, 2nd, 3rd, 6th, and 

10th nearest zip codes to each PV system. 

 

D.4: SUMMARY STATISTICS OF METEOROLOGY AND SOLAR IRRADIANCE 

DATA FROM THE NSRDB 

Table D.1 provides summary statistics for meteorological and solar irradiance variables 

we download from the NSRDB [3] and input into PVLib in order to estimate distributed PV 
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generation using the specific, generic, and adjusted generic configuration methods. Since we 

download NSRDB data for each zip code with PV systems, we provide summary statistics across 

zip codes and years included in our analysis. 

 

Table D.1: Summary statistics for meteorology and solar irradiance variables obtained from the 

National Solar Radiation Database across zip codes from 2013 through 2015. 

Variable Average 

Standard 

deviation Maximum Minimum 

Global horizontal irradiance (W/m2) 224.68 10.66 1130.00 0.00 

Diffuse horizontal irradiance (W/m2) 53.88 5.60 578.00 0.00 

Direct normal irradiance (W/m2) 289.73 14.92 1100.00 0.00 

Wind speed (m/s) 1.98 0.32 13.00 0.01 

Air temperature (degrees C) 17.14 1.77 52.72 -29.18 

 

 

D.5: CROSS-VALIDATION OF HOUR-OF-DAY CORRECTION FACTORS FOR 

ADJUSTED GENERIC CONFIGURATION METHOD 

To ensure hour-of-day correction factors used in the adjusted generic configuration 

method do not result in over-fitting, we use 10-fold cross validation to test the out-of-sample 

accuracy of the generic configuration method with versus without correction factors on our 

validation data. Table D.2 provides the cross validation results, which indicate that the generic 

configuration method with correction factors better estimates (i.e., has lower out-of-sample root 

mean square error (RMSE) relative to) metered generation than the generic configuration method 

without correction factors.  
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Table D.2: Root mean square errors (RMSEs) between hourly metered generation and estimated 

generation using the generic configuration method without and with correction factors. RMSEs 

are average RMSEs across out-of-sample folds during 10-fold cross validation (CV). 

IOU 

10-fold CV RMSE for Generic 

Configuration Method without 

Correction Factors [kWh] 

10-fold CV RMSE for Generic 

Configuration Method with Correction 

Factors [kWh] 

PGE 3.64 3.39 

SCE 2.49 2.16 

SDGE 1.62 1.58 

 

 

D.6: SUPPLEMENTAL REGRESSION INFORMATION 

 D.6.1: Regression Formulation without Year Dummy Variables 

In order to account for temporal trends in power system operations in Regressions 1 and 

2, we include dummy variables for hour of day, day of week, month, and year. In our analysis, 

we do not use our regressions to predict future prices, e.g. by training on 2013 through 2015 data 

then predicting 2016 prices. However, such prediction capabilities may be desired in future 

research. As such, here we consider an alternative formulation of Regressions 1 and 2 without 

year dummy variables. Table D.3 provides regression coefficients for Regressions 1 and 2 

without year dummy variables. R-squared values for Regressions 1 and 2 without year dummy 

variables (0.77 and 0.79, respectively) are similar to those for Regressions 1 and 2 with year 

dummy variables (0.77 and 0.79, respectively), meaning including year dummy variables does 

not improve model fit over our period of analysis. Additionally, similar model fits with and 

without year dummy variables indicate that all variables included in Regressions 1 and 2 are 

stationary over our period of analysis, as also indicated by Augmented Dickey-Fuller tests (see 

main text).  
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To demonstrate the price prediction capabilities of Regressions 1 and 2 without year 

dummy variables, we train (fit) them on data from 2013 and 2014, then use the fitted regressions 

to predict 2015 prices. RMSEs for Regressions 1 and 2 between predicted and actual prices in 

2015 (5.11 and 5.92 in NP15 and SP15, respectively) are only 3-6% larger than those between 

predicted and actual prices in 2013 and 2014 (4.94 and 5.58 in NP15 and SP15, respectively).  

Thus, Regressions 1 and 2 without year dummy variables may be useful for predicting future 

prices in future applications. 

 

Table D.3: Coefficients and standard errors for Regressions 1 and 2 without year fixed effects 

using Newey-West standard errors with a maximum time lag of 4(T/100)2/9, where T = the 

number of observations in our dataset (26,280) [4]. For clarity, we provide regression results for 

data standardized as (X/(XMAX – XMIN)), where XMAX and XMIN equal the maximum and minimum 

variable value, respectively, and for dependent variables (LMPs) scaled to $/GWh. Bold values 

indicate statistical significance at p-value < 0.01. 

 Regression 1 Regression 2 

Variable: definition Coeff. 

Std.  

Error Coeff. 

Std. 

Error 

𝑊𝑡
𝑁𝑃15: Hourly forecasted wind generation in NP15 -22.08 3.07 -12.77 3.41 

𝑆𝑡
𝑁𝑃15: Hourly forecasted solar generation in NP15 0.08 4.70 -15.45 5.02 

𝑊𝑡
𝑆𝑃15: Hourly forecasted wind generation in SP15 -10.10 2.57 -37.20 3.20 

𝑆𝑡
𝑆𝑃15: Hourly forecasted solar generation in SP15 -23.15 3.19 -80.27 3.83 

𝐷𝑡
𝑁𝑃15: Hourly forecasted net demand in PGE 308.42 32.32 229.10 24.63 

𝐷𝑡
𝑆𝑃15: Hourly forecasted net demand in SCE + SDGE 57.79 16.24 189.28 16.20 

𝐶𝑡: Daily generation by Diablo Canyon -26.84 3.34 -32.72 3.04 

𝑉𝑡: Daily generation by Palo Verde -20.71 3.51 -16.13 3.50 

𝑁𝐺𝑡: Daily natural gas Henry Hub price 228.33 9.86 227.72 9.42 

𝐻𝐼𝑡: Daily CA hydro index -31.82 6.89 9.32 6.77 

𝐾𝑅𝑡: Hourly Klamath river flow -3.23 8.37 -24.60 8.02 

𝑆𝑅𝑡: Hourly Sacramento river flow -23.08 3.31 -23.25 3.80 

 

D.6.2: Descriptions of and Descriptive Statistics for Regression Variables 

In order to represent generation by major fuel types in CAISO, we include several 

generation-related variables in Regressions 1 and 2. Since natural gas provided roughly 60% of 

in-state electricity generation in CA from 2013 through 2015 [5], we include a term for natural 
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gas prices. Due to high generation levels and near-zero marginal costs, utility-scale wind and 

solar, nuclear, and hydroelectric generators also likely affect LMPs, so we include terms for 

each. To capture hourly hydroelectric generation, we use three proxy variables. Stream flows for 

lower segments of the Klamath and Sacramento rivers, the two largest rivers in CA by average 

discharge, approximate generation by upstream dams. In addition, the daily weighted average 

index of stream flows across CA provides a broader indicator of available water for hydroelectric 

generation.  

We obtain all non-dummy variables except nuclear generation and natural gas prices at 

hourly intervals. Assuming constant values across days and weekends, we up-sample natural gas 

prices and nuclear generation from daily to hourly. Table D.4 provides descriptive statistics for 

each non-dummy variable used in Regressions 1 and 2. To check for stationarity in outcome and 

explanatory variables, we run an Augmented Dickey-Fuller (ADF) test [6] with drift on each 

variable at two time lags, or the number of lagged dependent variables we include in Regressions 

1 and 2. We reject the null hypothesis of the ADF test for each variable (p-value < 0.014), which 

indicates all variables are stationary over our study period (2013-2015) and our coefficient 

estimates obtained through linear regression are consistent.
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Table D.4: Descriptive statistics for non-dummy variables used in Regressions 1 and 2, where t indexes hour and SP15 and NP15 

index CAISO zones. We determine stationarity with the Augmented Dickey-Fuller test at two time lags [6]. 

Variable Definition 

Stationary at 

α = 0.02? Average Median 

Standard 

Deviation Maximum Minimum 

𝐿𝑀𝑃𝑡
𝑁𝑃15 Average hourly DAM LMP for 

NP15 [$2015/MWh] 
Yes 37.8 36.6 9.91 171.6 0.0 

𝐿𝑀𝑃𝑡
𝑆𝑃15 

Average hourly DAM LMP for 

SP15 [$2015/MWh] 
Yes 38.4 37.0 11.4 167.9 -2.6 

𝐷𝑡
𝑁𝑃15 

Hourly forecasted load in NP15, 

i.e. PGE [MWh] 
Yes 12028.9 11850.1 2073.5 23170.0 8288.3 

𝐷𝑡
𝑆𝑃15 

Hourly forecasted load in SP15, 

i.e. SCE and SDGE [MWh] 
Yes 14496.3 14126.1 2948.4 28753.0 9548.8 

𝑊𝑡
𝑁𝑃15 

Hourly forecasted utility-scale 

wind generation in NP15 [MWh] 
Yes 403.4 332.6 301.9 1204.0 0.0 

𝑆𝑡
𝑁𝑃15 

Hourly forecasted utility-scale 

solar generation in NP15 [MWh] 
Yes 172.3 6.2 240.0 1107.1 0.0 

𝑊𝑡
𝑆𝑃15 

Hourly forecasted utility-scale 

wind generation in SP15 [MWh] 
Yes 769.9 643.3 583.7 2558.7 0.0 

𝑆𝑡
𝑆𝑃15 

Hourly forecasted utility-scale 

solar generation in SP15 [MWh] 
Yes 716.2 21.8 1089.9 3935.1 0.0 

𝑁𝐺𝑡 
Daily natural gas Henry Hub 

prices [$2015/MMBtu] 
Yes 3.4 3.4 0.7 7.3 1.6 

𝐶𝑡 
Daily Diablo Canyon nuclear 

station generation [MWh] 
Yes 2020.9 2240.0 430.4 2240.0 279.5 

𝑉𝑡 
Daily Palo Verde nuclear station 

generation [MWh] 
Yes 3634.6 3937.0 567.6 3937.0 1312.0 

𝐾𝑅𝑡 
Flow on a lower segment of 

Klamath River [ft/s3] 
Yes 9283.9 5017.5 11936.0 171250.0 1990.0 

𝑆𝑅𝑡 
Flow on a lower segment of 

Sacramento River [ft/s3] 
Yes 11016.1 11250.0 7909.7 55325.0 -5970.0 

𝐻𝐼𝑡 
Daily weighted average index of 

CA stream flows 
Yes 3.5 3.5 0.5 5.0 2.7 
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D.6.3: Autocorrelation and Partial Autocorrelation Plots of Residuals 

 Residuals of Regressions 1 and 2 exhibit autocorrelation, as evidenced by Durbin-Watson 

test statistics of 0.3 and autocorrelation and partial autocorrelation function plots (Figure D.8). 

Specifically, significant intra- and inter-day autocorrelation exists in the residuals, reflecting 

temporal trends in power system operations. For instance, prices usually follow diurnal patterns 

of low prices from midnight through the early morning, rising prices through the day, peak prices 

in early evening, and then falling prices through midnight.  

 

 

Figure D.8: Autocorrelation (top) and partial autocorrelation (bottom) function plots of residuals 

from Regressions 1 (left) and 2 (right).   



260 

 

 D.6.4: Bootstrapped Standard Errors 

 Table D.5 provides bootstrapped (N=250) standard errors for non-dummy variables in 

Regressions 1 and 2. In order to maintain some structure of our original time series, we conduct 

block bootstrapping by sampling from 3-day periods. Bootstrapped standard errors are 13-90% 

larger than Newey-West standard errors. However, statistically significant coefficients per 

Newey-West standard errors have [2.5%,97.5%] bootstrapped confidence intervals that don’t 

overlap with zero except for KR in Regressions 1 and 2 and SNP15 in Regression 2. 

 

Table D.5: Coefficients and 3-day block bootstrapped (N=250) standard errors for Regressions 1 

and 2. For clarity, we provide regression results for data standardized as (X/(XMAX – XMIN)), 

where XMAX and XMIN equal the maximum and minimum variable value, respectively, and for 

dependent variables (LMPs) scaled to $2015/GWh. A bold value indicates the (2.5%,97.5%) 

bootstrapped confidence interval for a coefficient does not overlap with zero. 

 Regression 1 Regression 2 

Variable: definition Coeff. 

Std.  

Error Coeff. 

Std. 

Error 

𝑊𝑡
𝑁𝑃15: Hourly forecasted wind generation in NP15 -20.92 3.5 -12.7 4.0 

𝑆𝑡
𝑁𝑃15: Hourly forecasted solar generation in NP15 -5.22 5.0 -12.9 6.9 

𝑊𝑡
𝑆𝑃15: Hourly forecasted wind generation in SP15 -13.21 3.1 -37.2 4.7 

𝑆𝑡
𝑆𝑃15: Hourly forecasted solar generation in SP15 -34.59 3.1 -81.0 5.2 

𝐷𝑡
𝑁𝑃15: Hourly forecasted net demand in PGE 317.23 45.0 227.9 30.1 

𝐷𝑡
𝑆𝑃15: Hourly forecasted net demand in SCE + SDGE 56.58 23.0 189.9 19.9 

𝐶𝑡: Daily generation by Diablo Canyon -26.12 5.4 -33.5 5.0 

𝑉𝑡: Daily generation by Palo Verde -26.06 6.3 -15.5 6.0 

𝑁𝐺𝑡: Daily natural gas Henry Hub price 244.96 30.3 235.3 28.0 

𝐻𝐼𝑡: Daily CA hydro index -5.28 12.8 9.6 12.6 

𝐾𝑅𝑡: Hourly Klamath river flow -29.37 19.6 -23.9 16.2 

𝑆𝑅𝑡: Hourly Sacramento river flow -18.85 5.9 -22.7 6.4 

 

 

 D.6.5: Coefficients and Standard Errors on Dummy Variables 

Table D.6 provides coefficients and Newey-West standard errors [7] for intercepts and 

time dummy variables used in Regressions 1 and 2.  
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Table D.6: Coefficients and standard errors for intercepts and time dummy variables in 

Regressions 1 and 2 using Newey-West standard errors with a maximum time lag of 4(T/100)2/9, 

where T = the number of observations in our dataset (26,280) [4]. For clarity, we provide 

regression results for data standardized as (X/(XMAX – XMIN)), where XMAX and XMIN equal the 

maximum and minimum variable value, respectively, and for dependent variables (LMPs) scaled 

to $2015/GWh. Bold and italics values indicate statistical significance at p-values less than 0.01 

and 0.05, respectively. 

 Regression 1 Regression 2 

Variable Coefficient Std. Error Coefficient Std. Error 

Intercept -127.44 24.74 -156.37 21.73 

February dummy 15.22 2.83 11.62 2.87 

March dummy 5.89 2.19 5.28 2.54 

April dummy 6.58 2.50 9.29 3.22 

May dummy -1.96 2.66 -5.31 2.85 

June dummy -28.29 3.33 -25.04 3.36 

July dummy -38.39 3.29 -39.53 3.64 

August dummy -31.21 3.39 -36.33 3.52 

September 

dummy -18.70 3.18 -26.47 3.53 

October dummy -12.78 3.01 -15.84 3.06 

November dummy 8.19 2.76 6.00 2.81 

December dummy 21.84 3.71 14.08 3.64 

Tuesday dummy -3.87 1.71 -4.98 1.79 

Wednesday 

dummy -6.08 1.59 -6.86 1.78 

Thursday dummy -3.64 2.05 -3.18 2.10 

Friday dummy -2.61 1.56 -1.66 1.82 

Saturday dummy 8.06 1.60 8.59 1.72 

Sunday dummy 11.84 1.74 12.95 1.76 

Hour 2 dummy -3.20 0.55 -2.53 0.49 

Hour 3 dummy -3.83 0.79 -3.37 0.71 

Hour 4 dummy -2.34 0.76 -1.78 0.72 

Hour 5 dummy 2.89 0.60 3.44 0.65 

Hour 6 dummy 8.67 1.03 7.72 0.94 

Hour 7 dummy 5.32 1.98 7.29 1.62 

Hour 8 dummy -3.45 2.63 2.07 2.20 

Hour 9 dummy -11.80 2.95 -3.30 2.65 

Hour 10 dummy -14.24 3.14 -2.25 3.00 

Hour 11 dummy -15.19 3.20 0.20 3.17 

Hour 12 dummy -15.24 3.11 2.39 3.20 

Hour 13 dummy -17.52 3.06 0.53 3.14 

Hour 14 dummy -17.83 2.97 0.05 3.03 

Hour 15 dummy -16.96 2.85 -0.84 2.84 
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Hour 16 dummy -10.89 2.92 1.42 2.70 

Hour 17 dummy -4.54 3.31 2.11 2.76 

Hour 18 dummy 4.88 4.15 10.88 3.26 

Hour 19 dummy 7.88 4.58 13.33 3.68 

Hour 20 dummy -5.16 4.59 2.07 3.69 

Hour 21 dummy -13.11 4.11 -9.10 3.23 

Hour 22 dummy -14.16 3.06 -11.52 2.40 

Hour 23 dummy -5.49 1.84 -4.16 1.48 

Hour 24 dummy -0.70 0.90 0.15 0.79 

2014 dummy 10.29 1.49 -1.47 1.62 

2015 dummy 15.57 3.55 1.58 3.45 

 

 

D.6.6: Time Series of Actual versus Predicted Prices of Regressions 

Figure D.9 and Figure D.10 provide four 30-day time series comparing actual and 

predicted LMPs using Regressions 1 and 2, respectively. Time series were selected to include 

peak LMPs in NP15 and SP15 over our study period (2013 through 2015) and prices in the 

winter, spring, and summer. Across time series, both regressions accurately predict most LMPs, 

but underestimate prices during the highest price periods. 



263 

 

  

 

 

Figure D.9: Time series of actual (solid line) and predicted (red dashed line) LMPs in NP15 

using Regression 1. Each subplot compares hourly LMPs over 20 days.  
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Figure D.10: Time series of actual (solid line) and predicted (red dashed line) LMPs in SP15 

using Regression 2. Each subplot compares hourly LMPs over 20 days. 
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D.7: COMPARISON OF ACTUAL AND ESTIMATED MAX HOURLY AND TOTAL 

GENERATION BY PV SYSTEMS DURING VALIDATION 

To check for systematic biases in PV generation estimates using the specific 

configuration, generic configuration, adjusted generic configuration, and scale up methods, 

Figure D.11 compares maximum hourly and total metered versus estimated generation for all PV 

systems in our validation analysis. Total generation equals the sum of hourly generation over our 

validation period (2010-2016). The specific configuration and scale up methods estimate 

maximum generation with less bias than the generic configuration and adjusted generation 

configuration methods, which tend to underestimate max generation. The adjusted generic 

configuration has less of a downward bias than the generic configuration method due to hour-of-

day correction factors that increase generation during max generation periods. Conversely, the 

generic and adjusted generic configuration methods estimate total generation with less bias than 

the specific and scale up methods, which tend to over- and under-estimate total generation, 

respectively. These total generation biases are reflected in the mean bias errors (MBEs) given in 

the main text, which are positive and negative for the specific configuration and scale up 

methods, respectively.  
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Figure D.11: Maximum hourly (top row) and total (bottom row) estimated versus metered 

generation for all PV systems in our validation analysis by method for estimating PV generation. 

Total generation equals generation summed across validation period (2010-2016). For reference, 

plotted lines indicate where estimated generation equals metered generation, i.e. y=x.  

 

 

D.8: SUPPLEMENTAL RESULTS FOR ESTIMATES OF DISTRIBUTED PV 

GENERATION 

 D.8.1: Distributed PV Generation by Season 

Figure D.12 and Figure D.13 provide box plots of distributed PV generation by hour of 

day in June and December, respectively, in 2013, 2014, and 2015. Distributed PV generation 

extends from 6 a.m. to 6 p.m. PST (7 a.m. to 7 p.m. PDT) in June, but only from 8 a.m. to 5 p.m. 

PST in December, reflecting longer days in the summer. Additionally, distributed PV generation 

tends to be higher in June than December, reflecting higher solar irradiance. In any given hour of 
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the day, significant variability exists in distributed PV generation. For instance, from 12 to 1 p.m. 

PST (1 to 2 p.m. PDT) in June, the first and third quartiles of distributed PV generation in PGE 

equal roughly 0.7 and 1.1 GWh, respectively, using the generic configuration method. 

Furthermore, hours with significantly less distributed PV generation than median generation 

values are more common in PGE than SCE and SDGE, potentially indicating cloudier conditions 

in PGE’s footprint than in SCE’s or SDGE’s.  



268 

 

 

 

Figure D.12: Distributed PV generation in June of 2013, 2014, and 2015 by hour of day in PGE, 

SCE, and SDGE by method used to estimate generation. Boxes indicate the first, second, and 

third quartiles, while whiskers extend to 1.5 times the first and third quartiles. 
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Figure D.13: Distributed PV generation in December of 2013, 2014, and 2015 by hour of day in 

PGE, SCE, and SDGE by method used to estimate generation. Boxes indicate the first, second, 

and third quartiles, while whiskers extend to 1.5 times the first and third quartiles. 
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 D.8.2: Distributed PV Generation versus Demand 

 Figure D.14 and Figure D.15 overlay distributed PV generation estimated using each 

method on net demand for four 10-day time series in each season of 2015. Data are divided by 

CAISO zone, where NP15 corresponds to PGE and SP15 corresponds to SCE and SDGE. In all 

seasons, distributed PV generation tends to coincide with increasing demand from the morning 

through early evening. In January and April in both zones, net demand tends to have two daily 

peaks, one that usually coincides with peak distributed PV generation and another after 

distributed PV generation ends.  
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Figure D.14: Four 10-day time series in each season of net demand (solid line with star markers) 

and distributed PV generation in NP15 by method used to estimate generation. Note that y-axes 

differ between and within subplots. 
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Figure D.15: Four 10-day time series in each season of net demand (solid line with star markers) 

and distributed PV generation in SP15 by method used to estimate generation. Note that y-axes 

differ between and within subplots. 
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D.9: SUPPLEMENTAL RESULTS FOR MARKET PRICE RESPONSE TO 

DISTRIBUTED PV GENERATION 

To contextualize our estimates of LMP reductions from distributed PV generation, Figure 

D.16 provides distributions of LMPs by hour of day in NP15 and SP15 from 2013 through 2015. 

Median LMPs range from $30-50/MWh and $30-55/MWh in NP15 and SP15, respectively. In 

many hours, LMPs reach significantly higher values, ranging as high as $180/MWh over our 

study period. LMPs tend to increase from the morning through 7 p.m. PST, then decrease 

through the night. Notably, median LMPs are largely flat during the main hours in which median 

distributed PV generation occurs (10 a.m. through 4 p.m. PST) (increasing by only 8 and 10% in 

NP15 and SP15, respectively (Figure D.16).  

 

  

Figure D.16: Boxplots of historic LMPs ($2015/MWh) from 2013 through 2015 in NP15 (left) and 

SP15 (right) by hour of day. Boxes indicate the first, second, and third quartiles, while whiskers 

extend to 1.5 times the first and third quartiles. 
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Figure D.17 and Figure D.18 provide the distribution of changes in LMPs due to 

distributed PV generation in June and December, respectively, from 2013 through 2015. Due to 

greater distributed PV generation in the summer (June) than winter (December) (Figure D.12 and 

Figure D.13), distributed PV generation reduces LMPs more in June than December in both 

zones. For instance, given distributed PV generation estimated with the generic configuration 

method, median NP15 and SP15 LMP reductions from 12-1 p.m. PST equal roughly $0.9/MWh 

in June and $0.6-0.7/MWh in December. Due to longer daily distributed PV generation profiles 

in June than December, distributed PV also reduces LMPs over more of the day in June than in 

December. 
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Figure D.17: Boxplots of changes in LMPs ($2015/MWh) with versus without distributed 

generation by hour of day in June 2013, 2014, and 2015 in NP15 (left) and SP15 (right) by 

method used to estimate distributed PV generation. Boxes indicate the first, second, and third 

quartiles, while whiskers extend to 1.5 times the first and third quartiles.  
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Figure D.18: Boxplots of changes in LMPs ($2015/MWh) with versus without distributed 

generation by hour of day in December 2013, 2014, and 2015 in NP15 (left) and SP15 (right) by 

method used to estimate distributed PV generation. Boxes indicate the first, second, and third 

quartiles, while whiskers extend to 1.5 times the first and third quartiles. 
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D.10: ESTIMATING AVOIDED COSTS ON PER-GENERATION AND PER-

CAPACITY BASES 

 To estimate avoided costs per unit of distributed PV generation, we simply divide total 

avoided costs from 2013 through 2015 by total distributed PV generation from 2013 through 

2015 for each method used to estimate distributed PV generation (Table D.7).  

 

Table D.7: Avoided costs per distributed PV generation from 2013 through 2015 for each 

method used to estimate distributed PV generation. 

Method Used to 

Estimate Distributed PV 

Generation 

Total 

Distributed PV 

Generation 

(TWh) 

Total Avoided Cost 

due to Market Price 

Response (million 

$2015) 

Total Avoided Cost 

per Distributed PV 

Generation 

(cents2015/kWh) 

Generic Configuration 11.5 730 6 

Adjusted Generic 

Configuration 
11.3 700 6 

Scale Up 10.5 650 6 

 

 To calculate avoided costs per unit of distributed PV capacity, we account for varying 

interconnection times by determining connected distributed PV capacity in each hour from 2013 

through 2015. We then sum distributed PV capacity across hours and divide that value by 8760 

hours per year to yield an estimate of the combined annual capacity of distributed PV. Finally, 

we divide total avoided costs from 2013 through 2015 by that combined annual capacity. 

Mathematically, we calculate avoided costs per unit of distributed PV capacity as:  

𝐴𝐶𝐶 =  
𝑇𝐴𝐶

𝑇𝐶
           (1) 

𝑇𝐴𝐶 =  ∑ 𝐴𝐶𝑦

2015

𝑦=2013

           (2) 

𝑇𝐶 =  
∑ ∑ 𝑃𝑦,ℎ

𝑀𝐴𝑋8760
ℎ=1

2015
𝑦=2013

8760
               (3) 
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where y and h index year and hour, respectively; ACC = avoided costs per unit of distributed PV 

capacity [$/kW]; TAC = total avoided costs from 2013 through 2015 [$2015]; TC = total 

distributed PV capacity from 2013 through 2015 [kW]; AC = annual avoided costs [$2015]; and 

PMAX = hourly distributed PV capacity accounting for varying interconnection times.  

 

 

D.11: RESULTS FOR SENSITIVITY ANALYSIS ON EFFICIENCY DEGRADATION 

AND HIGHER INVERTER LOAD 

 We test the sensitivity of our results using the generic configuration method to two PV 

system parameters: 0.5% (versus no) annual efficiency degradation and a 1.3 (versus 1.16) 

inverter loading ratio, or the ratio between the combined AC capacity of PV panels to the DC 

capacity of the inverter. Table D.8 provides total distributed PV generation from 2013 through 

2015 by utility using the generic configuration method without efficiency degradation and with a 

standard inverter load of 1.16; with annual efficiency degradation of 0.5% and a standard 

inverter load of 1.16; and without efficiency degradation and with a higher inverter load of 1.30. 

Since PV systems in the NEM dataset have a median interconnection date of April 2014, 

accounting for PV system efficiency degradation of 0.5% per year only reduces total distributed 

PV generation by 1-2% across utilities relative to the generic configuration method. A higher 

inverter loading ratio of 1.3, by increasing clipping, also reduces distributed PV generation 

relative to the generic configuration method, but only marginally in PGE and by 3-5% in SCE 

and SDGE, indicating more clipping occurs in SCE and SDGE than PGE at a higher inverter 

loading ratio. .  
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Table D.8: Total distributed PV generation from 2013 through 2015 in PGE, SCE, and SDGE by 

method used to estimate generation. 

Method Used to Estimate Distributed 

PV Generation 

Total Distributed PV Generation (TWh) 

PGE SCE SDGE 

Generic Configuration 6.21 3.92 1.40 

Generic Configuration with Efficiency 

Degradation 
6.10 3.87 1.38 

Generic Configuration with High Inverter 

Load 
6.20 3.73 1.36 

 

Total avoided costs from 2013 through 2015 in NP15 and SP15 equal 728, 718, and 716 

million ($2015) in the base, efficiency degradation, and high inverter load scenarios, respectively 

(Table D.9). Thus, each sensitivity only reduces total avoided costs by roughly 2% relative to the 

generic configuration, in line with the reduction in distributed PV generation in each sensitivity.  

 

Table D.9: Avoided costs from 2013 through 2015 by zone due to LMP reductions from, i.e. the 

market price response to, distributed PV generation. Avoided costs equal the sum of hourly LMP 

reductions due to distributed PV generation multiplied by historic hourly net demand. 

 

Method Used to Estimate 

Distributed PV Generation 

Avoided Cost due to 

Market Price Response in 

NP15 (million $2015) 

Avoided Cost due to 

Market Price Response in 

SP15 (million $2015) 

Generic Configuration 327 401 

Generic Configuration with 

Efficiency Degradation 
324 394 

Generic Configuration with High 

Inverter Load 
321 395 
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