
 

 

 

Analysis of Selected Regulatory Interventions to Improve Energy Efficiency  

 

 

 

 
 

Submitted in partial fulfillment of the requirements for  

 

the degree of  

 

Doctor of Philosophy 

 

 in 

 

Engineering and Public Policy 

 

 

  

 

 

 

 

Russell M. Meyer 

 

B.S., Integrated Science and Technology, James Madison University 

M.P.P., Environmental and Regulatory Policy, Georgetown University 

M.S., Engineering and Public Policy, Carnegie Mellon University 

 

 

 

 

 

 

 

 

 

 

 

Carnegie Mellon University 

Pittsburgh, PA 

Title 
December, 2014 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 
© Russell M. Meyer, 2014   

All Rights Reserved 



iii 

 

ACKNOWLEDGEMENTS 
 

This work was done with the support of the Steinbrenner Institute for Environmental Education 

and Research at Carnegie Mellon University, enabled by a grant from the Colcom Foundation, 

with additional research support provided by the Center for Climate and Energy Decision 

Making through a cooperative agreement between the National Science Foundation and Carnegie 

Mellon University (SES-0949710).   

 

Thanks, Dad. 

 

 

DISSERTATION COMMITTEE 

 

INÊS M. LIMA DE AZEVEDO, PH.D. (CHAIR) 

Associate Professor, Department of Engineering and Public Policy, Carnegie Mellon University 

Co-Director, Center for Climate and Energy Decision Making 

 

DAVID DZOMBAK, PH.D., P.E. 

Hamerschlag University Professor, Carnegie Mellon University 

Department Head, Civil and Environmental Engineering, Carnegie Mellon University 

 

H. SCOTT MATTHEWS, PH.D. 

Professor, Department of Civil and Environmental Engineering, Carnegie Mellon University 

Professor, Department of Engineering and Public Policy, Carnegie Mellon University 

 

M. GRANGER MORGAN, PH.D. 

University and Lord Chair Professor of Engineering, Carnegie Mellon University 

Professor, Electrical and Computer Engineering, Carnegie Mellon University 

Professor, Heinz College, Carnegie Mellon University 

 

KAREN PALMER, PH.D. 

Research Director, Senior Fellow, and Associate Director for Electricity, Center for Climate and 

Electricity Policy, Resources for the Future 

 

 

 



iv 

 

ABSTRACT 
 

This dissertation includes three studies of public policy designed to improve energy efficiency in 

the United States.  In an ex ante study of two residential lighting demand-side efficiency 

programs, I find that despite considerable uncertainty in the achieved energy savings it is 

unlikely that these programs are not cost-effective.  Several recommendations are made to 

improve the reporting of these programs that would enable more learning from past activities and 

thus more cost-effective efficiency investments in the future.  In an ex post study of a separate 

demand-side efficiency program I find that participation in the program is associated with a 

subsequent increase in household energy consumption.  The likely reason for this 

counterintuitive finding is that consumers are using the rebate as an equipment subsidy to 

consume additional energy services rather than as an equipment replacement program to 

consume a constant level of energy services.  The contradiction of the findings of these two 

studies highlights the need for ex post analyses of demand-side efficiency programs as a critical 

component of program design in order to ensure that anticipated benefits are being realized in 

practice.  Finally, I create a model of fuel consumption by light-duty vehicles in the United 

States in order to generate a projection of fuel demand in the context of demographic changes 

and increasing fuel economy standards.  I find that long-term trends in population growth are 

more than offset by increasing fuel efficiency, assuming that these standards are met.   
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CHAPTER 1:  MOTIVATION AND INTRODUCTION 
 

This work is a study of public policies that are implemented with the intent to improve energy 

efficiency.  But for policy-makers energy efficiency is not an end in itself, instead it is one of 

several strategies available to achieve more fundamental policy objectives.  These objectives can 

include protecting the environment by reducing greenhouse gas emissions due to the carbon-

intensive nature of the fossil-fuel based energy system, improving human health outcomes by 

avoiding emissions of harmful pollutants that affect population centers, mitigating trade 

dependence on unreliable supply sources by reducing demand for scarce energy resources, or 

improving society’s economic-efficiency by redirecting economic activity towards other more 

socially-productive endeavors.  As a consequence, recommendations which follow from the 

analysis of policy which affects energy efficiency should be formulated and considered in the 

context of these ultimate objectives.  By studying energy efficiency policies, the analyses which 

follow are really indirectly studies in generating these policy outcomes.   

 

This dissertation is organized into six chapters.  Chapter 2 presents a case-study analysis 

characterizing the uncertainty associated with two demand-side management (DSM) programs to 

improve household electrical energy efficiency in lighting.  Estimating uncertainty associated 

with efficiency programs is a useful exercise because while these programs almost exclusively 

calculate and report energy savings outcomes as point estimates there is considerable uncertainty 

in the parameters which underlie those calculations.  Because the ultimate quantity of energy that 

is saved through these programs is uncertain, the associated cost-effectiveness of these programs 

is also uncertain.  If the range of possible values of energy reduction is wide enough the cost-

effectiveness of DSM program investment could be questionable.  Three methods are employed 
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to estimate the range of possible energy reduction outcomes for both a long-running lighting 

efficiency program in Vermont and a relatively newer program in Pennsylvania.  While both 

programs were created through regulatory action in their respective states, they differ in 

administration and scope.  Because aggregate state-level DSM program spending is expected to 

continue to increase rapidly (Foster et al., 2012; Goldman et al., 2012) this analysis is performed 

from the perspective of developing recommendations for best-practices.   

 

While Chapter 2’s analysis adopts an ex ante approach to estimating household energy 

consumption outcomes from DSM programs, Chapter 3 presents the results of an ex post analysis 

of another residential DSM program.  This work relies on the data from a sample of 

approximately 30,000 smart-meters from the PG&E service territory in northern California.  

These data are combined with information about household participation in a utility-operated 

energy efficiency rebate program in order to estimate the change in household electricity 

consumption following participation in this program.  Because household participation is not 

universal in the sample, these data lend themselves to econometric modeling in which non-

participating households serve as a control group for comparison against those households that 

do.  Performing an ex post analysis in this way adds to our knowledge of the energy consumption 

outcome of these DSM programs in a way that implicitly incorporates uncertain or unknowable 

factors that confound ex ante estimates.  In addition to estimating the energy effect of household 

participation in the DSM program, the smart-meter data also allow us to estimate the temporal 

distribution of changes in electricity demand in the affected households.  The timing of changes 

in electricity demand is important for at least two reasons.  First, the capacity of the electrical 

system is finite, and electricity delivery is the ultimate just-in-time service; supply and demand 
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must be equal at all times across generation, transmission, and distribution.  In regions with 

histories of capacity constraints (like California, see Sweeney, 2002) influencing the timing of 

energy consumption can be critical for maintaining system reliability.  Second, emissions 

associated with the electric power sector that are harmful to the environment or human health are 

not constant over time, but vary as a function of total system demand and the nature of the 

installed generation infrastructure (Siler-Evans, Azevedo, & Morgan, 2012).  Energy savings 

from any given residential efficiency intervention happens on the margin, and the resulting 

emissions avoided associated with reduced electricity use at any time are the emissions from the 

marginal generation facility.   

 

Chapter 4 presents a model for projecting fuel use in the transportation sector in light-duty 

vehicles (LDVs).  The relevant regulatory intervention in this arena is the Corporate Average 

Fuel Economy (CAFE) standard, issued nationally by the National Highway Safety 

Administration (NHTSA).  CAFE standards are the minimum sales weighted average fuel 

economy levels that all major auto manufacturers are required to meet in a given year.  The 

model pairs the CAFE standards that have been announced through 2022 with a detailed 

projection of US population from the Census and historical vehicle sales fuel economy levels to 

estimate future demand for new vehicles, and ultimately the total fuel demand from all on-road 

LDVs.  Since LDVs are durable goods, once they are sold they often stay in service for many 

years.  However, they are only subject to CAFE requirements in the year that they are sold.  

Thus, the various “vintages” of LDVs that remain on the road introduce significant lag between 

the introduction of a new CAFE standard and achieved aggregate on-road fuel economy.  As a 
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result, much of the demand for fuel is locked-in in the short-term.  Understanding the dynamics 

of that demand is useful in the context of policies that affect fuel supply.   

 

Chapter 5 presents some summary conclusions and policy recommendations which follow from 

the analyses in the preceding three chapters.  Chapter 6 lists the works cited. 
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CHAPTER 2:  RESIDENTIAL DEMAND-SIDE MANAGEMENT LIGHTING PROGRAMS 

IN PENNSYLVANIA AND VERMONT.
1
 

 

CHAPTER ABSTRACT 

 

Demand-Side Management (DSM) programs for improving end-use electrical efficiency are 

increasingly being seen as an important tool by regulators and utilities in meeting future system 

demand requirements and as a cost-effective mechanism to reduce negative environmental and 

health externalities. While the ultimate energy savings impacts of many of these interventions are 

almost exclusively reported as point estimates, the uncertainty associated with these values is 

usually poorly understood. This research characterizes the uncertainty associated with residential 

lighting DSM programs in Vermont and Pennsylvania. We find that the range of uncertainty 

associated with these programs can be as high as a factor of two using standard estimation and 

reporting techniques, and we provide recommendations to improve the quality of these estimates 

without imposing burdensome requirements on DSM administrators.   

 

SECTION 1:  INTRODUCTION 

Large investments in end-use energy efficiency are likely to be a necessary part of a portfolio of 

strategies pursued by U.S. states to meet energy efficiency resource standards (EERSs), curb 

emissions of greenhouse gases (GHGs), and manage criteria air pollutants (Friedrich et al., 2009, 

Hopper et al, 2006 and Pacala and Socolow, 2004). In many regions of the U.S., as a result of 

state legislative initiatives and public utilities commissions’ (PUCs) rule-making, public benefit 

charges (PBC) have been collected in ratepayers’ electric bills in order to develop demand-side 

management (DSM) energy efficiency programs. In 2011 the estimated total budgets for DSM 

                                                 
1
 A version of this chapter is being prepared for external publication as a stand-alone research paper:  co-authored 

with H. Scott Matthews and Inês M. Lima de Azevedo 
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efficiency programs (which overlap with, but are distinct from, load management programs) was 

about $6 billion; representing more than a five-fold increase from the late 1990’s (Foster et al, 

2012). Goldman et al. (2012) project that spending will increase to $10.8 billion by 2025 if 

current policies continue. There is a strong case in support of energy efficiency programs on 

several fronts. First, there is a rich literature that shows that consumers do not independently 

invest in energy efficiency at an economically optimal level (Brown, 2001). Second, efficiency 

can be a cost-effective option in the context of integrated resource planning when compared with 

the costs associated with new generation, transmission, and distribution infrastructure (Azevedo, 

2009 and Azevedo et al., 2012) – and often enjoys a greater degree of political support than 

locally-sited capacity additions (Whitfield et al., 2009 and Wüstenhagen et al., 2007). Finally, 

efficiency measures can be an effective way to reduce GHG and criteria air pollutant emissions 

associated with energy consumption (Siler-Evans et al., 2012). But there is considerable 

uncertainty associated with both the quantities that form the basis of policy outcomes and how 

these impacts should be valued (Heffner, 2009). 

 

It is the uncertainty associated with energy savings estimates that motivates this work.  While 

energy savings values from DSM interventions are generally reported exclusively as point-

values, the parameters that underlie those estimates are inherently uncertain. DSM reporting by 

program administrators to the state-level regulatory body typically involves calculated energy 

savings values, expressed in units of power consumption (e.g., kWh) over the course of the 

reporting period (usually annually), along with programmatic expenditures. Energy savings 

values are calculated using prescribed algorithms for each approved technology type as defined 

in a “Technical Resource Manual” (TRM) which is published by the regulatory body responsible 
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for oversight of the DSM administrator(s), (i.e., Public Utility Commissions or similar). While 

the parameters that are used in defining the calculation procedure that is to be used for a 

particular technology are usually inherently uncertain, TRM algorithms are overwhelmingly 

done using parameter point-estimates in order to generate a point energy savings value. This 

paper makes the case that the values associated with these energy savings calculations are 

sufficiently uncertain to warrant that the range of the realized energy impact for a given 

intervention be characterized by DSM administrators. The benefit of doing so from a policy-

making perspective is in developing a better understanding of the range of possible realized 

impacts of specific DSM interventions. If, for example, a significant risk exists that a portion of a 

DSM program is not providing cost-effective returns or, conversely, if some DSM program has a 

significant up-side possibility, this could inform investment decisions in a way that simple mid-

point estimates cannot. Indeed, one of the purposes of DSM reporting is (or should be) to 

identify those strategies that are most cost-effectively producing the intended policy outcomes. 

Particularly in the case in which one of the policy-objectives of a DSM program is to avoid a 

need for new generation or transmission infrastructure does having a more clear view of the 

possible energy effects of an efficiency intervention becomes especially valuable. 

 

The type of DSM intervention considered here are case study examples of residential compact-

fluorescent (CFL) lighting incentive programs in Vermont and Pennsylvania. This selection is 

made because lighting represents a large fraction of US energy demand (17% of residential and 

commercial electrical demand – EIA, 2013) and, since individual investments needed to 

implement more efficient lighting are generally smaller than investments in other energy end use 

consumer durables, lighting interventions are a large portion of the DSM program portfolio for 
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many DSM-administrators (Nowak et al., 2011). Vermont is chosen as a case study because its 

energy efficiency efforts are generally considered to be among the most well-run and well-

documented DSM programs in the country (Sedano, 2011). Pennsylvania is chosen because the 

state has less experience with this type of efficiency programs; and hopefully the findings of this 

analysis will provide useful guidance to Pennsylvania policy-makers, as well as those of other 

states. Since this analysis limits itself to a narrow-class of DSM interventions it does not 

characterize the uncertainty associated with all DSM programs. However the limited scope still 

allows for conclusions regarding the nature of DSM reporting generally and serves to illustrate 

the mechanisms that can be used to incorporate uncertainty characterization in DSM program 

reporting.  

 

The history, intensity, and structure of DSM programs differ widely across the country as a result 

of state policy-making diversity (Schiller et al., 2011). A result of heterogeneity at the state 

policy-level is inconsistency in the methodologies employed for estimating the energy savings 

effects resulting from these DSM interventions, and has made comparisons between programs 

problematic and claims of counterfactual demand projections uncertain. Some variation in the 

way DSM investments are made, managed, measured, and reported in part reflects differing sets 

of desired policy goals.  

LIGHTING DSM POLICIES IN VERMONT  

 

In Vermont state DSM programs are operated through an Energy Efficiency Utility (EEU) called 

Efficiency Vermont which is managed by a third-party contractor who bids competitively in an 

open RFP process managed by the state Public Service Board (VT PSB, 2013). This third-party 

contractor (Vermont Energy Investment Corporation, or VEIC) is a non-profit entity, which has 
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been the state’s contractor since the inception of the program in its current form. VEIC 

undertakes efficiency programs throughout state. The state’s fiscal agent is funded through a 

public benefit charge tariff included in the ratepayer utility bills for each of the utilities operating 

in Vermont. The contract has, in turn, been structured to reflect the policy objectives of the state. 

The policy objectives for Vermont include a focus on avoiding new generation and transmission 

requirements in the context of “least-cost integrated planning” as well as income-group equity, 

geographic targeting, and parity between residential and non-residential impacts (see Sec. 1. 30 

V.S.A. §209 and §218c). As Efficiency Vermont makes investments consistent with the terms of 

its contract it submits invoices to the state’s fiscal agent for reimbursement for those 

investments.  

 

Data provided by Efficiency Vermont (2012a) on lighting projects done in 2011 indicates that 

nearly one million bulbs were included in 2011 prescriptive program activity, resulting in a gross 

energy savings
2
 of about 44 GWh, split between residential and commercial/industrial 

applications
3
. Vermont’s database includes 128 lighting product-applications

4
, but four 

residential product-applications represent about 27 GWh of the savings; or just over 60% of all 

reported energy savings from lighting activity. Table 1 shows the residential lighting savings 

reported by VEIC from those four products in 2011.     

                                                 
2
 Gross savings are the energy savings at the point of customer end-use. Net savings (which were about 51 GWh for 

the lighting measures discussed) account for line-losses, free-ridership and spillover factors and are calculated to 

represent generation capacity displaced. For simplicity, the analysis uses gross savings figures. Because each state’s 

TRM will include differing assumptions about the factors that contribute to the difference between gross and net 

energy savings, gross savings are a less uncertain measure.   
3
 The high majority of bulbs included in Efficiency Vermont prescriptive program activity are incentivized through 

coupons, rebates, or buy-down programs in which the customer is left with a non-zero remaining purchase cost.  

Prescriptive projects are those for which the off-the-shelf TRM calculation is appropriate, in contrast to custom 

energy projects that require site-specific calculations.  The details of the Efficiency Vermont’s estimated bulb cost 

and the value of the incentive provided for each bulb type is included in the TRM (17). 
4
 A given product may be used by a residential or commercial end-user, and will have different TRM assumptions as 

a result. 
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Table 1: Top four products contributing to residential lighting energy savings in Vermont, 

2011. Source: (Efficiency Vermont, 2012a) 

Description Savings per bulb 
(kWh) 

Quantity 
Incentivized 
(# of bulbs) 

Total (MWh) % of lighting energy savings 

Standard CFL Direct Installation 27 18,000 500 1% 

Residential Standard CFL 22 301,000 6,600 15% 

Specialty CFL, Small 42 205,000 8,500 19% 

Specialty CFL, Large 66 170,000 11,300 26% 

TOTAL    27,000 61% 

 

LIGHTING DSM POLICIES IN PENNSYLVANIA  

 

In Pennsylvania the implementation of DSM programs in the current form has been established 

much more recently by Act 129, in 2008, and is managed directly by seven local electricity 

distribution utilities. Each of these utilities was mandated to reduce annual electricity demand 

within its service territory by 1% by May 2011 and by 3% by May 2013, respectively. While Act 

129 is not the first policy-driven electricity efficiency program in Pennsylvania, it is the most 

prominent
5
. Each utility adds a public benefit charge to consumers’ utility bills, with the 

approval of the state PUC. Also, each utility manages their DSM programs. The policy goals in 

PA include protecting human health, providing reliable and affordable electricity, and 

environmental sustainability
6
. Finally, the energy savings estimated using a TRM that is 

approved by the state PUC.  

 

Of the seven distribution companies that are subject to Act 129 requirements, three have reported 

the number of bulbs associated with their residential lighting efficiency programs (Duquesne, 

2011, PECO, 2011 and PPL, 2011). The others (all four are FirstEnergy Companies) bundle their 

                                                 
5
 Previous policy activity includes the Sustainable Energy Funds, which formed after restructuring in 1999 (see 

http://www.puc.pa.gov/utility_industry/electricity/sustainable_energy_fund.aspx) and had broadly defined goals 

which included improving energy efficiency as well as promoting renewable energy generation.   
6
 See the text of Act 129, especially page 1 line 20 through page 2 line 15.  

http://www.puc.state.pa.us/electric/pdf/Act129/HB2200-Act129_Bill.pdf 

http://www.puc.pa.gov/utility_industry/electricity/sustainable_energy_fund.aspx
http://www.puc.state.pa.us/electric/pdf/Act129/HB2200-Act129_Bill.pdf
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residential lighting activity reporting with other types of DSM interventions (e.g., appliance 

rebates) and so the residential lighting portion of their reported energy savings cannot be isolated 

(MetEd, 2011, PENELC, 2011, PennPower, 2011 and WestPenn, 2011). For the three for which 

data are accessible, about 7 million bulbs were included in year 2011 program activity. PECO 

and PPL account for just over half of 2011 DSM spending. 

 

The rest of this paper is organized as follows: section 2 presents the methods used to estimate the 

energy savings from lighting DSM in Vermont and in Pittsburgh. Section 3 provides the main 

results.  In Section 4 we discuss the policy implications of the findings.   

 

SECTION 2:  METHODS 

Three approaches are used to estimate the energy savings from lighting DSM interventions in 

Vermont and in Pennsylvania. Those estimates are compared with the energy savings reported by 

the implementing entity. The first method is an equipment stock-flow model for residential light 

bulbs (“stock-flow”). The second method involves a decomposition of the published energy 

impact estimate into the component data and assumptions of the TRM used by the DSM 

administrators in each region (“decomposition”). Finally, the third method is to analyze energy 

savings in the context of historical cost-effectiveness of the DSM programs (“historical cost-

effectiveness”). The comparison of the estimates using these different methods is shown in 

Section 3. 

STOCK-FLOW MODEL 

The first method uses a stock flow model to estimate the turnover of the residential lighting bulbs 

stock over time, first assuming that there were no lighting DSM programs, and then by 

exogenously adding new CFL bulbs to the stock consistent with the activities of DSM programs. 
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To reflect the time periods over which DSM lighting programs have been active in each state we 

model Vermont from 2002 through 2011 and Pennsylvania for 2010 and 2011. To estimate the 

equipment stock in the starting period in each state we rely on two studies conducted by 

Navigant Consulting for the Department of Energy: Navigant (2002) provides an estimate the 

lighting stock of average household for the US which we assume is representative for Vermont 

households in 2002. Ashe et al (2012) provides a similar estimate of household lighting stock for 

the US in 2010, which we use as representative for Pennsylvania in 2010.   

 

Table 2: Starting year assumptions for residential lighting equipment stock. Sources: 

Navigant 2002 and Ash et al. 2012. 

 2002 (Vermont) 2010 (Pennsylvania) 

 All Bulbs Inc. CFLs All Bulbs Inc.  CFLs 
Bulbs per Household 43 36 1 51 32 12 
Watts per Bulb 63 63 15 46 56 16 
Hours per Bulb per Day 2 1.9 2.2 1.8 1.8 1.8 
Annual Energy Consumption (kWh)

 
 1946 1573 12 1553 1170 123 

 

Estimating a counterfactual in which no DSM lighting programs are present in these states we 

need to move these starting year stock estimates forward over time. We accomplish this by 

estimating the lifetime characteristics of these bulb types as well as the fraction of bulbs, by type, 

that would have been installed in the absence of a DSM program. Itron (2008) provides a report 

that provides some information on annual screw-based bulb sales for 2000 through 2007, which 

we use to estimate the relative market share of incandescent bulbs and CFLs in the absence of 

incentive programs for those years.  

 

We calculate total bulb sales for each state and year in our model endogenously by estimating 

new bulb demand, which we calculate as the sum of the scrappage of the existing stock plus the 

growth in the number of sockets available in the state. Scrappage is determined according to a 
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Weibull distribution (Bebbington et al, 2008), with parameters specified separately for 

incandescents and CFLs (LEDs are not considered in this analysis). Socket population is 

estimated using the bulbs per household figures estimated by the two Navigant studies multiplied 

by US Census estimates of the number of households in each state (the 2000 Census, the 2011 

American Community Survey, and a linear interpolation between those years).  

 

Energy consumption is calculated as the number of bulbs of each type times their estimated 

average wattage and hours of use. For comparison to energy consumption with the DSM 

program, CFL sales are set equal to demand in the no DSM scenario plus the number of bulbs 

incentivized by the DSM program – with that incentivized quantity multiplied by a value to 

represent free-ridership and spillover rates. Table 3 shows key the input assumptions.  

 

We perform multiple simulations: in a “market” simulation burnouts and new bulb demand are 

assigned by bulb type as described above. A “sticky socket” simulation modifies this 

methodology by assumption that once a consumer installs a CFL in a particular socket all future 

replacements in that socket remain CFL.  

 

Table 3:  Assumptions in the equipment stock-flow model 

Parameter Distribution Type Min Mode (Mid) Max 

Survival function 'B': Incandescent Triangle 1.5 2 2.5 

Survival function 'B': CFL Triangle 6 7.5 9 

Freerider Rate Triangle 0.7 0.8 1 

Spillover Rate Triangle 1 1 1.2 

CFL Baseline Sales Estimate Uniform 85% 100% 115% 

 

 

Figure 1 and Figure 2 show the results for Vermont and Pennsylvania, respectively, and for the 

market and sticky-socket scenarios. The lower charts in each figure show the results of a further 
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modification in which the year-over-year difference in energy savings is calculated. This is done 

to create a measure that is more closely analogous to the TRM decomposition methodology, 

which considers the energy savings of a DSM intervention in the first full year of its operation 

only.   

 

Figure 1:  Equipment stock turnover model energy savings estimate with uncertainty range 

for Efficiency Vermont residential lighting program 
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Figure 2:  Equipment stock turnover model energy savings estimate with uncertainty range 

for Pennsylvania DSM residential lighting program 

 

DECOMPOSITION METHOD 

In the decomposition method, the energy savings are estimated using the methodology 

prescribed by the Technical Resource Manual, with the key difference that the parameters used 

in that calculation are assumed to be uncertain. Annual lighting savings per lightbulbs from DSM 

programs in Vermont (VT) and Pennsylvania (PA) are computed as follows (Efficiency 

Vermont, 2011a and PA PUC, 2012): 

 

 Method in VT’s TRM:       (          ⁄ )                 Equation 1 

Method in PA’s TRM:        ((                 )     ⁄ )            Equation 2 
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In these equations kWh stands for the energy savings (in kWh) for each bulb over the first full 

year of use, ISR is the in-service rate for the bulbs, Hours is the number of hours per year that the 

bulb is used, and WHF is the waste-heat factor. The ISR is the proportion of bulbs that are 

distributed via the DSM program and that actually become installed. The WHF accounts for the 

cooling-load reduction that is achieved through a reduction in heat from the inefficient bulbs – 

for residential application however this term is set equal to one (indicating no additional energy 

savings gain or loss). Efficiency Vermont also includes a calculation of the loss from heating-

load that is required to make up for that lost heat in winter months, but since the majority of 

heating in Vermont is met through non-electrical means (e.g., fuel oil) this loss is not included in 

the electricity savings calculations. In the Pennsylvania’s equation the subscripts base and ee 

refer to the wattage ratings of the original bulb and the energy efficient replacement bulb, 

respectively
7
. This is necessary because the DSM administrator is directed by the TRM to input 

values for both the new bulb and the one it is replacing, whereas in the Vermont case the TRM 

makes an implicit assumption about the efficiency of the original bulb and can thus directly 

detail the wattage difference for each approved bulb type. In practice, however, it is clear from 

the data reported to the Pennsylvania PUC by the seven utility-operated DSM programs that 

common assumption has been made regarding the value of the difference of the wattage terms. 

Table 4 shows the TRM prescribed input assumptions for each of these parameters along with 

the calculated value of the wattage difference for Pennsylvania. 

 

                                                 
7
 An alternative method for calculating the change in wattage is to input the wattage of the efficiency bulb that is 

associated with the DSM program, and multiply by a typical efficiency factor differential to arrive at the equivalent 

wattage of the replaced bulb. This is the procedure used in New York (19), for example. 
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Table 4: TRM assumptions used in Vermont and in Pennsylvania. 

Description Per Unit Savings 
(kWh) 

Δ Watts ISR Hours/year WHF 

VERMONT      

  Standard CFL Direct Install 27 49.0 0.800 694 1 

  Residential Standard CFL 22 45.7 0.730 659 1 

  Specialty CFL, Small 42 43.7 0.766 1241 1 

  Specialty CFL, Large 66 69.9 0.766 1241 1 

PENNSYLVANIA      

Residential CFL 48 52 0.84 1095 --- 

 

We perform a Monte Carlo analysis, and assume that these are values uncertain in order to 

recalculate the energy savings range that the Vermont and Pennsylvania residential lighting 

programs might have achieved in practice. Table 5 shows the range of values that we have 

assumed for each of these parameters along with the source from which each value was drawn. 

These values provide conservative, central and aggressive figures for different quantities of 

interest. The values are from different studies or guidelines produced in that same region.   

Table 5: Values used in TRM decomposition calculations 

  Conservative Central Aggressive 

Wattsbase 40 (assumed) 60 (assumed) 100 (assumed) 

Wattsee 13 (Energy Star, 2012) 17 (Energy Star, 2012) 25 (Energy Star, 2012) 

Δ Watts 27 (calculated) 43 (calculated) 75 (calculated) 

ISR 0.73 (Efficiency Vermont, 2011a) 0.87 (PA PUC, 2012) 1 (assumed) 

Hours 657 (Ashe et al, 2012) 1004 (NEEP, 2012) 1460 (assumed) 

WHF 1.00 (Efficiency Vermont, 2011a) 1.05 (assumed) 1.14 (VEIC, 2011) 

Energy Savings (kWh) 13 40 125 

 

Figure 3 shows the result of a Monte Carlo simulation using the number of bulbs that are 

included in Vermont’s 2011 DSM program activity, and the values shown in Table 5, in which 

each of the uncertain parameters is defined using a triangular distribution. Figure 4 does the same 

using the number of bulbs included in Pennsylvania’s 2011 DSM activity. Both figures also 

identify values of interest in each distribution.  
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Figure 3: Monte Carlo distribution of Efficiency Vermont's residential lighting energy 

savings using uncertain TRM input values compared to calculated energy savings results 

 

 
Figure 4: Monte Carlo distribution of Pennsylvania's residential lighting DSM energy 

savings using uncertain TRM input values compared to calculated energy savings results 

 

As they originate from the same set of uncertain parameters, Figures 1 and 2 are identical 

distributions that vary only by a multiple that reflects the difference in the size of the two DSM 

programs. This distribution shows that the estimated energy impact can vary by a factor of two 

using the assumptions shown in Table 5 and a 90% confidence interval. 

 

COST-EFFECTIVENESS METHOD 

This method makes the coarse assumption that the cost-effectiveness of the Vermont and 

Pennsylvania residential lighting DSM programs, expressed strictly in terms of energy savings 

per dollar invested (that is, ignoring the value of other policy outcomes), can be compared to the 
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cost-effectiveness achieved by other efficiency programs, as reported in the literature. Making 

this comparison allows us to estimate the energy savings of these DSM programs had they 

achieved the same level of cost-effectiveness. Cost-effectiveness is a useful guide to policy-

makers in determining if a given program is providing benefits sufficient to justify the costs in 

the context of other policy options that are available. By comparing the cost-effectiveness of 

these DSM programs to that achieved by other efficiency programs (as well as to the price of 

power) we can both find if these programs are a worthwhile investment and, if they are, the 

tolerance for uncertainty in the benefits they provide that we should be willing to accept. That is, 

by comparing the reported energy savings to the energy savings achieved at different benchmark 

levels of cost-effectiveness we can find how much “slack” we have before we would be 

concerned (at some level of confidence) that the program may not be providing a worthwhile 

value.   

 

Efficiency Vermont’s Annual Reports (2004-2012) provide detail on the energy savings and 

expenditures of Vermont’s DSM programs on an annual basis. We compare these values to the 

cost effectiveness estimated by Arimura et al (2011) and Friederich et al (2009) which found 

values of 5 cents/kWh and between 1.6 to 3.3 cents/kWh, respectively, expressed in 2007 

dollars. Figure 5 compares the energy savings that would have been achieved in Vermont with 

these levels of cost-effectiveness with the reported energy savings and with a cost-effectiveness 

equivalent to the retail price of power in the state. 
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Figure 5:  The reported lifetime energy savings of Efficiency Vermont's residential lighting 

program in comparison with benchmark cost-effectiveness values and the approximate 

retail price of power in 2010 in VT (13 cents/kWh), over time. 

Figure 5 shows that Efficiency Vermont’s residential lighting program, as reported, has 

consistently outperformed the reported typical cost-effectiveness values in the literature.  As a 

point of comparison, Efficiency Vermont’s average (kWh weighted) reported cost effectiveness 

for the period of 2003-2011 is about 2.4 cents per kWh – the residential lighting portion of their 

programmatic activities were substantially more cost-effective (in terms of energy savings only, 

neglecting other policy outcomes of interest) than the average cost-effectiveness of their other 

DSM activities.  Because these values are calculated using the expected lifetime energy savings 

of the DSM interventions as the numerator, they are not directly comparable to the TRM-based 

calculations, which use the first full year of energy savings only. Figure 6 reports the one-year 

energy claims of Efficiency Vermont’s residential lighting programs and compares those values 

to a subset of the values reported in Figure 5. 
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Figure 6:  The reported first-year energy savings of Efficiency Vermont's residential 

lighting program in comparison with a benchmark cost-effectiveness value and the 

approximate retail price of power in 2010 in VT, over time. 

Figure 5 and Figure 6 give some insight for policy-makers who need to understand if these DSM 

efforts are worthwhile. If we understand that reported energy savings claims are uncertain, we 

might wonder if we are running a risk of funding a DSM program that is actually not providing 

net positive social value. Figure 5 suggests that the energy savings reported from residential 

lighting programs would have to have been over-reported by a factor of six in 2011 to fail a 

resource-cost test based strictly on the price of power in the state.   

 

In PA, lifetime energy savings estimates are not reported.  As an estimate of the cost-

effectiveness of the residential lighting programs, it is assumed that the utilities that report 

residential lighting energy savings separately are representative in first-year energy saving cost-

effectiveness terms for the state.  Using data from program year two reports, we calculate a one-

year energy savings cost-effectiveness for these utilities of 5.2 cents per kWh (Duquesne, 2011 
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and PPL, 2011). For comparison, EIA (2012a) reports an average residential retail price of 

electricity of 12.7 cents per kWh in PA in 2010. 

 

SECTION 3:  CONTRASTING THE FINDINGS FROM EACH METHOD 

Figure 7 and Figure 8 combine the reported values by Vermont and Pennsylvania in 2011 with 

estimated energy savings from lighting programs, and the findings from each of the three 

methods described above. The range shown for cost-effectiveness represents 2.4 and 5 cents per 

kWh for the high and low energy savings estimates, respectively. The bottom-up methodologies 

that allow for the cumulative effects of past investments show significantly higher energy 

savings values than the first-year only methodologies.  

 
Figure 7:  Range of estimated energy effects for selected residential lighting measures by 

Efficiency Vermont in 2011, by estimation methodology 
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Figure 8:  Range of estimated first-year energy effects for residential lighting measures by 

Pennsylvania utilities in 2011, by estimation methodology 

 

 

A comparison of the stock flow models between the two states shows the effect of a prolonged 

programmatic effort – the annual energy savings estimated from previous years’ investments 

contributes significantly to the annual energy savings that VT can expect.  Pennsylvania’s 

relatively new program is only beginning to build up a stock of efficiency investments that will 

continue to contribute to reduced demand over that stock’s lifetime.  The exercise of employing 

these different methodologies, and comparing their results, leads to some recommendations for 

ongoing reporting for DSM programs in general.   

 

SECTION 4:  DISCUSSION AND POLICY RECOMMENDATIONS 

Energy efficiency has been one of the key strategies used by states to reduce the pace of demand 

growth in a cost-effective way. Much effort and resources has been devoted in designing and 
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implementing energy efficiency programs, and a large proportion of those programs have 

focused on more efficient lighting technologies. However, less attention and effort has been 

provided to evaluation and monitoring of the effects of programmatic activity. In particular, there 

are uncertainties associated with the technologies that compose the stock of equipment, the new 

technologies selected by consumers, usage patterns and so forth. In this work, we implemented 

three methods that could help decisions makers and program managers characterize the 

uncertainty associated with lighting programs in a region. We provide two case studies as an 

application of those methods.  

 

We show that assumption about how long the efficiency measure is in place has a key effect on 

the estimated savings in a given year. In many of the reporting mechanisms reviewed, the value 

of ongoing energy savings that accrue over time is not considered. Reporting energy savings 

values as a stream of expected (or achieved) energy savings would be useful both for 

understanding the cost-effectiveness achieved by a given efficiency investment as well as for 

better characterizing baseline conditions for future efficiency interventions.  

 

To the extent possible, reporting DSM program information at the technology and end-use level 

would provide a clearer picture of the effects of energy efficiency programs and better guidance 

for how to deploy future scare public resources. This information is lacking in the public domain. 

For example, utilities do report to the Energy Information Administration their annual spending 

and savings on demand side programs (in form 861), but they do not include information by 

technology or measure type. Utilities do compile such estimates for their PUC, but those are 

generally only available in reports and documents as opposed to datasets that third parties could 



  

 25 

use for further evaluation and for research. Disaggregated reporting enables a better 

understanding of the types of programs that are achieving policy objectives most effectively. In 

the PA example it was not possible to get an accurate picture of residential lighting efforts in the 

state due to the lack of detail in the publicly available reports to the state PUC. As described 

above, one rationale for DSM reporting is the identification of the interventions that cost-

effectively produce the intended policy-outcomes. While some program types may inherently 

mix technology-types in a way that disallows straight-forward disaggregation in this way, it does 

not seem likely that doing so in this case would be prohibitively burdensome.   

 

TRM calculation procedures should incorporate the inherent uncertainty underlying the assumed 

input parameters. This can be done by incorporating, in the TRM, ranges for the parameters that 

DSM operators are to employ in making energy savings calculations and coupling that with a 

requirement to report high, low, and mid-points of the energy savings estimates. The additional 

burden on DSM operators would be minimal; it would simply require an extra column or two in 

the calculation spreadsheet to incorporate the specified range of the input parameters and the 

resulting range of energy savings estimates. In addition to helping policy-makers to better 

understand the range of possible realized impacts of the DSM programs, it also can help to 

identify those factors that most contribute to uncertainty in these outcomes (Messenger et al, 

2010) and, in so doing, better direct future research efforts. 

 

A useful complement to TRM estimation methodologies in the residential-sector would be in the 

form of cooperation from retailers and manufacturers in providing sales estimates by model of 

energy-intensive products. Trade concerns would have to be adequately addressed in data 
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handling by state regulators. While the data would necessarily be an imperfect proxy for the 

installed equipment stock in the state such data would allow a better characterization of baseline 

conditions when considering new DSM program interventions. It would also provide an 

alternative mechanism for estimating energy-use changes in the state by enabling cross-border 

comparisons to test the efficacy of differing policy régimes.    

 

Finally, state TRMs should reflect the full suite of policy outcomes of interest to the state. 

Energy savings and demand reduction are already included but other outcomes typically are not.  

If, for example, emissions avoided are an outcome of interest to the state the TRM should also 

specify a methodology for estimating those effects. Some policy outcomes might be difficult to 

quantify in this way but, uncertainty notwithstanding, expressing outcomes in energy terms 

exclusively can result in a cost-effectiveness calculation that incorrectly undervalues the public 

benefit of DSM programs.  

 

The analysis above demonstrates the uncertainty associated with DSM energy savings claims 

using residential lighting interventions in Vermont and Pennsylvania as an illustrative example. 

This particular example was selected due to the relatively straightforward nature of the 

intervention; other, more complex, interventions can be expected to have uncertainty associated 

with the energy savings calculation that is more difficult to characterize. The uncertainty in the 

amount of energy demand avoided is important in its own right for regulators and utility 

operators in the context of resource planning. Large overall uncertainty in the amount of demand 

that can be avoided via DSM interventions can necessitate additional investment to ensure that 
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supply is adequate – this is particularly critical once the timing of the efficiency intervention is 

considered and the effects of the load profile for the region are included.   
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APPENDICES TO CHAPTER 2 

APPENDIX A:  PENNSYLVANIA BULB COUNT ESTIMATION METHODOLOGY 

 

The three utilities that show energy savings from residential lighting separately (Duquesne, 

PECO, and PPL) appear to report higher levels of energy savings from residential lighting as a 

fraction of total DSM activity than do the four utilities that do not separately report those values 

(the FirstEnergy Companies – MetEd, PENELC, PennPower, and WestPenn).  For PPL, 

residential lighting energy savings represented about 32% of total energy savings claimed for 

program year two and for PECO the residential lighting share of reported energy savings is about 

26% and for Duquesne the value is 31% (Duquesne, 2011, PECO, 2011 and PPL, 2011).  The 
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weighted average of the programs which contain residential lighting activities for the other four 

utilities is about 23% - since these other four utilities combine reporting of residential lighting 

with other residential efficiency activity, the residential lighting portion for these utilities is 

necessarily lower.   

 

For the FirstEnergy Companies residential lighting is combined under a category labeled 

“Residential Energy Efficient Products Program” (EE Products) which also includes appliance 

and water heater rebates.  To estimate the fraction of savings under this program that are 

attributable to residential lighting, an assumption is made that this fraction is roughly similar to 

the weighted average energy savings that residential lighting contributes to the sum of residential 

lighting reported energy savings plus that of appliances for the three utilities for which the 

disaggregated data are available.   

 
Table 6:  Residential lighting DSM reported energy savings as a fraction of residential lighting plus 

residential appliance rebate programs for three Pennsylvania utilities
8
 

 Lighting Appliances Fraction Lighting of Sum 

PPL 146,000 24,000 86% 
PECO 189,000 26,000 88% 
Duquesne 49,000 4,000 93% 

  Weighted Average 88% 

 

The three utilities that report residential lighting separately each use a value of energy savings 

per bulb of about 48 kWh/year.  Due to the uniformity of the factor employed by these three 

utilities (and despite the fact that this does not seem to match the value prescribed by the state 

TRM) this factor is assumed to be used by the FirstEnergy Companies as well.  This allows an 

estimate of the number of bulbs that the FirstEnergy Companies included in their DSM programs 

                                                 
8
 Table values do not sum due to rounding.  Duquesne reports energy savings estimates at the generator level (net 

savings), including a line loss assumption of 7%.  This is removed in the estimates made here for consistency with 

the reported values from the other utilities. 
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by first estimating the energy savings using the factor described above, and dividing by the 

assumed energy savings per bulb.   

 
Table 7:  Estimated bulb count for the FirstEnergy Companies for Pennsylvania Act 129 program 

year two and sum of total estimated CFL bulbs for all seven utilities in Pennsylvania for program 

year two 

 EE Products (MWh) Lighting (MWh) Bulb Count (#) 

MetEd          34,678           30,429                 633,944  
PENELC          35,279           30,957                 644,931  
PennPower          15,555           13,649                 284,359  
WestPenn          28,849           25,314                 527,385  

FirstEnergy Companies Subtotal 100,350            2,090,618  
PPL  146,000            3,066,236  
PECO  189,248            3,965,086  
Duquesne  49,097            1,103,170  

Estimated Total           10,000,000 

 

Because this is an estimation methodology, and does not represent values reported by the 

utilities, an order of magnitude value of 10 million will be used as the estimated number of bulbs 

in Pennsylvania under Act 129 for program year two.  The same estimation procedure is used to 

estimate the number of bulbs in program year one.  In this year, PECO, PPL and WestPenn 

reported residential lighting separately – and total DSM spending was much lower than in 

program year 2 as programs were still ramping up (Duquesne, 2010, MetEd, 2010, PECO, 2010, 

PENELC, 2010, PennPower, 2010, PPL, 2010 and WestPenn, 2010).  The estimated CFL bulb 

count for program year one is 4 million. 

APPENDIX B:  DESCRIPTION OF FOURTH POTENTIAL METHODOLOGY AND WHY IT HAS 

BEEN EXCLUDED 

 

A fourth potential methodology to estimate the energy savings associated with DSM programs 

would be to attempt to detect a change in aggregate state electricity demand consistent with the 

published estimate for energy savings by the DSM program.  This approach would employ an 

econometric time-series multivariate regression analysis, incorporating predictors of electricity 
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demand for the region.  This approach would follow in style to that employed by (Parfomak and 

Lave, 1996 and Auffhammer et al, 2008), but would be severely restricted in this analysis due to 

data limitations.  For Vermont, there is only one observation in each year.  In Pennsylvania there 

are seven observations in each of two years.  Expanding the scope of this analysis to include 

more observations (like in the work of those cited here) would allow this type of estimation to be 

included.  In doing so, care will be needed in including adequate predictors of system demand in 

the model formulation.  The predictor of interest in the model will be a term that consists of the 

annual energy efficiency estimates published by the DSM administrators.  Finding a coefficient 

that is not statistically distinguishable from one will suggest that the true value of energy saved 

by the program corresponds to the published values (and uncertain according to the confidence 

interval associated with that coefficient).  A slightly modified approach would be to exclude the 

vector of published efficiency savings estimates and test if the level of demand predicted by the 

model is equivalent to the observed demand plus the savings estimate.   
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CHAPTER 3:  HOUSEHOLD ENERGY CONSUMPTION EFFECTS OF PG&E’S 

ELECTRICAL EFFICIENCY REBATE PROGRAM.
9
   

 

CHAPTER ABSTRACT 

Do rebate programs for residential energy efficiency lead to lower electricity consumption? To 

move towards sustainable, low-carbon, and affordable energy systems in the U.S., energy 

efficiency is likely needed to play a central role. That will require robust, large-scale programs 

that deliver the intended savings. With the roll-out of smart meter programs, utilities and policy 

makers have unprecedented data to evaluate the effects associated with energy efficiency 

programs, and continued careful of energy efficiency and demand-side programs continues to be 

needed. Using an unbalanced panel of smart-meter data from a sample of approximately 30,000 

households in PG&E’s service territory from 2008 to 2011, complemented with demand-side 

management and energy efficiency program participation, and weather information, we assessed 

the effect of rebates for household electrical efficiency improvements on household electricity 

consumption.  We find that participation in the efficiency rebate program leads to an average 

increase in household electricity consumption of about 7%. We suspect that the reason is largely 

a result of the majority of rebate program eligibility not being contingent on equipment 

scrappage or recycling; and thus the program is likely behaving as an equipment subsidy 

program leading to additional household energy services for participants rather than maintaining 

the same level of household energy service with higher energy efficiency. These results strongly 

suggest that systematic effort must be made to pretest programs to examine whether households 

act as expected by program planners, and that continued evaluation of energy efficiency and 

demand-side management programs is needed. 

                                                 
9
 A version of this chapter is being prepared for external publication as a stand-alone research paper:  co-authored 

with Inês M. Lima de Azevedo. 
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SECTION 1:  INTRODUCTION 

In the United States, the residential sector accounts for about 37% of total electricity 

consumption (EIA, 2013), and about 15% of greenhouse gas emissions (GHG) (WRI, 2008). 

Several energy efficiency strategies are available to provide the same or improved level of 

energy services while using less energy. Indeed, several bottom-up engineering-economic studies 

identify the large potential of energy efficiency in the residential sector (NRC, 2010; Rubin, et 

al., 1992; McKinsey, 2007; Brown et al., 1998; Crabtree, 2008; Nadel, Shipley, & Elliott, 2004; 

Meier, 1982; Blumstein & Stoft, 1995; Rosenfeld et al., 1991; Rosenfeld et al., 1993; Jackson, 

1995; Rosenfeld, 1999; Koomey et al., 1991; Brown et al., 2008; IWG, 1997; IWG, 2000; NAS, 

1992; OTA, 1991; Tellus, 1997; Koomey, 1991; Ürge-Vorsatz et al., 2009; Azevedo et al., 2013; 

Brown & Levine, 1997; Goldstein, 2008; Rufo & Coito, 2002; McKinsey, 2009), including many 

that identify large energy savings potential at zero or negative net cost to the end user.  

 

Energy efficiency improvements can also be a cost-effective option in the context of integrated 

resource planning compared against the costs associated with new generation, transmission, and 

distribution infrastructure (Azevedo et al., 2013) and can be an effective way to reduce GHG and 

criteria air pollutant emissions associated with energy consumption (Siler-Evans, Azevedo, & 

Morgan, 2012). Indeed, nowadays some markets allow efficiency to bid directly against new 

generation in forward capacity markets (Jenkins, Neme, & Enterline, 2011) and the EPA Clean 

Power Plan under section 111d of the Clean Air Act includes demand-side efficiency as one of 

its four “building blocks” for setting state GHG targets (EPA, 2014).  
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Most traditional engineering-economic analyses of residential energy efficiency treat energy as a 

commodity using the assumptions of a standard microeconomics approach, even though it has 

long been recognized that behavioral factors influence energy use and efficiency efforts (Brown, 

2001; Anderson & Claxton, 1982; Golove & Eto, 1996; Gillingham, Newell, & Palmer, 2009; 

Seligman, Darley, & Becker, 1977; Lutzenhiser, 1993). Academics have recently begun placing 

a greater emphasis on estimating the potential of these social and psychological contributions to 

reducing energy consumption and associated emissions (Lutzenhiser et al., 2009; Diets et al., 

2009; Moezzi et al., 2009). While behavioral approaches can be used to achieve reductions in 

energy consumption, neglecting their consideration in program design can lead to mixed, or 

counterproductive, results (Wasi & Carson, 2011; Davis, Fuchs, & Gertler, 2012).      

SECTION 2:  DATA DESCRIPTION 

In this work we use an unbalanced panel of smart-meter data from a sample of approximately 

30,000 households in PG&E’s service territory from 2008 to 2011, complemented with demand-

side management and energy efficiency program participation, and weather information to 

understand the effect of rebates for household electrical efficiency improvements on household 

electricity consumption. 

SMART METER PROGRAM AND SAMPLE DATA 

Households in the sample used for the analysis were selected by PG&E to include a random 

selection of account holders from each of the three climate zones covered by PG&E territory.  

Access to this sample data was facilitated by the Wharton Customer Analytics Initiative through 

a competitive proposal.  The purpose of this process is to restrict access to the dataset to bona-

fide academic researchers and to serve as an additional layer of security to protect the privacy of 

the customer data.  As a consequence, the data are not made publicly available.  PG&E began 
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installing smart-meters in 2008 in a gradual roll-out across its service territory. The electricity 

consumption data is collected by the smart-meters on 15-minute interval energy readings, 

measured in kWh, which we aggregated to daily electricity consumption. Readings for a given 

household are only available once the smart-meter is installed, resulting in an unbalanced panel 

of observations. In Figure 9, we show the rollout of smart-meters by date of first reading for 

households in the sample in the data. The rollout of total smart meters over time by PG&E 

follows closely the rollout from the sample data provided by PG&E.  

 

 
Figure 9:  Smart meter rollout in PG&E, March 1, 2008 to December 31, 2011. The 

different colors correspond to number of smart meters in different regions (Central Valley, 

Inland Hills, and Coast). 

In PG&E’s program, smart-meters communicate high-time resolution (15 minute or 1 hour 

interval) energy consumption data back to the utility. That information is not displayed to the 

consumer. However, PG&E did develop a web portal through which customers could access 

detailed energy consumption data. The use of this portal has been limited, with 86% of 

households in the sample not logging in even once in 2011, and therefore we assume that the 

availability and use of the webportal had no influence in patterns of electricity consumption. 
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There was no option to allow customers to opt-out of having a smart meter installed over the 

period of the data set. There were no dropouts in the program other than for households in which 

the customer moved. Households are identified by a service point id (for the location) and an 

account id (for the customer). Selection for inclusion in this sample dataset was done by account 

id. If a customer moved from one service point id to another location served by PG&E with a 

smart meter installed, they remained in the sample dataset, but with a different service point id 

associated with the account from that date forward. If a customer moved out of the PG&E 

territory, that customer’s data would stop at that point (and not be replaced by the new occupants 

at that service point id, if any).   

 

The smart-meter energy data readings are associated with households via “service point id” 

numbers which are unique to each meter.  Efficiency rebate program participation is associated 

with households via “service agreement id” numbers which are unique to service contract and 

additional program participation is associated with households via “account id” numbers which 

are unique to the individual within the household (e.g., the head of household).  PG&E provided 

in the dataset a data table by which associations between the id numbers can be made.  PG&E’s 

selection for inclusion in the sample of approximately 30,000 households of this data set was 

determined by account id.  By this selection design the data follows an account holder as they 

move from one household location to another.  When an account holder moves out of a smart 

meter location, the data from that service point id ceases to be reported in the dataset.  If the 

account holder moves to another location with a smart meter, that new service point id becomes 

active in the data set.  In no cases was a service point id associated with one account id and then 
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subsequently associated with another account id in the sample of the data set.  All of the id 

numbers included in the data set as provided by PG&E were pseudo ids, masked for privacy such 

that they cannot be matched with actual customer account numbers or personally identifying 

information. 

 

Table 8 provides the summary statistics for the neighborhoods of the households in the sample. 

While the smart meter data set did not include much demographic information, we 

complemented it with median Census Block information for each of the Census Blocks in the 

sample. 

 

 

Table 8:  Summary statistics for neighborhoods of households in the sample, overall and by 

region from March 1, 2008 to December 31, 2011. 

 Central Valley Inland Hills Coast Overall 

Median Median Home Value
*
 281,500 586,400 597,200 479,100 

Median Median Income
*
 51,759 78,542 63,373 65,625 

Median % Renters 34 32 51 38 

Median % Poor 12 6 9 8 

Median % w/ Bachelors (or higher) 17 38 40 32 

% of households applying for 1 or more rebates 7.7 11.3 8.3 9.2 

Number of households 8,597 11,391 10,217 30,426 

* These values are medians from our sample of Census Block neighborhood medians. These values are top-coded by 

the US Census at $1M and $250k, respectively. 

 

Figure 10 shows the different climate zones in the PG&E territory. PG&E randomly selected 

approximately 10,000 households from each of the climate zone which are used in our analysis.  

Figure 11 shows seasonal trends in household electricity consumption by climate zone.  The 

prevailing seasonal weather patterns for hot summers in the central valley can be seen in the 

sharp increase in demand in those months for that region, while the coastal region has 

comparably flat seasonal demand corresponding with its more temperate climate. 
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Figure 10: Climate zones in the PG&E service territory.  PG&E randomly selected 

approximately 10,000 households from each of the climate zone to construct the sample. 

(Map provided by, and reproduced with the permission of, WCAI)   

 

 
Figure 11: 10th to 90th percentiles of daily household electricity consumption shaded by 

decile, by Climate zone and month 

Climate Zones 

Coastal 

Inland Hills 

Central Valley 
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ENERGY EFFICIENCY AND DEMAND SIDE MANAGEMENT PROGRAMS 

One of the primary mechanisms for improving residential demand-side energy efficiency is for a 

local utility, an energy service company, or a similar entity (Sedano, 2011) to offer rebates to 

consumers following the purchase of approved energy-efficient household appliances. We 

analyze this type of demand-side efficiency program using a smart-meter dataset from Pacific 

Gas & Electric (PG&E), a large California utility. PG&E randomly sampled about 10,000 

households from each of the three climate zones. We combine daily smart-meters readings for 

this unbalanced sample of approximately 30,000 customers with weather data and household 

participation in different efficiency and other PG&E programs to estimate the effect of the 

efficiency rebate program. From the sample of 30,349 households, 2,768 households applied for 

at least one rebate over the period of our observations.  

 

During the period of this analysis, in addition to the rebate program, PG&E had several other 

demand side management (DSM) programs under way. Key programs that were under way 

during the period of observation include the Balanced Payment Plan (BPP), California 

Alternative Rates for Energy (CARE), Climate Smart, Direct Access, Smart AC, and Smart Rate. 

The BPP program provides a bill smoothing service, in which PG&E calculates the household’s 

average monthly utility bill and the customer pays a flat amount for each monthly billing cycle. 

This value is an average annualized value, and this value is updated not more frequently than 

once every four months. The CARE program provides subsidies to household’s monthly energy 

bills based on income and occupant criteria. Climate Smart is a program in which households can 

voluntarily opt-in to purchasing carbon-offsets through PG&E with their monthly utility bill. The 

Direct Access program allows customers to purchase their electricity from alternative (non-
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PG&E) power providers, using PG&E as the distribution company. New customers have not 

been able to join the Direct Access program since the California energy crisis in 2001, though 

existing customers have been able to remain in the program. The Smart AC program allows 

customers to voluntarily opt-in to a central air-conditioning curtailment program that operates 

during peak-load events during the summer cooling season and customers are incentivized to 

join with a one-time $50 payment from PG&E. PG&E then installs a device on the cooling unit 

that allows PG&E to cycle the unit off for up to 15 of every 30 minutes during peak load events. 

The Smart Rate program offers customers a lower average electricity tariff (3 cents per kWh 

reduction) in exchange for accepting a significantly higher rate (60 cents per kWh) during 

peaking hours of “Smart Days” in the summer cooling months. These Smart Days are 

communicated to the consumer a day ahead via text, email, or by phone. Importantly, each of 

these programs, including the efficiency rebate program, was ongoing before and throughout the 

period of energy reading observation. We include participation in all these programs in our 

estimation model.  

 

Efficiency rebates are awarded following the purchase of qualifying equipment and application 

by the customer to PG&E. PG&E makes applications available to its customers on its website as 

well as via a mail-in form. The rebates are funded via a “public goods charge”, which is included 

in the electric rate base by the California Public Utilities Commission. Households are eligible to 

participate in the rebate program multiple times. In Figure 12, we show the applications for 

efficiency rebates in the sample, indicating those rebates associated with households from which 

multiple applications were observed. The number of active smart meters does not affect the 
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number of rebate applications we observe. Indeed, about half of the applications in the dataset 

occur before a smart meter installation.  

 

 
Figure 12:  Energy efficiency rebate applications over time (by quarter). 

Participation in either the efficiency rebate program or in the other PG&E programs is identified 

in a data table (separately for the rebate program from the other programs) with the 

corresponding id number and the date of participation.  For the rebate program, three dates 

appear: the date on which the rebate application is received by PG&E, the date on which the 

rebate application is approved by PG&E, and the date on which the rebate check is mailed to the 

applicant.  These date columns appear to include many missing values—for example, there are 

several instances in which a check mailing date appears without a corresponding preceding 

approval date.  For this reason, all instances in which rebate date has a valid value are treated as 

participants in the efficiency rebate program.  We believe this is justifiable since this would 

include all households that wished to participate in the rebate program (and thus the program 
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could be influencing their household energy consumption) regardless of whether their 

application was approved or not.  For comparison, we also report the results in which we define 

rebate participation as only households for which there is a valid approval or check issuance 

date. 

 

For participation in the other PG&E programs, household participation can start, stop, and 

resume again several times over the course of the observation period.  Dates for participation are 

identified by a start date for participation in the program as well as date for ceasing participation 

in the program.  Subsequent participation periods for the same service agreement id are 

identified as separate records in the data as provided by PG&E.  These records were transformed 

into binary indicator variables reflecting the dates of participation in each program after 

associating participation service agreement ids with service point ids via account ids.      

 

Households that participate in the rebate program are, prior to participation, different from the 

remainder of the sample based on a comparison of household neighborhood characteristics in the 

2010 Census.  Geographic information about households is indicated in the dataset based on year 

2000 Census blockgroup numbering.  The geographic centroid of the 2000 Census blockgroups 

are taken and located within 2010 Census blockgroups in order to establish neighborhood 

characteristics for each household.  Households that participated in the efficiency rebate program 

came from neighborhoods that had higher median home values (M = $596,000, SE = $4,806) 

than the remainder of households in the sample (M = $505,000, SE = $1,599, t(30,116) = 18.1, p 

< 0.001), higher median incomes (M = $87,000, SE = $757) than the remainder of households in 

the sample (M = $71,000, SE = $210, t(30,116) = 21, p < 0.001), a lower proportion of renters 
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(M = 30%, SE = 0.43%) than the remainder of households in the sample (M = 44%, SE = 0.16%, 

t(30,116) = 28.5, p < 0.001), a lower proportion of households classified as “poor” (using the 

Census definition of “poor or struggling” which is household income less than twice the poverty 

level, M = 8.8%, SE = 0.18%) than the remainder of households in the sample (M = 12.8%, SE = 

0.08%, t(30,116) = 19.9, p < 0.001), and a higher proportion of households with at least a 

bachelor’s degree (M = 40%, SE = 0.42%) than the remainder of households in the sample (M = 

35%, SE = 0.01%, t(30,102) = 13.1, p < 0.001).  

 

Ongoing throughout the roll out of smart meters PG&E had several other programs that may 

influence overall electricity consumption. Figure 13 reports enrollment levels for these other 

programs in our entire sample and from March 1, 2008 to December 31, 2011.  The highest 

enrollment program is the California Alternative Rates for Energy (CARE), which provides low-

income customers a 20% rate reduction. The enrollment we find in our dataset is consistent with 

reported enrollment rates made by California Public Utility Commission research reports (which 

report a 32% household eligibility rate, and a 95% enrollment rate among eligible households) 

(Evergreen, 2013).   
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Figure 13:  Enrollment in other PG&E programs among households in the dataset 

 

ADDITIONAL DATA SOURCES 

Demographic data: For privacy reasons the data do not include household addresses, but they 

do include blockgroups from the 2000 Census. Census blockgroups are collections of (on 

average, for this region) about 600 households. This geographical information enables linking to 

Census data files to capture neighborhood-level demographic characteristics of the households 

(using the 2010 Census) as well as the identification of the nearest weather stations, so detailed 

meteorological information can be associated with time-specific energy consumption patterns.  

 

Weather data: To minimize the number of missing observations in the weather data, the three 

nearest stations to the centroid of the Census blockgroup are observed and average values are 
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taken for the number of stations with valid data in each time period.  Daily temperature data are 

from the NOAA National Climatic Data Center.  To create a measure that reflects energy use 

associate with temperature changes, a degree-day-‘like’ measure is generated according to the 

following formulae: 

             [
∑   
 

       ] 

            [     
∑   
 
  ] 

Where n is the number of stations from which temperature observations are taken (between 1 and 

3).  These values, calculated for each block-group-day, are included in the models reported in 

both linear and quadratic forms. 

SECTION 3:  METHODS 

We use a fixed effects model to assess the effect of rebate programs on daily energy 

consumption, while controlling for several factors, as shown in Equation 1. We assume daily 

electricity consumption will be a function of weather, the programs the household applied for, 

and time. Using fixed effects, the time invariant, household specific aspects are controlled for.  

 

  (      )   

(    )    (       )   (              )    
(            )  

 (          )    (          )    (                         )        

                                      (1) 

   

In Equation (1) kWh is electricity consumption, in kWh, for household i on day t. The primary 

variable of interest is RebateDummy, which is an indicator variable for households in time 

periods following the household’s first rebate application. Temp is a set of temperature controls 
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related to daily high and low temperatures for each household (based on Census block-group 

location), TimeDummies is a set of k indicators for periodic time intervals (months of the year, 

and days of the week), TimeTrend is a linear time trend that is fitted to the model to capture 

secular trends in energy consumption over the period of observation unrelated to the variable of 

interest, Program represents the q additional PG&E programs described above, and ε is an 

unobserved error term. The model also includes a set of q interaction terms between the rebate 

program and the other PG&E program.  The term (    ) is the intercept plus the household 

specific fixed effect.   

 

Equations 2 through 5 are alternative specifications from our primary equation.  Each follows the 

same fixed effects functional form.  Equation 2 excludes the other PG&E programs, including 

only the rebate program.  

 

  (       )   

    (       )   (         )    
(            )   (          )       (2) 

 

Equation 3 is similar to Equation 2 except that m = 4 rebate applications are allowed for each 

household to capture the energy effect of subsequent rebate applications originating from the 

same household.   

  (       )   

    (       )    (               )    
(            )   (          )  

                (3) 

 

Equation 4 modifies Equation 2 by introducing an interaction term, π, between household rebate 

participation and the synthetic time trend variable.  This allows the energy effect of the rebate to 

decay or grow over time following the application date.   
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  (       )  

    (       )   (         )    
(            )   (          )   (          

          )                (4) 

 

Equation 5 disaggregates the rebate application indicator from Equation 2 by including n 

indicators for each of the reported rebate categories in the PG&E dataset. 

   (       )   

    (       )    (             )    
(            )   (          )        

(5) 

             

SECTION 4:  RESULTS 

Table 9 reports the full set of regression results from Equation 1.  We find that participation in 

the rebate program has a positive and significant coefficient, which suggests that, on average, 

following participation in the efficiency rebate program household energy consumption increases 

by about 7%. December is the highest consumption month while the coefficients on the day of 

the week indicators suggest that Sunday is the highest consumption day. The linear time trend is 

statistically significant, but has a reasonably small magnitude (<1%/year). Temperature is found 

to have a relatively strong effect on HVAC efficiency.  Sunday, excluded to avoid collinearity 

among the indicators, is the day associated with the highest average electricity consumption as 

can be inferred from the statistically significant and negative coefficients associated with each of 

the included day of the week dummies.  This is as anticipated, more in-home activity is expected 

on non-weekdays—Saturday is the day with the next highest average daily electricity 

consumption.  December, also excluded, is the month with the highest average daily electricity 

consumption—again inferred from the statistically significant and negative coefficients 

associated with each of the other months.  The months with the lowest average daily energy 

consumption are the shoulder months of April and May (about 15% less average daily electricity 
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consumption compared to December) and September and October (about 12% less average daily 

electricity consumption compared to December). 

 

The temperature controls show the relationship of household HVAC system efficiency as a 

function of temperature.  Both the daily high and low temperature display a similar relationship 

in which the linear term has a negative coefficient estimate and the quadratic term has positive 

coefficient estimate.  The interpretation of this finding is that as the temperature deviates from 

the set-point temperature (15°C, as described above) household energy consumption increases at 

an increasing rate—reflecting the fact that electric heat pumps become thermodynamically less 

efficient as the temperature sink to which they reject (in the cooling season) or absorb (in the 

heating season) heat diverges from the desired indoor air temperature.   

 

We suspect that the reason the rebate program leads to an increase in electricity consumption by 

the household may be twofold. First, the rebate likely represents the purchase of a new type of 

energy consuming device for the household, and is not simply replacing a device that is then 

retired. For example, the rebate may have enabled the household to buy a window air-

conditioning unit that would not have been bought otherwise. Most of the rebates in the sample 

set do not require equipment recycling though that program did exist. Of the rebates issued, only 

approximately 8% were categorized as “Appliance Recycling” (and, as shown in Table 10, the 

coefficient estimate for these is not statistically significant). Second, incentive dollars provided 

by the rebate program may be freeing up household income that is used for additional 

consumption of the energy services provided by the item for which the rebate was earned (a 

direct rebound effect) or for other energy services in the house (indirect rebound effect).   



  

 48 

Table 9:  Effects of PG&E demand-side programs on average household electricity 

consumption, coefficient estimates 

 
Dependent Variable 

is ln(kWh/day) 

Independent Variable Equation 1 

Rebate Participation 
7.0x10

-2
*** 

(1.3x10
-2

) 

BPP 
6.9x10

-2
*** 

(2.1x10
-2

) 

CARE 
1.2x10

-1
*** 

(1.2x10
-2

) 

Climate Smart 
-2.2x10

-1
 

(1.9x10
-1

) 

Direct Access 
8.6x10

-2
*** 

(3.2x10
-2

) 

Smart AC 
5.3x10

-2
* 

(2.8x10
-2

) 

Smart Rate 
1.1x10

-2
 

(4.3x10
-2

) 

Rebate * BPP 
-6.8x10

-2
*** 

(2.4x10
-2

) 

Rebate * CARE 
5.0 x10

-3
 

(3.1x10
-2

) 

Rebate * Climate Smart 
1.3x10

-3
 

(8.5x10
-2

) 

Rebate * Direct Access 
-5.8x10

-2
* 

(3.2x10
-2

) 

Rebate * Smart AC 
-4.6x10

-2
* 

(2.6x10
-2

) 

Rebate * Smart Rate 
9.7x10

-2
*** 

(2.7x10
-2

) 

Linear Time Trend 
-2.1x10

-5
** 

(7.8x10
-6

) 

Daily High Temp 
-4.2x10

-3
*** 

(4.6x10
-5

) 

Daily High Temp
2
 

2.8x10
-5

*** 

(2.0x10
-7

) 

Daily Low Temp 
-1.0x10

-3
*** 

(9.6x10
-5

) 

Daily Low Temp
2
 

4.4x10
-6

*** 

(5.2x10
-7

) 

Mon 
-3.6x10

-2
*** 

(8.6x10
-4

) 

Tue 
-5.2x10

-2
*** 

(9.6x10
-4

) 

Wed 
-5.5x10

-2
*** 

(9.6x10
-4

) 

Thu 
-5.3x10

-2
*** 

(9.4x10
-4

) 

Fri 
-5.5x10

-2
*** 

(9.0x10
-4

) 

Sat 
-1.8x10

-2
*** 

(6.1x10
-4

) 

Jan -3.7x10
-2

*** 
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(2.5x10
-3

) 

Feb 
-7.3x10

-2
*** 

(2.9x10
-3

) 

Mar 
-1.2x10

-1
*** 

(3.1x10
-3

) 

Apr 
-1.5x10

-1
*** 

(3.1x10
-3

) 

May 
-1.5x10

-1
*** 

(3.3x10
-3

) 

Jun 
-1.1x10

-1
*** 

(3.5x10
-3

) 

Jul 
-8.0x10

-2
*** 

(3.8x10
-3

) 

Aug 
-8.9x10

-2
*** 

(3.6x10
-3

) 

Sep 
-1.2x10

-1
*** 

(3.5x10
-3

) 

Oct 
-1.2x10

-1
*** 

(2.7x10
-3

) 

Nov 
-8.5x10

-2
*** 

(1.8x10
-3

) 

Intercept 
2.7*** 

(9.6x10
-3

) 

Observations 18,306,105 

# of groups, total 30,349 

# of groups, rebate = 1 2,768 

R
2
 within 0.058 

R
2
 between 0.032 

R
2
 overall 0.046 

Robust standard errors in parentheses 

*** p<0.01, **p<0.05, *p<0.1 

 

The results of Equations 2-5 are reported in Table 10.  The results for Equation 2, including the 

rebate program but excluding the other utility-sponsored programs, show a slight smaller 

estimate for the increase in energy consumption following participation in the program (5.9%) 

and no statistically significant effect of the synthetic linear time trend.   The results from the 

model for Equation 3 show little average energy effect from subsequent participation events in 

the rebate program; each of the coefficients for second, third, and fourth rebate applications are 

not statistically significant.  The results for Equation 4, which includes the interaction term of the 

time trend and the indicator for rebate participation, shows that this interaction is not statistically 

significant suggesting that there is not a non-cyclical time trend associated with magnitude of the 

energy effect on households following participation in the rebate program.  In the results for 
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Equation 5, the appliance rebates have a strongly positive estimate; and since this is also the 

largest portion of the rebate program (about 45% of all applications) this seems to be the primary 

driver of the energy effect associated with the rebate application in Equations 1 and 2.  The 

coefficients for building shell and unknown rebate categorizations are the other two with 

statistically significant values (at 95%, but not 99%).   
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Table 10:  Effects of PG&E energy efficiency rebate program on household electricity 

consumption, coefficient estimates.  Results for Equations 2-5 

 Dependent Variable is ln(kWh/day) 

Independent Variable Equation 2 Equation 3 Equation 4 Equation 5 

Rebate 
5.9x10

-2
*** 

(1.3x10
-2

) 

5.6x10
-2

*** 

(1.3x10
-2

) 

3.7x10
-2

** 

(1.9x10
-2

) 

 

Linear Time Trend 
5.5x10

-8
 

(7.7x10
-6

) 

-6.8x10
-8

 

(7.7x10
-6

) 

-8.2x10
-8

 

(8.1x10
-6

) 

-8.4x10
-8

 

(7.7x10
-6

) 

Rebate (second)  
1.0x10

-2
 

(2.6x10
-2

) 

  

Rebate (third)  
6.8x10

-2
 

(5.1x10
-2

) 

  

Rebate (fourth)  
-6.3x10

-2
 

(1.6x10
-1

) 

  

Rebate * Linear Time Trend  
 1.8x10

-5
 

(1.3x10
-5

) 

 

Appliance Recycling  
  -6.4x10

-2
 

(4.5x10
-2

) 

Appliance  
  9.2x10

-2
*** 

(1.8x10
-2

) 

Building Shell  
  1.3x10

-1
** 

(6.2x10
-2

) 

HVAC  
  7.3x10

-2
 

(9.8x10
-2

) 

Lighting  
  4.9x10

-2
 

(6.9x10
-2

) 

Pumps/Motors  
  -1.9x10

-2
 

(7.6x10
-2

) 

Unknown  
  3.6x10

-2
** 

(1.7x10
-2

) 

Water Heating  
  -2.0x10

-2
 

(9.0x10
-2

) 

Daily Temperature Controls Included Included  Included  Included 

Month Dummies Included Included  Included  Included 

Day of Week Dummies Included Included  Included  Included 

Intercept 
2.7***

 

(9.3x10
-3

) 

2.7*** 

(9.4 x10
-3

) 

2.7*** 

(9.6 x10
-3

) 

2.7*** 

(9.4 x10
-3

) 

Observations 18,306,105 18,306,105 18,306,105 18,306,105 

# of groups, total 30,349 30,349 30,349 30,349 

# of groups, rebate = 1 2,768 2,768 2,768 2,768 

R
2
 within 0.0566 0.0566 0.0566 0.0566 

R
2
 between 0.0388 0.0390 0.0387 0.0367 

R
2
 overall 0.0449 0.0450 0.0448 0.0446 

Robust standard errors in parentheses 

*** p<0.01, **p<0.05, *p<0.1 

 

Tables 6, 7 and 8 show the results of robustness checks on the primary result found for Equation 

1.  Table 12 displays the same results as in Table 9 as well as results for restricted sample 

implementations of that model.  The column labeled “Only Confirmed Rebates” restricts the 
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policy indicator to being set equal to one only in cases in which either a valid rebate approval 

date or check issue date is found in the dataset.  This is to correct for the potential issue described 

above in which there are several apparently missing values in these fields.  Table 11 highlights 

this issue showing the disparity in the number of valid values that appear in the dataset for dates 

of participation in the rebate program, particularly the values for “check issues” which is 

inexplicably larger than the corresponding values for “approvals”.  The results of running the 

model with the restricted observation set show that there is not a substantive difference between 

the implementation of the data in which all identified rebate program participants are included in 

the program indicator (including some who may have attempted to participation but whose 

rebate application was not approved) and the implementation when that indicator is restricted to 

confirmed households.  Similarly, excluding the households in the sample with mean average 

daily energy consumption values in the tails of the sample distribution, as is reported in the final 

column of Table 12 does not materially impact the estimate of the coefficient on the indicator of 

interest.   

Table 11: Rebate program participation data description 

Observations 18,580,095 

# of groups (households) 30,426 

  

Rebate Applications (# of rebates) 5,904 

Rebate Approvals (# of rebates) 3,493 

Rebate Check Issues (# of rebates) 5,253 

  

Rebate Application Households (# of households) 3,476 

Rebate Approval Households (# of households) 2,712 

Rebate Check Households (# of households) 3,386 

  

Rebate Application Households with Smartmeter Data (# of households) 2,804 

Rebate Approval Households with Smartmeter Data (# of households) 1,984 

Rebate Check Households with Smartmeter Data (# of households) 2,559 
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Table 12: Robustness checks on the effects of PG&E demand side programs on average 

household electricity consumption, coefficient estimates.  Restricted sample results for 

Equation 1 
 Dependent Variable is ln(kWh/day) 

Independent Variable 
Full-Sample 

As Reported 

Only 

Confirmed 

Rebates 

Excluding 

<5
th

 and >95
th

 

consumption 

percentiles 

Rebate 
7.0x10

-2
*** 

(1.3x10
-2

) 

7.0x10
-2

*** 

(1.4x10
-2

) 

7.3x10
-2

*** 

(1.4x10
-2

) 

BPP 
6.9x10

-2
*** 

(2.1x10
-2

) 

6.9x10
-2

*** 

(2.1x10
-2

) 

7.5x10
-2

*** 

(2.3x10
-2

) 

CARE 
1.2x10

-1
*** 

(1.2x10
-2

) 

1.3x10
-1

*** 

(1.2x10
-2

) 

1.2x10
-1

*** 

(1.3x10
-2

) 

Climate Smart 
-2.2x10

-1
 

(1.9x10
-1

) 

-2.2x10
-1

 

(1.9x10
-1

) 

-2.2x10
-1

 

(1.9x10
-1

) 

Direct Access 
8.6x10

-2
*** 

(3.2x10
-2

) 

8.4x10
-2

*** 

(3.2x10
-2

) 

8.6x10
-2

*** 

(3.3x10
-2

) 

Smart AC 
5.3x10

-2
* 

(2.8x10
-2

) 

5.4x10
-2

* 

(2.8x10
-2

) 

5.7x10
-2

* 

(3.0x10
-2

) 

Smart Rate 
1.1x10

-2
 

(4.3x10
-2

) 

1.1x10
-2

 

(4.3x10
-2

) 

-1.1x10
-3

 

(4.5x10
-2

) 

Rebate * BPP 
-6.8x10

-2
*** 

(2.4x10
-2

) 

-6.5x10
-2

** 

(2.5x10
-2

) 

-7.5x10
-2

*** 

(2.8x10
-2

) 

Rebate * CARE 
5.0x10

-3
 

(3.1x10
-2

) 

-6.7x10
-3

 

(3.2x10
-2

) 

8.5x10
-3

 

(3.2x10
-2

) 

Rebate * Climate Smart 
1.3x10

-3
 

(8.5x10
-2

) 

7.8x10
-4

 

(8.5x10
-2

) 

6.8x10
-3

 

(9.3x10
-2

) 

Rebate * Direct Access 
-5.8x10

-2
* 

(3.2x10
-2

) 

-4.3x10
-2

* 

(3.3x10
-2

) 

-6.0x10
-2

* 

(3.3x10
-2

) 

Rebate * Smart AC 
-4.6x10

-2
* 

(2.6x10
-2

) 

-5.4x10
-2

** 

(2.6x10
-2

) 

-6.3x10
-2

* 

(2.7x10
-2

) 

Rebate * Smart Rate 
9.7x10

-2
*** 

(2.7x10
-2

) 

1.0x10
-1

*** 

(2.8x10
-2

) 

1.1x10
-1

*** 

(2.9x10
-2

) 

Linear Time Trend 
-2.1x10

-5
** 

(7.8x10
-6

) 

-2.1x10
-5

** 

(7.8x10
-6

) 

-1.7x10
-5

** 

(8.3x10
-6

) 

Daily Temperature Controls Included Included Included 

Month Dummies Included Included Included 

Day of Week Dummies Included Included Included 

Intercept 
2.7***

 

(9.3x10
-3

) 

2.7***
 

(9.3x10
-3

) 

2.7***
 

(1.0x10
-2

) 

Observations 18,306,105 18,306,105 16,560,777 

# of groups, total 30,349 30,349 26,867 

# of groups, rebate = 1 2,768 2,538 2,532 

R
2
 within 0.058 0.058 0.060 

R
2
 between 0.032 0.032 0.030 

R
2
 overall 0.046 0.046 0.049 

Robust standard errors in parentheses 

*** p<0.01, **p<0.05, *p<0.1 

 

Table 13 shows results from Equation 1 along with results from that model with the data split by 

climate zone.  The results show that there is not a statistically measurable effect of rebate 
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program participation in the Central Valley, while the Coastal region has an energy effect 

approximately double the average effect found in the full sample.  This would seem to be 

consistent with the price elasticity findings from (Ito, 2013) for the wealthier coastal region.  

Table 14 shows the results from Equation 4 with the data split by Census block median 

household income quintile.  The results show that the largest energy effects from rebate program 

participation are in the 2
nd

 and 4
th

 neighborhood median income quintiles, and no identifiable 

effect in the lowest neighborhood median income quintile.   
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Table 13: Effects of PG&E demand-side programs on average household energy 

consumption coefficient estimates with split results by climate zone for Equation 1 
 Dependent Variable is ln(kWh/day) 

Independent Variable 
Full-Sample 

As Reported 

Central 

Valley 
Inland Hills Coastal 

Rebate 
7.0x10

-2
*** 

(1.3x10
-2

) 

3.6x10
-2

 

(2.5x10
-2

) 

7.6x10
-2

*** 

(1.8x10
-2

) 

1.2x10
-1

*** 

(3.1x10
-2

) 

BPP 
6.9x10

-2
*** 

(2.1x10
-2

) 

3.2x10
-2

 

(2.6x10
-2

) 

1.7x10
-1

*** 

(4.1x10
-2

) 

1.5x10
-1

*** 

(5.2x10
-2

) 

CARE 
1.2x10

-1
*** 

(1.2x10
-2

) 

1.2x10
-1

*** 

(1.7x10
-2

) 

1.6x10
-1

*** 

(2.0x10
-2

) 

1.1x10
-1

*** 

(3.2x10
-2

) 

Climate Smart 
-2.2x10

-1
 

(1.9x10
-1

) 

-1.8x10
-1

 

(1.9x10
-1

) 
omitted omitted 

Direct Access 
8.6x10

-2
*** 

(3.2x10
-2

) 

1.0x10
-1

** 

(4.9x10
-2

) 

1.3x10
-2

 

(3.4x10
-2

) 

1.2x10
-1

 

(7.8x10
-2

) 

Smart AC 
5.3x10

-2
* 

(2.8x10
-2

) 

5.8x10
-2

 

(3.7x10
-2

) 

3.4x10
-2

 

(3.2x10
-2

) 

3.4x10
-1

 

(3.2x10
-1

) 

Smart Rate 
1.1x10

-2
 

(4.3x10
-2

) 

3.3x10
-2

 

(6.3x10
-2

) 

-3.7x10
-1

 

(4.2x10
-2

) 

7.2x10
-2

 

(8.8x10
-2

) 

Rebate * BPP 
-6.8x10

-2
*** 

(2.4x10
-2

) 

-7.3x10
-2

** 

(3.4x10
-2

) 

-8.3x10
-2

** 

(4.2x10
-2

) 

-1.2x10
-1

** 

(5.9x10
-2

) 

Rebate * CARE 
5.0x10

-3
 

(3.1x10
-2

) 

1.8x10
-2

 

(4.9x10
-2

) 

9.1x10
-3

 

(4.6x10
-2

) 

-3.8x10
-2

 

(4.9x10
-2

) 

Rebate * Climate Smart 
1.3x10

-3
 

(8.5x10
-2

) 

-6.9x10
-2

 

(4.9x10
-2

) 

-9.1x10
-2

 

(7.1x10
-2

) 

5.4x10
-2

 

(1.4x10
-1

) 

Rebate * Direct Access 
-5.8x10

-2
* 

(3.2x10
-2

) 

-1.9x10
-2

 

(5.5x10
-2

) 

-5.7x10
-2

 

(4.7x10
-2

) 

-9.5x10
-2

 

(6.4x10
-2

) 

Rebate * Smart AC 
-4.6x10

-2
* 

(2.6x10
-2

) 

2.2x10
-2

 

(3.7x10
-2

) 

-4.5x10
-2

 

(3.4x10
-2

) 

-3.4x10
-1

 

(3.2x10
-
) 

Rebate * Smart Rate 
9.7x10

-2
*** 

(2.7x10
-2

) 
omitted 

1.0x10
-1

*** 

(3.4x10
-2

) 
omitted 

Linear Time Trend 
-2.1x10

-5
** 

(7.8x10
-6

) 

-2.3x10
-6

 

(1.2x10
-5

) 

-2.7x10
-5

** 

(1.1x10
-5

) 

-2.7x10
-6

 

(2.3x10
-5

) 

Daily Temperature Controls Included Included Included Included 

Month Dummies Included Included Included Included 

Day of Week Dummies Included Included Included Included 

Intercept 
2.7***

 

(9.3x10
-3

) 

2.8***
 

(1.3x10
-2

) 

2.6***
 

(1.3x10
-2

) 

2.3***
 

(2.7x10
-2

) 

Observations 18,306,105 7,209,199 7,317,450 3,655,242 

# of groups, total 30,349 8,572 11,368 10,190 

# of groups, rebate = 1 2,768 648 1,282 838 

R
2
 within 0.058 0.104 0.027 0.026 

R
2
 between 0.032 0.002 0.005 0.021 

R
2
 overall 0.046 0.055 0.013 0.023 

Robust standard errors in parentheses 

*** p<0.01, **p<0.05, *p<0.1 
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Table 14: Effects of PG&E demand-side programs on average household energy 

consumption coefficient estimates with split results by neighborhood median income 

quintile for Equation 1 
 Dependent Variable is ln(kWh/day) 

Independent Variable 
Full-Sample 

As Reported 

Lowest 

Quintile 
2

nd
 Quintile 

Middle 

Quintile 
4

th
 Quintile 

Highest 

Quintile 

Rebate 
7.0x10

-2
*** 

(1.3x10
-2

) 

3.6x10
-2

 

(4.0x10
-2

) 

1.2x10
-1

*** 

(4.5x10
-2

) 

5.8x10
-2

* 

(3.5x10
-2

) 

1.0x10
-1

*** 

(2.9x10
-2

) 

5.5x10
-2

*** 

(1.8x10
-2

) 

BPP 
6.9x10

-2
*** 

(2.1x10
-2

) 

1.2x10
-1

*** 

(3.5x10
-2

) 

3.0x10
-2

 

(6.3x10
-2

) 

3.7x10
-2

 

(3.4x10
-2

) 

1.2x10
-1

*** 

(4.5x10
-2

) 

3.0x10
-2

 

(5.2x10
-2

) 

CARE 
1.2x10

-1
*** 

(1.2x10
-2

) 

1.1x10
-1

*** 

(2.3x10
-2

) 

1.3x10
-1

*** 

(2.6x10
-2

) 

1.4x10
-1

*** 

(2.6x10
-2

) 

1.3x10
-1

*** 

(3.1x10
-2

) 

1.3x10
-1

*** 

(4.0x10
-2

) 

Climate Smart 
-2.2x10

-1
 

(1.9x10
-1

) 

-6.2x10
-1

*** 

(1.9x10
-1

) 
omitted omitted 

-3.3x10
-1

 

(2.3x10
-1

) 

-2.3x10
-1

*** 

(1.2x10
-2

) 

Direct Access 
8.6x10

-2
*** 

(3.2x10
-2

) 

1.5x10
-1

** 

(6.1x10
-2

) 

5.6x10
-2

 

(6.4x10
-2

) 

-6.3x10
-2

 

(7.3x10
-2

) 

1.4x10
-1

** 

(5.6x10
-2

) 

1.0x10
-2

 

(9.2x10
-2

) 

Smart AC 
5.3x10

-2
* 

(2.8x10
-2

) 

1.0x10
-1

 

(6.9x10
-2

) 

4.0x10
-3

 

(6.0x10
-2

) 

1.0x10
-1

 

(6.8x10
-2

) 

3.0x10
-4

 

(6.8x10
-2

) 

6.9x10
-2

* 

(4.2x10
-2

) 

Smart Rate 
1.1x10

-2
 

(4.3x10
-2

) 

4.5x10
-2

 

(6.9x10
-2

) 

1.1x10
-1

 

(2.0x10
-1

) 

2.1x10
-2

 

(5.3x10
-2

) 

-1.7x10
-2

 

(3.7x10
-2

) 

-6.1x10
-2

 

(4.8x10
-2

) 

Rebate * BPP 
-6.8x10

-2
*** 

(2.4x10
-2

) 

-1.5x10
-1

*** 

(5.3x10
-2

) 

-1.0x10
-1

* 

(6.0x10
-2

) 

-1.4x10
-2

 

(4.7x10
-2

) 

-7.1x10
-2

 

(4.5x10
-2

) 

-3.1x10
-2

 

(6.1x10
-2

) 

Rebate * CARE 
5.0x10

-3
 

(3.1x10
-2

) 

1.1x10
-1

 

(7.2x10
-2

) 

7.3x10
-2

 

(6.9x10
-2

) 

-4.9x10
-3

 

(4.1x10
-2

) 

1.4x10
-2

 

(6.5x10
-2

) 

-5.0x10
-2

 

(8.9x10
-2

) 

Rebate * Climate Smart 
1.3x10

-3
 

(8.5x10
-2

) 
omitted omitted  

-1.1x10
-1

*** 

(3.5x10
-2

) 

-9.7x10
-2

** 

(4.7x10
-2

) 

2.1x10
-1

 

(1.3x10
-1

) 

Rebate * Direct Access 
-5.8x10

-2
* 

(3.2x10
-2

) 

-2.1x10
-2

 

(5.4x10
-2

) 

-2.4x10
-1

** 

(1.2x10
-1

) 

8.2x10
-3

 

(5.8x10
-2

) 

-9.8x10
-2

* 

(5.7x10
-2

) 

-5.2x10
-2

 

(9.3x10
-2

) 

Rebate * Smart AC 
-4.6x10

-2
* 

(2.6x10
-2

) 

-6.7x10
-2

 

(6.7x10
-2

) 

-1.9x10
-2

 

(6.2x10
-2

) 

-1.3x10
-1

** 

(6.1x10
-2

) 

2.7x10
-2

 

(6.1x10
-2

) 

-6.6x10
-2

 

(4.4x10
-2

) 

Rebate * Smart Rate 
9.7x10

-2
*** 

(2.7x10
-2

) 
omitted 

-1.0x10
-2

 

(7.3x10
-2

) 
omitted omitted omitted 

Linear Time Trend 
-2.1x10

-5
** 

(7.8x10
-6

) 

-1.2x10
-6

 

(1.8x10
-5

) 

-3.0x10
-6

 

(1.9x10
-5

) 

8.9x10
-6

 

(1.7x10
-5

) 

-4.2x10
-5

** 

(1.7x10
-5

) 

-6.5x10
-5

*** 

(1.6x10
-5

) 

Daily Temperature Controls Included Included Included Included Included Included 

Month Dummies Included Included Included Included Included Included 

Day of Week Dummies Included Included Included Included Included Included 

Intercept 
2.7***

 

(9.3x10
-3

) 

2.5***
 

(2.1x10
-2

) 

2.5***
 

(2.2x10
-2

) 

2.6***
 

(2.2x10
-2

) 

2.8***
 

(2.0x10
-2

) 

2.9***
 

(1.9x10
-2

) 

Observations 18,306,105 3,717,189 3,515,238 3,616,531 3,681,799 3,775,348 

# of groups, total 30,349 5,998 6,008 6,013 6,016 6,314 

# of groups, rebate = 1 2,768 298 397 499 664 910 

R
2
 within 0.058 0.075 0.055 0.056 0.055 0.045 

R
2
 between 0.032 0.075 0.053 0.054 0.069 0.015 

R
2
 overall 0.046 0.071 0.055 0.061 0.062 0.030 

Robust standard errors in parentheses 

*** p<0.01, **p<0.05, *p<0.1 
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SECTION 5:  METHODS AND RESULTS II, HOURLY ANALYSES 

Figure 14 shows the coefficient estimates for rebate participation from equation 1, run separately 

for each hour of the day.  The figure shows two peaks in the effect size.  These peaks correspond 

to daily peaks in residential electricity demand; one in the morning hours and one in the evening 

hours.  This suggests that not only is participation in the rebate program leading to an increase in 

total electricity consumption, but that the increase is happening exactly when the residential 

transmission and distribution systems are most stressed.  Weather data for this section come from 

Automated Surface Observing System (ASOS) database maintained by the Iowa Environmental 

Mesonet at the Iowa State University of Science and Technology. 

 

 
Figure 14: Hourly energy effect following household participation in the PG&E efficiency 

rebate program 
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Figure 15 shows results similar to those in Figure 14, but restricted only to days in which the 

local temperature for the household was greater than 30°C at some point in the day.  The results 

do not show that afternoon peak demand for households participating in the rebate program is 

systematically higher on days with high ambient temperatures.   

 
Figure 15: Hourly energy effect following household participation in the PG&E efficiency 

rebate program on days with a high temperature > 30°C  

 

The following 12 figures show hourly results like those in Figure 14 separately for each month of 

the year.  There does not appear to be a discernable statistically significant pattern in the hourly 

point estimates done separately by month.  We can notice that the confidence interval reduces 

throughout the year as a result of the sample size of households being approximately one-third 

larger in December as it is in January as a result of the uneven household entry into the sample 

over the course of about three years.   
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Figure 16: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in January from the unbalanced panel, 2008-2011 

 
Figure 17: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in February from the unbalanced panel, 2008-2011 
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Figure 18: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in March from the unbalanced panel, 2008-2011 

 
Figure 19: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in April from the unbalanced panel, 2008-2011 
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Figure 20: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in May from the unbalanced panel, 2008-2011 

 
Figure 21: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in June from the unbalanced panel, 2008-2011 
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Figure 22: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in July from the unbalanced panel, 2008-2011 

 
Figure 23: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in August from the unbalanced panel, 2008-2011 
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Figure 24: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in September from the unbalanced panel, 2008-2011 

 
Figure 25: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in October from the unbalanced panel, 2008-2011 
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Figure 26: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in November from the unbalanced panel, 2008-2011 

 
Figure 27: Hourly energy effect following household participation in the PG&E efficiency 

rebate program for days in December from the unbalanced panel, 2008-2011 
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Estimates of the hourly effects, done separately for weekday days and weekend days in order to 

compare the load shape effect of participating in the rebate program between the two, is shown 

in Figure 28 and Figure 29.  Comparing the two charts, we can see that the point estimate 

evening peak effect of the rebate program is slightly more pronounced on weekdays and that the 

morning peak effect is slightly later on weekends (though these differences are not statistically 

significantly so).   

 

 
Figure 28: Hourly energy effect following household participation in the PG&E efficiency 

rebate program on Weekdays from the unbalanced panel, 2008-2011 
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Figure 29: Hourly energy effect following household participation in the PG&E efficiency 

rebate program on Weekends from the unbalanced panel, 2008-2011 

 

Estimating the hourly effects using the following equation, which removes the interaction terms 

between the rebate program and PG&E’s other demand-side programs allows us to more directly 

estimate the total effect of the rebate program.  Figure 30 shows the results of these 24 estimates 

of the coefficient associated with participation in the rebate program.  The results here are not 

substantively different from the estimates shown in Figure 14. 

 

  (      )   

(    )    (       )   (              )    
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Figure 30: Hourly energy effect following household participation in the PG&E efficiency 

rebate program from the unbalanced panel, 2008-2011 

 

SECTION 6:  DISCUSSION AND POLICY CONCLUSIONS 

We find that participation in this particular energy efficiency rebate program is associated with a 

subsequent increase in energy consumption, which suggests that the program is instead behaving 

as an equipment purchase subsidy. This, in turn, leads the household to consume additional 

energy services. This unintended consequence is inconsistent with the policy objectives that 

policymakers were targeting with the creation of this program.  Certainly it is the case that 

enabling the consumption of additional energy services in the household does likely provide a 

marginal increase in utility to participating households and thus has some social value.  However 

this should be weighed against the various pathways in which social value is created through the 

absolute reduction in household electricity consumption. 
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Past implementation and evaluation for other programs has shown that efficiency rebate 

programs can deliver energy consumption reductions, and that well-designed DSM programs 

contribute as an important and cost-effective component of integrated resource planning. 

However, in this program, we find that the rebate program is likely to have led to an increase in 

energy usage.  To be clear, we do not suggest that efficiency rebate programs cannot deliver 

absolute energy consumption reductions generally.  Nor do we claim that well-designed DSM 

programs cannot contribute as an important and cost-effective component of integrated resource 

planning.  On the contrary, we are convinced that the empirical evidence has demonstrated that 

policy interventions designed to improve household energy efficiency, through either 

technological or behavioral means, can reduce aggregate system demand and generate net social 

value.  In this program we identify the need for care to be taken in the design of these programs.  

We suspect, with a larger sample size, that we would find a negative and statistically significant 

coefficient estimate for the energy effect of the appliance recycling program.  Indeed, this is an 

analysis that PG&E could likely readily complete using their full customer information database, 

rather than the sample of that dataset that we use here.  If this were to be the case, a ready 

adjustment to the program can be made to require the permanent retirement of an older version 

of the equipment for which a rebate is issued.   

 

We acknowledge that this analysis may suffer from self-selection bias; i.e., the households that 

participate in the program are not randomly assigned but instead voluntarily opt-in.  The ideal 

comparison that we would like to make is between a household’s energy consumption following 

participation in the program and what that household would have consumed in the absence of the 

program’s existence.  Would the household have made an equipment purchase if the rebate was 
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not available?  If so, did the program encourage a shift towards a more efficient version of the 

purchase that was made?  An answer of ‘no’ to the first of these questions would mean that the 

program is in fact increasing counterfactual energy consumption while an answer of ‘no’ to the 

second would mean that the program is having no net effect.  A ‘yes’ to both would suggest that 

the program is operating as intended.  The dataset we use was not collected with these questions 

in mind.  The analysis we have produced however suggests that these questions require answers.   

 

A step towards producing the required analysis would be to incorporate household-level 

demographic information with this dataset.  This would enable the formation of more appropriate 

comparison groups using a propensity score matching method.  As the data are, characteristics 

upon which the propensity for a household to participate in the rebate program are available only 

at the neighborhood (US Census blockgroup) level, therefore neighborhood location becomes the 

controlling characteristic for assessing participation likelihood.  Household-specific 

demographics (ideally, including information about the building structure in addition to the 

occupants) would enable the creation of participation scores based on the observed rates of 

participation for similarly situated households.  That would allow a comparison of the energy 

consumption patterns of households that participated in the program with households that were 

scored as similarly likely to participate in the program but which nevertheless did not.  Another 

way to improve these data would be to disaggregate rebate type in greater detail.  We find a 

statistically significant positive influence of the ‘appliance’ portion of the rebate program, but 

without greater detail on the types of these appliances we cannot draw further conclusions. 

Ideally, we would like to test the energy effect of different appliance types to identify more 



  

 70 

specifically the types of rebate participation are associated with specific changes in energy 

consumption patterns.   
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CHAPTER 4:  LIGHT-DUTY VEHICLE FUEL CONSUMPTION TRENDS:  A 

POPULATION TURNOVER ANALYSIS 
 

CHAPTER ABSTRACT 

 

Two key projections – that of driving age adults and that of the vehicle parc
10

 – will influence 

fuel use in the United States.  This work applies the implications of these projections as a part of 

the design of fuel efficiency policies, to track aggregate fuel consumption outcomes.  Due to the 

long-lived nature of on-road vehicles, policies that affect the efficiency of new vehicles sold can 

take an extended period before meaningful effects on overall fuel consumption can be observed.  

As a result, even aggressive policies for increasing the fuel economy of light-duty vehicles are 

necessarily relatively ineffective short-term solutions.  However, long-term trends in fuel 

economy combined with trends in the adult driving population, suggest that the U.S. could be 

entering a new period in which reliance on foreign fossil fuels is waning.  Indeed, it is possible 

that the U.S. has already reached “peak consumption” in terms of volume of motor fuels and will 

not again require the quantity of gasoline and diesel that it did in the mid-2000’s.   

SECTION 1:  INTRODUCTION 

 

There is considerable debate in the literature as to the appropriate policy response for the 

objective of reducing fuel consumption, reducing greenhouse gas emissions, and doing so in a 

cost-effective way, from the transportation sector.  Much of this debate centers around the 

relative merits of the use of a command and control regulatory scheme, such as the corporate 

average fuel economy (CAFE) standard, or a market based scheme, such as fuel taxes or other 

price signals.  Most research on consumers’ valuation of vehicle fuel economy, in relation to the 

                                                 
10

 The population of operational vehicles in a country is often referred to as the “vehicle parc” for that country.  That 

term will be used in the discussion which follows. 
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purchase of a new vehicle, suggests that a typical consumer is willing to invest in fuel economy 

at a rate equal to between two and four years of discounted anticipated fuel savings (Jenn et al., 

2013).  In fact, a telephone survey of new vehicle purchasers found “no household that analyzed 

their fuel costs in a systematic way in their automobile or gasoline purchases” (Turrentine and 

Kurani 2007).  This poses a public policy problem
11

, as the social value of vehicle fuel economy 

is equal to at least the discounted value of the fuel savings (and emissions avoided) over the 

lifetime of the vehicle.  This is often described in the literature as high implicit (and largely 

irrational) discount rates (Brown, 2001; Dreyfus and Viscusi, 1995; Gately, 1980; Hausman, 

1979; Houston, 1983; Meier and Whittier, 1983; Ruderman et al., 1987; Min et al., 2014) and 

has, in the U.S., led to CAFE standards as the preferred policy option.   

 

Despite this, work by Greene and German (2007), citing work by Gal (2006), suggests that the 

consumer may, instead, be rationally under-valuing fuel economy.  As behavioral research has 

shown, status quo bias (or endowment effect) results in a consumer preferring an initial framing 

to an equivalent alternative (e.g., Kahneman et al., 1990).  From this (as Gal labels it) “inertia,” it 

follows that a consumer will require a premium to leave the status quo.  Further, in the face of an 

uncertain alternative payout, a consumer will not have a clear preference and the choice between 

the status quo and an alternative becomes “fuzzy.”  The premium required for a change from the 

status quo in the face of an imprecise, or fuzzy, preference increases as the consumer now 

requires the premium for change as well as a premium to overcome the uncertainty of the risky 

alternative. In the absence of such a premium, “inertia” will keep the consumer at the status quo. 

 

                                                 
11

 For contradictory evidence, see Keefe, Griffin and Graham (2008) who found that the costs and benefits 

associated with newer technologies to improve vehicle fuel economy are largely similar from the consumer and 

social perspectives. 
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This uncertain payout, put in the context of vehicle fuel economy, is the present value of a 

stream of future fuel savings.  Uncertainty in future fuel savings is a function of imperfect 

information about the actual attributes of the vehicle (i.e., the fuel economy the consumer will 

experience will likely be at least somewhat different from the listed vehicle fuel economy), 

unknown future travel demand (how many miles the vehicle will actually be driven), and 

uncertainty in the future price of fuel.  The combined effect of these uncertainties could increase 

the imprecise, or fuzzy, preference of the consumer between making an investment in fuel 

economy or not. 

 

Thus, even if the consumer knows to expect a relatively high fuel price (as a result of a higher oil 

price, or from a carbon tax or other policy instrument), the underlying uncertainty in the base 

price of the fuel, along with the other uncertainties identified, can result in an uncertain value of 

an investment in fuel economy.  The consumer may then defer choice in the absence of a clear 

premium for action, and under invest in fuel economy – preferring instead the certain upfront 

savings in the vehicle purchase price.  This logic would imply that there is, at the least, a delay 

between a change in fuel prices and a response by the consumer in their vehicle purchase 

decision.   

 

However, CAFE standards work slowly to reduce aggregate fuel consumption, and consumers 

often prefer other vehicle characteristics that detract from the fuel economy that can be achieved, 

even in the presence of high fuel prices.  Studies by Glazer and Lave (1994) and Lin, et al., 

(1997) have found that significant lags exist between changes in fuel prices and fuel economy 

preferences from both the consumer and producer perspectives.  A study (Clerides and 
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Zachariadis 2008) which performed a cross-sectional time series analysis of 18 countries, found 

that fuel standards could be supplanted by higher fuel prices only if fuel prices “remain at high 

levels for more than a decade.”  While that study concluded that increases in fuel taxes would 

likely have a larger impact in U.S. than they would in Europe or Japan due to the relative 

difference in fuel prices (and taxes) that already exist, “new car fuel economy becomes less 

sensitive to fuel prices after the adoption of standards” – suggesting that the present existence of 

fuel economy standards would dampen any policy-induced price effect.  In a study specific to the 

U.S., Greene (1990) found that CAFE standards had a significant influence on many auto 

manufacturers over the period from 1978 to 1989, and were possibly as much as two times as 

important as gasoline prices over that period.
12

   

 

While fuel economy standards were static for a period of about 20 years until 2012, it is not the 

case that the relevant technologies had been dormant over that time.  Indeed, fuel efficiency on a 

per unit weight basis was constantly improving.  The fact that fuel efficiency has not also 

increased on a per vehicle basis reflects the fact that consumers value other vehicle attributes that 

compete with fuel economy (such as size, acceleration, towing capacity, air conditioning) more.   

 

There is also considerable evidence in the literature to contradict the discussion above that 

consumers do not demonstrate an adequate response to fuel prices.  There are several studies that 

present evidence that, if the policy objective is to reduce gasoline consumption, a gasoline tax is 

a less costly policy option, in terms of total welfare, than a CAFE standard (e.g., (CBO 2003), 

                                                 
12

 However, Greene goes on to make the interesting observation that an increase in fuel prices might have a larger 

effect on fuel economy than a similar decrease in price.  The argument goes that if increased fuel prices induce 

technology improvements, a subsequent fall in prices would return fuel economy to some level that is higher than 

the initial fuel economy achieved prior to the technological innovations.   
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(Austin, D. and T. Dinan 2005), (West, S. and R. Williams III 2005) and (Murphy, F. and E. 

Rosenthal 2006)).  Kleit (1990) argues that the effect of CAFE standards on energy savings is 

ambiguous, and even if savings are present, the costs are “prohibitive”.  

  

Part of the assessment to conclude that gasoline taxes are less costly involves the “rebound 

effect” that CAFE standards induce.  As fuel economy is exogenously increased due to CAFE 

standards, the marginal cost of driving decreases on a per mile basis encouraging an increase in 

total driving (Azevedo, 2014; Sorrell, 2007; Sorrell and Dimitropoulos, 2007; Thomas and 

Azevedo, 2013a; Thomas and Azevedo, 2013b; Thomas and Azevedo, 2014).  This rebound 

effect causes a reduction in the amount of fuel that would have otherwise been saved from the 

fuel economy standard, and also presents additional costs associated with additional travel 

demand.  “The difference between fuel economy standards and a gasoline tax is exacerbated 

when incorporating the welfare effects of the rebound effect, like additional congestion and 

pollution” (Fischer, C. 2008).  Although a study by Small and Van Dender (2007) has estimated 

a low (relative to previous studies), and declining over time with increased per capita income, 

rebound effect (2.2% in the short-run and 10.7% in the long-run), these ancillary costs are 

avoided (indeed reduced) with fuel taxes as the alternative.   

 

In a study conducted after the oil-shocks of the 1970’s to determine household decision-making 

between 4, 6 and 8 cylinder vehicles, Greenlees (1980) found “strong cross-elasticity of small car 

demand with respect to the price of gasoline.”  That study calculated “a ten percent increase in 

fuel price is estimated to yield an increase of just over eight percent in the proportion of small 

(four and six cylinder) cars purchased.”  Similarly, Khan (1986) found an impact of a shock in 
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gasoline prices on the value of vehicles in the used-car market that was relative to their rate of 

fuel consumption.  Those results were “consistent with the view that different types of 

automobiles are very good substitutes for each other, but that there do not exist close substitutes 

for automobile services” – a “high cross-elasticity of demand for different types of automobiles, 

but a lower elasticity of demand for automobile services”   

 

These results suggest that consumers do, at least on some level, incorporate fuel costs in their 

vehicle purchase decisions, and that aggregated decision-making manifests itself in the market.  

Atkinson (1981) finds that consumers exhibit “substantial price responsiveness” to fuel prices 

and an analysis from the same time period found that consumers base “expectations about future 

gasoline prices based on experience within the last three months as well as trends over the past 

sixteen months” (quote from Greene, 1990, citing EEA, 1983).  While these studies are all 

somewhat dated at this point, there is an argument to be made that the fuel prices in the mid-

2000’s were more similar to those of the late 1970’s and early 1980’s, than to those of the late 

1990’s and so these arguments cannot simply be dismissed without first demonstrating that the 

dynamic of the market has shifted and that the guidance suggested by these conclusions can no 

longer be considered valid.  Some, in fact, do make such an argument.  Hughes, Knittel and 

Sperline (2006) argue that the short-run price elasticity for gasoline has changed considerably 

between the early 2000’s compared with the late 1970’s.  Their study concludes that “gasoline 

taxes would need to be significantly large today in order to achieve an equivalent reduction in 

gasoline consumption” and “policies and technologies designed to improve fuel economy are 

likely becoming relatively more attractive as a means to reduce fuel consumption.”   

 



  

 77 

If, for the moment, the argument that an increased gasoline tax is the least costly option to reduce 

fuel consumption is accepted, it follows that if the objective is to reduce greenhouse gas 

emissions a carbon tax transmitted to the consumer as a fuel tax would similarly be the least 

costly policy choice.  This is mentioned to suggest that since the debate between standards and 

taxes appears to remain open, the debate on the appropriate policy prescription remains relevant 

despite recently enacted legislation to increase CAFE standards.  Indeed, a 1999 analysis that 

compared the efficacy of fuel economy regulation and fuel taxes (Greene, D., J. Kahn and R. 

Gibson 1999) failed to reject the hypothesis that consumers respond equivalently to a change in 

fuel cost per mile that is caused either by a change in fuel price by or a change in vehicle fuel 

economy.   

 

This study examines the impact that fuel economy standards will have in the United States (US) 

using a demographic analysis of on-road vehicles, and demographic projection of the people who 

drive them.  The objective is to create a model to estimate the fuel consumption effects of CAFE 

standards, and to formulate a basic model that can be used as a tool for examining future policy 

proposals or the performance of existing policies in light of new information about transportation 

behavior.  The findings suggest that in the near-term fuel consumption levels are expected to 

remain constant – but even in the more conservative of the two scenarios considered, fuel 

consumption levels are poised for a long-term decline.  This has important policy implications 

taken in the context of improved oil recovery techniques that could lead to increased domestic 

liquid fuels production. 
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SECTION 2:  MODEL DESCRIPTION 

A four-part accounting model is created in this analysis.  In the description that follows, each of 

the four modules is described in turn along with the assumptions that are made in the base case 

of the model run.  Similarly, those terms that can be treated as variable inputs are identified and 

the range of plausible values these variables could take are discussed.  Doing so allows for the 

construction of a model which can, in future iterations, be used to examine the consequence of 

potential future policy or market characteristics.  Figure 31 diagrams the basic structure of the 

model and the four modules.   

 



  

 79 

 
Figure 31:  Model Diagram 

 

MODULE 1 – DEMAND 

 

The purpose of the first module is to estimate the number of future populations of US adults who 

will contribute to aggregate vehicle miles traveled (VMT) in light-duty vehicles (LDVs) and 
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light-duty trucks (LDTs)
13

.  The population estimate from which the number of future drivers is 

calculated comes from the Census (Census, 2008).  In this model a necessary simplifying 

assumption is made that population growth is an independent exogenous input that is not 

correlated with patterns of mobility over the range of population values considered.  The number 

of licensed drivers is based on Federal Highway Administration (FHWA) (2011) data for 2010 

both scenarios.  This population profile is treated as a constant for all years of the forecast.  In 

the URBAN scenario, however, the number of licensed drivers among the youngest generation 

never exceeds 80% of that population as they percolate through the age tables.  The the number 

of licensed drivers is shown in Figure 32.  The base-case for the model assumes that licensing 

percentages remain at current levels as age-cohorts traverse the age table over time.    

 

                                                 
13

 LDVs are standard consumer cars (including sports cars, but not exotic makes like Ferrari or Lamborghini).  

LDTs are trucks under 8,500 lbs and include cross-over vehicles, SUVs, minivans, and pickups. 
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Figure 32: Fraction of the adult population with driver’s licenses.  Data are from Table 

DL-22 of FHWA, 2011 

A key assumption that will impact fuel consumption is the rate of vehicle ownership among the 

population.  The assumption made for the base-case is that vehicle ownership, on a per capita 

basis, has plateaued in the United States, and will remain roughly constant throughout the period 

of analysis.  Several studies support this assumption (see eg., Dargay et al 2007 and Wang et al 

2007) and show that light-duty vehicle ownership in the US is around 800 vehicles per 1,000 

people (see e.g., ORNL 2012, Table 8.1).  The logic supporting the assumption that ownership 

rates have leveled off are that vehicle ownership rates (as with most capital intensive consumer 

durables) follow a saturation pattern described by a Gompertz function of per capita income 

(Dargay et al., 2007).  At low levels of income (as in the developing world), the population 

simply cannot afford the good due to the “lumpy” nature of a highly capital intensive purchase 
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(Chamon et al 2008).  As incomes rise, the population reaches an income level at which the 

income elasticity for the good increases rapidly (described by the derivative of the Gompertz 

function – see Figure below).  Once the population exceeds the per capita income threshold for 

the good, elasticity declines as the good becomes a new ‘necessity’ for the population and 

ownership saturation for the good levels off (Storchmann, 2005).  The United States is above the 

income threshold necessary for vehicle ownership to be in this high-saturation stable condition.    

tGDP
e

t eV
   Gompertz function

14
 

tGDP

tt eGDP
   Gompertz derivative, income elasticity of demand 

An argument could be made that by bifurcating portions of the population according to income 

levels, that we could separately apply the saturation levels predicted by the Gompertz function to 

each income group – and therefore make projections about growth in vehicle ownership as these 

populations become more wealthy (perhaps especially important among low-income immigrant 

populations).  This is exactly the type of analysis made by those who forecast growth in vehicle 

markets for the developing world (see eg, Wilson et al 2004, Chamon et al 2008, O’Neill and 

Stupnytska 2009, Lescaroux 2010).  Indeed, by examining the National Household 

Transportation Survey (2009), we can see that vehicle ownership rates do follow income levels 

in a manner that can be fit using a Gompertz function.  From the 2009 National Household 

Transportation Survey, probabilities for individual level vehicle ownership rates were 

determined by income group.  These probabilities were calculated by taking a weighted mean of 

the vehicles per person within each household.  Further, the income reported from each 

household was divided by the number of household members; creating a per capita household 

                                                 
14

 The parameters α and β define the shape and steepness of the Gompertz curve.  The parameter γ represents the 

saturation level for vehicle ownership (since the Gompertz function naturally varies from 0 to 1), and is typically 

expressed in terms of number of vehicles per 1000 people. 
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GDP metric.  In cases in which a household owned more than one vehicle per person, the 

probability of ownership was limited to one.  By doing so, the calculation is not a strict vehicle 

ownership rate derived from the NHTS but is instead simply a probability of ownership per 

capita.  Restricting these data to a probability, rather than an ownership rate, was done to limit 

the effect of households with a very large vehicle ownership rate from skewing the dataset.   

 

The ownership probabilities for each income group were used to fit a Gompertz curve, using the 

maximum ownership probability found (about 96%) as the saturation rate, and solving for alpha 

and beta by minimizing the sum of squared errors between the predicted Gompertz curve and the 

observed ownership probabilities.  For each income group, the median income point was selected 

for purposes of per capita GDP in the solving for the best Gompertz fit.  Additionally, a ‘zero-

zero’ point was added to the calculation of the sum of squared errors to force the curve toward 

zero probability at no income. 
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Figure 33:  Probability of vehicle ownership as a function of per capita income for the 

United States from the National Household Transportation Data (NHTS 2009) micro data-

set and best-fit Gompertz distribution. 

 

We make the simplifying assumption that ownership saturation is constant—and remains 

constant as population changes. That is, the size of the vehicle parc changes on a constant basis 

with population change.  However, the portion of the population that is licensed is explicitly 

considered, and will modify aggregate ownership accordingly to be consistent with the 

demographic projection.  This is done by scaling current ownership rates expressed as a function 

of total population to be expressed in terms of licensed drivers.  This differs from previous work.  

For example, the Transportation module of the National Energy Modeling System (NEMS) uses 

a population projection but does not employ a detailed age distribution of the population to 

describe the evolution of the population of licensed drivers (EIA, 2013).  Recalculating vehicle 
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saturation, we find that assuming 800 vehicles per 1,000 people implies a vehicle ownership rate 

of about 1,200 vehicles per 1,000 licensed drivers in 2010.  Figure 34 shows the implication of 

that rate being held constant for the licensed driver population.  

 

 

Figure 34: Projection for the U.S. Vehicle Parc holding ownership rates per licensed driver 

constant. 

The total number of vehicles forecast in Module 1 informs the projection of vehicle turnover, and 

overall vehicle parc fuel economy levels.  In the module described next, vehicle retirement is 

considered.  Rates of vehicle retirement and additions to the adult driving population determine 

demand for new vehicle sales.  It is the retirement of old inefficient vehicles coupled with new 

vehicle sales, and their regulatory-driven high fuel economy levels, that propel greater levels of 

fuel economy overall.   
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MODULE 2 – ROLLING STOCK 

To model of the characteristics of the vehicle parc, historical data on vehicle sales and fuel 

economy is included.  Historical sales figures for LDVs and LDTs are sourced from ORNL 

(2012, Tables 4.5 and 4.6).  To move forward with historical sales records, the module accounts 

for changes scrappage rates as a function of vehicle age – treated separately for LDVs and LDTs.  

Vehicle survival functions follow an S-shaped Weibull distribution of the function form shown 

below (EPA 2001, Appendix E)
15

 with survival rate values for LDVs and LDTs taken from (EPA 

2010)
16

.  Module 2 applies this survival function for each year of the forecast to each vintage of 

vehicles that are added to the model.  As a result, a matrix of 72 years of scrappage by 72 years 

of new vehicle sales (1979 through 2050) are calculated for both LDVs and LDTs, with values 

for vintage-age survival population calculated for each.   

            ( ((    ⁄ ) ))  Weibull distribution
17

 

Both modules 1 and 2 are essentially bottom-up demographic accounting models, and because 

they use different sets of assumptions to arrive at the size of the vehicle parc in the year 2010 

(the base year of the analysis) there is disagreement in the models for the population of the parc 

in that year.  To reconcile this disagreement, the historical sales values built into module 2 are 

“fudged” so that the vehicle parc in 2010 is equivalent to that in module 1.  The reason for the 

disagreement is likely mostly due to the particular survival parameter values employed in 

module 2 (for which there is substantial uncertainty) so it seems reasonable that module 2s 

should be adjusted in order to reach model agreement.  The “fudge” procedure is to multiply 

                                                 
15

 This model makes the assumption that vehicle survival rates are constant, and that vehicles do not become more 

durable over time.  This assumption is dubious, but lacking data suggesting otherwise (or the resources for a more 

in-depth analysis of the nature of changes in this relationship) the simplifying assumption is necessary. 
16

 For simplicity of calculation, it is also assumed that zero percent of vehicles survive beyond 50 years of life.  This 

differs from the source cited for very old vehicles.   
17

 The term c is a scaling term (ranging from 0 to 1 when used to define survival fractions), e is the base of the 

natural logarithm (≈2.718), b is a term which is roughly analogous to the midpoint of the distribution, and a defines 

the steepness of the curve.   
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historical LDV and LDT sales by a percentage increase parameter, for which module 2 solves.  

The solved solution sets the total parc of module 2 equal to the parc of module 1 by varying only 

this single percentage change parameter. By varying sales values rather than survival rates, the 

single parameter avoids skewing values which differ by orders of magnitude since sales values 

are all within the same order (and so the result of a percentage change parameter affecting a 

value near zero much less than a value that is in the millions is not present).  One of the main 

reasons this adjustment is necessary is the constant survival rate assumption – that is, that newer 

vintages of vehicles have the same survival characteristics as older vintages.  This is a 

simplifying assumption for model implementation, but is certainly incorrect:  vehicles 

manufactured in the 2000’s have longer expected lifetimes than vehicles manufactured in the 

1980’s, for example.  This phenomenon is not captured by the model.   

MODULE 3 – NEW SALES 

Module 3 makes an assumption regarding future sales rates between LDVs and LDTs, which 

diverges from the assumptions made by EPA (2001) and EIA (2012, Table 39), and assumes a 

constant sales ratio of 1:1 (that is, 50% LDVs and 50% LDTs) for the period of analysis
18

.  New 

vehicle demand is determined by first taking the value of the parc from module 1 as the size of 

the parc that is demanded by the market and determining the number of new vehicles sales that 

are required to meet that demand based on the increase in the size of the parc required and the 

scrappage of the existing vehicle fleet in that year, calculated in module 2.  The demand for new 

vehicles is distributed between LDVs and LDTs evenly (as the rationale above explains).  Note 

that because historically LDVs have sold at higher rates than LDTs, the distribution between the 

                                                 
18

 EPA (2001) assumes that LDTs continue to gain market share over time.  EIA (2012) assumes that LDTs lose 

their market share gains back to LDVs.  The EIA (2012) position is a recent change for that annual publication, 

which in previous years was in agreement with EPA (see e.g., EIA 2008).  Because the assumption made here is 

different from both, these results are not directly comparable with forecasts made by either of those agencies.   
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two in the parc will trend towards a higher fraction of LDTs than is currently present (that is, 

trending toward a 50/50 split) as new vehicles enter and persist in the fleet.   

 

Because new vehicle additions to the model are calculated based on calculated demand from 

module 1, the analysis does not forecast or consider the impact of economic shocks or temporary 

dislocations.  Boom and bust cycles are a pattern of U.S. economic history, and will undoubtedly 

continue, but forecasting this is outside the scope of this analysis.  Periods of slower economic 

activity typically lead to lower new vehicle sales, and an increase in the average age of the parc 

as vehicles are scrapped less to make up for the decrease in supply.  This means that those 

periods of low economic growth are associated with higher fuel consumption (ceteris paribus) 

per mile of vehicle travel.  Typically the period that follows a decline in sales experiences some 

degree of “catch up” in sales which are then associated with lower fuel consumption per mile of 

vehicle travel.  This modeling approach assumes that these countervailing effects roughly cancel 

each other out.        

MODULE 4 – FUEL CONSUMPTION 

Total fuel consumption is a function of the size of the vehicle parc, the fuel economy of the 

vehicles in the parc, and the VMT of the vehicles in the parc. Historical sales weighted fuel 

economy for LDVs and LDTs are sourced from ORNL (2012, Tables 4.21 and 4.22).  Fuel 

economy projections in module 4 are taken from Corporate Average Fuel Economy (CAFE) 

standards, the regulatory-driven fuel economy requirement for all auto-manufacturers each year.  

Module 4 assumes the CAFE standard is binding – that is, the auto-makers ‘just-meet’ the 

standard, they do not exceed it in any years (this could be perceived as a reflection of the fact 

that consumers tend to prefer horsepower to fuel economy and any technological capacity to 



  

 89 

exceed the fuel economy standard would be diverted to delivering added horsepower instead).  

Currently CAFE standards are set to increase for LDVs and LDTs each year through 2025.  After 

2025, module 4 assumes that CAFE remains at 2025 levels, and remains a binding standard
19

.  

Future CAFE values are taken from the regulatory announcement (Federal Register, 2012).  As a 

simplifying assumption, module 4 does not degrade on-road fuel economy as a function of 

vehicle age.  In reality, we can expect some modest deterioration of achieved fuel economy 

performance as vehicles get older, and maintenance for some in the parc are substandard.   

 

Vehicle VMT does vary in an important way with vehicle age, and module 4 captures this 

dynamic.  New vehicles are typically the most intensively used of the vehicle parc, and this 

declines with vehicle age.  VMT per vehicle by vehicle age is taken from ORNL (2012, Table 

8.10).  There are two effects related to VMT that module 4 does not capture: the rebound effect 

that results in higher rates of travel demand as vehicles become more fuel efficient, and the 

income effect of people spending more on travel as incomes rise.  The rebound effect is probably 

relatively small (and shrinking with increasing income (see e.g., Small and VanDender, 2007)).  

The trend toward more travel demand as a function of rising average incomes is a historically 

important trend which is not accounted for, but which is likely decreasing in its importance over 

time as marginal travel demand becomes valued less highly (market saturation) and the effect of 

marginal income has a lower effect (decreasing income elasticity of demand).  Nevertheless, this 

is a trend which the model excludes, and which could have a modest effect on the results. 

                                                 
19

 There is some difference between vehicle fuel economy measured under test procedures for CAFE purposes and 

achieved on-road fuel economy.  In this work, I have assumed test fuel economy to be equivalent to achieved fuel 

economy.  Since I do this for both the historical and projected fuel consumption values and since the conclusions I 

draw are based on fractional, not absolute, change in fuel consumption, the key findings would not be affected. 
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SECTION 3:  RESULTS AND CONCLUSIONS 

 

Figure 35 below shows projections for total VMT and fuel demand for the base-case scenario.   

 

Figure 35: VMT and Fuel Consumption Projections relative to 2010. 

As the figure shows, both scenarios project that near term fuel consumption is relatively flat.  

Once vehicles subject to the new CAFÉ standards begin to enter the parc in significant numbers 

however, the overall fuel consumption begins to drop for both scenarios.  Despite the fact that 

total VMT is increasing over the scenario shows a drop in total fuel demand over the projection 

period.  This suggests that long term-trends regarding fuel economy standards and vehicle 

ownership saturation will result in a downward trend in total fuel demand – though this will not 

begin to be realized until the late 2010’s or the early 2020’s. 
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The policy implications for this finding relate to the national dependence on foreign sources of 

fossil fuels, and for aggregate emissions of greenhouse gases.  Over the past several years, U.S. 

domestic production of crude has increased (EIA, 2012b), and many suspect that production 

could continue to increase with the use of enhanced oil recovery techniques in shale formations.  

The confluence of increased domestic production and decreased demand could have significant 

implications for the balance of trade of the U.S., security concerns about supply from politically 

unstable world regions, and supply shortages as the developing world shifts to middle-income 

status and starts to drive at significantly higher rates.   

ACKNOWLEDGMENTS FOR CHAPTER 4 

This work was done with the support of the Steinbrenner Institute for Environmental Education 

and Research at Carnegie Mellon University, enabled by a grant from the Colcom Foundation.  

  

 

 

 

 

  



  

 92 

CHAPTER 5:  SUMMARY OF CONCLUSIONS AND POLICY RECOMMENDATIONS 
 

The analyses described above examine the expected or observed energy effects of selected 

policies to improve energy efficiency.  As identified in the introduction to this dissertation, 

energy efficiency is not the end product of these policies, but is a vehicle through which policy 

objectives can be achieved.  The policy recommendations included bear this relationship 

between energy efficiency and ultimate policy objectives in mind. 

 

In Chapter 2, I found that despite considerable uncertainty, it is highly likely that the efficiency 

programs examined are indeed cost-effective policies.  However, reporting on these programs 

could be improved considerably in order to better direct future efficiency interventions.  Subsets 

of the overall program could be more or less cost-effective than the program in aggregate.  

Identifying those interventions that produce a large benefit relative to their costs is a critical step 

toward maximizing the social benefit that these programs generate.  Concretely, a 

straightforward first step that DSM operators can do is to report the full stream of expected 

annual energy savings over the expected lifetime of installed equipment or the estimated current 

year energy savings by vintage of past installations.  This avoids underselling the value 

generated by efficiency investments by focusing only on first-year energy savings, and it also 

makes comparisons between investments with different expected lifetimes more comprehensive.  

Second, DSM operators should produce disaggregated efficiency intervention data so that 

regulators (and the public) can examine the types of investments being made with public 

moneys.  In addition to the obvious transparency justification, doing so allows comparison of 

cost-effectiveness between technology and intervention types more readily and helps regulators 

to identify efficiency investments that are yielding the greatest benefit-cost ratios.   
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Next, reflecting on the large uncertainty range in the disaggregation method, it is clear that the 

parameters of which TRM estimates are composed contain substantial uncertainty.  Depending 

on the policy objective of the regulator, the range of possible energy savings may be more or less 

important relative to the central estimate.  In the case of Vermont, where avoiding the need for 

installing additional electrical system capacity is primary, understanding the range of possible 

energy outcomes can be just as important since that regulatory environment is risk-averse to 

hitting system constraints.  In Pennsylvania, where there are net electricity exports but greater 

concerns about emissions close to population centers, maximizing the expected value of energy 

savings may be relatively more important.  Incorporating these uncertain parameters in the 

calculation of estimated energy savings is a relatively straightforward (and inexpensive) way to 

provide this relevant information to policy makers.  Finally, estimates of the benefits of energy 

efficiency improvements are usually calculated exclusively in terms of the price of energy 

avoided.  But this is only one portion of the value that energy efficiency improvements generate, 

and fails to incorporate the unpriced avoided externality benefits associated with emissions 

reduction and capacity constraints eased (where marginal pricing may be an inaccurate 

assessment of costs avoided).  While estimating these values are likely to include substantial 

uncertainty, the range of possible values do not include zero and thus their exclusion necessarily 

results in an underestimate of the total value of efficiency interventions.   

 

In Chapter 3 I find, counterintuitively, that household energy consumption increases by an 

average of around seven percent following participation in PG&E’s efficiency rebate program. I 

hypothesize that the reason for this is likely because consumers are treating the program as an 



  

 94 

equipment subsidy program rather than as an equipment replacement program.  That is, 

following participation in the program, the household does not dispose of an existing inefficient 

piece of equipment to be replaced by the new efficient version but instead starts consuming new 

energy services from the new equipment in addition to continuing past energy consumption 

patterns.  If this is the case, the policy fix is relatively simple—require equipment recycling in 

addition to proof of purchase of qualifying new equipment.  The conclusions of Chapter 3 also 

help us to reinterpret the findings in Chapter 2.  Chapter 3 shows that there are often unintended 

outcomes from a policy implementation.  A TRM-style calculation of the energy effects of the 

interventions made in the PG&E efficiency rebate program would show a positive energy 

reduction because it would likely not consider the possibility that the new energy consuming 

equipment would operate in parallel with the old.  This highlights the critical importance of ex 

post examinations of aggregate energy consumption to ensure that anticipated program benefits 

are actually being realized.  As data from smart-meters become more readily available to DSM 

operators it is becoming more straightforward to perform these kinds of analyses systematically.  

Policymakers should be made aware that this type of analysis is possible and require it as a part 

of DSM program design.   

 

Chapter 4 examines how long term trends in demographics and vehicle turnover influence 

aggregate fuel demand from LDVs in the transportation sector.  I show how, despite considerable 

continued population growth, increasing CAFE standards will likely result in substantially lower 

demand for transportation fuels in the long-term.  CAFE standards are a slow working policy 

instrument however, and demand over the medium term (<10 years) will not see major changes.  

It is important to note that the NHTSA CAFE standard is a footprint based standard that allows 
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larger vehicles to meet a less stringent level of fuel economy (in addition to providing different 

standards for cars and light trucks).  This is done to reconcile with NHTSA’s primary 

responsibility toward vehicle safety—although some research shows that this size-based method 

may be counterproductive (Gayer, 2004).  Because research shows that consumer vehicle-size 

purchase decisions are influenced by fuel prices, it is plausible to believe that fuel (or carbon) 

taxes can be complementary to a binding CAFE standard that is based on vehicle footprint.   

 

This research also present several avenues for lines of future work.  Building on the work of 

Chapter 2, a logical next step would be to perform similar analyses for other types of residential 

demand side efficiency interventions besides lighting.  As federal lighting efficiency standards 

come into effect, lighting interventions will be a less prominent option among those available to 

DSM operators.  Characterizing the uncertainty associated with other technology types will be 

important moving forward as these programs seek out new cost-effective measures to improve 

household energy efficiency.  Similarly, building out from the two states selected for the case-

study examination, performing similar analyses for the largest segments of DSM programs in 

other states seems to be a straightforward extension.   

 

As identified in the conclusion to Chapter 3, that analysis can be replicated where smart-meter 

data can be made available in a way that allows DSM operators to associate household 

participation in efficiency programs with energy consumption data.  Doing similar analyses 

across multiple jurisdictions will being to provide a better understanding of how efficiency 

programs translate to energy savings in practice.  Since a goal of performing this kind of analysis 

should be to deliver efficiency improvements in the most cost-effective way possible, a natural 
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next step is to use household participation data to better predict participation in efficiency 

programs.  Doing so would allow DSM operators to better target marketing materials towards 

households that are both likely to participate and that fit the profile of households from which 

valuable electricity demand reduction is available.  Smart meter data can also be used to discover 

which interventions produce the most valuable electricity savings.  Examining changes to the 

load shape profile of households following different types of efficiency interventions would 

allow DSM operators to better understand which types of technologies or behaviors reduce the 

most valuable (peak load) electricity demand, rather than just the greatest overall quantity.  

Further, pairing changes in the load shape profile of household electricity consumption can allow 

a more precise estimate of the emissions avoided by those interventions.  This can be done by 

comparing the timing of reduced demand with the marginal generator in each time period.  

Finally, greater detail in the data on the types of interventions associated with each rebate in the 

PG&E case would create a better understanding of which types of appliances (for example) are 

associated with the most cost-effective demand reduction. 

 

A logical next step for building on the work described in Chapter 4 would be to construct a series 

of plausible alternate future scenarios to examine the range of possible outcomes, and the policy 

choices that could lead to those futures.  Further, performing a series of sensitivity analyses to 

determine the factors that, when varied across plausible future values, have the greatest impact 

on total fuel consumption could contribute to future policy decision-making.  As a model 

validation exercise, it would be useful to do a comparison of this model to the NEMS 

transportation sub-module.  Doing so with runs both that incorporate both standard population 

characterization and the more detailed population treatment included in this work would 
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highlight the differences that including that characterization have in the policy outcomes of 

interest. 
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