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Abstract 

Energy efficiency (EE) and energy conservation today are recognized as the low-hanging fruit of 

energy sources. However, the potential benefits of energy efficiency are often unrealized due 

to market failures and market barriers.  The overarching objective behind my work is to merge 

publicly available data, e.g., property tax dataset for physical properties of households and 

voter registration data set for demographic household properties, to build statistically 

significant insight on energy efficiency and consumption for a group of households (n=7,091) in 

Gainesville, FL. This will explore and try to verify the concept of an energy efficiency reservoir. 

Absence of data is one of the biggest barriers to information flow and efficiency deployment 

that I aim to overcome in my thesis. The generated insight will be provided to different 

efficiency stakeholders, e.g., electric utilities, homeowners, contractors, home energy 

performance product providers, for them to implement their investment strategies in an 

informed manner. 
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1. Introduction 

Today, energy efficiency (EE) and energy conservation are recognized as the low-hanging fruit 

of energy-reduction strategies. However, the potential benefits of energy efficiency are often 

unrealized because of market failures and market barriers.  The overarching objective behind 

the work in this dissertation is to merge publicly available data (e.g., property tax datasets for 

physical properties of houses and voter registration datasets for demographic house 

properties) with utility-consumption histories and then to construct statistically significant 

predictive models for energy efficiency and energy consumption for a group of houses 

(n=7,091) in Gainesville, FL. This paper quantifies the concept of an energy-efficiency reservoir, 

the potential benefit of implementing EE programs.  

To date, EE predictive models have either been handcrafted for individual structures or based 

on broad sets of average characteristics (e.g., aggregate data from the Department of Energy’s 

Residential Energy Consumption Survey (RECS)).  In contrast, the generated models from this 

dissertation provide different stakeholders (e.g., electric and gas utilities, homeowners, 

contractors, home-energy performance product providers) with valuable tools for determining 

where investments should be made to improve the efficiency of the housing stock for a broad 

regional area.   

Three studies constitute the core of this dissertation all of which use the same aforementioned 

data set (n=7,091) that includes 1) monthly utility usage data for electricity, natural gas and 

water for 36 months from 2009 through 2011, 2) property tax records that have baseline 

information on the physical characteristics of the house structure (e.g., square footage, year 

built, building value, and number of bedrooms of the houses), and 3) voter registration records 

for the demographic profile of houses (e.g., lower bound on the number of occupants, number 

of adults, number of Republicans). The three studies are written as independent stand-alone 

working papers. 
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The first study (Chapter 2) investigates the statistical descriptive power of publically available 

information (i.e., property tax records and voter registration records) for modeling utility usage. 

In this paper, we show the importance of distributing monthly utility data to daily reads spread 

across the billing period.  Simply assigning the monthly bill to the month of the bill distorts the 

consumption record especially for months where temperatures vary from the first to last day of 

the month (e.g., months in the spring and fall).  Using these adjusted consumption values, we 

explore two different regression modeling approaches: 1) separate regression models for each 

month and 2) a single model with monthly dummy variables and monthly temperatures.  The 

second model provides much better predictive power. The motivation behind this study is to 

build a framework that can be used by utilities to plan for monthly changes in demand with 

respect to demographic and structural characteristics in their service territory. The predicted 

monthly utility usage values can also be translated into a energy-use intensity per squarefoot 

which can be used as a first-cut metric for energy-efficiency planning and targeting for utilities 

who are mandated by state laws to reduce energy demand. 

In the second study (Chapter 3), we model and examine the energy-efficiency profile of 

individual houses in our sample.  For this we use a load-disaggregation software, Princeton 

Scorekeeping Method (PRISM), which processes historical weather data and monthly utility 

usage data using an iterative regression approach to compute three energy-efficiency 

parameters: 1) baseload consumption for end-uses, which do not change with weather (e.g., 

lighting, refrigerator, and water heater), 2) heating slope, which is a function of the building’s 

shell insulation and the efficiency of the heating (or cooling) unit, and 3) reference 

temperature, which is the outside temperature at which the house turns on heating (or 

cooling). These parameters further make up the normalized annual consumption (NAC), which 

is the weather-adjusted annual utility consumption for a typical year for given house. We then 

proceed to regress these parameters against the publically available data to study the extent 

we can extract statistical insight for residential energy-efficiency profiling using publically 

available information. The motivation behind this study is to build predictive models that can 

assess the different end-uses that constitute a house’s energy load. This approach is meaningful 

for utility-driven, energy-efficiency targeting as two houses with the same annual utility usage 
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may have different end-use-based energy-efficiency intervention potential. Further, this 

framework helps separate between engineering-driven (HVAC replacement) or behavioral 

intervention (adjusting thermostat settings) potential. Thus, utilities can predict changes in 

disaggregated load with respect to changes in demographic and structural characteristics at an 

individual-house level. 

The third study (Chapter 4) uses the PRISM-computed energy-efficiency parameters to 

determine the savings potential in individual houses using different interventions both physical 

(e.g., new furnace, improved ceiling insulation, or replacing an old refrigerator) and behavioral 

(e.g., lowering the thermostat setting in the winter or raising it during the summer). To 

estimate the energy-efficiency reservoir for the houses in our sample, we model the reduction 

in energy consumption (and utility bills) that would occur if all the houses that were worse than 

the sample’s median with regard to heating slope, thermostat setting, and baseload 

consumption could be improved to the median value.  Because we have profiled each house in 

the sample, we know which houses could benefit from improvements to the physical system 

(e.g., new ceiling or wall insulation, or installation of a high-efficiency furnace) and keep their 

thermostats at setting that is “uncomfortable” relative to other houses in the sample (e.g., 

lower in the winter and higher in the summer).  Following the approach taken in the first two 

papers, we regress the efficiency potential from different interventions against the publically 

available data to create a model that identifies houses with large savings potential for specific 

interventions. This approach enables utility program managers to predict the savings potential 

by house and by end-use using publically available data and help construct an EE reservoir map 

for targeted EE deployment. This in turn can allow utilities to allocate the right resources to 

specific houses using the right EE messaging and intervention to meet EE targets in an informed 

and analytical fashion.  In addition, home owners, who were unaware of the savings potential, 

could be notified.  Policymakers, who are designing rebate programs, could accurately forecast 

expected benefit from differently funded programs.  Environmental groups  

In the second half of this paper, we hypothesized that utility savings that would be realized 

from improvements to the physical system would be used to adjust the thermostat to a more 
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comfortable settings. These houses would experience a “rebound effect” where some (or all) 

energy savings are used to improve comfort.  To our knowledge, this is the first attempt at 

predicting rebound for the housing stock in a broad region.  Because of our large dataset, we 

are able to build predictive models of which house are likely to experience rebound.  

The reader should note that there are two potentially major limitations to this work. First, the 

underlying publically-available demographic information is from voter registration records. In 

other words, our house occupancy models do not account for children under 18 or unregistered 

adults.  Only adults that have registered to vote are included.  According to the Alachua County 

Supervisor of Elections,1 approximately 80% of eligible voters are registered in the county.  The 

majority of these eligible but unregistered voters is because of the large university student 

populations associate with the University of Florida and Santa Fe College.  However, since our 

study focuses on single-family houses with multi-year, continuous utility data, the impact of 

these transient and “missing” occupants will be minimal.  Determining the energy efficiency 

reservoir associated with students living in apartments near large universities would be a 

different study. 

Second, the third and fourth chapters use PRISM, an iterative optimization model, to determine 

the disaggregated load variables.  Because of the model’s design, it expects utility usage to 

follow a general trend (e.g., colder weather is matched with increasing heating bills).  Missing 

data and trends that are counter to the model’s logic will result in a failed model fit.  

Approximately 15 percent of the houses in our dataset had utility-bill values that could not be 

modeled by PRISM.  The characteristics of these houses and their occupants were not different 

than the houses for which valid PRISM models were found.  So though the error rate of PRISM 

is troubling, we do not believe that it caused a significant bias in our analyses. 

Having discussed the three studies we conclude with policy implications for our work and 

potential future research areas. 

                                                        
1 Gainesville is located in Alachua County in Florida. 
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2. Statistical Modeling of Residential Utility Usage 

Abstract 

Energy efficiency (EE) and energy conservation today are recognized as the low-hanging fruit of 

energy-reduction strategies. However, the potential benefits of energy efficiency are often 

unrealized because of market failures and market barriers.  The overarching objective behind 

this work is to merge publicly available data (e.g., property tax dataset for physical properties of 

houses and voter registration data set for demographic house properties), with utility 

consumption histories and extract statistically significant insight on energy efficiency and 

consumption for a group of houses (n=7,022) in Gainesville, FL. This study investigates the 

statistical descriptive power of publically available information for modeling utility usage. We 

first examine the deviations that arise from monthly utility usage reading dates as reading dates 

tend to shift and reading periods tend to vary across different months. Then we run regression 

models for individual months which in turn we compare to a yearly regression model which 

accounts for months as a dummy variable to understand whether a monthly model or a yearly 

model has a larger statistical power. 

2.1. Introduction 

Energy efficiency (EE) and energy conservation today are recognized as the low-hanging fruit of 

energy-reduction strategies (NAS, 2010). In recent years, several states have recognized the 

potential for energy efficiency to reduce energy consumption and pollutants’ emissions, as well 

as possibly avoiding new generation construction. Thus, in order to promote energy efficiency, 

24 states to-date have enacted Energy Efficiency Resource Standards (EERS) and set reduction 

targets for energy consumption (ACEEE, 2011). These targets have annual reductions goals that 

range between 0% and 2.2% from a baseline year (ACEEE, 2011).  

To achieve these energy efficiency goals, several strategies can be pursued. One is the use of 

demand-side management (DSM) programs. Almost $7 billion was spent in rate-payer-funded 

DSM programs at a national level in 2011 and it is anticipated that a total of $12 billion will be 
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spent by 2020 (IEE, 2012).  Although a large number of states are meeting their demand 

reduction targets, with the coming more aggressive reduction goals, the exercise at hand will 

become more difficult. The potential benefits of energy efficiency are often unrealized because 

of market failures and market barriers. Some of these include information barriers, split 

incentives, hidden costs, transaction costs, high discount rates and heterogeneity among 

potential adopters (Jaffe and Stavins, 1994). Additionally, unpriced costs and benefits, 

misconstrued fiscal and regulatory policies, and insufficient and inaccurate information are 

recognized as market failures (NAS, 2010). Low priority of energy issues, incomplete markets 

for energy efficiency and limited access to capital (e.g., loans), further constitute market 

barriers for efficiency deployment (NAS, 2010). 

Energy audits, one of the primary vehicles in promoting efficiency deployment at a building 

level, have been experiencing low penetration rates because they usually require consumers to 

seek audits independently and most consumers are unaware of need or value of an audit 

(Neme et al., 2011). Neme et al. estimate that state- and utility-sponsored audit programs 

reach less than two percent of homes each year (Neme et al., 2011). This is further exacerbated 

by low retrofit-project conversion rates followed by an energy audit, i.e., only a subset of audits 

evolve into a retrofit project because of high upfront costs and low return on investment (ROI) 

associated with the average consumer. The U.S. Department of Energy estimated that less than 

one percent of homes have had energy retrofits specifically to save energy (Lee, 2010). Other 

motivations may include health and safety reasons and comfort improvement. Palmer et al. 

(2011) surveyed approximately 500 energy auditors about the reasons why homeowners do not 

get audits.  Responses in order of importance are:  1) lack of finances; 2) lack of knowledge on 

what an energy audit is; 3) lack of awareness on energy audits’ existence; 4) high perceived or 

actual costs of audits. Palmer et al. (2011) further ranked the reasons for why homeowners 

make improvements (in decreasing frequency): 1) high savings; 2) low improvement cost; 3) 

non-energy benefits; 4) financing availability. 
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Despite the benefit, conducting energy audits for a majority of U.S. residential buildings is 

impractical because of the number of residential structures (120 million), high costs of audits 

($200-$300/house), and limited workforce of qualified home energy performance professional. 

Various strategies have been recommended to tackle the aforementioned barriers and enhance 

energy efficiency and conservation (Nowak et al., 2011). For example, Nowak et al. (2011) 

underscored the importance of identifying and prioritizing targeted technologies and end-uses. 

They emphasized that energy efficiency programs should prioritize their investments within 

consumer bases (i.e., focusing on potential high-savings potential projects first, before targeting 

a broader participation). Employment of innovative advertising and promotional channels 

would help enhance energy efficiency adoption but they need to be focused to achieve 

maximum impact. Similarly, Fuller et al. (2010) propose studying the population and finding and 

targeting early adopters. 

Steemers and Yun (2009, 2011) studied the role of climate, occupant behavioral aspects and 

physical building characteristics in residential energy consumption. In their econometric study, 

the authors analyzed 4,822 housing units extracted from micro data from the US Department of 

Energy’s Residential Energy Consumption Survey data from 2001, and found that, apart from 

climate, occupant behavioral aspects and socio-economic aspects (e.g., house income) are 

critical in terms of energy consumption, in particular for heating and cooling, through their 

effects on choices on physical building and appliance characteristics.   

MacSleyne (2007) in her doctoral dissertation identified inefficient houses in Pittsburgh, PA, by 

using monthly natural gas consumption and physical and social characteristics of houses. Her 

work depended on building-level information – this granularity of data is highly uncommon 

because of utility-side proprietary issues or availability of data in a digitally appropriate format. 

She further explored ways to find cost-effective energy efficiency interventions for a house in 

order to reduce annual natural gas costs and/or improve indoor comfort. She also formulated 

strategies to prioritize low-income houses for a subsidized weatherization program (MacSleyne, 

2007). This combination of datasets for 10 thousand houses is the largest number of individual 
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houses studied at this level of detail to date. Given the extensive data at household level her 

work produced novel insight compared to the rest of the similar literature as discussed below. 

Min et al. (2010) used Residential Energy Consumption Survey (RECS) data with U.S. census 

2000 five-digit zip-code-level information and climate division-level temperature data to build a 

regression-based statistical framework to model space heating, cooling, water heating and 

appliance energy end uses, fuels used and carbon emissions at a zip-code-level resolution for 

the entire U.S. Min et al. (2010) acknowledges that the absence of high-resolution information 

on residential energy consumption has been and still is a significant impediment to the effective 

development and targeting of residential energy efficiency programs.  

Jacobsen and Kotchen (2010) studied how a change in building code in Florida affected energy 

conservation in Gainesville, FL. They used building-level residential billing data for electricity 

and natural gas consumption. In their difference-in-differences analysis, which is an 

econometric technique that measures the effect of a treatment at a given period in time, they 

found that the building-code change, which took effect in 2002, resulted in a 4-percent 

decrease in electricity consumption and a 6-percent decrease in natural gas consumption. This 

build-code change involved improvements to baseline heating system, baseline air-distribution 

system and the Solar Heat Gain Coefficient. 

Oikonomou et al. (2009) discuss how energy efficiency can be considered as resource reservoir 

extractable through actions and investments. This reservoir comprises both a private and a 

public economic value. The private value constitutes monetary return to utilities and 

consumers for energy efficiency investments, whereas the public value relates to externalities 

and public goods such as air pollution, energy security and continuity of service (Oikonomou et 

al., 2009). Much like other energy services, energy efficiency “reservoirs” are expected to vary 

significantly geographically.   

Efficiency program design and implementation could significantly benefit from prioritization of 

efficiency projects and measures among consumer-bases through building a better 

understanding of the variation of the potential. This in turn can facilitate achieving higher 
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consumption-reduction targets and a more cost-effective return for electric utilities. Identifying 

which buildings possess a greater savings potential may also help home energy-performance 

professionals overcome difficulties arising from low consumer conversion rates that are 

exacerbated by low return on investment for low savings potential consumers. Prioritizing 

efficiency projects can further improve job creation in the home energy performance industry.  

This work explores the effects of modeling physical and social characteristics of houses in 

Gainesville, FL, on resource consumption (electricity, water and natural gas) and efficiency 

potential. Using publically available data on physical and social characteristics of houses can 

pave a path to understand and predict residential energy consumption and efficiency potential 

in a world where consumption information is highly private. 

2.2. Data 

The data were obtained from Program For Resource Efficient Communities (PREC) at University 

of Florida2. PREC collected the utility usage data from Gainesville Regional Utilities. The data 

include monthly utility consumption of single-family houses:  10,056 houses for electricity, 

7,202 houses for natural gas and 10,166 for water, for years 2009, 2010 and 2011. The 7,202 

houses with natural gas accounts use natural gas a primary heating source. Houses without 

natural gas usage were assumed to use electricity as primary heating source. To put this into 

context the U.S. Department of Energy’s Residential Energy Consumption Survey (RECS) from 

2009 contains data on 948 houses for the entire state of Florida.3 

Not all of these houses have meter readings for all of the months between 2009 and 2011. For 

consistency, houses that do not have at least 33 or more readings for electricity, natural gas 

and water for 2009-2011 were dropped because a high number of missing readings for a given 

house could cause inaccuracies in our regression model. This resulted in 11 readings per year 

on average for a given house. This resulted in the final dataset size of 9,904 houses for 

electricity and water, and 7,096 houses for natural gas, since not all houses use natural gas and 

                                                        
2 http://www.buildgreen.ufl.edu/ 
3 http://www.eia.gov/consumption/residential/data/2009/ 
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can use electricity instead. Further, houses that use a fuel other than electricity or natural gas 

for heating, e.g., heating oil or solar heater, were removed to avoid discrepancies. Thus, the 

final sample size for electricity, natural gas and water, was 9,461, 7,022 and 9,460, respectively 

(Table 1). The voter registration and property tax datasets have information for 18,190 houses 

and they were retrieved from Alachua County by PREC. A detailed description for each variable 

in these data sets is given in the Appendix at the end of this chapter. Since we have monthly 

consumption data for only a subset, we could only use the respective portion of the voter 

registration and property tax datasets.  A comparison of the characteristics of the 9,461 houses 

in the electricity bill dataset and the remaining 12,289 houses in Gainesville showed minor 

statistical differences (Tables 2 and 3). Since this study covers only the 2009-2011 period and 

the corresponding utility consumption, the newest building in the sample was constructed in 

2008. 

Table 2. 1. Filtering constraints for the datasets showing number of houses 

 Electricity Water Natural Gas 

Total # of housing units  19,381 19,381 19,381 
Total # of single-family units  10,056 10,166 7,202 
≥33 & readings 9,904 9,904 7,096 
Electric or natural gas heating 9,461 9,460 7,022 
Final sample 9,461 9,460 7,022 

Exploratory statistical work was conducted on the physical and demographic characteristics. 

Tables 2-5 show the percentile distribution of variables in the final sample for houses with 

electricity usage (n=9,461) and the rest of the population. The median house in the Gainesville 

sample was 35 years old, had $25,000 in land value and $97,000 in building value, whereas the 

median house outside the final sample was 36 years old and the corresponding land and 

building values were $25,000 and $85,000, respectively. Both groups had the same median in 

terms number of bedrooms, bathrooms, stories and number of occupants (3, 2, 1 and 2) (Tables 

2-5). The quantified differences between Tables 2-5 are shown in Table 6 and 7. Overall, the 

final sample has higher building values, higher square footage and older occupants than the 

houses outside sample. Given the houses outside the final sample are largely multi-unit 
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buildings and Gainesville is home to approximately 50,000 University of Florida students this 

comparison confirms our expectations. 

Table 2. 2. Distribution of physical characteristics of houses in the final sample4 of houses with electricity 
use (n=9,461) 

 Percentile 

  5th 25th 50th 75th 95th 
Land value ($1000) 10 18 25 34 50 
Building value ($1000) 48 73 97 129 173 
Misc. value ($1000) 0.2 0.7 1.6 3.2 7.6 
Tax amount ($1000) 0.4 0.8 1.6 2.4 3.6 
Heated area (1000 sqft) 0.9 1.2 1.5 2.0 2.5 
Actual area (1000 sqft) 1.2 1.6 2.0 2.6 3.3 
Age of the building 11 27 35 38 42 
# of bedrooms 2 3 3 3 4 
# of bathrooms 1 2 2 2 2.5 
# of stories 1 1 1 1 1.5 

 

Table 2. 3. Distribution of demographic characteristics of houses in the final sample5 with electricity use 
(n=9,461) 

 Percentile 

  5th 25th  50th 75th  95th 

Avg age of occupants 18 32 44 66 80 

Avg years of occupancy 3 8 14 24 34 

# of occupants 1 1 2 2 3 

# of teenagers 0 0 0 0 0 

# of adults 0 0 1 2 3 

# of seniors 0 0 0 1 2 

# of republicans 0 0 0 1 2 

# of democrats 0 0 1 2 2 

# of males 0 0 1 1 2 

# of females 0 1 1 1 2 

 

  

                                                        
4 Please see appendix for the definitions of the variables. 
5 Please see appendix for the definitions of the variables. The information was extracted from voter 
registration database. # of teenagers only includes teenage occupants of voting age (18 and 19). 
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Table 2. 4. Distribution of physical characteristics of houses outside the final sample 

 Percentile 

  5th 25th 50th 75th 95th 
Land value ($1000) 8.8 18 25 35 50 
Building value ($1000) 38 64 85 109 142 
Misc. value ($1000) 0 0.5 1.1 2.1 4 
Tax amount ($1000) 0.7 1.7 2.4 3.2 4.1 
Heated area (1000 sqft) 0.8 1.1 1.4 1.7 2.1 
Actual area (1000 sqft) 0.9 1.4 1.8 2.2 2.8 
Age of the building 8 28 36 39 43 
# of bedrooms 2 3 3 3 4 
# of bathrooms 1 1 2 2 2 
# of stories 1 1 1 1 1.5 

 

Table 2. 5. Distribution of demographic characteristics of houses outside the final sample 

 Percentile 

  5th 25th  50th 75th  95th 
Avg age of occupants 22.9 26.8 32.7 42.5 55.8 
Avg years of occupancy 1 4 6 11 17 
# of occupants 1 1 2 2 3 
# of teenagers 0 0 0 0 0 
# of adults 0 1 2 2 3 
# of seniors 0 0 0 0 1 
# of epublicans 0 0 0 1 1 
# of Democrats 0 0 1 1 2 
# of males 0 0 1 1 2 
# of females 0 0 1 1 2 
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Table 2. 6. The difference between the distributions of physical characteristics of houses in the final 
sample and outside the final sample 

 Percentile 

  5th 25th 50th 75th 95th 

Land value ($1000) 1.2 0 0 -1 0 
Building value ($1000) 10 10 12 20 31 
Misc. value ($1000) 0.2 0.2 0.5 1.1 3.6 
Tax amount ($1000) -0.4 -0.8 -0.8 -0.7 -0.6 
Heated area (1000 sqft) 0.1 0.1 0.2 0.3 0.4 
Actual area (1000 sqft) 0.2 0.2 0.3 0.4 0.5 
Age of the building 3 -1 -1 -1 -1 
# of bedrooms 0 0 0 0 0 
# of bathrooms 0 1 0 0 0.5 
# of stories 0 0 0 0 0 

 

Table 2. 7. The difference between the distributions of demographic characteristics of houses in the final 
sample and outside the final sample 

 Percentile 

  5th 25th 50th 75th 90th 

Avg age of occupants -4.9 5.2 11.3 23.5 24.2 
Avg years of occupancy 2 4 8 13 17 
# of occupants 0 0 0 0 0 
# of teenagers 0 0 0 0 0 
# of adults 0 -1 -1 0 0 
# of seniors 0 0 0 1 1 
# of republicans 0 0 0 0 1 
# of democrats 0 0 0 1 0 
# of males 0 0 0 0 0 
# of females 0 1 0 0 0 

Similarly, the distributions in utility consumptions by month were investigated. It is common 

that utilities collect monthly consumption data in irregular frequencies. In other words, the 

meter reading dates can vary from month to month resulting in non-uniform billing periods. If 

the analyst assigns consumption values only to months in which the reading was measured and 

does not attribute the consumption between consecutive months accounting for the billing 

periods and the number of days in billing periods, discrepancies can emerge. We compared two 

approaches: 1) monthly utility usage is directly attributed to the month the reading was 

measured in; 2) monthly utility usage is adjusted via distributing the usage amount between 
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consecutive months based on the reading date and number of days in the billing period. To 

clarify, for the second approach, we allocated adjusted consumptions based on monthly 

readings and readings date proportionally across consecutive months. For example, if a meter 

reading was conducted on March 16 and the billing duration was 26 days, then the adjusted 

March consumption would contain 
  

  
 of the reading amount where the remainder, 

  

  
, would 

be attributed to the adjusted February consumption. The second half of March would come 

from the next billing period. Although both unadjusted and adjusted consumptions show 

seasonal effects (e.g., higher electricity consumption in summer months due to cooling), there 

are significant monthly differences in the two approaches where the first one does not adjust 

for billing lag and the second one does. 

Figures 1-3 show the variation of the average (adjusted?  How?) daily electricity, natural gas 

and water consumption by month for 2009-2011. As expected, summer months experience the 

most electricity consumption in Florida because of increased air conditioning. Conversely, the 

least natural gas consumption occurs in summer months because of decreased heating-related 

consumption. Monthly water consumption is relatively flat with a slight increase occurring in 

summer months.  To put monthly utility consumption values into context, in 2010 the average 

American house consumed 11,496 kWh (31.5kWh/day, 958kWh/month) and 980 therms of 

natural gas (2.7therms/day, 81.7therms/month) (EIA, 2012). Further, the average American 

house consumes 120 thousand gallons of water (including outdoor usage) annually (300gal/day, 

10,000gal/month) (America Water Works Association, 2012). For further context, RECS data 

suggest that the average Florida household consumes 15,000kWh/year6. 

Interestingly, billing lag and lack of adjustment thereof can result in substantial differences in 

transition months (Figures 1-4) where the corresponding preceding/succeeding months 

experience a change in temperature that influences utility consumption.  These transition 

months were May and September for electricity; March and November for natural gas; and 

March and June for water. Depending on the task at hand the aforementioned adjustment may 

                                                        
6 http://www.eia.gov/consumption/residential/data/2009/ 
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become critical. As such we have accounted for billing lag in our regression work that is 

explained in the following section. 
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Figure 2. 1. 5th, 25th, 50th, 75th and 95th percentile distribution of average daily electricity consumption by 

month (2009-2011). The first figure shows consumption unadjusted for billing period, the second one 
adjusted for billing period, the third one is the difference between the two. 
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Figure 2. 2. 5th, 25th, 50th, 75th and 95th percentile distribution of average daily natural gas consumption 

by month (2009-2011). The first figure shows consumption unadjusted for billing period, the second one 
adjusted for billing period, the third one is the difference between the two. This sample includes all 

houses that use natural gas (n=7,022). 
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Figure 2. 3. 5th, 25th, 50th, 75th and 95th percentile distribution of average daily water consumption by 
month (2009-2011). The first figure shows consumption unadjusted for billing period, the second one 

adjusted for billing period, the third one is the difference between the two. 
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Electricity and natural gas consumptions, in kWh and therm, respectively, were aggregated in 

btu terms to construct total site-delivered energy consumption7. Electricity component in 

energy consumption increases in summer months due to increased air conditioning (Figure 4). 

 

Figure 2. 4. 5th, 25th, 50th, 75th and 95th percentile distribution of percentage of electricity consumption in 
total energy consumption. 

Temperatures for the study period (2009-2001) were not uncharacteristic for the Gainesville 

region. Figure 5 shows the daily maximum and minimum for 2000-2012 as obtained from the 

U.S. National Oceanographic and Atmospheric Administration.  

                                                        
7 1 kWh = 3,412 btu; 1 therm = 100,000 btu 
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Figure 2. 5. Daily maximum and minimum temperatures between 2000 and 2012. 

2.3. Models 

The overarching objective of this study is to investigate how publically available data (i.e., 

property tax information and voter registration records) can be used to model residential utility 

usage using two regression models. The first models each individual month separately the 

second uses a yearly model with dummy variables for each month. For both approaches, 

stepwise regressions were run8. An additional regression was conducted for total energy that 

integrates electricity and natural gas use in btu terms. This technique is to study the 

explanatory power of the proposed variables on different months.  

This results of this exercise is helpful for utilities for two reasons: 1) Utilities can use our models 

to predict monthly changes in demand as its driven by changes in the structural and 

demographic characteristics in their service territory; 2) Predicting utility usage can be 

translated into energy-use intensity per squarefoot which can be used as a first-cut metric for 

energy-efficiency targeting in their service territory to meet their state-mandated demand-

reduction targets. 

                                                        
8 Stata created by StataCorp was used to run the regression models. 
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Months for different years were combined (i.e., January 2009, 2010 and 2011 were combined). 

In other words each observation in the regression models uses 36 months utility usage 

information on average covering 2009, 2010 and 2011. December data only included 2009 and 

2010 because billing data for January 2012 was not available to complete the month. 

2.3.1. Individual Monthly Regressions 
 

For each utility use (i.e., electricity (kWh/day), natural gas (millitherms/day), water 

(gallons/day), energy (btu/day), electricity only (kWh/day)) twelve separate stepwise 

regressions were run, one for each month, resulting in 60 regressions. Electricity only curve is 

for houses that do not use natural gas and use electricity for primary heating source. Average 

daily utility usage for each month was regressed against the physical and demographic 

characteristics as described in the previous section. Figure 6 shows that the R2 varies between 

0.32 and 0.39 for electricity; 0.25-0.32 for electricity for houses with no natural gas 

consumption; 0.06 and 0.20 for natural gas; 0.08 and 0.14 for water; and 0.33 and 0.42 for 

energy. Given this exercise involves incorporating demographic factors in utility usage, the 

resulting R2 values can be considered as relatively high. 

The statistical explanatory power of the Total Energy, Electricity and Natural Gas models are the 

highest during winter months and relatively flat during the rest of the year, perhaps because of 

increased heating during winter months. However, the Natural Gas model’s R2 is substantially 

lower than that of the Total Energy and Electricity models. On the contrary, Electricity Only 

model has the highest explanatory power during summer months, perhaps because of 

increased cooling. The Water model’s performance is relatively flat throughout the year. 

These fluctuating patterns may be tied to the influence of weather on residential utility use, e.g. 

summer (winter) months experience higher energy use because of increased cooling (heating). 
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Figure 2. 6. R2 by month and utility. Electricity only curve denotes houses that do not use any natural 
gas. 

 
Electricity, natural gas and energy consumption share a comparable theme on independent 

variables’ influence on utility usage (Tables 8-12). Most independent variables are statistically 

significant across different months. Some findings do not oppose common sense, e.g. higher 

property value and higher square footage implies more consumption. Heated area has a larger 

impact on all utility consumption than actual area. Further, heated area’s influence, which can 

be considered as conditioned area, rises substantially during summer months which can be tied 

to increased cooling loads. Houses with electric heating (Fuel dummy=1) consume more 

electricity than homes with natural gas heating. This effect is more significant in winter months. 

Seniors tend to consume less than teenagers on average. Republicans consume more electricity 

than Democrats during winter months and less during summer months. Older buildings and 

buildings with higher average age of occupants tend to have higher consumption. Similar 

regression coefficients were found for houses that do not consume any natural gas (Table 9). 
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Similar to electricity consumption, higher property values and square footage result in 

higher natural gas consumption where summer months experience less consumption than 

winter months. Older buildings lead and higher average age of occupants lead to higher 

consumption.  

From a statistics standpoint the coefficients’ magnitude and signs should be interpreted 

cautiously and not independently because of the uncertainty in independent variables and all of 

the other potential variables, e.g., number of children, efficiency of the HVAC unit, that were 

not included in the models. It should be underscored that the objective of this exercise was to 

demonstrate the statistical explanatory power of the publically available information in 

predicting utility usage and the coefficients are likely to change for similar models applied to 

other geographic regions. 
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Table 2. 8. Average daily electricity consumption (kWh/day) regressions by month for houses that use both natural gas and electricity. The values 
indicate the beta coefficients for each regression which are statistically significant at p≤0.10. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Property value ($1,000) 0.07 0.06 0.06 0.06 0.07 0.07 0.05 0.06 0.06 0.04 0.05 0.07 

Property tax amount ($1,000) 2.18 2.08 1.56 1.47 1.29 1.15 1.37 1.46 1.68 1.57 1.65 2.05 

Total property value ($1,000) -0.07 -0.06 -0.05 -0.04 -0.06 -0.06 -0.05 -0.05 -0.05 -0.03 -0.04 -0.07 

Actual area (1,000 sqft) 3.16 3.16 2.65 3.02 3.34 3.64 4.01 3.11 2.66 2.68 2.53 2.90 

Heated area (1,000 sqft) 5.89 4.29 3.50 3.94 6.80 9.10 9.57 9.57 7.69 4.56 4.05 6.24 

Age of the building 0.28 0.25 0.15 0.12 0.16 0.21 0.22 0.20 0.16 0.13 0.17 0.26 

# of bedrooms - - - - - 0.49 0.51 0.69 0.47 - - - 

# of bathrooms -0.85 - 0.34 0.96 0.77 0.74 1.30 0.95 0.74 0.90 0.61 -0.76 

# of stories -0.46 -0.45 -0.51 -0.62 -0.96 -1.14 -1.23 -1.01 -0.80 -0.55 -0.33 - 

Fuel dummy 2.36 1.90 0.95 0.42 0.43 - 0.44 0.48 0.37 0.45 1.15 2.13 

Natural gas acc. dummy -21.24 -17.74 -8.89 -4.36 -2.55 -1.36 -0.91 -1.19 -2.12 -4.06 -7.73 -18.09 

Avg. age of occupants - - -0.02 -0.05 -0.05 -0.04 -0.04 -0.06 -0.06 -0.04 - - 

Avg. year of occupancy 0.02 0.03 0.04 0.06 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.05 

# of teenagers 1.98 2.16 1.67 1.64 2.48 2.87 2.41 2.04 1.89 1.45 1.86 2.32 

# of seniors -0.94 -0.95 -0.87 -1.04 -1.68 -1.96 -1.87 -1.87 -1.53 -1.16 -1.17 -0.91 

# of occupants 2.85 2.50 2.53 3.63 3.97 4.05 4.20 4.69 4.30 3.40 2.21 2.55 

# of republicans 0.70 0.66 1.08 1.48 1.94 2.02 2.17 2.11 1.98 1.50 1.31 1.07 

# of democrats 0.88 0.53 0.27 - 0.56 0.69 0.59 0.67 0.55 - 0.41 1.17 

# of females - - - -0.26 - 0.42 0.46 - - - - - 

# of males -0.42 - - - - - - - - - - -0.47 

Intercept 12.48 9.91 5.26 2.91 3.36 3.15 1.02 2.52 3.48 2.87 2.41 8.33 

R2  0.37   0.34   0.32   0.32   0.33   0.35   0.34   0.33   0.32   0.34   0.37   0.37  

n 28,383 28,383 28,383 28,383 28,383 28,383 28,383 28,383 28,383 28,383 28,383 18,922 
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Table 2. 9. Average daily electricity consumption (kWh/day) regressions by month for houses that do not use natural gas. The values indicate the 
beta coefficients for each regression which are statistically significant at p≤0.10. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Property value ($1,000) 0.07 0.07 0.05 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.02 0.08 

Property tax amount ($1,000) 2.36 2.12 1.48 1.01 0.70 0.84 1.33 1.19 1.24 1.32 1.74 2.56 

Total property value ($1,000) -0.07 -0.05 -0.03 - - - - - - - - -0.08 

Actual area (1,000 sqft) - - - - - - - -1.90 -2.18 -1.29 - - 

Heated area (1,000 sqft) 11.25 7.95 5.53 4.98 7.79 10.86 10.89 12.35 10.35 6.22 4.73 11.50 

Age of the building 0.25 0.23 0.10 0.04 0.06 0.07 0.09 0.09 0.06 0.05 0.12 0.24 

# of bedrooms 1.84 1.55 1.02 1.00 1.55 2.18 1.97 2.04 1.57 0.98 0.86 1.69 

# of bathrooms -1.05 - - - - -0.99 - - - - 0.66 -1.48 

# of stories -2.79 -2.29 -1.23 -0.70 -1.33 -1.74 -1.75 -1.69 -1.43 -0.67 -0.72 -1.82 

Fuel dummy 5.59 4.16 2.11 1.01 1.10 1.26 1.40 1.26 1.06 1.17 2.12 5.31 

Natural gas account dummy - - - - - - - - - - - - 

Avg. age of occupants 0.12 0.07 - -0.04 -0.04 - - -0.05 -0.05 - - - 

Avg. year of occupancy - - 0.04 - - - - - - - 0.04 0.08 

# of teenagers - - - - - - - - - - - - 

# of seniors -2.16 -1.57 -1.23 -1.14 -1.87 -2.78 -2.52 -2.31 -1.83 -1.68 -1.19 - 

# of occupants - 1.65 2.36 3.44 4.03 3.40 3.31 4.24 4.08 2.71 2.21 2.46 

# of republicans 1.76 1.59 1.69 2.20 2.48 2.51 2.71 2.66 2.50 2.26 1.82 1.83 

# of democrats 2.69 1.88 1.37 1.12 1.67 1.79 1.70 1.80 1.60 1.25 1.55 3.24 

# of females 1.24 - - - - 0.86 1.02 0.87 0.58 - - - 

# of males - - - - - - - - - - - -0.96 

Intercept 3.25 2.39 3.56 4.22 4.75 5.73 4.45 5.16 6.10 4.68 1.24 -0.55 

R2  0.27   0.25   0.25   0.28   0.29   0.31   0.32   0.31   0.29   0.28   0.29   0.27  

n 7,314 7,314 7,314 7,314 7,314 7,314 7,314 7,314 7,314 7,314 7,314 4,876 
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Table 2. 10. Average daily natural gas consumption (millitherms/day) regressions by month. The values indicate the beta coefficients for each 
regression which are statistically significant at p≤0.10. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Property value ($1,000) 2.4 2.5 2.5 2.0 2.1 1.8 1.8 1.7 1.6 1.9 0.7 3.5 

Property tax ($1,000) -133.7 -77.3 -19.8 13.7 12.3 8.9 8.0 9.5 11.2 9.4 - -115.7 

Total property ($1,000) 1.9 - -1.0 -1.4 -1.5 -1.4 -1.4 -1.3 -1.2 -1.4 - 1.8 

Actual area (1,000 sqft) 117.2 154.0 49.4 17.2 22.5 27.6 21.9 19.1 15.5 30.1 57.4 - 

Heated area (1,000 sqft) 566.6 443.4 156.5 - -39.7 -39.0 -36.4 -34.1 -22.5 - 143.3 610.1 

Age of the building 23.6 19.3 7.9 - -1.1 -1.1 -0.9 -1.1 -1.0 1.4 7.3 28.7 

# of bedrooms - - - 13.7 17.1 10.2 8.9 12.5 10.7 8.1 - - 

# of bathrooms -55.4 - - 15.6 10.2 9.8 11.9 9.6 9.6 - - -100.0 

# of stories -163.3 -183.3 -77.5 -31.5 -12.6 - -6.7 - -8.2 -10.3 -46.8 -94.8 

Fuel dummy -122.1 -112.0 -28.9 -23.0 -21.1 -20.5 -17.3 -18.0 -20.7 -22.4 -33.0 - 

Natural gas account dummy - - - - - - - - - - - - 

Avg. age of occupants 11.0 10.9 6.1 1.9 - - -0.4 -0.6 - 1.6 5.9 10.0 

Avg. year of occupancy - - - - 0.6 0.4 0.5 0.6 0.5 0.7 1.4 3.1 

# of teenagers 294.8 255.8 126.2 65.0 43.3 31.0 28.6 28.2 42.8 69.1 155.5 308.9 

# of seniors - -44.1 -36.2 -34.3 -30.1 -25.4 -17.7 -19.5 -29.2 -31.0 -36.4 - 

# of occupants -120.5 -192.5 -49.0 - 59.4 55.2 62.1 50.6 41.4 - -96.1 -108.3 

# of republicans -38.9 -34.3 -18.5 - - - - - - - -19.4 -42.0 

# of democrats 62.4 38.5 28.3 11.5 6.4 7.4 6.8 5.6 5.8 14.0 19.0 87.9 

# of females -96.5 - -47.1 - -15.0 -13.6 -15.1 - - - - -127.2 

# of males -135.7 -34.9 -61.9 - -22.0 -22.4 -24.5 -9.2 -9.8 -11.1 -20.9 -165.2 

Intercept 186.3 221.9 200.4 264.6 236.4 216.5 217.8 208.9 218.7 202.9 91.8 -357.7 

R
2
 0.18 0.15 0.10 0.06 0.07 0.08 0.07 0.07 0.07 0.06 0.09 0.20 

n  21,066   21,066   21,066   21,066   21,066   21,066   21,066   21,066   21,066   21,066   21,066   14,044  
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Table 2. 11. Average daily energy consumption (btu/day) regressions by month. The values indicate the beta coefficients for each regression 
which are statistically significant at p≤0.10. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Property value ($1,000) 0.6 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.7 

Property tax ($1,000) -2.6 - 4.3 6.5 5.7 4.8 5.5 5.9 6.8 6.3 5.2 - 

Total property ($1,000) -0.2 -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.2 -0.2 -0.2 

Actual area (1,000 sqft) 10.1 14.9 9.7 11.9 13.2 14.7 15.6 12.3 10.5 10.8 10.2 - 

Heated area (1,000 sqft) 67.5 49.6 24.7 12.3 19.4 27.7 29.6 30.0 24.2 16.2 26.1 72.7 

Age of the building 2.6 2.2 1.1 0.4 0.5 0.6 0.7 0.6 0.5 0.5 1.1 3.0 

# of bedrooms -2.8 - - - 2.1 2.3 2.3 3.2 2.3 - - -3.5 

# of bathrooms -7.6 - - 4.2 2.6 2.8 4.9 3.5 2.8 2.7 - -9.7 

# of stories -11.6 -12.9 -6.4 -4.1 -4.1 -4.5 -4.7 -3.9 -3.3 -2.5 -3.8 -6.1 

Fuel dummy - - - - - - - - - - - 7.2 

Natural gas account dummy 144.9 127.2 60.3 30.6 25.7 26.1 25.7 24.8 23.4 28.0 51.6 121.1 

Avg. age of occupants 0.9 0.8 0.3 - -0.2 -0.2 -0.2 -0.2 -0.2 - 0.4 0.8 

Avg. year of occupancy - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 

# of teenagers 31.2 28.2 16.1 11.3 12.4 12.6 10.8 9.7 10.2 10.9 18.7 33.5 

# of seniors -4.3 -5.6 -5.3 -6.7 -8.1 -8.4 -7.8 -7.9 -7.2 -6.5 -6.1 -4.3 

# of occupants - - 6.4 11.4 16.4 16.7 17.3 19.3 17.7 10.6 - - 

# of republicans - - 2.3 5.4 7.0 7.3 7.7 7.6 7.1 5.5 3.4 - 

# of democrats 8.4 5.1 3.1 1.2 2.6 3.1 2.6 2.9 2.5 1.7 3.2 10.8 

# of females -8.1 -5.3 -4.9 - - 1.9 2.1 - - - - -10.6 

# of males -11.9 -7.9 -5.5 - - - - - - - - -14.6 

Intercept -91.2 -83.1 -30.2 -2.0 3.1 5.6 -0.9 4.1 6.8 -3.6 -37.1 -119.4 

R
2
 0.42 0.39 0.33 0.33 0.33 0.34 0.35 0.35 0.34 0.33 0.33 0.38 

n  28,383   28,383   28,383   28,383   28,383   28,383   28,383   28,383   28,383   28,383   28,383   18,922  
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Table 2. 12. Average daily water consumption (gallons/day) regressions by month. The values indicate the beta coefficients for each regression 
which are statistically significant at p≤0.10. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Property value ($1,000) 0.5 0.2 0.1 0.3 0.4 0.2 0.2 0.2 0.2 0.4 0.3 0.5 

Property tax ($1,000) 11.6 12.1 10.5 12.0 10.7 8.6 14.0 14.9 15.3 17.0 17.0 13.2 

Total property ($1,000) -0.4 -0.2 - - - - - - - - - -0.3 

Actual area (1,000 sqft) - - - - 11.8 - - -7.8 - - -7.8 -10.4 

Heated area (1,000 sqft) 16.9 19.7 25.6 22.8 23.5 33.7 22.3 27.9 25.1 24.0 32.4 31.1 

Age of the building 0.6 0.4 - -0.5 -0.6 -0.6 -0.3 - -0.5 -0.4 - 0.4 

# of bedrooms 10.3 8.1 8.4 12.5 12.1 12.5 12.5 11.2 13.7 15.3 11.5 11.1 

# of bathrooms 13.3 13.5 8.6 9.3 7.3 - 6.9 8.0 8.0 7.4 12.8 15.7 

# of stories -8.7 -9.5 -10.6 -19.9 -25.6 -21.2 -15.4 -16.8 -21.6 -26.4 -22.4 -15.7 

Fuel dummy -4.2 - - -4.3 -5.0 -4.2 -4.3 -5.5 - - - -4.5 

Natural gas account dummy 5.1 8.3 10.7 18.0 19.8 16.4 13.7 13.6 16.3 16.9 14.9 7.5 

Avg. age of occupants 0.2 0.2 0.4 0.7 0.9 0.8 0.6 0.7 0.6 0.7 0.7 0.5 

Avg. year of occupancy 0.3 - - 0.3 0.4 - - - 0.3 0.4 0.4 0.3 

# of teenagers 23.9 24.8 17.8 21.2 20.3 30.2 22.7 24.0 27.4 29.5 30.4 24.9 

# of seniors -11.8 -10.2 -7.0 -7.8 -9.8 -10.5 -8.6 -11.3 -8.2 - -6.2 -11.1 

# of occupants 16.1 20.1 15.1 6.0 - - 6.0 7.2 6.2 - - 9.0 

# of republicans - - 3.5 8.2 11.7 7.7 7.5 5.4 10.0 11.1 7.6 4.5 

# of democrats - - - - - - - - - - - - 

# of females 5.5 - 3.4 7.1 9.4 13.9 9.4 4.6 3.6 7.6 6.2 7.2 

# of males - - - - - 5.4 - - - - - - 

Intercept 6.5 19.4 21.2 31.3 31.3 47.9 29.4 25.3 22.7 13.4 2.1 4.8 

R
2
 0.08 0.08 0.10 0.12 0.12 0.09 0.09 0.09 0.13 0.14 0.14 0.12 

n  28,380   28,380   28,380   28,380   28,380   28,380   28,380   28,380   28,380   28,380   28,380   18,920  
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2.3.2. Regression for the Yearly Model with Dummy Variables for Months 

In this approach, a single yearly model (with dummy variables for months) was used to 

predict utility consumption. All independent variables used in the first regression 

approach described in 3.1. were used in this approach as well as two additional 

independent variables: historical average monthly temperature and rainfall, to capture 

the impact of month-to-month change in weather. 

As implied by the larger R2 values, this model has a larger explanatory power for 

electricity, natural gas and energy consumption (Table 13). This can be attributed to the 

addition of the temperature and rainfall variables. The beta coefficients are comparable 

to those from the individual monthly regressions in terms of magnitude and sign (Table 

13). Although greater R2s suggest better explanatory power for this approach, predicting 

individual months’ utility usage using this model can pose different error terms, i.e., the 

difference between predicted value and actual value, that are discussed in the next 

section. 
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Table 2. 13. Regression results for the yearly model. The values indicate the beta coefficients 
which are statistically significant at p≤0.10. 

 Electricity Natural 
gas 

Water Total 
Energy 

Electricity 
only 

Property value ($1,000) 0.06 1.99 0.3 0.4 0.05 

Property tax amount ($1,000) 1.62 -20.42 13.4 4.2 1.54 

Total property value ($1,000) -0.05 -0.61 -0.1 -0.2 -0.02 

Actual area (1,000 sqft) 3.07 47.95 - 11.6 -0.89 

Heated area (1,000 sqft) 6.22 126.86 24.7 32.2 9.04 

Age of the building 0.19 6.29 -0.1 1.1 0.11 

# of bedrooms 0.28 11.97 11.5 0.6 1.53 

# of bathrooms 0.46 -6.83 9.2 0.7 -0.31 

# of stories -0.69 -52.70 -17.8 -5.6 -1.51 

Fuel dummy 0.91 -38.06 -4.0 - 2.19 

Natural gas account dummy -7.22 - 13.3 55.5 - 

Avg. age of occupants -0.03 3.75 0.6 0.2 - 

Avg. year of occupancy 0.04 0.85 0.2 0.2 0.03 

# of teenagers 2.06 116.16 24.7 16.7 0.81 

# of seniors -1.37 -30.05 -8.6 -6.6 -1.82 

# of occupants 3.32 - 7.6 9.6 2.75 

# of republicans 1.54 -10.64 6.6 4.6 2.10 

# of democrats 0.54 23.29 - 3.8 1.66 

# of females 0.10 -35.79 6.1 -1.4 - 

# of males - -51.63 - -2.7 - 

Historical monthly avg. temperature  0.32 -89.10 2.8 -5.6 -0.41 

Historical monthly avg. rainfall -0.57 47.78 -7.3 9.1 1.80 

Feb dummy -3.34 51.25 -12.4 -9.1 -3.65 

Mar dummy -10.05 -573.26 -2.8 -80.1 -14.27 

Apr dummy -8.86 -520.60 - -61.9 -10.05 

May dummy - - - - - 

Jun dummy 6.84 - - - - 

Jul dummy 8.45 122.11 -24.1 19.9 3.64 

Aug dummy 6.47 19.72 -25.6 7.5 1.81 

Sep dummy - -135.70 -18.5 -12.6 -1.51 

Oct dummy -8.14 -482.89 5.2 -56.8 -9.01 

Nov dummy -8.70 -681.94 2.5 -70.7 -10.38 

Dec dummy -1.79 -162.32 - -13.3 -1.24 

Intercept -17.33 7323.89 -167.6 414.2 33.49 

R2 0.40 0.50 0.11 0.42 0.34 

n  331,135   85,330   331,135   245,770   331,100  
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2.3.3. Comparison between the Two Approaches 

The second model’s residuals, i.e., the difference between the predicted value and the 

actual value, for individual months were used to compute R2 values for individual 

months with the following formula: 

 

     
     

     
 

Where: 

      ∑                                
 

 

 

 

      ∑                                      
 

 

 

To clarify the sum of squares were computed for each month, i.e., each model, was 

computed separately and the mean of actual values is calculated for the corresponding 

month. 

As expected, the predictive power of the second model varies from month to month 

(Figures 7-11). Some months are explained better by the first approach (monthly model) 

than the second (Figures 7-11). The yearly model performs better for Total Energy, 

Electricity Only and Electricity for most of the months. However, the yearly model 

outperforms the monthly substantially for Natural Gas, probably given its significant 

dependence on outside temperature. No noteworthy differences were observed 

between the two approaches for Water.  

Depending on the analyst’s objective, she could be better off using the first approach, 

i.e., modeling individual months separately, if the goal is to model specific months. For a 
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less specific purpose, a yearly model with dummy variables for months would be more 

appropriate.  

 

Figure 2. 7. R2 values of monthly versus yearly model for Total Energy. 

 
 

 

Figure 2. 8. R2 values of monthly versus yearly model for Electricity. 
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Figure 2. 9. R2 values of monthly versus yearly model for Electricity Only. 

 
 

 

Figure 2. 10. R2 values of monthly versus yearly model for Natural Gas. 
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Figure 2. 11. R2 values of monthly versus yearly model for Water. 

2.4. Conclusion 

In our work we have shown that publically available data can be used to model 

residential utility usage in the absence of highly private utility data. We have 

demonstrated that accounting for billing lag when attributing usage to individual 

months is of critical importance, particularly for statistical modeling of monthly usage. 

The accuracy of such models can be diminished if billing lag is not addressed as it can 

cause significant deviations.   

Predicting utility usage by month can allow utilities plan for changes in demand with 

respect to changes in demographic and structural characteristics in their service 

territories. This exercise is helpful for planning for new power generation capacity as 

well as peak demand. Further, predicting monthly utility usage can be translated into 

energy-use intensity per squarefoot which can be used as a first-cut metric for energy-

efficiency planning and targeting. 

We acknowledge that our approach has limitations whose extent remains to be 

explored. The demographic dataset has information on only registered voters and no 

information at all on children who are younger than 18. We understand that registered 
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voter information may not be full representative of occupants’ profile and was used as a 

proxy. Further, there may incorrect information in the publically available data as 

collected by property tax assessors and it cannot be known a priori. Moreover it is 

unknown how accurately our models based on the Gainesville sample can predict utility 

usage for houses outside that are outside our sample, e.g., other houses in Gainesville, 

Florida or other regions. Collection of further data in other locations can shed light on 

the extent of our models’ accuracy. We understand that model parameters and 

accurucies may be different if applied to other geographic regions. 

Comparing these results to Department of Energy’s Residential Energy Consumption 

Survey (RECS), which harbors aggregate residential energy data for different regions in 

the US., can generate further insight on our accuracy as well as provide suggestions on 

how better RECS can be designed and collected. This prospective sample/out-of-sample 

analysis can prove useful in understanding specific limitations of our models and the 

independent variables of interest. Future work should also conduct a power analysis to 

understand the necessary sample size that can produce statistically significant results. 

Even though energy-use intensity per squarefoot can be used as a fist-cut metric for EE 

planning and targeting, it provides limited insight on what type of interventions should 

be considered for a given house or what kind of utility savings potential a house has. We 

address this in the following chapters. 

The regression models built have significant explanatory power in illustrating the utility 

usage that can be used by policy makers and third-party developers and operators 

engaged in energy efficiency and real estate businesses for strategic planning. Aggregate 

data like RECS does not allow for profiling individual houses and using statistical models 

based on publically available data can establish the first step to examine the geographic 

variations in utility usage for large regions. This will pave a path to study what physical 

and demographic factors drive usage and how they should be treated to promote 
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energy efficiency deployment. Our next study explores this problem to deduce energy-

efficiency insight from using usage and publically available information.    
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2.6. APPENDIX  

Table A1. Definitions of physical property variables. 

Variable Definition 

Land value ($) The Land Value is the assessed value of the land without an agricultural 
classification 

Building value 
($) 

The Building Value is the value of the major structures on the property. 

Misc. value ($) The Miscallaneous Value is the value of the miscellaneous improvements on 
the property. 

Property tax 
amount ($) 

The Property Tax Amount is the property tax liability amount due to be paid. 
It is computed by multiplying the Taxable Value of the property by the 
Millage Rates of each of the applicable Taxing Authorities. 

Property value 
($) 

Building value plus misc. value 

Total property 
value($) 

Property value plus land value 

Actual area 
(sqft) 

Actual Area is the number of square feet for any area or subarea of a 
building structure. Usually the Base or main structure is considered heated 
and certain types of subareas may be heated in full or in part. 

Heated area 
(sqft) 

Heated Area is the number of square feet for all buildings on the property 
that is considered to be enclosed and subject to heating or cooling. 

Age of the 
building 

2012 minus the year that a building on the property was originally 
constructed. The year 1900 is used when no year of construction is on file. 

# of bedrooms The number of bedrooms of the existing structure on the property. 

# of bathrooms The number of bathrooms of the existing structure on the property. 

# of stories The number of stories of the existing structure on the property. Stories may 
be defined as full or half story. 

Fuel dummy Binary variable for the fuel used for heating (1= electric heating, 0=natural 
gas heating) 

Natural gas 
account dummy 

Binary variable for whether the house receives natural gas service (1=yes, 
0=no) 
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Table A2. Definitions of demographic characteristic variables 

Variable Definition 

Average age of 
occupants 

The average age of the occupants in the building 

Average years 
of occupancy 

Sum of years of occupancy divided by the number of occupants. Occupancy is 
calculated by subtracting the voter registration date from 2012. 

# of teenagers Teenage is the number of occupants who are younger than 20 and older than 
17 

# of adults Adult is the number of occupants who are older than 19 and younger than 60 

# of seniors Senior is the number of occupants who are older than 59 

# of 
republicans 

Republican is the number of occupants registered as republican 

# of democrats Democrat is the number of occupants registered as democrat 

# of males Male is the number of male occupants 

# of females The number of female occupants 
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3. Statistical Modeling of Residential Energy-Efficiency 
Parameters  

Abstract 

In this study we model and examine the energy efficiency profile of individual single-

family houses in our sample (n=7,091).  For this we use Princeton Scorekeeping Method 

(PRISM) which processes historical weather data and monthly utility usage data as 

inputs using an iterative regression approach to compute three energy efficiency 

parameters: 1) baseload consumption for end-uses which do not change with weather, 

e.g., lighting, refrigerator, water heater; 2) heating/cooling slope which is a function of 

the building shell insulation and the efficiency of the heating/cooling unit; 3) reference 

temperature which is the outside temperature at which the house turns on 

heating/cooling. These parameters make up the normalized annual consumption (NAC). 

We then proceed to regress these parameters against the publically available data to 

study the extent we can extract statistical insight for residential energy efficiency 

profiling using publically available information.  

3.1. Introduction 

This study explores the explanatory power of publically available data on house energy-

efficiency parameters as computed by PRISM (Princeton Scorekeeping Method). 

We use PRISM to determine the efficiency and consumption profile for each single-

family house (n=7,091). PRISM uses daily weather data and monthly utility 

consumption, (e.g., electricity, natural gas and heating oil) as inputs and estimates 

baseload/appliance consumption, ambient temperature (thermostat setting), and the 

thermal integrity/efficiency of the house structure. These parameters constitute a 

weather-adjusted normalized annual consumption (NAC) as computed by PRISM and is 

explained in the next section. The next section gives an overview on what underlies 

PRISM and several case studies. 
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Processing the datasets used in Chapter 2, statistical models are developed to 

determine the relationships between the structural and demographic house 

characteristics and the PRISM output parameters on house baseload consumption, 

thermostat setting, and thermal integrity for both heating and cooling models. 

Disaggregating utility-usage information into three simple parameters as computed by 

PRISM has distinct advantages in analyzing a utility customer base and its potential 

energy-efficiency distribution by consumer, i.e., savings potential by energy-efficiency 

measure across a service territory. These three parameters shed insight on both 

behavioral and engineering aspects, (e.g., thermostat setting, structural aspects and 

thermal integrity) of residential buildings. Further, separating heating/cooling-related 

consumption and baseload usage is insightful in what type of energy-efficiency 

interventions (e.g., insulation or replacing appliances), can be viable for specific users. 

Additionally, calculating weather-adjusted normalized annual consumption (NAC) can 

help establish benchmarks and pinpoint outliers that may be of further interest in 

energy-efficiency outreach as executed by electric utilities. 

Being able to use publically available data and accurately predict structure thermal 

integrity, baseload consumption and thermostat setting is valuable because every 

structure has different physical and demographic characteristics and only effective 

diagnostics of structural and behavioral characteristics of a house can lead to 

formulation of an intelligent intervention. This is typically executed through a home 

audit performed by a home-improvement professional. Some houses may need to 

replace their appliances whereas some may need a building-shell insulation. Some may 

need a smart thermostat that can regulate the thermostat setting over different times 

of day. For some houses it may be not an energy-efficiency issue but a comfort issue, 

i.e., not being able to economically afford to set the indoor temperature at a 

comfortable level. An intervention in such case is a social welfare issue than a purely 

economic one. Only disaggregating utility usage into different end-uses can facilitate 

diagnosing residential energy issues. Using statistical models based on publically 
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available data on individual houses allows this diagnostic exercise to scale up for large 

regions which provides critical input for utilities and policy-makers to develop 

analytically-driven energy-efficiency targeting strategies. 

It is crucial to underscore the importance of data availability and prioritize collection of 

certain data if resources are available. Having studied Residential Energy Consumption 

Survey (RECS), Carlson et al. (2013) emphasize that there can be significant differences 

between average residential electricity consumption and actual residential 

consumption. They further assert that making decisions based on RECS average data can 

be questionable as the data tend to overestimate the number of contributing appliances 

in a house. 

Ndiaye and Gabriel (2011) conducted a principal component analysis (PCA) using 59 

predictors to model electricity usage using a sample gathering energy audit data of 62 

houses in Ontario, Canada. Their sample included data from phone surveys, home 

energy audits and smart meter readings. The PCA reduced the number of predictors to 9 

which included: 1) the number of occupants in the house; 2) house status (owned vs. 

rented); 3) average annual number of weeks of vacation taken away from the house by 

the family; 4) type of fuel used in the pool heater; 5) type of fuel used in the space 

heating system; 6) type of fuel used in the domestic hot water system; 7) presence or 

not of an air conditioning system; 8) type of air conditioning system and 9) number of 

air changes per hour at 50Pa measured via a blower door test. The resulting R2 was 79%. 

Kavousian et al. (2013) use 10-minute interval smart meter data over the course of 238 

days in 2010 for 1,628 houses located in the U.S. to determine the demographic and 

structural house variables to model electricity consumption. The smart meter data were 

supplemented by a 114-question survey. The major categories of predictors were: 1) 

weather and location; 2) physical characteristics of the building; 3) appliance and 

building stock; 4) occupancy and occupants’ behavior towards energy consumption. The 

models’ R2 varied between 43% and 68%.  
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Benchmarking studies are typically encountered in the literature that rely solely on 

metrics like energy-use intensity (kWh/ft2) and do not attempt to disaggregate different 

end-uses. Chun (2011) summarizes the advantages and disadvantages into different 

techniques encountered in the literature (i.e., simple normalization, ordinary least 

squares, stochastic frontier analysis and data envelopment analysis). 

Kavousian and Rajagopal (2013) propose a stochastic energy-efficiency frontier method 

(SEEF)  that they claim is superior to other benchmarking methods as they treat energy 

consumption stochastically. SEEF uses an algorithm to determine the functional form of 

the frontier, identify the probability distribution of efficiency score of each building 

using measured data, and rank building based on their energy-efficiency (Kavousian and 

Rajagopal, 2013). They use smart meter data for 307 residential buildings in the U.S, 

collected between June and September 2010, to illustrate their work. 

Brecha et al (2011) used a 1,134-house sample in Yellow Springs, OH that consisted of 

utility usage information for 2006-2008 and the structural characteristics as given in 

property tax records. They also conducted “light” house audits in the houses and 

collected information such as window and wall sizes, R-values for wall, slab/foundation, 

window and ceiling insulation, and efficiency for HVAC equipment. While such 

information is highly insightful, it is impractical to collect at a large scale since an audit 

requires significant time and resources to complete. They broke utility usage into 

heating/cooling-related consumption and baseload. Analyzing the audit data was useful 

in estimating potential savings for different efficiency interventions., e.g., sealing leaks 

or insulating the attic. However, an attempt to establish statistical relationships 

between such estimates, utility usage information and property tax information was 

absent. Our study targets exactly these missing pieces in filling the hiatus between 

public records and energy efficiency profiling to overcome data availability issues.  

The motivation behind this study is twofold: 1) only load disaggregation can allow for 

conducting proper energy-efficiency diagnostics – two houses with the same aggregate 
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utility usage may have different load profiles and different energy-efficiency 

intervention potential, which can be behavioral or engineering-based, and only 

separating the end-uses allows for this diagnostics; 2) load disaggregation requires 

analytical rigor and access to highly private utility usage data; predicting disaggregated 

loads using only publically available information on structural and demographic house 

characteristics helps overcome this issue.  

3.2. PRISM 

PRISM, developed by the Center for Energy and Environmental Studies at Princeton 

University in 1978, uses daily temperature data from which heating and cooling degree-

days are calculated, and monthly utility meter readings for utility consumption as inputs 

to determine the weather-adjusted index for annual consumption which is called 

Normalized Annual Consumption (NAC). In essence, NAC is the annual utility 

consumption for a given year with average weather. PRISM is typically used by 

researchers and energy-efficiency program managers to compute the effects of energy-

efficiency practices across houses and define ways to implement house-retrofit 

measures more cost effectively (Fels et al., 1995). 

PRISM has a variety applications and is widely used for separating utility usage, e.g., 

electricity, natural gas or heating oil, into disaggregated end-uses: baseload usage, 

heating/cooling slope and thermostat setting. PRISM has been used specific applications 

such as tracking retrofit savings (Mills et al., 1987) or scorekeeping for electricity 

conversation programs (Dutt and Fels, 1989; Gregory, 1987; Hirst, 1986; Rodberg, 1986). 

Fels and Reynolds (1992) used PRISM for analyzing New York State Energy Research and 

Development Authority’s (NYSERDA) multifamily conservation program. A similar study 

was executed by Goldman and Ritschard (1986) for San Francisco Housing Authority to 

assess energy conservation in public housing. Oak Ridge National Laboratory used 

PRISM to evaluate national weatherization efforts (Brown et al., 1993). PRISM is not 
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only used for residential buildings or large samples – Haberl et al. (1989) used PRISM to 

conduct a campus-wide energy performance analysis for Princeton University.    

In our study we use monthly natural gas usage data as input for the PRISM heating 

model to compute NACnatural gas, and monthly electricity usage data for the PRISM cooling 

model to compute NACelectricity. 

NAC is estimated using a three-parameter model that is a function of thermal integrity 

of the building (Heating/Cooling Slope – HS/CS), appliance-level baseload consumption 

(BL), and the interior-temperature setting (Reference Temperature – RT). Baseload 

natural gas consumption is derived from the heating model and is denoted as BLnatural gas. 

Similarly, baseload electricity consumption is derived from the cooling model and is 

denoted as BLelectricity. Heating slope comes from the heating model as denoted as 

HSnatural gas whereas cooling slope comes from the cooling model and is denoted as 

CSelectricity. RTnatural gas and RTelectricity come from the heating and cooling models, 

respectively. 

Generally, a house’s heating/cooling system is operated when the outdoor temperature 

(Tout) goes below/above a certain level (Reference Temperature, RT), and for each 

incremental degree change in temperature a constant amount of fuel (electricity, fuel 

oil or natural gas) (the heating/cooling slope (HS/CS) is consumed (Fels, 1986). Hence, 

the fuel consumed is linearly proportional to (RT – Tout) and the constant HS/CS 

represents the house’s effective heat-loss (or gain) rate. Further the house may use a 

constant amount of fuel per day (the base level BL) independent of Tout. This is treated 

as the baseload of the building and is attributed to appliance-level consumption. Thus, 

PRISM defines the normalized annual consumption for electricity, NACelectricity, as: 

NACelectricity = BLelectricity + CSelectricity × CDD(RTelectricity) + ε 

Where CDD(RTelectricity) is the number of cooling degree days for a given RTelectricity in a 

given year. 
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Similarly, normalized annual consumption for natural gas, NACnatural gas, is defined as: 

NACnatural gas = BLnatural gas + CSnatural gas × HDD(RTnatural gas)+ ε 

Where HDD(RTnatural gas) is the number of heating degree days for a given RTnatural gas in a 

given year. 

The derivation of this equation allows the interpretation of the three parameters: The 

reference temperature RT, which varies from building to building, is likely to be affected 

by the indoor temperature Tin, which is typically set by a thermostat, and intrinsic gains 

(e.g., heat produced by appliances and occupants, and the sun). The heat loss (and gain) 

rate HSnatural gas/CS electricity is governed by conductive and infiltration heat losses/gains as 

well as the furnace efficiency (Fels, 1986). The base level consumption BL is determined 

by the amount of fuel consumed by appliances. ε is the random error term that cannot 

be explained by the regression equation that is solved by ordinary least-squares linear 

regression technique. Using an iterative approach based on Newton’s method 

(Goldberg, 1982), PRISM solves for the three parameters that best explain changes in 

fuel consumption.  

3.3. Data 

The data set used in the previous section (Chapter 2) was also used in this study. 

However, only single-family houses that use both natural gas and electricity were used 

(n=7,091). These houses use natural gas as the primary heating source, and electricity 

for cooling and other appliance-level end-uses. Therefore the heating model uses 

natural gas usage and the cooling model uses electricity usage. 7,091-house monthly 

utility usage data for 2009-2011 used in Chapter 2 was processed by PRISM. The output 

baseload consumption for natural gas can be attributed to end-uses like cooking and 

possibly clothes drying and water heaters, whereas electricity baseload consists mostly 

of appliance-level consumption (e.g., lighting, refrigerator, TV). 
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Because of missing or inconsistent utility entries in the original dataset of 7,091 houses 

PRISM ran successfully only on 5,243 houses. Inconsistent readings can be due to 

change in occupants or retrofit activities that were not accounted for in the sample. 

The percentile values of the independent variables of the physical and demographic 

characteristics in the final sample (n=5,243) are given in Tables 1 and 2.  The median 

house had $105K in building value, $30K in land value, $1.8K in miscellaneous value and 

paid $1.8K of property tax. Further, the median house is single story, has 3 bedrooms, 2 

bathrooms, is 33 years old and has an actual area of 2,200 sqft only 1,600 sqft of which 

is heated. 

For the demographic variables, the median values for number of occupants, seniors, 

adults and teenagers, are 2, 1, 1 and 0, respectively9. Additionally, the median of the 

average age of occupants is 51.8 whereas the median average years of occupancy is 16. 

Moreover, The median number of males, females, democrats and republicans are 1, 1, 

1, and 0, respectively.  

Table 3. 1. Percentiles of structural house characteristics 

 Percentiles 

 5th 25th 50th 75th 95th 

Land value ($1000s) 13.0 25.0 30.0 35.0 60.0 
Building value ($1000s) 53.6 82.0 105.0 138.6 218.3 
Misc. value ($1000s) 0.2 0.9 1.8 3.6 11.6 
Tax amount ($1000s) 0.5 1.0 1.8 2.7 4.8 
Actual area (1000sqft) 1.2 1.7 2.2 2.7 3.8 
Heated area (1000sqft) 1.0 1.3 1.6 2.1 2.9 
Age of the building 11 23 33 37 43 
# of bedrooms 2 3 3 3 4 
# of bathrooms 1 2 2 2 3 
# of stories 1 1 1 1 2 

                                                        
9 Teenage is the number of occupants who are younger than 20 and older than 17. Adult is the number of 
occupants who are older than 19 and younger than 60. Senior is the number of occupants who are older 
than 59. 
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Table 3. 2. Percentiles of demographic house characteristics 

 Percentiles 

 5th 25th 50th 75th 95th 

Avg. age of occup. 30 41 52 64 82 
Avg. years of occup. 4 10 16 25 41 
Total # of occupants 1 1 2 2 4 
# of teenagers 0 0 0 0 0 
# of adults 0 0 1 2 3 
# of seniors 0 0 1 1 2 
# of Republicans 0 0 0 1 2 
# of Democrats 0 0 1 2 3 
# of males 0 0 1 1 2 
# of females 0 1 1 1 2 

Correlations between structural and demographic characteristics were studied primarily 

to verify quality of the data at hand. 

Structural house characteristics that pertain to the size (e.g., square footage and 

number of rooms) and value (e.g., building value, property tax amount) of the building 

are positively correlated between each other (Table 3).  Age of the building is negatively 

correlated with these characteristics. 

Adults and seniors tend not to live together (ρ=-0.56). The occupants in the sample are 

mostly adults and seniors because we have no data on children as extracted from voter 

registration records. Ostensibly, seniors are than older adults, thus the number of adults 

in a house drives the average occupant age down (ρ= -0.70) whereas the number of 

seniors increases it (ρ=0.68) (Table 3). Further, number of seniors is positively correlated 

with higher number of years of occupancy (ρ=0.44).  

Democrats and Republicans tend to live separately (ρ=-0.47). 
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Table 3. 3. Correlations between structural and demographic house characteristics 

 

La
n

d
 v

al
u

e
 

B
u

ild
in

g 
va

lu
e

 

M
is

c.
 v

al
u

e
 

Ta
x 

am
o

u
n

t 

A
ct

u
al

 a
re

a 

H
e

at
e

d
 a

re
a 

A
ge

 o
f 

th
e

 

b
u

ild
in

g 

# 
o

f 
b

e
d

ro
o

m
s 

# 
o

f 
b

at
h

ro
o

m
s 

# 
o

f 
st

o
ri

e
s 

A
vg

. a
ge

 o
f 

o
cc

u
p

an
ts

 

A
vg

. y
e

ar
s 

o
f 

o
cc

u
p

an
cy

 

To
ta

l #
 o

f 
o

cc
u

p
an

ts
 

# 
o

f 
te

e
n

ag
e

rs
 

# 
o

f 
ad

u
lt

s 

# 
o

f 
se

n
io

rs
 

# 
o

f 
R

e
p

u
b

lic
an

s 

# 
o

f 
D

e
m

o
cr

at
s 

# 
o

f 
m

al
e

s 

# 
o

f 
fe

m
al

e
s 

Land value ($1000s) 1.00 
                   

Bldg value ($1000s) 0.57 1.00 
                  

Misc. value ($1000s) 0.38 0.56 1.00 
                 

Tax amount ($1000s) 0.56 0.86 0.53 1.00 
                

Actual area (1000sqft) 0.54 0.91 0.58 0.78 1.00 
               

Heated area (1000sqft) 0.54 0.89 0.59 0.76 0.95 1.00 
              

Age of the building 0.00 -0.27 0.00 -0.33 -0.13 -0.08 1.00 
             

# of bedrooms 0.28 0.53 0.36 0.43 0.60 0.62 -0.03 1.00 
            

# of bathrooms 0.40 0.70 0.46 0.61 0.71 0.71 -0.19 0.51 1.00 
           

# of stories 0.21 0.31 0.18 0.27 0.33 0.35 0.05 0.22 0.28 1.00 
          

Avg. age of occupants 0.03 0.07 0.06 -0.11 0.11 0.11 0.10 0.05 0.05 0.01 1.00 
         

Avg. years of occupancy 0.04 0.06 0.06 -0.13 0.12 0.12 0.21 0.05 0.05 0.05 0.62 1.00 
        

Total # of occupants 0.03 0.12 0.10 0.07 0.14 0.16 0.03 0.17 0.09 0.04 -0.28 -0.17 1.00 
       

# of teenagers 0.01 0.02 0.01 0.02 0.02 0.02 0.00 0.04 0.00 0.01 -0.14 -0.10 0.17 1.00 
      

# of adults -0.02 0.00 0.02 0.09 0.00 0.00 -0.05 0.05 0.01 0.01 -0.70 -0.44 0.72 0.08 1.00 
     

# of seniors 0.06 0.14 0.10 -0.04 0.18 0.19 0.11 0.13 0.10 0.03 0.68 0.44 0.17 -0.07 -0.56 1.00 
    

# of Republicans 0.07 0.12 0.10 0.11 0.13 0.13 -0.05 0.11 0.13 0.04 -0.09 -0.08 0.29 0.05 0.23 0.02 1.00 
   

# of Democrats -0.03 0.00 0.02 -0.05 0.03 0.04 0.11 0.07 -0.02 0.01 -0.04 0.07 0.52 0.06 0.29 0.20 -0.47 1.00 
  

# of males 0.08 0.13 0.10 0.11 0.15 0.16 0.04 0.14 0.11 0.07 -0.24 -0.14 0.69 0.10 0.51 0.10 0.24 0.29 1.00 
 

# of females -0.02 0.04 0.04 -0.01 0.05 0.07 0.00 0.10 0.03 0.00 -0.12 -0.06 0.65 0.13 0.44 0.15 0.16 0.41 -0.05 1.00 
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3.4. PRISM Simulations 

As mentioned in the previous section, PRISM ran successfully on 5,243 houses of 7,091, 

and only 3,440 of those houses had good fits (R2>0.70) for both heating and cooling 

models. Although, PRISM suggests using R2>0.70 as a good-fit benchmark, all 

simulations (n=5,243) were kept for further examination. Monthly natural gas and 

electricity usage values were used for heating and cooling models, respectively. The 

percentile values of PRISM output parameters (i.e., reference temperature (RT), 

baseload consumption (BL) and heating/cooling slope (HS/CS) (cooling slope for 

electricity, heating slope for natural gas usage), normalized annual consumption (NAC), 

and the associated standard errors) are given in Tables 4 and 5 (n=5,243). 

Table 3. 4. Percentiles of PRISM parameters.  

 Percentiles 

 5th 25th 50th 75th 95th 

R2
natural gas 0.46 0.82 0.88 0.91 0.93 

R2
electricity 0.23 0.65 0.82 0.90 0.95 

RTnatural gas(°C) 11.00 13.00 17.56 19.00 23.63 
RTelectricity(°C) 15.60 19.00 20.92 22.89 25.63 
BLnatural gas (therm/day) 0.12 0.23 0.34 0.47 0.71 
BLelectricity (kWh/day) 7.55 12.62 17.61 24.70 40.69 
HSnatural gas (therm/degree-day) 0.03 0.21 0.33 0.51 0.93 
CSelectricity (kWh/degree-day) 1.42 2.50 3.46 4.74 7.80 
NACnatural gas (therm/year) 115 206 284 379 567 
NACelectricity (kWh/year) 4,399 7,380 10,040 13,336 20,176 
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Table 3. 5.Percentiles of PRISM parameters’ variances 

 Percentiles 

 5th 25th 50th 75th 95th 

RTnatural gas Var 0.79 1.37 2.04 3.31 21.23 
RTelectricity Var 0.50 1.17 2.43 5.81 28.09 
BLnatural gas Var 0.001 0.002 0.004 0.009 0.028 
BLelectricity Var 0.35 1.16 2.60 6.06 22.71 
HSnatural gas Var 0.0001 0.0015 0.0046 0.0139 0.0640 
CSelectricity Var 0.07 0.22 0.54 1.57 13.38 
NACnatural gas Var 13,119 42,319 80,906 143,603 321,881 
NACelectricity Var 17,264 49,364 100,724 222,458 693,354 

The median RTelectricity is computed as 20.9°C and RTnatural gas as 17.6°C for heating. The 

median value for BLelectricity is 17.6kWh/day and 0.34therm/day for BLnatural gas. Further, 

median CSelectricity and HSnatural gas are 3.46kWh/degree-day and 0.33/therms/degree-day, 

respectively.  The median NACnatural gas is 284therms/year and NACelectricity is 

10,040Wh/year (Table 4). 

The percentiles of PRISM parameters were investigated to understand how 

disaggregated end-uses vary from house to house. Additionally, the next section 

(Chapter 4) uses median PRISM values for a benchmarking exercise to examine savings 

potential by end-use and house. 

Table 6 shows the correlations between the PRISM output parameters and the 

associated variances. A negative correlation between HSnatural gas and RTnatural gas (ρ=-0.48) 

suggest that houses with less thermal integrity (high HSnatural gas) tend to decrease their 

thermostat settings for heating to conserve energy.  

Output parameters that directly constitute NAC (i.e., BL, RT and CS/HS) are positively 

correlated with NAC for both natural gas and electricity. Also, the output parameters are 

positively correlated with their individual variances (Table 6) (i.e., the larger the 

parameter the larger the associated uncertainty). This verifies that PRISM produced 

plausible output parameters. 
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Table 3. 6. Correlations between PRISM output parameters and the associated variances 
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RTnatural gas 1.00 
               

RTelectricity 0.14 1.00 
              

BLnatural gas -0.09 -0.18 1.00 
             

BLelectricity 0.05 0.03 0.28 1.00 
            

HSnatural gas -0.48 0.00 0.18 0.18 1.00 
           

CSelectricity 0.04 0.21 0.01 0.09 0.01 1.00 
          

NACnatural gas 0.15 -0.04 0.58 0.27 0.31 0.02 1.00 
         

NACelectricity -0.05 -0.23 0.37 0.91 0.24 0.04 0.35 1.00 
        

RTnatural gas Var 0.21 0.04 0.00 0.02 -0.06 0.04 -0.05 -0.01 1.00 
       

RTelectricity Var 0.04 -0.23 -0.02 -0.01 -0.02 -0.01 -0.02 -0.04 0.00 1.00 
      

BLnatural gas Var 0.05 0.01 0.18 0.04 0.00 0.00 0.17 0.03 0.13 0.00 1.00 
     

BLelectricity Var 0.02 -0.13 0.00 0.06 0.01 -0.01 0.03 0.02 0.00 0.45 0.00 1.00 
    

HSnatural gas Var -0.15 0.01 0.12 0.11 0.72 0.01 0.07 0.09 -0.01 0.00 0.00 0.00 1.00 
   

CSelectricity Var 0.02 0.13 -0.01 0.08 0.00 0.66 -0.02 0.03 0.01 0.00 0.00 0.00 0.00 1.00 
  

NACnatural gas Var 0.15 -0.01 0.52 0.26 0.27 0.03 0.89 0.32 0.02 -0.01 0.44 0.02 0.08 -0.01 1.00 
 

NACelectricity Var 0.05 0.03 0.13 0.57 0.25 0.12 0.13 0.54 0.02 0.06 0.00 0.15 0.28 0.11 0.15 1.00 
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Table 7 shows the correlations between PRISM parameters and the structural house 

characteristics.  House size is positively correlated with BLnatural gas and BLelecricity. This may 

be because larger houses tend to have more appliances. House size is also positively 

correlated with HSnatural gas and CSelectricity, which are a function of the surface area of the 

building.  Further, larger houses also are positively correlated with larger NACelectricity and 

NACnatural gas (Table 7). These correlations confirm that PRISM generated plausible output 

parameters. 

No strong correlations were found between PRISM parameters and demographic house 

characteristics (Table 8). 
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Table 3. 7. Correlations between PRISM output parameters and structural house characteristics. 
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RTnatural gas 1.00 
                 

RTelectricity 0.14 1.00 
                

BLnatural gas -0.09 -0.18 1.00 
               

BLelectricity 0.05 0.03 0.28 1.00 
              

HSnatural gas -0.48 0.00 0.18 0.18 1.00 
             

CSelectricity 0.04 0.21 0.01 0.09 0.01 1.00 
            

NACnatural gas 0.15 -0.04 0.58 0.27 0.31 0.02 1.00 
           

NACelectricity -0.05 -0.23 0.37 0.91 0.24 0.04 0.35 1.00 
          

Land value ($1000s)  -0.04 0.02 0.05 0.29 0.22 0.03 0.19 0.30 1.00 
         

Building value ($1000s)  -0.10 0.00 0.19 0.48 0.31 0.03 0.33 0.50 0.57 1.00 
        

Misc. value ($1000s)  -0.07 -0.02 0.16 0.52 0.22 0.04 0.23 0.51 0.38 0.56 1.00 
       

Tax amount ($1000s)  -0.08 -0.02 0.19 0.43 0.24 0.05 0.24 0.45 0.56 0.86 0.53 1.00 
      

Actual area (1000sqft)  -0.11 0.04 0.19 0.53 0.34 0.05 0.36 0.55 0.54 0.91 0.58 0.78 1.00 
     

Heated area (1000sqft)  -0.11 0.04 0.19 0.55 0.35 0.05 0.38 0.57 0.54 0.89 0.59 0.76 0.95 1.00 
    

Age of the building  0.03 0.19 -0.05 0.06 0.12 0.05 0.14 0.02 0.00 -0.27 0.00 -0.33 -0.13 -0.08 1.00 
   

# of bedrooms  -0.08 0.00 0.16 0.35 0.21 0.01 0.25 0.37 0.28 0.53 0.36 0.43 0.60 0.62 -0.03 1.00 
  

# of bathrooms  -0.08 -0.02 0.15 0.41 0.23 0.03 0.23 0.43 0.40 0.70 0.46 0.61 0.71 0.71 -0.19 0.51 1.00 
 

# of stories  -0.03 0.04 0.06 0.21 0.11 0.03 0.11 0.20 0.21 0.31 0.18 0.27 0.33 0.35 0.05 0.22 0.28 1.00 
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Table 3. 8. Correlations between PRISM output parameters and demographic house characteristics. 
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RTnatural gas 1.00 
                 

RTelectricity 0.14 1.00 
                

BLnatural gas -0.09 -0.18 1.00 
               

BLelectricity 0.05 0.03 0.28 1.00 
              

HSnatural gas -0.48 0.00 0.18 0.18 1.00 
             

CSelectricity 0.04 0.21 0.01 0.09 0.01 1.00 
            

NACnatural gas 0.15 -0.04 0.58 0.27 0.31 0.02 1.00 
           

NACelectricity -0.05 -0.23 0.37 0.91 0.24 0.04 0.35 1.00 
          

 Avg. age of occup.  0.07 0.13 -0.17 -0.07 0.05 0.01 0.13 -0.11 1.00 
         

 Avg. years of occup.  0.03 0.10 -0.09 0.01 0.07 -0.01 0.13 -0.02 0.62 1.00 
        

 Total # of occup. -0.04 -0.04 0.23 0.28 0.06 0.00 0.14 0.30 -0.28 -0.17 1.00 
       

 # of teenagers  -0.03 -0.02 0.07 0.06 0.02 0.00 0.03 0.08 -0.14 -0.10 0.17 1.00 
      

 # of adults  -0.04 -0.10 0.23 0.18 0.00 -0.01 0.00 0.21 -0.70 -0.44 0.72 0.08 1.00 
     

 # of seniors  0.02 0.09 -0.06 0.08 0.08 0.01 0.16 0.05 0.68 0.44 0.17 -0.07 -0.56 1.00 
    

 # of Republicans  -0.04 -0.10 0.08 0.17 0.02 0.00 0.01 0.21 -0.09 -0.08 0.29 0.05 0.23 0.02 1.00 
   

 # of Democrats  -0.01 0.07 0.12 0.10 0.06 0.00 0.14 0.08 -0.04 0.07 0.52 0.06 0.29 0.20 -0.47 1.00 
  

 # of males  -0.01 -0.04 0.15 0.24 0.05 -0.02 0.09 0.25 -0.24 -0.14 0.69 0.10 0.51 0.10 0.24 0.29 1.00 
 

 # of females  -0.04 -0.02 0.16 0.15 0.04 0.02 0.10 0.16 -0.12 -0.06 0.65 0.13 0.44 0.15 0.16 0.41 -0.05 1.00 
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3.5. Models 

Weighted least squares regression was used to predict the PRISM output parameters 

using publically available structural and demographic house characteristics as 

explanatory variables10. Each observation represents a PRISM simulation where each 

individual PRISM simulation has four output variables, i.e., BL, CS/HS, RT and NAC, their 

associated variances. 

 PRISM itself uses a least squares regression to fit the best function using utility and 

weather information. Given the PRISM results inherently contain uncertainty 

themselves a weighted least squares regression, where the weight allocated to each 

observation is inversely proportional to their variance, was chosen as a more 

appropriate regression model. Weighted least squares method is commonly used to 

account for heteroscedasticity where sub-populations have different variabilites. 

Variabilities can be measured in variance or any other measure for statistical dispersion. 

Contrary to traditional least squares method, weighted least squares fits a function 

where more uncertain observations gets a smaller weight and the regression model 

minimizes the sum of weighted residuals instead of sum of residuals. Weighted least 

squares is used only when the analyst can estimate the variability, e.g., variance, for the 

observations at hand. If the variabilities cannot be estimated the analyst ought to revert 

to other regression methods. 

To clarify, we regressed PRISM output parameters using publically available information 

on the structural and demographic characteristics households to be able to predict them 

in the absence of highly private utility usage information that does not always exist in a 

digital format. 

 

                                                        
10 Stata created by StataCorp was used to run the regression models. Originally, stepwise regressions 
were run. PRISM computes standard errors associated with the output variables. Hence, we ran weighted 
least squares method using the standard errors which greatly improved the fit of our model. 
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Table 9 gives an overview for the eight regression models for RTnatural gas, RTelectricity, 

BLnatural gas, BLelectricity, HSnatural gas, CSelectricity, NACnatural gas and NACelectricity, and the resulting 

statistically significant independent variables (p=0.05). 

The resulting R2 values vary between 24% and 69%, RTnatural gas model having the lowest 

(24%) and NACnatural gas having the highest (69%). 

To clarify, PRISM computes the simulations trying to minimize the error in the output 

NAC value and uses an iterative regressive approach where utility usage and historical 

weather information are input variables. We used publically available information to 

predict PRISM output parameters to overcome the necessity of: 1) Gathering highly 

private utility usage information; 2) Processing the information via PRISM.
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Table 3. 9. Beta coefficients for PRISM regressions. All variables are statistically significant at p=0.05. 

Independent variables  Models 

Min Median Max 
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0 30 480  Land value ($1000s)  -0.03 0.03 -0.002 -0.01 -0.0001  0.39 -12 

17 105 726  Building value ($1000s)  -0.02 -0.07 0.002 -0.01  -0.02 -0.34 
 

0 2 31  Misc. value ($1000s)  -0.13 0.25  0.68  -0.10 -0.74 213 

0 2 17  Tax amount ($1000s)  0.37 1.27 0.042 0.48 0.0003 -0.06 4.00 218 

1 2 13  Actual area (1000sqft)   0.77 -0.095 -1.07 0.0074 1.30 19.25   

1 2 8  Heated area (1000sqft)  1.68 4.05 -0.070 3.48 -0.0133 1.75 -6.16 2,091 

4 33 72  Age of the building  -0.003 0.001 0.00002  0.00002  0.03   

1 3 5  # of bedrooms  -0.36 -0.84 0.019 0.50 0.0025 -0.48 3.87 -168 

1 2 7.5  # of bathrooms  -1.44 -4.02 -0.065 0.81 0.0018  -20.11 635 

0 1 3  # of stories  0.79 0.51  0.88 -0.0003 -0.33 2.69   

18 52 101  Avg. age of occupants   0.04 0.002  -0.0001 -0.02 1.19 -16 

0 16 54  Avg. years of occupancy  0.11 -0.09 0.001 -0.02 0.0001 -0.01 0.18   

1 2 8  Total # of occupants  1.71 -2.75 0.227 1.79 0.0072  134.67 952 

0 1 4  # of seniors  1.99 -1.75 0.223 2.63 -0.0087 -0.52 121.05 1,506 

0 0 2  # of teenagers  1.19 0.77   0.0006 0.41 -14.02 273 

0 0 6  # of Republicans  -1.22 -0.74 -0.011 2.04 0.0022 0.57 -10.71 1,301 

0 1 8  # of Democrats  -1.25 -0.45 0.026 1.29 0.0016 0.15 -9.97 706 

0 1 6  # of males   1.11 -0.185  -0.0066  -125.26   

0 1 7  # of females   3.13 -0.220 -0.95 -0.0050  -126.35   

   Intercept 10.62 30.55 0.065 -1.63  0.73 -27.99   

   R2 0.24 0.67 0.54 0.54 0.38 0.65 0.69 0.52 

   n 5,243 5,243 5,243 5,243 5,243 5,243 5,243 5,243 
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3.6. Discussion 

Load disaggregation is necessary for energy-efficiency profiling and conducting proper 

diagnostics to understand what constitutes an effective energy-efficiency intervention 

for given house. Two houses with the same aggregate use may have different 

intervention potential on different end-uses and only load disaggregation enables this. 

Our work shows that conducting a PRISM-driven load disaggregation on monthly utility 

usage information is computationally light and straightforward.  

The generated insight can be helpful in energy-efficiency profiling for large utility 

customer bases. We found strong correlations between structural, demographic and 

energy-efficiency characteristics. Our weighted least squares regression results indicate 

that publically available information on structural and demographic house 

characteristics can explain the variability in energy-efficiency parameters to varying 

degrees.  While other studies have tried to model residential utility usage incorporating 

similar variables, our work takes it a step further and explored such variables’ power to 

statistically the energy-efficiency profile of residential buildings. Given the relatively 

significant R2 values of our weighted least squares regression models, publically 

available information can be helpful in assessing residential building stocks’ efficiency 

profile in the absence of private utility data. With our models utility can plan their EE 

programs with respect to structural and demographic changes in their services 

territories. Further, utilities can conduct large-scale virtual and non-invasive home 

audits to assess the energy-efficiency profile of their service territories. 

This exercise will further be enriched via quantifying the energy efficiency potential 

amongst houses in our sample. The PRISM computed efficiency parameters allow 

estimating the tradeoffs between behavioral and structural energy efficiency 

interventions. We address these issues in Chapter 4. 
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3.7. Conclusion 

Processing utility usage information using software like PRISM can help building 

baselines and define efficiency profiles for individual houses in utility service territories.  

However, utility usage information is highly private and typically not shared with 3rd 

parties. The motivation of this paper is to explore to which extent publically available 

information on physical and demographic house characteristics can help understand 

efficiency profiles of houses in the absence of utility data, which is often the case. This 

work shows that such publically available information can help predict efficiency 

parameters, as computed by PRISM, i.e. thermostat setting, thermal integrity, baseload 

consumption, within varying degrees of explanatory power. Our findings further 

underscore that availability of data and analytical use thereof are critical for 

understanding the US building stock for energy efficiency targeting and accelerate 

energy efficiency deployment. Expanding available datasets to different frontiers such 

as smart meters, smart thermostats or house audits can strengthen the potential 

analytical insight we can derive. 

Being able to use publically available data and accurately predict structure thermal 

integrity, baseload consumption and thermostat setting are valuable because every 

structure has different physical and demographic characteristics and only knowing what 

constitutes an energy-efficiency problem can lead to formulation of an intelligent 

intervention. Only disaggregating utility usage into different end-uses can facilitate 

diagnosing residential energy issues. Using statistical models based on publically 

available data on individual houses allows this diagnostic exercise to scale up for large 

regions which provides critical input for utilities and policy-makers to develop 

analytically-driven energy-efficiency targeting strategies. This in turn will enable 

decision-makers to assess residential building stocks from an economic as well as a 

social welfare perspective, and design, implement and evaluate their energy-efficiency 

programs systematically.   
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There are limitations to our work. Publically available data may contain incorrect entries 

that can distort the accuracy of our models. PRISM does not run simulations with 

incorrect or missing utility usage values. Therefore, we had to remove some of our 

observations that PRISM could not successfully process from our sample. Moreover, 

PRISM uses an iterative regression method to calculate the efficiency parameters and 

their associated variance. Thus, the dependent variables, i.e., the efficiency parameters, 

are uncertain and we addressed this using a weighted least squares regression. 

Calculating the efficiency parameters alone do not shed sufficient insight on what kind 

of savings potential a house has for a given intervention. This exercise ought to be 

extended using benchmarking. In other words houses need to be compared to a 

baseline to estimate savings potential. We address this problem in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 



 63 

3.8. References 

1. R. J. Brecha, A. Mitchell, K. Hallinan and K. Kissock,  “Prioritizing Investment in 

Residential Energy Efficiency and Renewable Energy – A Case Study for the U.S. 

Midwest”. Energy Policy. 2011, Vol. 39, pp. 2982-2992. 

2. M. Brown, L. Berry and L. Kinney, “Weatherization Works: An Interim Report of 

the National Weatherization Evaluation”. Report No. ORNL/CON-373, Oak Ridge 

National Laboratory, Oak Ridge, TN. 1993 

3. D. R. Carlson, H. S. Matthews and M. Berges, “One Size Does Not Fit All: 

Averaged Data on Household Electricity is Inadequate for Residential Energy 

Policy and Decisions”. Energy and Buildings. 2013, Vol. 64, pp. 132-144. 

4. W. Chun, “Review of Building Energy-use Performance Benchmarking 

Methodologies”. Applied Energy.  2011, Vol. 88, pp. 1470-1479. 

5. G. Dutt and M. Fels,  “Keeping Score in Electricity Conservation Programs. 

Electricity: Efficient End-Use and New Generation Technologies, and Their 

Planning Implications”. Vattenfall Electricity Congress. Lund University Press, 

Lund, Sweden. 1989, pp. 353- 388 

6. M. F. Fels, “PRISM: An Introduction”. Center for Energy and Environmental 

Studies, Princeton University, Princeton, NJ 08544. 1986 

7. M. F. Fels and C. Reynolds, “Energy Analysis in New York City Multifamily 

Building: Making Good Use of Available Data”. Report NYSERDA 93-3, New York 

State Energy Research and Development Authority, Albany, NY. 1992 

8. M. F. Fels, K. Kissock, M. A. Marean and C. Reynolds, “PRISM (Advanced Version 

1.0) Users’ Guide”. Center for Energy and Environmental Studies. Princeton 

University. Princeton, NJ 08544. 1995 

9. M. Goldberg, “A Geometrical Approach to Nondifferentiable Regression Models 

as Related Methods for Assessing Residential Energy Conservation”. Ph.D. Thesis. 

Department of Statistics, Princeton University, Report No. 142. Center for Energy 

and Environmental Studies, Princeton, NJ, 1982. 



 64 

10. C. Goldman and R. Ritschard, “Energy Conservation in Public Housing: a Case 

Study of the San Francisco Housing Authority”. Energy and Buildings. 1986, Vol. 

9, pp. 89-98. 

11. J. Gregory, “Ohio Home Weatherization Assistance Program Final Report”. Office 

of Weatherization, Ohio Dept. of Development, Columbus, OH. 1987 

12. J. S. Haberl, S. Englander, C. Reynolds, M. McKay and T. Nyquist, “Whole-Campus 

Performance Analysis Methods: Early Results from Studies at the Princeton 

Campus.” Proceedings of 6th Annual Symposium on Improving Energy Efficiency 

in Hot and Humid Climates. Texas A & M University, Dallas, TX. 1989 

13. E. Hirst, “Electricity Savings One, Two and Three Years After Participation in the 

BPA Residential Weatherization Pilot Program”. Energy and Buildings. 1986, Vol. 

9, pp. 45-53. 

14. A. Kavousian and R. Rajagopal, “Data-Driven Benchmarking of Building Energy 

Efficiency Utilizing Statistical Frontier Models”. Journal of Computing in Civil 

Engineering. 2013. 10.1061/(ASCE)CP.1943-5487.0000327  

15. A. Kavouisian, R. Rajagopal and M. Fischer, “Determinants of Residential 

Electricity Consumption: Using Smart Meter Data to Examine the Effect of 

Climate, Building Characteristics, Appliance Stock, and Occupants’ Behavior”. 

Energy. In Press (2013). 

16. A. C. C. MacSleyne, “Residential Energy Consumption and Conservation 

Programs: A Systematic Approach to Identify Inefficient Houses, Provide 

Meaningful Feedback, and Prioritize Homes for Conservation Intervention”. 

Ph.D. Thesis. Department of Engineering and Public Policy, Carnegie Mellon 

University. 2007 

17. E. Mills, M. Fels and C. Reynolds, “PRISM: A Tool for Tracking Retrofit Savings”. 

Energy Auditor and Retrofitter. 1986, Nov/Dec. pp. 27-34. 

18. D. Ndiaye and K. Gabriel, “Principal Component Analysis of the Electricity 

Consumption in Residential Dwellings”. Energy and Buildings. 2011, Vol. 43, pp. 

446-453. 

19. L. Rodberg, “Energy Conservation in Low-Income Homes in New York City: The 

Effectiveness of House Doctoring”. Energy and Buildings. 1986, Vol. 9, pp. 55-64. 



 65 

4. Statistical Modeling of Potential Changes in Utility Usage 
Due to Energy-Efficiency Interventions 

Abstract 

This study uses a load-disaggregation model PRISM and its energy efficiency output 

parameters to determine the savings potential in individual single-family houses 

(n=5,243) in Gainesvile, FL, studied in the previous chapters, using different 

interventions, e.g., heating unit replacement, changing the thermostat setting. Every 

house is compared to the sample’s median on baseload heating slope and reference 

temperature, and the monetary value is computed through calculating the change in 

annual consumption if the house were to change/improve its efficiency parameter to 

the sample’s median through a hypothetical intervention. This is to research the notion 

of an energy efficiency reservoir and assess the energy efficiency potential distribution 

by house and measure.  In addition, we quantify the potential rebound amount through 

profiling houses that set their thermostat higher than median for summer and lower for 

winter, which also have a positive efficiency potential through changing their heating 

slope to the sample’s median. Finally, we regress the efficiency potential from different 

interventions against the publically available data to create an algorithm to identify 

houses with large savings potential for specific interventions.  

4.1. Introduction 

Energy efficiency (EE) and energy conservation today are recognized as the low-hanging 

fruit of energy sources (NAS, 2010). In recent years, several states have recognized the 

potential for energy efficiency to reduce energy consumption and pollutants’ emissions, 

as well as possibly avoiding some new generation construction. Thus, in order to 

promote energy efficiency, 24 states to-date have enacted Energy Efficiency Resource 

Standards (EERS) and set reduction targets for energy consumption (ACEEE, 2011). 

These targets have goals that range between 0% and 2.2% of annual reductions from 

the baseline (ACEEE, 2011).  
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To achieve energy efficiency goals, several strategies can be pursued. One of these is the 

use of demand-side management (DSM) programs. Almost $7 billion was spent in rate-

payer-funded DSM programs at a national level in 2011and it is anticipated that a total 

of $12 billion will be spent by 2020 (IEE, 2012).  Although a large number of states are 

meeting their demand reduction targets, with the coming more aggressive reduction 

goals, the exercise at hand will become more difficult. The potential benefits of energy 

efficiency are often unrealized due to market failures and market barriers. Some of 

these include information barriers, split incentives, hidden costs, transaction costs, high 

discount rates and heterogeneity among potential adopters (Jaffe and Stavins, 1994). 

Additionally, unpriced costs and benefits; misconstrued fiscal and regulatory policies; 

and insufficient and inaccurate information are recognized as market failures (NAS, 

2010) Low priority of energy issues; incomplete markets for energy efficiency; limited 

access to capital (e.g. loans), further constitute market barriers for efficiency 

deployment (NAS, 2010). 

Electric utilities, subject to aforementioned regulations commonly use energy use 

intensity (kWh/ft2) as key metric in implementing their energy efficiency programs.  

Benchmarking studies are typically encountered in the literature, which rely solely on 

metrics like energy use intensity and do not attempt to disaggregate different end uses. 

Chun (2011) summarizes the advantages and disadvantages of different techniques 

encountered in the literature (i.e., simple normalization; ordinary least squares; 

stochastic frontier analysis and data envelopment analysis). Kavousian and Rajagopal 

(2013) propose a stochastic energy-efficiency frontier method, which they claim is 

superior to other benchmarking methods as they treat energy consumption 

stochastically. They use smart meter data for 307 residential buildings to illustrate their 

work. 

Attempts to model energy use using a combination of utility billing data, smart meter 

data, publicly available records and home energy audit data are fairly common11. 

                                                        
11See Chapter 3 for an overview of the existing literature. 
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However, using energy intensity and benchmarking as the primary technique in 

identifying houses as prime candidates for specific energy-efficiency interventions lacks 

the necessary level of complexity, as energy efficiency at large is a broader concept than 

just energy intensity.  

Our study processes monthly utility billing data and historical weather data for load 

disaggregation and determines the baseload consumption, heating/cooling slope and 

the reference temperature at which the thermostat is set. Extracting these specific 

energy-efficiency parameters is valuable for locating prime candidates for interventions 

(e.g., insulation and HVAC unit replacement).  Comparing these parameters to a given 

sample’s median values simplifies identifying outliers and targeting them for an energy-

efficiency improvement. We then build statistical models to based on publically 

available information on structural and demographic characteristics of houses to predict 

the savings potential in dollars per year terms for each house and energy-efficiency 

parameter, i.e., baseload consumption, heating/cooling slope and reference 

temperature. Since our models are based on publically available information, this 

approach overcomes the necessity of access to highly private utility usage data. These 

models can be used by utilities and 3rd party EE program implementers to provide 

targeted messaging customized EE feedback to individual houses in a given service 

territory. 

Ehrhardt-Martinez et al. (2010) studied 36 EE feedback programs between 1995 and 

2010. These feedback programs include indirect feedback (provided after consumption 

occurs) and direct feedback (provided real-time).  Indirect feedback programs that 

encompass enhanced billing information, web-based energy audits generated estimated 

annual percent savings between 3.8% and 8.4%. Direct feedback programs in their study 

were evaluated to generate 9.2-12.0% savings and used real-time feedback some of 

which included appliance-level information. These results underscore the importance of 

feedback programs and how effective they can be. Our statistical models based on 

publically available information could facilitate a more scalable and analytical EE 
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program design and implementation that are not subject to lack of highly private utility 

usage data. 

We use PRISM software to process the utility billing data and historical weather data to 

generate disaggregate loads into baseload consumption, heating/cooling slope and 

reference temperature 

PRISM is typically used by researchers and energy-efficiency program managers to 

compute the effects of energy-efficiency practices across houses and define ways to 

implement house-retrofit measures more cost effectively (Fels et al., 1995). 

PRISM has a variety applications and is widely used for separating utility usage, e.g., 

electricity, natural gas or heating oil, into disaggregated end-uses: baseload usage, 

heating/cooling slope and thermostat setting. PRISM has been used specific applications 

such as tracking retrofit savings (Mills et al., 1987) or scorekeeping for electricity 

conversation programs (Dutt and Fels, 1989; Gregory, 1987; Hirst, 1986; Rodberg, 1986). 

Fels and Reynolds (1992) used PRISM for analyzing New York State Energy Research and 

Development Authority’s (NYSERDA) multifamily conservation program. A similar study 

was executed by Goldman and Ritschard (1986) for San Francisco Housing Authority to 

assess energy conservation in public housing. Oak Ridge National Laboratory used 

PRISM to evaluate national weatherization efforts (Brown et al., 1993). PRISM is not 

only used for residential buildings or large samples – Haberl et al. (1989) used PRISM to 

conduct a campus-wide energy performance analysis for Princeton University.    

Deriving the savings potential from the difference between the estimated energy 

efficiency parameter and a reference point, in our case the sample’s median, further 

outlines a framework in our study to statistically predict the savings potential using 

publically available data (e.g., property tax records and voter registration records), that 

may arise from different interventions. 



 69 

Our approach to defining savings potential using a reference points should is only one 

method among multiple methods encountered in the literature. From a building science 

perspective, the analyst typically uses engineering formulae that account for detailed 

structural and thermal characteristics of a given house and its individual components, to 

compute technical savings potential. The reader can review Urbikain and Sala (2009) for 

their methods to calculate energy savings related to windows in residential buildings. 

For further reference, the reader can review Zhu et al. (2009) for their engineering 

method to calculate savings from new wall construction for two houses in Las Vegas, 

NV. 

Our work is different from the existing PRISM and other load-disaggregation cases in 

that it uses publically available information on structural and demographic 

characteristics of houses to statistically predict the PRISM energy-efficiency parameters. 

This approach overcomes the need for 1) highly private utility data and historical 

weather data; 2) analytical processing thereof. The underlying motivation is to build 

statistical models that use only publically available information to generate baseline 

energy-efficiency intervention potential insight by end-use for all houses in a given 

service territory. This would electric utilities to design and implement their energy-

efficiency programs in an informed fashion. Predicting savings potential by intervention 

type, e.g., behavioral (smart thermostat) or engineering-based, is helpful for utilities to 

design their rebate programs effectively and construct personalized messaging 

campaigns for groups of customers that have savings potential for different end-uses. 

Our work additionally investigates how to identify houses that may be subject to a 

rebound effect. As defined in the literature, a direct rebound effect is the expanded or 

intensified use of energy arising from efficiency gains and the associated perceived 

lower cost of energy (Greening et al., 2000; Sorrell et al., 2009; International Risk 

Governance Council, 2013). For example, it is not uncommon for a homeowner to start 

setting their thermostat at a higher temperature in the winter, if they have recently 
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undergone an energy efficiency improvement (e.g., attic insulation or replacing the 

HVAC unit). 

Assuming a house would spend realizable savings from energy-efficiency improvements 

on improvements in their comfort (e.g., adjusting their thermostat setting, until they 

achieve a level comfort), we attempt to identify the houses that may be subject a 

rebound effect and quantified the rebound amount.  

This exercise is particularly insightful as policy-makers need to measure and verify 

energy savings, thus ensuring energy efficiency standards and objectives are met. The 

rebound effect has a significant influence on technically realizable energy efficiency 

potential and actual realized potential. Extracting the rebound amount as well 

determining the houses that are most likely to rebound, are valuable when assessing the 

performance of energy efficiency programs and optimizing their design for prospective 

efforts. 

4.2. Data 

PRISM was used to model energy efficiency parameters of single-family houses. Monthly 

utility usage and historical weather information are primary inputs for PRISM. 

PRISM, developed by the Center for Energy and Environmental Studies at Princeton 

University in 1978, uses daily temperature data from which heating and cooling degree-

days are calculated, and monthly utility meter readings for utility consumption as inputs 

to determine the weather-adjusted index for annual consumption which is called 

Normalized Annual Consumption (NAC). In essence, NAC is the annual utility 

consumption for a given year with average weather. In our study we use monthly 

natural gas usage data as input for the PRISM heating model to compute NACnatural gas, 

and monthly electricity usage data for the PRISM cooling model to compute NACelectricity 
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NAC is estimated using a three-parameter model that is a function of thermal integrity 

of the building (Heating/Cooling Slope – HS/CS), appliance-level baseload consumption 

(BL), and the interior-temperature setting (Reference Temperature – RT). Baseload 

natural gas consumption is derived from the heating model and is denoted as BLnatural gas. 

Similarly, baseload electricity consumption is derived from the cooling model and is 

denoted as BLelectricity. Heating slope comes from the heating model as denoted as 

HSnatural gas whereas cooling slope comes from the cooling model and is denoted as 

CSelectricity. RTnatural gas and RTelectricity come from the heating and cooling models, 

respectively. Generally, a house’s heating/cooling system is operated when the outdoor 

temperature (Tout) goes below/above a certain level (Reference Temperature, RT), and 

for each incremental degree change in temperature a constant amount of fuel 

(electricity, fuel oil or natural gas) (the heating/cooling slope (HS/CS) is consumed (Fels, 

1986). Hence, the fuel consumed is linearly proportional to (RT – Tout) and the constant 

HS/CS represents the house’s effective heat-loss (or gain) rate. Further the house may 

use a constant amount of fuel per day (the base level BL) independent of Tout. This is 

treated as the baseload of the building and is attributed to appliance-level consumption. 

Thus, PRISM defines the normalized annual consumption for electricity, NACelectricity, as: 

NACelectricity = BLelectricity + CSelectricity × CDD(RTelectricity) + ε 

Where CDD(RTelectricity) is the number of cooling degree days for a given RTelectricity in a 

given year. 

Similarly, normalized annual consumption for natural gas, NACnatural gas, is defined as: 

NACnatural gas = BLnatural gas + CSnatural gas × HDD(RTnatural gas)+ ε 

Where HDD(RTnatural gas) is the number of heating degree days for a given RTnatural gas in a 

given year. 
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The derivation of this equation allows the interpretation of the three parameters: The 

reference temperature RT, which varies from building to building, is likely to be affected 

by the indoor temperature Tin, which is typically set by a thermostat, and intrinsic gains 

(e.g., heat produced by appliances and occupants, and the sun). The heat loss (and gain) 

rate HSnatural gas/CS electricity is governed by conductive and infiltration heat losses/gains as 

well as the furnace efficiency (Fels, 1986). The base level consumption BL is determined 

by the amount of fuel consumed by appliances. ε is the random error term that cannot 

be explained by the regression equation that is solved by ordinary least-squares linear 

regression technique. Using an iterative approach based on Newton’s method 

(Goldberg, 1982), PRISM solves for the three parameters, i.e., baseload consumption 

(BL), heating/cooling slope (HS/CS) and reference temperature (RT), that best explain 

changes in fuel consumption.  

7,091 houses with both electricity and natural gas for 2009-2011 used in the previous 

chapter were processed by PRISM12. Natural gas usage data was used to fit a heating 

model for each house. For houses with both natural gas and electricity usage, natural 

gas is primarily used for heating whereas the electricity data was used to fit a cooling 

model for house since electricity is used for air conditioning. Baseload consumption for 

natural gas model can be attributed to end-uses like cooking whereas electricity 

baseload consists mostly of appliance-level consumption, e.g., lighting, refrigerator, TV, 

etc. 

Due to missing or inconsistent utility entries in the original dataset of 7,091 houses 

PRISM ran successfully only on 5,243 houses. Inconsistent readings can be due to 

change in occupants or retrofit activities that were not accounted for in the sample..  

The percentile distributions of PRISM output parameters, i.e. reference temperature 

(RT), baseload consumption (BL) and heating/cooling slope (HS/CS) (cooling slope for 

                                                        
12 For details on the structural and demographic characteristics of houses see Chapter 2. 
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electricity, heating slope for natural gas usage), normalized annual consumption (NAC), 

and the associated variances are given in Table 1. 

 

Table 4. 1. Percentiles of PRISM parameters.  

 Percentiles 

 5th 25th 50th 75th 95th 

R2
natural gas 0.46 0.82 0.88 0.91 0.93 

R2
electricity 0.23 0.65 0.82 0.90 0.95 

RTnatural gas(°C) 11.00 13.00 17.56 19.00 23.63 
RTelectricity(°C) 15.60 19.00 20.92 22.89 25.63 

BLnatural gas (therm/day) 0.12 0.23 0.34 0.47 0.71 
BLelectricity (kWh/day) 7.55 12.62 17.61 24.70 40.69 
HSnatural gas (therm/degree-day) 0.03 0.21 0.33 0.51 0.93 
CSelectricity (kWh/degree-day) 1.42 2.50 3.46 4.74 7.80 
NACnatural gas (therm/year) 115 206 284 379 567 
NACelectricity (kWh/year) 4,399 7,380 10,040 13,336 20,176 

The median reference temperature is computed as 20.9 degrees for cooling (electricity) 

and 17.6 degrees for heating (natural gas). The median value for baseload is 

17.6kWh/day for electricity and 0.33therms/day for natural gas. Further, median cooling 

slope (electricity) and heating slope (natural gas) are 3.46kWh/degree-day and 

0.33/therms/degree-day, respectively.  The median normalized annual consumption as 

calculated by a combination of reference temperature, baseload and cooling/heating 

slope, is 284therms/year for natural gas, and 10,040kWh/year for electricity (Table 1). 

The actual annual usage values for the median house, as given in the Gainesville utility 

data set, for natural gas and electricity are 284therms/year and 10,068kWh/year. 

PRISM-predicted annual usage values and actual usage values are comparable which 

validates the accuracy of PRISM. 
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4.3. Methods 

This study explores the savings potential that may arise from conducting an energy-

efficiency intervention among the houses in the sample. The underlying assumption is 

changing each house’s PRISM-computed energy efficiency parameters to the sample’s 

median value for the parameter of interest. Setting the sample median as the reference 

point is just one approach to examine the energy-efficiency potential of the houses in 

our sample. Other reference points of interest could be different percentiles (e.g., 5th, 

25th, 50th, 75th and 95th) for a given parameter. 

,Some houses’ energy-efficiency parameters as computed by PRISM, i.e., RTnatural gas, 

RTelectricity, BLnatural gas, BLelectrcitiy, HSnatural gas and CSelectricity, are above the median and some 

are below the median. We define changing reference temperature (RT) values, i.e., 

adjusting the thermostat setting, as a behavioral intervention and changing baseload 

consumption (BL) and heating/cooling slope (HS/CS) values as an engineering 

intervention (e.g., insulation, new refrigerator or new HVAC unit). 

A change in consumption would result in savings, i.e., reduced utility usage, if the 

parameter of interest of for a given house is above the sample’s median. Figure 1 

illustrates how we calculate change in annual utility consumption (ΔC) for a change in 

HSnatural gas for a hypothetical case. The same principle applies for computing ΔC values 

due to changes in other PRISM output parameters. For a change in reference 

temperature (RT) the house’s comfort level would increase if the RTnatural gas is increased 

to the sample’s median and RTelectricity  is reduced to the sample’s median. We assumed 

that an energy-efficiency intervention for BL, HS or CS, is only viable when it reduces the 

annual utility usage. However, an intervention for RT is considered viable even when the 

RTnatural gas is below the sample’s median (or when RTelectricity is above the sample’s 

median) removing the possibility for savings but creating an opportunity for improved 

comfort through shifting the RT to the median.  
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Figure 4. 1. Procedure to estimate change in consumption (ΔC) because of a change in HSnatural 

gas. The figure shows a hypothetical scenario of $200/year savings. 

We use the PRISM formula (Goldberg and Fels, 1986) to calculate changes in annual 

utility consumption (ΔC), which are given in dollars per year. 

The hypothetical change in annual utility consumption (ΔC) for a change in RTnatural gas to 

the median is calculated using: 

ΔCRT natural gas = Pricenatural gas × HSnatural gas × [HDD(RTnatural gas) − HDD(RTnatural gas 

median)] 

Where HDD(RTnatural gas) is the number of heating degree days for a given RTnatural gas in a 

given year. 
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The ΔCRT natural gas is given in dollars per year terms. $1.35/therms is used as Pricenatural 

gas
13. 

Similarly, the hypothetical change in consumption (ΔC) for a change in RTelectricity to the 

median is calculated using: 

ΔCRT electricity = Priceelectricity × CSelectricity × [CDD(RTelectricity median) − CDD(RTnatural gas)]  

Where CDD(RTelectricity) is the number of cooling degree days for a given RTelectricity in a 

given year. 

$0.115/kWh was used as Priceelectricity
13.  

HSnatural gas and CSelectricity are a function of the building shell’s lossiness and the thermal 

efficiency of the heating or cooling system, respectively. Given that larger buildings with 

larger shells inherently tend to have larger HSnatural gas and CSelectricity we normalized 

HSnatural gas and CSelectricity with respect to the building’s square footage (SQFT) by dividing 

each house’s HSnatural gas and CSelectricity by its SQFT to compute HSSQFT and CSSQFT.  

Thus, the hypothetical change in consumption (ΔC) from a change HSnatural gas to the 

median is computed using: 

ΔCHS natural gas = Pricenatural gas × HDD(RTnatural gas)  × SQFT × (HSSQFT − HSSQFT median) 

Similarly, the hypothetical change in consumption (ΔC) from a change CSnatural gas to the 

median is computed using: 

ΔCCS electricity = Priceelectricity × CDD(RTelectricity)  × SQFT × (CSSQFT − CSSQFT median) 

The hypothetical change in consumption (ΔC) that can realize from changing the BLnatural 

gas to the median is determined using: 

                                                        
13 Average natural gas and electricity retail prices for residential users in 2010 were used as retrieved from 
the U.S. Department of Energy’s Energy Information Administration. 
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ΔCBL natural gas= 365 × Pricenatural gas× (BLnatural gas – BLnatural gas median) 

Similary, the hypothetical change in consumption (ΔC) that can realize from changing 

the BLelectricity to the median is determined using: 

ΔCBL electricity= 365 × Priceelectricity× (BLelectricity – BLelectricity median) 

Tables 2 and 3 show the percentiles of ΔC potential in dollars per year arising from 

changing individual houses’ PRISM parameters to the sample’s median. Ostensibly, 

some houses’ PRISM values are more “efficient” than the sample’s median, which 

results in negative values. Positive ΔC values imply that the respective energy-efficiency 

parameter is above the sample’s median whereas a negative ΔC value implies that the 

respective energy-efficiency parameter is below the sample’s median. 

Table 4. 2. Percentiles of ΔC potential in dollars per year arising from changing individual houses’ 
PRISM parameters to the sample’s median. 

 Percentiles 

ΔC($/year) 5th 25th 50th 75th 95th 

BL-NG 6 29 65 115 233 

BL-E 22 136 298 587 1,251 

HS 6 28 61 114 247 

CS 7 38 82 161 329 

 

Table 4. 3. Percentiles of ΔC potential in dollars per year arising from changing individual houses’ 
reference temperature parameters to the sample’s median. Positive values indicate a savings 

potential whereas negative values indicate a comfort improvement potential. 

 Percentiles 

ΔC($/year) 5th 25th 50th 75th 95th 

RT-NG -535 -210 0 41 160 

RT-E -402 -144 0 136 489 
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It was assumed a positive ΔC from an intervention to improve HSnatural gas (CSelectricity), 

(e.g., insulation or replacing the HVAC unit), which implies that HSnatural gas (CSelectricity) is 

above the sample’s median, would lead the occupants, whose RTnatural gas (RTelectricity) is 

lower (higher) than the sample’s median, to seek improved comfort via increasing 

(decreasing) their thermostat setting during heating (cooling) season. In other words, 

technical efficiency potential that may arise from an engineering intervention, may not 

be fully realized as some occupants may choose to spend the potential savings on 

improving their comfort via setting their thermostat higher for winter and lower for 

summer. This phenomenon, also known as the rebound effect, hinders complete savings 

realization. For this, we explored the savings distribution from improvements in heating 

and cooling slope versus reference temperatures. Figures 2 and 3 show the ΔC 

distributions arising from changing the reference temperature versus cooling slope (or 

heating slope).  This gives a context on how changing the heating or cooling slope 

compare to changes in thermostat setting in terms of potential change in annual utility 

usage. 

The first quadrant represents the houses where the thermal integrity is higher, i.e., less 

efficient, than the sample’s median, resulting in a positive ΔC potential. Further, the 

RTnatural gas (RTelectricity) of these houses are above (below) the sample’s median, creating 

additional savings potential with a change in thermostat setting, i.e., decreasing RTnatural 

gas and increasing RTelectricity. 

The second quadrant in both figures shows the houses where the occupants live in 

relatively “comfortable” thermostat setting, defined as being below the sample’s 

median for cooling thermostat setting (RTelectricity) and above the sample’s median for 

heating thermostat setting (RTnatural gas), generating savings potential for a change in 

thermostat setting (i.e., increasing RTelectricity and decreasing RTnatural gas). However, these 

houses’ thermal integrity (CSelectricity and HSnatural gas) is already lower, i.e., more efficient, 

than the sample’s median making them unlikely candidates for an intervention, e.g., 

insulation. 
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The third quadrant in both figures, denote the houses where the thermal integrity, i.e. 

heating or cooling slope, is lower, i.e., more efficient, than the median. The same houses 

live in an already below median thermostat setting for heating and above median for 

cooling, thus unlikely to generate any potential for savings from changing the 

thermostat setting. Similar to the fourth quadrant, the houses herein have comfort 

improvement potential where the dollar amount denotes how much additional money 

the house would have to spend on adjusting the thermostat setting to move to the 

median.The fourth quadrant contains the houses with a potential rebound effect. In 

other words, the savings potential from improving the thermal integrity is positive 

whereas the thermostat is set at a relatively uncomfortable level, i.e., RTnatural gas is 

below the sample’s median and RTelectricity is above the sample’s median. This deviation 

from the median reference temperature implies a potential improvement in social 

welfare as the ambient temperature in a house affects the comfort level, air quality and 

occupants’ health. It is assumed that the occupants of a house will spend the savings 

gained from reduced utility bills because of thermal integrity improvements, to change 

its thermostat setting until it reaches the median thermostat setting. We assume that 

people who live in houses that have thermostat setting that are below (above) the 

sample’s median in the winter (summer) would prefer to set their thermostats at a 

warmer (cooler) temperature if it was affordable. Some houses could realize enough 

savings from thermal integrity improvement to change their thermostat towards the 

median whereas others could see a partial comfort improvement because of limited 

savings from thermal integrity interventions. 
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Figure 4. 2. ΔC from change in reference temperature for versus ΔC from change in cooling slope 
(electricity).  

 

Figure 4. 3. ΔC from change in reference temperature for versus ΔC from change in heating 
slope (natural gas).  

Table 4 shows the breakdown of the four quadrants for electricity consumption models. 

Most houses fall in quadrants 1 (1,428 houses) and 3 (1,518 houses). Quadrant 2 with 

efficient cooling slopes and lower higher than median RTelectricity, has the lowest number 

of houses. The rightmost column in Table 4 shows the aggregate potential across the 

four quadrants. Aggregate savings from increasing the thermostat setting (RTelectricity) 
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pose approximately a $1.2M/year potential whereas to bring houses below the median 

thermostat setting to the median, an investment of 0.5M/year would be necessary to 

spend on this comfort improvement.  Further the aggregate savings potential on the 

thermal integrity improvement front amounts to approximately $260K/year for the 

sample. Interestingly, if energy efficiency interventions were conducted across the 

sample this would result in potential savings of approximately $1.5M/year which is 

larger than the amount it would take to move the houses above median reference 

temperature to the median ($0.5M/year) (Table 4).  

Table 4. 4. Breakdown of four quadrants in Figure 1 for electricity consumption. The first three 
rows show the sum of savings or increased comfort potential for each quadrant. 

 Change in Consumption ($/year) 

# of houses 1,428 761 1,518 855 4,562 

($/year) Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Sum 

RTsavings 1,095,199 96,912 - - 1,192,111 

RTcomfort - - -298,979 -199,655 -498,634 

CSsavings 131,152 - - 129,241 260,393 

Similarly, Table 5 shows the breakdown of four quadrants for natural gas consumption 

models. The highest number of houses fall into quadrants 2 (1,377 houses) and 4 (1,817 

houses). Quadrant 3 has the lowest number of houses. The rightmost column in Table 4 

shows the aggregate potential across the four quadrants. The aggregate savings 

potential from decreasing the thermostat setting (RTnatural gas) totals to $171K/year for 

our sample. Further, an investment of $730K/year would be necessary to provide a 

median level comfort to the houses, which are below this level. The collective savings 

potential, which may arise from improving the houses to the median level thermal 

integrity, amounts to $197K/year. Unlike energy efficiency interventions for electricity, 

the aggregate savings potential including thermostat adjustment and heating slope 

improvements amounts to approximately $367K which is smaller than what is needed to 

move the houses to the median reference temperature ($730K) (Table 5). 



 82 

Table 4. 5. Breakdown of four quadrants in Figure 2 for natural gas consumption. The first three 
rows show the sum of savings or increased comfort potential for each quadrant. 

 Change in Consumption ($/year) 

# of houses 514 1,377 757 1,817 4,465 

($/year) Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Sum 

RTsavings 70,531 99,935 - - 170,466 

RTcomfort - - -77,158 -652,713 -729,871 

HSsavings 58,110 - - 138,808 196,918 

The assumption was made that whenever a house improves its thermal integrity 

through an intervention (i.e. insulation, HVAC unit replacement), to the sample’s 

median value, the potential savings will be spent towards adjusting the thermostat 

setting till the comfort level reaches the sample’s median reference temperature. In 

other words, technical energy efficiency potential will not materialize until a given 

house is median-level comfortable in terms of thermostat setting. Ostensibly, some 

houses have large enough thermal integrity improvement potential that some saving 

potential is left for comfort improvement (ΔCHS > |ΔCRT|) (region A above the diagonal in 

Figures 2 and 3) and some do not (ΔCHS < |ΔCRT|) (region B below the diagonal in Figures 

2 and 3). The breakdown of these rebound houses, which are also shown in the fourth 

quadrant in Figures 2 and 3, is given in Table 6. 

Table 4. 6. Breakdown of houses with potential rebound effect. “A” denotes the region in 
quadrant 3 above the diagonal (ΔCHS or CS > |ΔCRT|) and “B” denotes the region in quadrant 4 

below the diagonal (ΔCHS or CS < |ΔCRT|) in Figures 1 (cooling) and 2 (heating). 

 Change in Consumption ($/year) 

 Heating Cooling Sum 
  A B A B 

RTcomfort -11,965 118,390 -37,810 69,566 138,181 
HS/CSsavings 20,418 - 59,676 - 80,094 
# of houses 130 1,687 222 633 2,672 

In order to put the savings potential from a thermostat adjustment or a thermal 

integrity improvement in perspective, the net present value (NPV) of annual savings of 

$100, $200, $300, $400, $500, and $600 over 10 years at 0%, 5%, 10% and 20% discount 

rates is calculated. This range of hypothetical annual savings can be extended. However, 
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we used $0-$600 since that covers 99%+ of our sample’s savings potential at an 

individual house level (Table 7). This benefit-cost context illustrates that what kind of 

annual savings at a given discount rate could allow a certain intervention. For example, 

a hypothetical $300/year savings at 5% generates an NPV of $2,317 and could 

accommodate a furnace replacement which can cost $1,450 (Table 8). This NPV-based 

approach can be particularly insightful for utility energy efficiency program managers 

when allocating rebate amounts to specific energy efficiency measures as well as when 

designing subsidized loan programs. Table 9 shows the costs of different energy 

efficiency measures that can be implemented. 

Table 4. 7. Savings potential and number of houses by individual energy efficiency parameter 
changes. 

Savings 
potential 

# of houses 

($/year) RT-NG RT-E BL-NG BL-E HS CS 

0 3,351 3,053 2,555 2,647 2,622 2,622 

1-100 1,301 611 1,842 485 1,836 1,512 

101-200 423 648 633 449 565 660 

201-300 110 380 151 370 150 273 

301-400 36 185 37 278 36 104 

401-500 12 115 18 232 19 36 

501-600 7 64 3 153 10 18 

 
 

 

Table 4. 8. Net present values (NPV) of hypothetical annual savings amounts ($100-$600) across 
different discount rates (0%-20%). 

 Annual Savings ($) 

Discount 
rate (%) 

100 200 300 400 500 600 

0 $1,000  $2,000  $3,000  $4,000  $5,000  $6,000  

5 $772  $1,544  $2,317  $3,089  $3,861  $4,633  

15 $502  $1,004  $1,506  $2,008  $2,509  $3,011  

20 $419  $838  $1,258  $1,677  $2,096  $2,515  
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Table 4. 9. Costs of potential energy-efficiency measures14 

High efficiency central AC $1,450  

High efficiency furnace $1,100  

Attic insulation $1-2/sqft 

Wall Insulation $0.75/sqft 

High efficiency refrigerator $2,000  

As described previously heating or cooling slope of a house is a function of the lossiness 

of the building shell as well as the efficiency of the heating or cooling unit. Looking at 

heating or cooling slope alone does not allow for determining whether the house has an 

insulation problem or needs a heating or cooling unit replacement or all three. 

However, plotting normalized values of heating and cooling slopes (Figure 4) generates 

some insight as to which houses have a heating or a cooling unit problem. In other 

words, if the normalized value of heating slope is large (i.e., inefficient) when the 

normalized value of cooling slope is small (i.e., efficient), it is likely that the heating unit 

should be replaced (shown in the second quadrant in Figure 4). The same principle 

applies for a cooling unit replacement as illustrated in quadrant four in Figure 4. 

Quadrant one in Figure shows the houses that have high normalized values for both 

heating and cooling slopes; they have poor insulation and inefficient heating and cooling 

units. Moreover, quadrant three depicts the houses with low normalized values for 

heating and cooling slopes, which imply good insulation and good efficiency of heating 

and cooling units. Processing natural gas and electricity usage as described in our 

framework facilitates a comparison between heating and cooling profiles and provide 

insight on identifying which houses fall into which quadrants. Unfortunately, additional 

data input is necessary to segregate between insulation or heating/cooling unit 

efficiency issues for quadrants one and three (Figure 4). Table 10 shows the numbers of 

houses in our sample that fall into different quadrants in Figure 4. It is implied that 447 

(second quadrant in Figure 4 and Table 10) houses could benefit from replacing their 

heating unit whereas 1,323 houses could benefit from replacing their cooling unit 

(fourth quadrant in Figure 4 and Table 10). 

                                                        
14 The prices were gathered from Gainesville-area vendors and contractors via phone. 
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Figure 4. 4. Heating slope normalized versus Cooling slope normalized. 

 
 

Table 4. 10. Number of houses in four quadrants in Figure 3. 

Quadrant # of houses 

I  680  
II  447  
III  2,793  
IV  1,323  

 
 
 
 

4.4. Models 

Weighted least squares regression was used to predict the change in utility usage 

potential (ΔC in $/year) that can arise from changing the PRISM efficiency parameters, 
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i.e., reference temperature, heating/cooling slope, baseload consumption, to the 

sample’s median values using structural and demographic house characteristics as 

explanatory variables. The previous chapter discusses the advantages of weighted least 

squares regression method for when each observation’s variability can be measured. 

Each data point represents a PRISM simulation and how it relates to the sample’s 

median.  

Table 11 provides details for the ΔC regression models for reference temperature (RT), 

baseload (BL), heating/cooling slope (HS/CS) and rebound amount both for electricity 

and natural gas, and the resulting statistically significant independent variables (p=0.05). 

The resulting R2’s vary between 6% and 95%, Reference Temperature (RT) for the 

heating/natural gas model having the lowest (5%) and cooling slope electricity savings 

potential having the highest (95%). The analyst can further used predicted ΔC values to 

compute rebound potential on natural gas and electricity usage for each house. 
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Table 4. 11. Regression coefficients for ΔC models in dollars per year. The coefficients are statistically significant at p=0.05. 

Independent Variables Models 
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 Land value ($1000s)  0 30 479.7 0.21 -108 0.23 -4.83 -0.18 301 

 Building value ($1000s)  17.4 106.1 664.9 0.12   -3.72 0.56 -985 

 Misc. value ($1000s)  0 1.8 28.4 0.43 -107 1.06 12.33 0.68 -2,578 

 Tax amount ($1000s)  0 1.8 17.1    281.75 18.50 -3,629 

 Actual area (1000sqft)  0.6 2.2 10.3 -8.97 5,541  54.26 -45.73 76,537 

 Heated area (1000sqft)  0.5 1.6 7.5 -18.49 -4,139 -16.11 -654.60 -25.07 -25,838 

 Age of the building  4 33 70 -0.40 131  2.01 -1.40 582 

 # of bedrooms   1 3 5 4.67 -2,212 6.37 29.88 12.70 48,369 

 # of bathrooms   1 2 7 10.70 4,180 6.56 240.98 -37.88 25,285 

 # of stories   0 1 3 11.91 788 -8.49 237.12 4.74 -20,474 

 Avg. age of occupants  18.2 51.8 90   -0.16  0.75 -1,632 

 Avg. years of occupancy  0 15 87 0.57   -4.67 0.59 1,852 

 Total # of occupants  1 2 7   5.52 -83.49 90.98 -64,101 

 # of teenagers   0 0 2   9.06 188.03 99.62 -39,683 

 # of seniors   0 1 4 5.01  -2.32 97.35 -5.42 5,647 

 # of republicans   0 0 5 -7.01 -1,535 3.17 121.27 2.73 -13,796 

 # of democrats   0 1 7 -5.74 -1,731 3.22 82.95 19.07  

 # of males   0 1 5     -73.55 27,790 

 # of females   0 1 7   -6.38  -96.40 73,074 

Intercept     -5,113   -79.34 -18,267 

R2    0.06  0.09  0.47  0.95  0.54  0.89  

n    5,117  5,110  5,118  5,113  5,243  5,243  
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4.5. Discussion 

This study illustrates that processing monthly utility billing data and historical weather 

data by a load disaggregation software like PRISM can produce insightful results in 

creating the efficiency profile of houses in a given service territory.  Understanding the 

breakdown of utility consumption, e.g. baseload consumption, heating/cooling-related 

usage and reference temperature, can be helpful for comparing individual houses 

reference points of interest, e.g., a sample’s median. We chose the median value as an 

improvement threshold for a demonstration but other reference points can be used to 

explore viable energy-efficiency candidates. This approach also allows categorizing 

houses into subgroups for a targeted energy-efficiency implementation strategy, i.e., 

houses with thermal-integrity improvement potential; with comfort improvement 

potential; with thermostat setting adjustment potential; as well as rebound potential. 

Assessing a large number of houses on the different aspect of their efficiency profile can 

be powerful when implementing utility energy-efficiency programs. Computing Net 

Present Value (NPV) of annual savings potential across the different energy efficiency 

parameters can further shed insight on what kind of interventions may be deemed 

economically attractive from a residential user’s perspective as well as what kind of 

additional financial incentives, e.g. rebates and low-interest loan programs, would be 

necessary to shift customers’ energy efficiency appetite from one bracket to another 

from an economic standpoint.  

The overarching objective of our work was to categorize houses based on energy-

efficiency characteristics and demonstrate that using a simple data-driven approach 

may generate value in execution of analytically targeted energy efficiency program 

outreach. The energy-efficiency decision and value chains consist of multiple parts, from 

a home audit to the actual deployment, where multiple stakeholders partake. Before a 

costly home audit, the stakeholders (e.g., utility, product and services providers) ought 

to diagnose what energy-efficiency issues a house may have in a non-invasive and data-



 89 

driven fashion. This in turn will enable stakeholders to allocate the right marketing 

resources and use appropriate customer messaging tools to increase customer 

conversion and thus the return on their marketing dollars. 

Given the relatively significant R2s of our weighted least squares regression models, 

publically available information can be helpful in assessing residential building stocks’ 

savings potential on different intervention types further improving targeted customer 

outreach. 

The reader should note that PRISM is designed to compute normalized annual 

consumptions (NAC) and the individual parameters that make are more uncertain (Fels, 

1986). Although PRISM calculates the standard error associated with each output 

parameter, it is hard to interpret the individual PRISM parameters for a given house 

because of the uncertainty. This is reflected on our regression models whose beta 

coefficients are derived in part from the uncertain PRISM parameters.  

4.6. Conclusion 

The ecosystem is subject to many market failures and barriers and the absence of access 

to highly private utility usage data further exacerbates the situation. Our framework 

builds predictive models based on publically available data to overcome this problem. 

The generated models can be used by EE program implementers who may not have 

access to digitally available utility usage information, to design, implement and evaluate 

their programs. Assessing the savings potential by end-use as proposed by our work can 

facilitate effective EE program outreach and messaging so that the EE program 

implementers can allocate the right resources to the right consumers for a given EE 

“reservoir”.  

Our study proposed an easy-to-execute framework on disaggregating utility usage 

information into actionable end-use insight. We believe that with the advent of smart 

grid, big data, and improved cloud computing, electric utilities will become savvier and 
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data-driven in their energy-efficiency program implementation. Our framework 

illustrates that a monthly-bill-based approach can be used in load disaggregation, which 

can be extended into exploring the distributions in individual energy efficiency 

parameters. Once the regression models are built, energy-efficiency intervention 

estimates can be determined with only publicly available information. Customer-specific 

outreach and messaging is necessary in compelling consumers to become more energy 

efficient and can be facilitated using our framework based on publically available data 

allowing multiple stakeholders to influence the market.  

Innovation Electricity Efficiency (IEE), an institute of the Edison Foundation, forecasts 

that utility energy-efficiency program expenditures can increase from its current 

national aggregate level of $6.9B to $14.3B by 2025 (2013). While the energy-efficiency 

programs provide financial incentives and are critical, other stakeholders (e.g., home 

improvement product and service providers, contractors and lenders) play a pivotal role 

as well. In the absence of highly private utility usage data non-utility stakeholders 

experience significant limitations to making strategic decisions in a data-driven and 

analytical fashion. This hinders energy-efficiency marketing outreach and deployment. 

Our work based on regression models using publically available data reduces this barrier 

allowing energy-efficiency stakeholders informed decisions. 

Utilities ought to understand their customer-base better at individual house and 

potential intervention prospect level. Future research should examine the validity of our 

estimates and conduct this exercise using higher frequency utility data, e.g., hourly 

usage, which may bear additional value.  Moreover, the validity of our assumptions and 

results regarding the regression analyses should be tested by extending this work to 

other geographic regions since the statistical predictions accuracy may be undermined 

by where the publicly available data come from.  

There are significant limitations to our work. Voter registration records have 

information only on the registered citizens who are eligible to vote, i.e., no information 
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on non-voters and children. Further, the models underlie PRISM-processed data whose 

results are uncertain. PRISM does successfully process house data with missing or 

inconsistent utility readings – we had to remove these houses from our end sample 

(n=5,243). This can result in substantial bias in our models. 
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5. Conclusions and Policy Implications 

In our work we have shown that publically available data can be used to model 

residential utility usage in the absence of highly private utility data. We have 

demonstrated that accounting for billing lag when attributing usage to individual 

months is of critical importance, particularly for statistical modeling of monthly usage. 

The accuracy of such models can be diminished if billing lag is not addressed as it can 

cause significant deviations.   

We acknowledge that our approach has limitations whose extent remains to be 

explored. In other words, it is unknown how accurately our models based on the 

Gainesville sample can predict utility usage for houses outside that are outside our 

sample, e.g., other houses in Gainesville, Florida or other regions. Collection of further 

data in other locations can shed light on the extent of our models’ accuracy. Comparing 

these results to Department of Energy’s Residential Energy Consumption Survey (RECS), 

which harbors aggregate residential energy data for different regions in the US., can 

generate further insight on our accuracy as well as provide suggestions on how better 

RECS can be designed and collected. This prospective sample/out-of-sample analysis can 

prove useful in understanding specific limitations of our models and the independent 

variables of interest. 

Additionally, we did not incorporate any demographic information on occupants who 

are not eligible and registered to vote. Our sample did not account for non-voters and 

children which can cause significant bias. Also, PRISM does not process house data with 

missing or inconsistent utility readings. We had to remove these houses from our 

sample and this can cause additional bias in our final models. 

The regression models built have significant explanatory power in illustrating the utility 

usage that can be used by policy makers and third-party developers and operators 

engaged in energy efficiency and real estate businesses for strategic planning. Aggregate 

data like RECS does not allow for profiling individual houses and using statistical models 
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based on publically available data can establish the first step to examine the geographic 

variations in utility usage for large regions. This will pave a path to study what physical 

and demographic factors drive usage and how they should be treated to promote 

energy efficiency deployment. This can help utilities plan for future energy demand and 

power generation capacity. 

Processing utility usage information using software like PRISM can help building 

baselines and define efficiency profiles for individual houses in utility service territories.  

However, utility usage information is highly private and typically not shared with 3rd 

parties. This work shows that such publically available information can help predict 

efficiency parameters, as computed by PRISM, i.e., thermostat setting, thermal integrity, 

baseload consumption, within varying degrees of explanatory power. Our findings 

further underscore that availability of data and analytical use thereof are critical for 

understanding the US building stock for energy efficiency targeting and accelerate 

energy efficiency deployment. Expanding available datasets to different frontiers such 

as smart meters, smart thermostats or house audits can strengthen the potential 

analytical insight we can derive. 

Being able to use publically available data and accurately predict structure thermal 

integrity, baseload consumption and thermostat setting are valuable because every 

structure has different physical and demographic characteristics and only knowing what 

constitutes an energy-efficiency problem can lead to formulation of an intelligent 

intervention. Only disaggregating utility usage into different end-uses can facilitate 

diagnosing residential energy issues. Using statistical models based on publically 

available data on individual houses allows this diagnostic exercise to scale up for large 

regions which provides critical input for utilities and policy-makers to develop 

analytically-driven energy-efficiency targeting strategies. This in turn will enable 

decision-makers to assess residential building stocks from an economic as well as a 

social welfare perspective, and design, implement and evaluate their energy-efficiency 

programs systematically.  Utilization of publically available data and statistical models, 
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as proposed by our work, can overcome the barrier to access to highly private utility 

usage data and can help EE program implementers allocate the right resources to the 

right consumers and EE measures to meet their state-mandated demand-reduction 

targets in an analytical and informed fashion. 

Our study proposed an easy-to-execute framework on disaggregating utility usage 

information into actionable end-use insight. We believe that with the advent of smart 

grid, big data, and improved cloud computing, electric utilities will become savvier and 

data-driven in their energy-efficiency program implementation. Our framework 

illustrates that a monthly-bill-based approach can be used in load disaggregation, which 

can be extended into exploring the distributions in individual energy efficiency 

parameters. Once the regression models are built, energy-efficiency intervention 

estimates can be determined with only publicly available information. Customer-specific 

outreach and messaging is necessary in compelling consumers to become more energy 

efficient and can be facilitated using our framework based on publically available data 

allowing multiple stakeholders to influence the market.  

Innovation Electricity Efficiency (IEE), an institute of the Edison Foundation, forecasts 

that utility energy-efficiency program expenditures can increase from its current 

national aggregate level of $6.9B to $14.3B by 2025 (2013). While the energy-efficiency 

programs provide financial incentives and are critical, other stakeholders (e.g., home 

improvement product and service providers, contractors and lenders) play a pivotal role 

as well. In the absence of highly private utility usage data non-utility stakeholders 

experience significant limitations to making strategic decisions in a data-driven and 

analytical fashion. This hinders energy-efficiency marketing outreach and deployment. 

Our work based on regression models using publically available data reduces this barrier 

allowing energy-efficiency stakeholders informed decisions. 

Assessing a large number of houses on the different aspect of their efficiency profile can 

be powerful when implementing utility energy-efficiency programs. Computing Net 
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Present Value (NPV) of annual savings potential across the different energy efficiency 

parameters can further shed insight on what kind of interventions may be deemed 

economically attractive from a residential user’s perspective as well as what kind of 

additional financial incentives, e.g., rebates and low-interest loan programs, would be 

necessary to shift customers’ energy efficiency appetite from one bracket to another 

from an economic standpoint.  

The energy-efficiency decision and value chains consist of multiple parts, from a home 

audit to the actual deployment, where multiple stakeholders partake. Before a costly 

home audit, the stakeholders (e.g., utility, product and services providers) ought to 

diagnose what energy-efficiency issues a house may have in a non-invasive and data-

driven fashion. This in turn will enable stakeholders to allocate the right marketing 

resources and use appropriate customer messaging tools to increase customer 

conversion and thus the return on their marketing dollars. 

Utilities ought to understand their customer-base better at individual house and 

potential intervention prospect level. Future research should examine the validity of our 

estimates and conduct this exercise using higher frequency utility data, e.g., hourly 

usage, which may bear additional value. Moreover, the validity of our assumptions and 

results regarding the regression analyses should be tested by extending this work to 

other geographic regions since the statistical predictions accuracy may be undermined 

by where the publicly available data come from.  

 


