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Abstract 
The recent growth in wind power is transforming the operation of electricity systems by 

introducing variability into utilities’ generator assets.  System operators are not experienced in 

utilizing significant sources of variable power to meet their loads and have struggled at times to 

keep their systems stable.  As a result, system operators are learning in real-time how to 

incorporate wind power and its variability.  This thesis is meant to help system operators have a 

better understanding of wind power variability and its implications for their electricity system.   

Characterizing Wind Power Variability 

We present the first frequency-dependent analyses of the geographic smoothing of 

wind power's variability, analyzing the interconnected measured output of 20 wind plants in 

Texas. Reductions in variability occur at frequencies corresponding to times shorter than ~24 

hours and are quantified by measuring the departure from a Kolmogorov spectrum. At a 

frequency of 2.8x10-4 Hz (corresponding to 1 hour), an 87% reduction of the variability of a 

single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 

wind plants produces only an additional 8% reduction.  We use step-change analyses and 

correlation coefficients to compare our results with previous studies, finding that wind power 

ramps up faster than it ramps down for each of the step change intervals analyzed and that 

correlation between the power output of wind plants 200 km away is half that of co-located 

wind plants.  To examine variability at very low frequencies, we estimate yearly wind energy 

production in the Great Plains region of the United States from automated wind observations at 

airports covering 36 years. The estimated wind power has significant inter-annual variability and 

the severity of wind drought years is estimated to be about half that observed nationally for 

hydroelectric power. 
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Estimating the Cost of Wind Power Variability 

We develop a metric to quantify the sub-hourly variability cost of individual wind plants 

and show its use in valuing reductions in wind power variability.  Our method partitions wind 

energy into hourly and sub-hourly components and uses corresponding market prices to 

determine the cost of variability.  The metric is applicable to variability at all time scales faster 

than hourly, and can be applied to long-period forecast errors. We use publically available data 

at 15 minute time resolution to apply the method to ERCOT, the largest wind power production 

region in the United States. The range of variability costs arising from 15 minute to 1 hour 

variations (termed load following) for 20 wind plants in ERCOT was $6.79 to 11.5 per MWh 

(mean of $8.73 ±$1.26 per MWh) in 2008 and $3.16 to 5.12 per MWh (mean of $3.90 ±$0.52 per 

MWh) in 2009.  Load following variability costs decrease as wind plant capacity factors increase, 

indicating wind plants sited in locations with good wind resources cost a system less to 

integrate.  Twenty interconnected wind plants have a variability cost of $4.35 per MWh in 2008.  

The marginal benefit of interconnecting another wind plant diminishes rapidly:  it is less than 

$3.43 per MWh for systems with 2 wind plants already interconnected, less than $0.7 per MWh 

for 4-7 wind plants, and less than $0.2 per MWh for 8 or more wind plants.  This method can be 

used to value the installation of storage and other techniques to mitigate wind variability. 

Estimating How Wind Power Variability Affects Power Plant Emissions 

Renewables portfolio standards (RPS) encourage large scale deployment of wind and 

solar electric power, whose power output varies rapidly even when several sites are added 

together. In many locations, natural gas generators are the lowest cost resource available to 

compensate for this variability, and must ramp up and down quickly to keep the grid stable, 

affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system 

using measured 1-minute time resolved emissions and heat rate data from two types of natural 
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gas generators, and power data from four wind plants and one solar plant. Over a wide range of 

renewable penetration, we find CO2 emissions achieve ~80% of the emissions reductions 

expected if the power fluctuations caused no additional emissions. Pairing multiple turbines 

with a wind plant achieves ~77 to 95% of the emissions reductions expected. Using steam 

injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with 

dry control NOx emissions increase substantially. We quantify the interaction between state 

RPSs and constraints such as the NOx Clean Air Interstate Rule (CAIR), finding that states with 

substantial RPSs could see upward pressure on CAIR NOx permit prices, if the gas turbines we 

modeled are representative of the plants used to mitigate wind and solar power variability. 
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Chapter 1 - Introduction 

1.1 Overview and Motivation 

The recent growth in wind power is transforming the operation of electricity systems by 

introducing variability into utilities’ generator assets.  Due to a lack of cost-effective storage 

solutions, utilities must continually produce the amount of electricity consumed by their customers.  

Utilities have traditionally relied on dispatchable generators1 to serve their customers’ ever 

changing demand for electricity.   Wind plants, on the other hand, are not dispatchable assets and 

system operators are currently learning how to incorporate significant quantities of wind energy. 

 Wind was one of the first power sources harnessed by civilizations.  The earliest known 

sailing vessels date back to 4000 BC and the earliest known windmills (to pump water or grind grain) 

date back to 2000 BC (Anderson, 2003; Hinrichs and Kleinbach, 2002).  Windmills became prevalent 

throughout civilized societies numbering over 8,000 in Holland and 10,000 in England in 1750.  In 

the United States, rural farmers used them extensively to pump water for their crops, grind flour, 

and later provide electricity for their farms.  Yet windmills were made obsolete with the 

development of the steam engine and the Rural Electrification Act of 1936 (Hinrichs and Kleinbach, 

2002). 

 The modern era of wind power started with the oil embargo of 1973 and the subsequent 

energy crisis.  It was during the high fuel prices of the 1970s that the United States and Europe were 

suddenly aware of their dependence on foreign fuel supplies and they began efforts for energy 

independence.  The United States and Europe immediately responded by pouring tens of millions of 

                                                           
1
 Generators such as fossil-fuel, nuclear, or hydro power plants that system operators can dispatch to provide 

a certain amount of power at a certain amount of time. 
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dollars into the research and development of wind turbines to generate electricity (Righter, 1996).  

Hindsight has shown the governments’ R&D effort was not a primary driver of innovation and that 

federal subsidies were a better mechanism to spur innovation in wind turbine design (Samaras, 

2006).   

 The United States needed to do more than just fund R&D if wind power was going to have a 

chance.  During the late 1970s, the Carter administration realized electric utilities in the United 

States would not pursue renewable energy projects even if mature technology existed (Graves et al., 

2006).  As a result, the United States enacted the Public Utilities Regulatory Policies Act of 1978 

(PURPA)2 to encourage the development and deployment of cogeneration and green energy 

technologies.  PURPA enabled third parties to develop and operate power plants but restricted the 

types of power plants to small (<80 MW) renewable energy and cogeneration projects.  Today, 

approximately 83% of the wind projects developed between 1980 and 2008 are owned by third 

party power producers (Wiser and Bolinger, 2009).  PURPA, thus, was a significant policy act that 

was vital to the future build out of wind power. 

 Yet even with the R&D efforts and the implementation of PURPA, wind power was still in its 

infancy during the 1970s and 1980s because it was not cost-competitive with conventional 

dispatchable generators.  The United States realized wind power needed subsidies to encourage 

large-scale deployment.  This was first observed in the early 1980s when the United States shifted its 

focus from funding wind turbine R&D to providing wind power subsidies.  Approximately 1.5 GW of 

wind power was installed between 1980 and 1985 as a result (figure 1-1).  The early federal 

subsidies were allowed to expire as soon as the price of oil fell substantially in 1986 (Hinrichs and 

Kleinbach, 2002).  Federal subsidies for wind power were absent until 1994 when Congress 

                                                           
2
 It was also designed to increase the efficiency of our electricity use. 
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implemented the Production Tax Credit (PTC).  The PTC was a sizable subsidy and as seen in figure 1-

1, the wind power industry in the United States was dependent on the PTC.  The US wind power 

industry grew significantly when the PTC was in effect and much more slowly when the PTC expired 

briefly in 2000, 2002, and 2004.  Thus, the PTC was the final piece the US wind industry needed to 

spur the modern increase in wind power in the United States.    

     

Figure 1-1 - Recent development of wind power in the United States (Wiser and Bolinger, 2009) 

  

As a result of the PTC and PURPA, wind grew at an average rate of 28% from 1998 to 2008 

(EIA, 2009).  Wind power penetration, in terms of energy, has gone from << 1% in 1997 to ~2% in 

2009 in the United States (Wiser and Bolinger, 2009).  The individual states in wind rich regions have 

higher penetration rates.  Lawrence Berkeley Laboratory estimates 15 states have wind energy 

penetration rates > 2% with Iowa (13.3%), Minnesota (10.4%), and South Dakota (8.8%) as the three 

states with the highest penetration levels (Wiser and Bolinger, 2009).  Aggressive renewables 

portfolio standards (RPS) enacted by 29 states and new federal and state subsidies are helping 

ensure wind power maintains its aggressive growth for the next decade. 
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System operators are not experienced in utilizing significant quantities of variable power to 

meet their loads.  As a result, system operators have struggled at times to keep their systems stable.  

The Electricity Reliability Council of Texas (ERCOT), for example, worked hard to keep their system 

stable when it lost ~1.7 GW of wind power over a 4 hour period on February 26, 2008.  The sudden 

die-off of wind adversely coupled with an unanticipated rise in ERCOT’s load and forced ERCOT to 

implement their Emergency Electric Curtailment Plant (EECP) to curtail 1200 MW of interruptible 

load (ERCOT, 2008) 3.  In another example, the wind in Bonneville Power Authority’s (BPA) territory 

unexpectedly calmed for 12 days in January 2009 (BPA, 2009).  As a result, BPA lost 1 GW of wind 

power for a week and a half and was forced to use its hydro reserves in wind’s place.  

 System operators are learning in real-time how to incorporate wind power and its 

variability.  This thesis is meant to help system operators have a better understanding of wind 

power variability and its implications for their electricity system.  In Chapter 2, I present methods to 

characterize large penetrations of wind power and measure reductions in wind power variability as 

wind plants are interconnected in ERCOT.  In Chapter 3, I present methods to estimate the cost of 

wind power variability and value reductions in wind power variability.  Finally, in Chapter 4, I 

estimate what effect wind variability has on the emissions of fossil fuel generators and what 

implications this has for emissions displacement calculations. 
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Chapter 2 - The Variability of Interconnected Wind Plants 

2.1 Chapter Information 

Authors: Warren Katzenstein, Emily Fertig, and Jay Apt 

Published: Aug 2010 in Energy Policy. 

Citation: Katzenstein, W., Fertig, E., Apt, J., 2010.  The Variability of Interconnected Wind Plants.  

Energy Policy, 38(8), p.4400-4410.  

2.2 Abstract  

We present the first frequency-dependent analyses of the geographic smoothing of wind 

power's variability, analyzing the interconnected measured output of 20 wind plants in Texas. 

Reductions in variability occur at frequencies corresponding to times shorter than ~24 hours and are 

quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8x10-4 Hz 

(corresponding to 1 hour), an 87% reduction of the variability of a single wind plant is obtained by 

interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an 

additional 8% reduction.  We use step-change analyses and correlation coefficients to compare our 

results with previous studies, finding that wind power ramps up faster than it ramps down for each 

of the step change intervals analyzed and that correlation between the power output of wind plants 

200 km away is half that of co-located wind plants.  To examine variability at very low frequencies, 

we estimate yearly wind energy production in the Great Plains region of the United States from 

automated wind observations at airports covering 36 years. The estimated wind power has 

significant inter-annual variability and the severity of wind drought years is estimated to be about 

half that observed nationally for hydroelectric power. 
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2.3 Introduction 

Currently 29 of the United States of America have renewables portfolio standards (RPS) that 

mandate increasing their percentage of renewable energy, and the US House of Representatives has 

enacted a federal renewable electricity standard (Database of State Incentives for Renewables and 

Efficiency, 2009; Waxman and Markey, 2009).  Major electricity markets such as California, New 

York, and Texas expect wind to play a large role in meeting their RPS.  As a result of the state RPS 

requirements and a federal production tax credit equivalent to a carbon dioxide price of 

approximately $20/metric ton (Dobesova et al., 2005), wind power net generation is currently 

experiencing very high growth rates (51% in 2008, 28% average annual growth rate over the past 

decade) in the United States (EIA, 2009). 

Wind power’s variability and fast growth rate have led areas including Cal-ISO, PJM, NY-ISO, 

MISO, and Bonneville power to undertake wind integration studies to assess whether their systems 

can accommodate significant (5-20%) penetrations of wind power (CAISO, 2007; DOE, 2008; 

EnerNex, 2009; GE, 2008; Hirst, 2002).  Included in each integration study is how wind power 

variability can be mitigated with options such as storage, demand response, or fast-ramping gas 

plants.  Some system operators are beginning to charge wind operators for costs arising from the 

integration of high wind penetration in their system. In 2009, the Bonneville Power Authority (BPA) 

introduced a wind integration charge of $1.29 per kW per month (~0.6¢/kWh assuming a 30% 

capacity factor), citing reliability risks and substantial costs encountered in fulfilling 7% of their 

energy needs with wind power (BPA, 2009).   

Previous studies have shown that interconnecting wind plants with transmission lines 

reduces the variability of their summed output power as the number of installed wind plants and 

the distance between wind plants increases (Archer and Jacobson, 2007; Czisch and Ernst, 2001; 
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Giebel, 2000; IEA, 2005; Kahn, 1979; Milligan and Porter, 2005; Wan, 2001).  Kahn (1979) estimates 

the increased reliability of spatially separated wind plants, writing that “wind generators can 

displace conventional capacity with the reliability that has been traditional in power systems.”   

Kahn (1979) calculates the loss of load probability (LOLP) and the effective load carrying capability 

(ELCC) of up to 13 interconnected California wind plants.   

Czisch and Ernst (2001) and Giebel (2000), in separate studies, show the correlation 

between wind plants decreases with distance.  Each concludes wind power variability is reduced by 

summing the output power from spatially separated wind plants.  Czisch and Ernst (2001) and Giebel 

(2000) both find that wind plant outputs are correlated even over great distances (correlation 

coefficient > 0).   

Milborrow (2001) shows a smoothing effect by calculating the output power change over a 

certain time interval (step-change) of wind plants.  He finds the one-hour power swing of 1,860 MW 

of wind power in Western Denmark over a three month period in 2001 was at most 18% of installed 

capacity compared with 100% for a single wind plant.  In contrast, Bonneville Power Authority in the 

U.S. Pacific Northwest experienced a maximum one-hour step-change of 63% in 2008 for their 1,670 

MW of wind power.   

Archer and Jacobsen (2007) write that interconnected wind plants would produce “steady 

deliverable power.”  Using hourly and daily averaged wind speed measurements taken at 19 airports 

located in Texas, New Mexico, Oklahoma, and Kansas, they estimate generation duration curves and 

operational statistics of wind power arrays.  They find that “an average of 33% and a maximum of 

47% of yearly averaged wind power from interconnected plants can be used as reliable, baseload 

electric power” (Archer and Jacobson, 2007).   
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The previous studies analyze wind’s variability primarily in the time domain, using metrics 

such as 10-minute step-change histograms, correlation coefficients and LOLP.   

Frequency domain analysis is a powerful complementary method that can be used to 

characterize variability and evaluate whether and at what frequencies smoothing occurs as more 

wind plants are introduced into a system.  We use Fourier transform techniques to estimate the 

power spectral density of wind generated power (PSD) (Apt, 2007; Cha and Molinder, 2006; Press et 

al., 1992) and characterize the variability of actual wind plant output within ERCOT, the electricity 

market serving most of Texas.  We also use step-change analyses and correlation coefficients to 

characterize the variability of ERCOT wind plants and wind plants modeled from wind monitoring 

stations located throughout the Midwest and Great Plains and compare our results with previous 

studies.   

To characterize the year-to-year variations of wind power production, we calculate the 

yearly output of wind power by modeling wind plants over a span of 36 years.  We examine the 

existence and likely severity of wind drought years as compared to hydroelectric power reduction by 

rainfall droughts. 

2.4 Data 

We use both ERCOT wind plant power output data and National Oceanic and Atmospheric 

Administration (NOAA) wind speed data for our analyses.  We use 15-minute time resolution real 

power output data from 20 wind plants within ERCOT (figure 2-1)4.  The ERCOT data were obtained 

from ERCOT’s website and contained no dropouts.  If necessary, data from each wind plant are 

scaled to the end-of-the-year capacity of the wind plant to adjust for mid-year capacity additions.  

                                                           
4 Electric Reliability Council of Texas (2009) Entity-Specific Resource Output.  Retrieved Feb. 18, 2009 from 

ERCOT’s Planning and Market Reports.  Available: http://www.ercot.com/gridinfo/sysplan/ 
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We use 2008 wind power data from Bonneville Power Authority to examine whether results similar 

to our ERCOT results are seen in another system.  BPA provides 5-minute system wind power data 

on its website5.  There were 0.04% of the data missing from BPA’s 2008 wind data set.  

 

Figure 2-1 - Locations of the ERCOT wind plants from which data were obtained. 

When examined in the frequency domain, ERCOT’s data exhibit the Kolmogorov spectrum of 

wind plants as found by Apt (2007).  The Nyquist frequency, the highest frequency the data can 

represent without aliasing, is 5.6 x 10-4 Hz (corresponding to 30 minutes) for ERCOT’s 15-minute 

wind power output data.      

                                                           
5 Bonneville Power Authority wind generation in balancing authority.  Retrieved May 6, 2009.  Available at 

http://www.transmission.bpa.gov/business/operations/wind/ 
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We use NOAA ASOS two-minute resolution wind speed data to estimate the effect of 

interconnecting up to 40 wind plants throughout 7 states located in the Midwest, Southwest, and 

Great Plains regions6.  ASOS is a joint project among NOAA, the Department of Defense, the Federal 

Aviation Administration, and the US Navy with ~ 1000 stations that automatically record surface 

weather conditions (NOAA et al., 1998).  We selected 40 stations to represent the high wind energy 

locations of the Great Plains region where wind plants are currently being developed; Archer and 

Jacobson (2007) analyzed a subset of this region.  Each minute, ASOS stations record wind speed 

and direction averaged over the previous two minutes to the neared nautical mile per hour.   Table 

2-1 in appendix A lists the 40 ASOS sites we use and figure 2-2 plots their location.  The average 

distance between the 40 ASOS sites we use is 785 km and the median distance is 725 km.   

                                                           
6 See table 2-1 in the Appendix for a list of specific sites.  Data are available at 

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/ 
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Figure 2-2 – Locations of the airports from which data were obtained. 

There are three limitations to using ASOS wind speed data to model wind plants.  The first is 

that the data are reported as integer knots (NOAA et al., 1998). The second is that the data are a 

running 2-minute average. Both reduce the high frequencies we can resolve in the frequency 

domain (Over and D’Odorico, 2002).  A noise floor is evident in the power spectral density, caused 

by the one knot amplitude resolution of the data. The effect of averaging is a departure from the 

Kolmogorov spectrum at frequencies greater than approximately 2x10-4 Hz (periods of 90 minutes or 

shorter) that we do not observe in non-ASOS anemometer data.  The third limitation of the ASOS 
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data set is prevalence of bad data7.  In 2007, our selected ASOS sites had an average bad data rate of 

7.7%.  Spencer Municipal Airport, Iowa (KSPW) had the best data collection in our sample with a bad 

data rate of 4.6% and Theodore Roosevelt Regional Airport in Dickinson North Dakota (KDIK) had the 

worst with a bad data rate of 16.5%.  

We use NOAA hourly data obtained from airport sites (squares in figure 2-2) to study how 

the energy output of wind plants varies over many years.  There is significant variation in the 

historical hourly data sets of the 40 airports prior to ASOS deployment in the 1990s.  Some airports 

recorded wind speeds every third hour and only during the day.  Data dropouts of months to years 

are present in the majority of the data sets.  We used only the 16 airports out of the 40 that had 

hourly wind speed data from 1973 to 2008 and did not have a data dropout greater than 5 days.  

The 16 sites are listed in table 2-2 in appendix A and had an average missing data rate of 13%.   

2.5 Methods 

2.5.1 Interconnecting Wind Plants 

We simulate wind plants interconnected with uncongested transmission capacity 

(sometimes called the copper plate assumption) by summing together either ERCOT wind plant 

power output data or NOAA airport wind speed data (taken at 8 or 10 meters, depending on the 

station) scaled up to a height of 80 meters using a method outlined in section 2.5.3 and transformed 

to power using a cubic curve (equation 2-1) that provides a good match to observed data from 1.5 

MW turbines and turbine-mounted anemometer data. 

 

                                                           
7 Bad ASOS data were data dropout where periods of time were missing from the data set.   
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Equation 2-1 

���� �  �341 � 277����� � 62������ � 2.5������
15000

� if ����� � 2.9 m/s and ����� % 14 m/s����� � 14 m/s����� % 2.9 m/s  

Previous work indicates that wind power variability can be reduced by either increasing the 

number of wind plants or increasing the distance between wind plants.  For our step change and 

frequency analyses, we add stations together according to their location.  We select an ERCOT wind 

plant as the starting point, calculate the distance to each of the other stations using a WGS-84 

ellipsoidal Earth, and sort the results from closest to farthest wind plant (Vincenty, 1975).  We 

simulate interconnected wind plants by adding the closest wind plant’s power to the system, 

perform step change and PSD analyses, and repeat until all wind plants have been interconnected.  

The same method is used to add ASOS stations together by distance. 

2.5.2 Missing Data 

The 1-minute ASOS and hourly NOAA data sets are incomplete.  For the ASOS data, we treat 

missing data as follows.  If the length of the missing data segment is less than 3 minutes, then the 

missing data are filled in by interpolating between the 2 closest points.  Any missing data segments 

longer than 3 minutes are excluded from the summed result.   

For the NOAA hourly data set used for the wind drought analysis, any missing data segments 

with a length of 3 hours or less are filled in by interpolating between the 2 closest points.  Any 

missing data segments with a length greater than 3 hours but less than 120 hours are filled in using 

average wind speeds calculated from the previous four weeks for each hour of the day.  We then 

take the time of day average segment that coincides with the missing data segment and scale it to 

match its boundaries with the boundaries of the surrounding good data segments.  Any data set that 

has a missing data segment longer than 120 hours is excluded.  



15 

 

2.5.3 Scaling Wind Data to Hub Height 

The airport wind speed measurements were taken at heights of 8 to 10 meters and are 

scaled up to 80 meters before being transformed to power data.  We use a logarithmic velocity 

profile to estimate wind speeds at a hub height of 80 meters (equation 2-2) (Seinfeld and Pandis, 

2006).  The logarithmic velocity profile assumes the surface layer is adiabatic.  The logarithmic 

velocity profile depends on a surface roughness length that characterizes the boundary layer near 

the ASOS station; we use &' � 0.03 meters.   

Equation 2-2 

+,---�80/� � +,0 ln 80&'  

where 

+, � 0+-,�23�
ln 23&'

 

23 � reference height 
&' � surface roughness length 

κ ~ 0.4 (von Karman constant) 

2.5.4 Correlation Analysis 

Correlation between power output time series of two wind plants can be quantified by 

Pearson’s correlation coefficient: 

Equation 2-3 

9 � ∑ �;<=;>��?<=?-�<@A@BC∑ �;<=;>�D< C∑ �?<=?-�D< ; (−1≤ρ≤1). 

Power outputs of two wind plants that rise and fall in relative unison have ρ near one, and 

little smoothing takes place.  A correlation coefficient near zero indicates that wind power outputs 

vary independently of each other.  A negative correlation coefficient, although not seen in the data, 
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would indicate anticorrelation between wind power outputs such that high power output from one 

wind plant is associated with low power output from the other; maximum smoothing would occur if 

ρ = -1. Previous studies have shown that as the distance between wind plants increases, the 

correlation between their outputs decreases.  The standard deviation of summed time series signals 

is dependent on the correlation between each individual time series signal (equation 2-4) (Giebel, 

2000).   

Equation 2-4  

σ sum
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2.5.5 Step Change Analysis 

The most common time domain method used in wind power studies is a step change 

analysis (see for example Wan, 2004, 2007) where the change in power for a given time step is 

calculated and either reported as power (e.g. MW) or as a percentage of the rated capacity of a 

wind plant (equation 2-5).  We calculate step changes as a percentage of the maximum power 

produced by a wind plant or summed plants (equation 2-6). 

Equation 2-5  
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We calculate step changes at 30-minute, 60-minute and 1-day time intervals because they 

are important to ancillary services and day-ahead electricity markets.  We plot the maximum step 
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change observed versus the distance from the original starting wind plant to the next wind plant 

interconnected.   

2.5.6 Frequency domain  

To characterize the smoothing of wind power’s variability as a function of frequency as wind 

plants are interconnected, we analyze wind power in the frequency domain. Our results can be used 

to help determine the most economical generation portfolio to compensate for wind’s variability.  

For the Texas wind plant data, we compute the discrete Fourier transform of the time series of 

output in order to estimate the power spectrum (sometimes termed the power spectral density or 

PSD) of the power output of a wind plant. 

One of the attributes of power spectrum estimation is that increasing the number of time 

samples does not decrease the standard deviation of the PSD at any given frequency fk. In order to 

take advantage of a large number of data points in a data set to reduce the variance at fk, the data 

set may be partitioned into K time segments. The Fourier transform of each segment is taken and a 

PSD constructed. The PSDs are then averaged at each frequency, reducing the variance of the final 

estimate by the number of segments (and reducing the standard deviation by K/1 .  The length of 

a data set determines the lowest frequency that can be resolved and segmenting increases the 

lowest frequency we are able to resolve in a signal by a factor of K (Apt, 2007; Press et al., 1992).  

Since we wish to characterize wind power variability in the time range of current market operations 

(24 hours to 15 minutes), the decreased ability to examine frequencies corresponding to very long 

times is a small price to pay for the decreased variance.  

A Fourier transform requires evenly sampled data points to transform a signal from the time 

domain to the frequency domain.  The Texas wind plant output data is complete for the time period 

(2008) examined. However, the ASOS data has significant gaps.  For example, the longest continuous 
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data segment for one ASOS station was 42 days and the longest coincident continuous data segment 

of the 40 summed ASOS stations was 12 hours.  The high percentage of missing data would limit our 

frequency analysis in two ways.  First, we would be able to use only the 12 hours of coincident 

continuous good wind speed data.  Second, we wouldn’t be able to use segmenting to reduce the 

variability of the ASOS PSDs because the length of the coincident continuous good data is so short.  

To overcome the limitations imposed by the high percentage of missing ASOS data we calculate 

PSDs by using a Lomb periodogram instead of a periodogram estimated using a Fourier transform.  

The Lomb periodogram (Lomb, 1976) was developed for use in intermittent astrophysics data 

(equation 2-7) and does not require evenly sampled data points to calculate the PSD of a signal.  

Instead of calculating the Fourier frequencies of a signal, it applies a least-squares fit of sinusoids to 

the data to obtain the frequency components.  The time delay component τ in equation 2-7 ensures 

the frequencies produced by the Lomb periodogram are orthogonal to one another.  We implement 

the Lomb periodogram by using the algorithm of Press et al. (1992).   

Equation 2-7 - Lomb Periodogram 
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1
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In computing the PSDs, we use 8 segments for the ERCOT data and 32 segments for the 

ASOS data to reduce the variability of using a year’s worth of data.  The algorithm used to 
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implement the Lomb periodogram requires two factors, ofac and hifac, to be defined for each signal.  

The first factor, ofac, is an oversampling factor that we set to 6 for ASOS data and 1 for ERCOT data.  

The second factor, hifac, determines the highest frequency the algorithm is able to resolve.  We 

calculate hifac for each signal to produce the correct Nyquist frequency.   

Kolmogorov (1941) proposed that the energy contained in turbulent fluids is proportional to 

the frequency of the turbulent eddies present in the fluid, E α f β, with β = - 5/3, and this result has 

been widely verified in subsequent empirical studies (for example, Grant et al., 1961; Monin, 1967).  

Apt (2007) has shown the power spectrum of a wind plant’s power output follows a Kolmogorov 

spectrum between frequencies of 30 seconds and 2.6 days.  We expect departures from Kolmogorov 

of β < -5/3 if any smoothing occurs when wind plants are interconnected.  As wind plants are 

interconnected we estimate β by linearly regressing the log of the PSD of the summed wind power 

between the frequencies of 1.2x10-5 to 5.6x10-4 Hz (24 hours to 30 minutes). 

Kolmogorov’s relationship is valid for wind only for frequencies corresponding to times of 

approximately 24 hours or less.  It has been shown the spectra of wind speed turbulence flatten for 

longer frequencies, indicating wind has constant energy in its lower frequencies (longer than a few 

days) (Jang and Lee, 1998).  We use a modified von Karman formulation (equation 2-8) for wind 

speed turbulence spectrum to model the power spectrum of one wind plant over the frequency 

range of 43 days to 30 minutes (Kaimal, 1972).   

To estimate the smoothing arising from interconnecting wind plants, we determine if 

departures from a Kolmogorov spectrum occur in the following manner.  We fit equation 2-8 to the 

PSD of a single wind plant to determine a value for B.   
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Equation 2-8 
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As we add wind plants to the single wind plant, we fit equation 2-8 to the resulting summed PSD to 

determine a value for A and produce an appropriately scaled single wind plant model PSD.  We then 

compare the slope of the log of the summed PSD to the -5/3 slope of the single wind plant model in 

the Kolmogorov region between frequencies corresponding to 30 minutes and 24 hours.  We 

measure deviations from the spectrum of equation 2-8 by dividing the power contained in each 

frequency of the summed PSD by the power estimated in each frequency of the single wind plant 

model.  If no smoothing occurs when wind plants are interconnected the result should be close to 1 

for all frequencies.  If there is a reduction in variability then there will be frequencies for which the 

fraction is less than 1.  Finally, we use a linear regression on the log of the fractions to display the 

mean fraction response versus frequency.   

2.5.7 Wind Drought Analysis 

Analyzing long-term variations in wind power production is important for system planning.  If 

significant drought periods occur, system planners must ensure adequate resources and renewable 

energy credits (RECs) are available to cover the wind power underproduction.  Similarly, wind 

production that is significantly above the long-term average may depress the market price for RECs 

and increase the requirements for compensating power sources. 

We use hourly NOAA data to estimate the yearly energy production of wind turbines from 1973 

to 2008.  We scale the wind speed measurements to 80 meter hub heights (see section 2.5.3) and 

transform it to hourly power data with a power curve (see section 2.5.1).  A surface roughness of 
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0.03 meters is assumed for all of the airports.  For each year the hourly power data from all 16 

turbines is summed and compared to the mean yearly power production for the 35 year period. 

2.6 Results 

2.6.1 Frequency Domain 

In figure 2-3, we show the ERCOT PSD results for 1, 4, and 20 wind plants using 15 minute 

time resolution data for 2008.  A single wind plant follows a Kolmogorov spectrum (f  -5/3) from 

1.2x10-5 to 5.6x10-4 Hz (corresponding to times of 24 hours to 30 minutes).  When 4 wind plants are 

added together, the power contained in this region decreases with frequency at a faster rate ( f  -2.49 

instead of f  -1.67).  For 20 wind plants the power decreases even more rapidly with increasing 

frequency (f -2.56).  Adding wind plants together does not appreciably reduce the 24 hour peak.  

BPA’s summed wind power (f  -2.2) shows less smoothing than ERCOT’s wind power, very likely 

because 17 of BPA’s 19 wind plants are located within 170 km of each other in the Columbia River 

gorge and the maximum distance between BPA wind plants is 290 km. 
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Figure 2-3 – Power spectral density (with 8 segment averaging, K = 8) for 1 wind plant, 4 
interconnected wind plants, and 20 interconnected wind plants in ERCOT.  Wind power variability 
is reduced as more wind plants are interconnected, with diminishing returns to scale. 

 

The amplitude of variability of twenty interconnected wind plants has ~95% less power at a 

frequency of  2.8x10-4 Hz (corresponding to 1 hour) than that of a single wind plant (figure 2-4).  The 

reduction in variability has very rapidly diminishing returns to scale, as interconnecting 4 wind plants 

gives an 87% reduction in variability at this frequency and interconnecting the remaining 16 wind 

plants produces the remaining 8% reduction.  The maximum reductions in variability occur at the 

higher frequencies and dimish as the frequency decreases until at 24 hours there is no reduction in 

variability (figure 2-3).  Figure 2-5 shows the reduction in variability achieved as a function of the 

number of interconnected wind plants for frequencies corresponding to 1, 6, and 12 hours.   
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Figure 2-4 – Fraction of a Kolmogorov spectrum of 1 wind plant for interconnected wind plants 
over a frequency range of 1.2x10-5 to 5.6x10-4 Hz.  As more wind plants are interconnected less 
power is contained in this frequency range. 

 

 

Figure 2-5 - Fraction of a Kolmogorov spectrum of different time scales versus the number of 
interconnected wind plants.  Interconnecting four or five wind plants achieves the majority of the 
reduction of wind power’s variability.  We note that reductions in wind power variability are 
dependent on more than just the number of wind plants interconnected (e.g. size, location, and 
the order in which the wind plants are connected; see equation 2-9).  
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We calculate β (f β) for simulations where each of ERCOT’s 20 wind plants is used as the 

starting location and the remaining 19 wind plants are interconnected to it in order of their distance 

(closest to farthest).  We use the resulting 400 data points to model the change in β due to three 

factors: ρ, the correlation coefficient between the interconnected wind plants and the next wind 

plant to be interconnected; PNameplate Ratio, the ratio between the nameplate capacity of the wind 

plant to be interconnected and the nameplate capacity of the interconnected wind plants; and N, 

the number of wind plants interconnected.  Equation 2-9 is the result of linearly regressing the log of 

the change in β with the three variables (R2 is 0.77 and all variables are significant to a 99% level).     

Equation 2-9 

log ∆F � 7.69 � 0.91�GHIJKLHMJ NHM�O � 0.1P � 8.9 

 The PSD of forty interconnected modeled 1.5 MW GE turbines located throughout the Great 

Plains and Midwest did not depart from a Kolmogorov spectrum.  We have eliminated as a possible 

cause the different time resolutions by averaging the ASOS data at 15 minute intervals (the ERCOT 

sampling rate). It is possible that the discrepancy between the ASOS simulated power output and 

the observed ERCOT power output spectra may arise from intra-wind-plant aerodynamic effects, but 

further analysis is required, including the determination of the frequency dependence of the 

smoothing as a function of wind plant size. 

2.6.2 Generation Duration Curves 

 We have computed normalized generation duration curves for a single ERCOT wind plant, 

twenty interconnected ERCOT wind plants, and all of BPA’s wind plants (figure 2-6).  Also shown is 

the average normalized generation duration curve of ERCOT’s 20 wind plants interconnected with 

their nearest three neighbors and the area encompassed by +/- 1 standard deviation.  One wind 
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plant has a higher probability of achieving close to its nameplate capacity than interconnected wind 

plants but an increased probability of no wind or low wind power events.   

 Archer and Jacobson (2007) concluded on the basis of meteorological data that 

interconnected wind plants spread throughout Texas, Oklahoma, Kansas, and New Mexico would 

produce at least 21% of their rated capacity 79% of the time and 11% of their rated capacity 92% of 

the time.  The ERCOT and BPA data from operating wind turbines do not support that conclusion.  

ERCOT’s twenty interconnected wind plants produced at least 10% of their rated power capacity 

79% of the time and at least 3% of their rated capacity 92% of the time.  BPA’s nineteen 

interconnected wind plants produced at least 3% of their rated capacity 79% of the time and 0.5% of 

their rated capacity 92% of the time.  Hereinafter we define "firm power" for a generator as an 

availability range of 79 to 92%.   

Archer and Jacobson’s (2007) simulations produce baseload capacity equivalents for wind 

power that are 2 to 20 times greater than those observed in the ERCOT and BPA data.  Two effects 

may be responsible for the discrepancy between our results and Archer and Jacobson’s results.  The 

first is that Archer and Jacobson analyze a larger geographical area than that encompassed by 

ERCOT or BPA.  The second is that Archer and Jacobson use individual model wind turbines while we 

use data from operating wind plants.   

The average generation duration curve of four interconnected ERCOT wind plants shows 

that a small number of interconnected wind plants achieves the majority of the smoothing of wind 

power’s variability and corresponds to the result obtained from our power spectral density analysis.  

19 BPA and 20 ERCOT interconnected wind plants similarly achieve only 70% to 88% of their 

nameplate capacities but BPA’s wind power has a higher probability of low to no wind power 
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occurances.  The higher probability of low to no wind events in BPA’s system is likely because of the 

limited geographic dispersion of BPA’s wind plants noted in the preceding section.   

 

 

Figure 2-6 – Normalized generation duration curves for ERCOT interconnected wind plants and 
BPA's total wind power for 2008.  The average normalized generation duration curve of ERCOT’s 
20 wind plants interconnected with their nearest three neighbors is plotted (dotted line) with the 
area encompassed by one standard deviation (tan area). 

 

2.6.3 Pairwise Correlations of Wind Power Output 

In figure 2-7 we show the correlation coefficients between pairs of wind plants versus the 

geographical distance between the wind plants, using measured 15-minute wind power averages 

from 20 wind plants in Texas for 2008.  Wind plants that are located less than 50 kilometers apart 

tend to have highly correlated power outputs (0.7 < ρ < 0.9), while wind plants located more than 

500 kilometers apart show lower correlation (ρ < 0.3).  All of the correlation coefficients were 

greater than zero at the 99% significance level (t-test). 
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Figure 2-7 - Correlation coefficients vs. distance between pairs of wind plants (inset shows the 
data on a semi-log plot). 

 

The exponential fit shown in figure 2-7, ρ∝exp(−distance/D) , has a decay parameter D of 

305 kilometers and an intercept of ρ = 0.89 at zero separation distance.  A linear regression of log-

transformed correlation coefficients against distance has an R2 of 0.55 (i.e. the exponential model 

explains about half of the variation in the correlation coefficients).   

Eight pairs of wind plants, between 200 and 300 kilometers apart, have correlation 

coefficients lower than 0.2 that lie below the overall trend.  These eight pairs are Delaware 

Mountain and Kunitz paired with each of Woodward Mountain, Indian Mesa, Southwest Mesa, and 

King Mountain (table 2-2 – appendix A).  This probably reflects the influence of local topography and 

climate patterns and demonstrates that geographical proximity does not necessarily imply high 

correlation.  Removing these eight points increases D to 320 kilometers; the difference between this 

value and that of the full data set is not statistically significant (t-test, 95% significance level), so the 

cluster of 8 points does not exert strong leverage on the model. 



28 

 

Giebel (2000) performed a similar analysis for wind power in Europe and found D to be 641 

kilometers (green line in figure 2-7).  While the current study analyzes 15-minute wind energy data 

sampled constantly for 2008, Giebel (2000) acquired data by applying a power curve to 10-minute 

wind speed averages sampled every 3 hours, thus obtaining 10-minute wind power averages at 3-

hour intervals.  To assess the distortion in cross-correlations that this difference introduces, one 

week of 10-second wind power data for two wind plants in Texas and Oklahoma was processed to 

mimic Giebel’s data as well as that of the current study.  The correlation coefficient for 10-minute 

averages taken every three hours was 0.31, and for consecutive 15-minute averages was also 0.31.  

The similarity of these values suggests that the difference in data sampling frequencies between the 

current study and Giebel (2000) does not introduce distortions that prohibit comparison. 

Fixing the best-fit intercept for the Texas data in figure 2-7, the decay parameter of the 

European model (641 km) differs from that of the best-fit Texas model (305 km) at the 99% 

significance level (t-test).  The R2 of Giebel’s model applied to the Texas data is 0.05, which reflects 

the poor fit of the European model to the Texas data.   

A significantly higher decay parameter for wind power in Texas would imply that more 

smoothing occurs over a given distance in Texas than in Europe; however, large variation in 

correlation coefficients for the European data prohibits a firm comparison.  European wind speed 

cross-correlation data for December 1990 – December 1991 has an exponential best fit with D = 723 

kilometers (Giebel, 2000).  The correlation coefficients show a large degree of scatter, especially in 

the 0 – 500 kilometer region that overlaps with the data of the current study; between 400 and 500 

kilometers, ρ for the European wind speed data ranges from approximately 0.1 to 0.7, while ρ for 

the Texas wind power data ranges from 0.1 to 0.3.  Assuming a similar degree of scatter in ρ for the 

resulting European wind power time series, no significant difference between cross-correlations of 
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Texas and European wind power data can be determined by comparing the current study and Giebel 

(2000); the European exponential model is a poor fit for the Texas data, but the Texas model could 

fit the European data comparably to the best fit model of Giebel (2000), especially at distances 

below 500 kilometers. 

2.6.4 Step Change Analysis 

Figure 2-8 shows the maximum ASOS 30-minute, 60-minute and 1-day percent step changes 

in power as a function of distance when KCNK (Concordia, Kansas), a station close to the geographic 

centroid of the ASOS airports, is used as the starting station, and additional stations are added 

based on their distance from the starting station.    Figure 2-9 is constructed using KMOT (Minot, 

North Dakota), the station farthest from the geographical center of mass, as the starting station.  

 Adding together wind plants reduces the substantial step changes in power experienced by 

individual wind plants.  As more distant wind plants are interconnected, the maximum step change 

in power relative to the maximum power produced reaches an asymptote of 15%-30% for step 

changes of an hour or less.  The reductions in variability are approximately equal to those observed 

by Milborrow (2001) (a maximum hourly step-change of 18%) and are less than what BPA 

experienced in 2008 (a maximum hourly step-change of 63%).  BPA’s control area is significantly 

smaller than the geographic region spanned by the 40 ASOS sites.  The largest 30-minute increase or 

decrease in power estimated from 40 interconnected ASOS wind plants was 15% of the maximum 

wind power produced.  The maximum 1-day step changes are also reduced as more distant wind 

plants are interconnected although a reduction of at most 20% is achieved.  

The reductions are obtained over relatively short distances with ~50% of the reductions 

occurring within 400 km.  In figure 2-8, 93% of the reductions occur in the first 600 km and 7% 
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occurs between distances of 600 to 1200 km.  If the reference wind plant is at a geographic extreme 

rather than the centroid (figure 2-9), 93% of the reductions occur in the first 1000 km.     

 

Figure 2-8 – ASOS step change analysis using KCNK (Concordia, Kansas) as the starting location.  
Each point represents an additional interconnected station. The relative maximum step change, 
measured as the maximum step change divided by the maximum power, decreases with distance 
as more wind plants are interconnected. 

 

 

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (km)

R
e
la
ti
v
e
 M

a
x
im

u
m
 S
te
p
 C

h
a
n
g
e
  
  
  
  
 

(M
a
x
im

u
m
 S
te
p
 C

h
a
n
g
e
 /
 M

a
x
im

u
m
 P
o
w
e
r)

 

 

1-day up

1-day down

60-minute up

60-minute down

30-minute up

30-minute down



31 

 

 

Figure 2-9 – ASOS step change analysis using KMOT (Minot, North Dakota) as the starting location.  
Each point represents an additional interconnected station. The relative maximum step change, 
measured as the maximum step change divided by the maximum power, decreases with distance 
as more wind plants are interconnected.  

  

Figure 2-10 shows the maximum ERCOT 30-minute, 60-minute, and 1-day percent step 

changes in power when ERCOT wind plant 1 (Delaware Mountain), the wind plant farthest from the 

geographic centroid of ERCOT’s wind plants, is used as the starting wind plant.  Similar reductions in 

variability to those simulated from ASOS data are produced when ERCOT wind plants are 

interconnected.  Reductions of 42% for 30-minute step changes, 50% for 60-minute step changes, 

and 16% for 1-day step changes are achieved when wind plants within 500 km are interconnected.  

The reductions for ERCOT are observed over shorter distances than predicted by the ASOS results.  

In ERCOT’s system, wind power ramps up faster than it ramps down for each of the step change 

intervals analyzed.  If system operators are to match wind’s fluctuations exactly, they will need to 

have a larger capacity from generators and demand response to ramp down their power than they 

will require from them to ramp up.   
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Figure 2-10 – ERCOT step change analysis when wind plant 1 (Delaware Mountain, TX) is used as 
the starting location.  The relative maximum step change, measured as the maximum step change 
divided by the maximum power, decreases with distance as more wind plants are interconnected. 

 

2.6.5 Are There Wind Droughts? 

We estimated yearly variation in wind energy production from modeled 1.5 MW turbines at 

16 locations over the years 1973 to 2008 (figure 2-11).  Also plotted is the annual energy produced 

from hydroelectric power in the United States for the same time span.  We normalized each of the 

results by their mean.  The standard deviation for the estimated wind production was 6% of the 

mean energy produced per year.  The largest deviation from the mean occurred in 1988 when the 

estimated wind energy production was 14% more than the mean annual production.  The largest 

negative deviation from the mean occurred in 1998 when estimated wind energy produced was 10% 

less than the mean annual production.  The standard deviation for the actual hydroelectric 

production was 12% of the mean energy produced per year for the 36 year period.  U.S. 
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production was 26% above the mean.  The largest negative deviation occurred in 2001 when 

hydropower production was 23% below average.    

Thus, yearly wind energy production from the sample of 16 airports in the central and 

southern Great Plains is predicted to exhibit long term variations, and these are about half that 

observed nationally for hydropower (we note that the bulk of hydropower production is regionally 

concentrated). 

 

Figure 2-11 – Normalized predicted annual wind energy production from 16 wind turbines 
located throughout the Central and Southern Great Plains.  The normalized annual hydropower 
production for the United States is also plotted for comparison. 

 

2.7 Analysis 

The variability of interconnected wind plants is less than that of individual wind plants when 
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is likely to vary, and have year-to-year variations about half that observed nationally for 

hydropower.   

These results do not indicate that wind power can provide substantial baseload power simply 

through interconnecting wind plants.  ERCOT’s generation duration curve shows wind power reliably 

provides 3-10% of installed capacity as firm power (as defined above) while BPA’s generation 

duration curve shows 0.5-3% of their wind power is firm power.  The frequency domain analyses 

have shown that the power of interconnected wind plants will vary significantly from day to day and 

the results of the step change analyses show day-to-day fluctuations can be 75 to 85% of the 

maximum power produced by a wind plant (figures 2-8 to 2-10).   

The benefit of interconnecting wind plants is a significant reduction in the high frequency 

variability of wind power.  Reductions in the relative magnitude of the 30-minute and hourly step 

changes will reduce the per MWh ancillary service costs of wind energy.  The reductions will also 

improve the root mean square error of wind energy forecasts for a system’s total wind energy 

production but not the forecast error for individual wind plants.  Estimating the value of these 

benefits is difficult due to the proprietary algorithms used by system operators.  We have provided 

system planners with a metric that better characterizes the variability of large penetrations of wind 

power.  System planners can then identify the resources needed to compensate the variability and 

calculate the associated costs.   
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2.9 Appendix A 
 

Table 2-1 - Table of ASOS stations used to obtain wind speed data. 

 

Station State 

Latitude Longitude Hourly 
Data 
Used? Degrees Minutes Seconds Degrees Minutes Seconds 

KEST IA 43 24 29.73 94 44 47.94  

KSPW IA 43 9 57.64 95 12 20.15  

KMCW IA 43 9 34.76 93 20 12.56 Yes 

KAMW IA 41 59 59.49 93 37 16.3  

KALO IA 42 33 22.35 92 23 47.19  

KDDC KS 37 46 0.28 99 57 58.68 Yes 

KGCK KS 37 55 43.6 100 43 32.48  

KCNK KS 39 32 57 97 39 8 Yes 

KRSL KS 38 52 16.67 98 48 31.04  

KAAO KS 37 44 51.3 97 13 16  

KEMP KS 38 19 55.34 96 11 18.26  

KGLD KS 39 22 17.239 101 41 56.371 Yes 

KICT KS 37 38 59.8 97 25 59 Yes 

KRWF MN 44 32 48.41 95 5 0.09  

KRST MN 43 54 31.73 92 29 48.18 Yes 

KFCM MN 44 49 42.71 93 27 37.5  

KAXN MN 45 51 56.85 95 23 32.27 Yes 

KBIS ND 46 46 23.07 100 44 58.21 Yes 
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KJMS ND 46 55 44.34 98 40 41.91  

KDIK ND 46 47 46.94 102 48 1.33 Yes 

KMOT ND 48 15 33.78 101 16 51.9 Yes 

KFAR ND 46 55 17.62 96 48 49.63 Yes 

KCAO NM 36 26 43.89 103 9 14.13  

KLVS NM 35 39 15.2 105 8 32.6  

KCSM OK 35 20 26.74 99 11 55.82  

KFDR OK 34 21 7.5449 98 59 2.0727  

KGAG OK 36 17 43.94 99 46 35.125  

KHBR OK 34 59 28.7 99 3 5  

KPWA OK 35 32 3 97 38 49  

KOKC OK 35 23 35.12 97 36 2.64 Yes 

KABI TX 32 24 23.49 99 41 0.66 Yes 

KAMA TX 35 13 8.52 101 42 18.84 Yes 

KCDS TX 34 25 58.79 100 17 35.28  

KDHT TX 36 1 20.41 102 32 58  

KGDP TX 31 42 3.6 106 16 34.36  

KLBB TX 33 39 48.86 101 49 22.18 Yes 

KMAF TX 31 56 42.98 102 12 15.65 Yes 

KODO TX 31 55 18.52 102 23 10.74  

KINK TX 31 46 46.69 103 12 10.28  

KSPS TX 33 59 19.666 98 29 30.816  

 

  



39 

 

Table 2-2 - ERCOT wind plants 

Number Name Latitude Longitude 

1 Delaware Mountain 31.6486 -104.75 

2 Woodward 30.9575 -102.377 

3 Indian Mesa 30.9333 -102.182 

4 Southwest Mesa 31.0844 -102.108 

5 King Mountain 31.2213 -102.161 

6 Kunitz 31.3478 -104.4723 

7 Capricorn Ridge 31.8207 -100.793 

8 Airtricity 32.0649 -101.536 

9 Sweetwater 32.32 -100.4 

10 Trent Mesa 32.429 -100.199 

11 Buffalo Gap 32.2287 -100.062 

12 Horse Hollow 32.344 -99.9853 

13 Callahan Divide 32.299 -99.872 

14 Post Oak 32.7234 -99.2963 

15 Mesquite 32.7234 -99.2963 

16 Camp Springs 32.7556 -100.698 

17 ENA Snyder 32.7921 -100.918 

18 Brazos 32.9574 -101.128 

19 Red Canyon 32.9389 -101.316 

20 Whirlwind 34.0862 -101.086 
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Chapter 3 - The Cost of Wind Power Variability 

3.1 Chapter Information 

Authors: Warren Katzenstein and Jay Apt 

Status: CEIC working paper 

3.2 Abstract 

We develop a metric to quantify the sub-hourly variability cost of individual wind plants and 

show its use in valuing reductions in wind power variability.  Our method partitions wind energy into 

hourly and sub-hourly components and uses corresponding market prices to determine the cost of 

variability.  The metric is applicable to variability at all time scales faster than hourly, and can be 

applied to long-period forecast errors. We use publically available data at 15 minute time resolution 

to apply the method to ERCOT, the largest wind power production region in the United States. The 

range of variability costs arising from 15 minute to 1 hour variations (termed load following) for 20 

wind plants in ERCOT was $6.79 to 11.5 per MWh (mean of $8.73 ±$1.26 per MWh) in 2008 and 

$3.16 to 5.12 per MWh (mean of $3.90 ±$0.52 per MWh) in 2009.  Load following variability costs 

decrease as wind plant capacity factors increase, indicating wind plants sited in locations with good 

wind resources cost a system less to integrate.  Twenty interconnected wind plants have a variability 

cost of $4.35 per MWh in 2008.  The marginal benefit of interconnecting another wind plant 

diminishes rapidly:  it is less than $3.43 per MWh for systems with 2 wind plants already 

interconnected, less than $0.7 per MWh for 4-7 wind plants, and less than $0.2 per MWh for 8 or 

more wind plants.  This method can be used to value the installation of storage and other 

techniques to mitigate wind variability. 
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3.3 Introduction 

Wind power is quickly becoming a significant source of energy in the United States.  It had 

an average annual growth rate of 28% over the past decade and supplied 1.3% of United States’ 

energy in 2008 (EIA, 2010).  However, wind is a variable source of power and increases the 

operational costs of electricity systems because system operators are required to “secure additional 

operating flexibility on several time scales to balance fluctuations and uncertainties in wind output” 

(Northwest Wind Integration Action Plan, 2007).  There is interest in using storage technologies or 

fast-ramping fossil fuel generators, called flexible resources, to mitigate wind power variability and 

decrease the costs of integrating wind power into electrical systems (Denholm, 2005; Hittinger et al., 

2010; Korpass et al., 2003). 

Previous research and wind integration studies performed by Independent System 

Operators (ISOs) and Regional Transmission Operators (RTOs) have estimated that the cost of 

integrating wind power ranges from $0.5 to 9.5 per MWh for wind penetration levels ranging from 

3.5 to 33% (Wiser and Bolinger, 2008).  Traditionally wind integration costs are paid by the end-user, 

but system operators have begun to recover the integration costs of wind energy from wind plants 

directly.  In 2009, Bonneville Power Authority (BPA) introduced a tariff of $5.7 per MWh for wind 

plants within its system to recover the costs of integrating wind power (BPA, 2009).  BPA was the 

first system to charge wind generators for the integration costs of wind energy and other systems 

are considered likely to follow suit (Kirby and Milligan, 2006). 

Wind plant owners may implement solutions to mitigate variability if they are charged for 

integration costs.  A wind plant will be willing to pay up to the tariff imposed by the system for a 

solution that completely eliminated the variability it produces.  In BPA this would be $5.7 per MWh.  

Realistically it is not cost effective to completely firm the power output of a wind plant.  The costs of 
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integrating wind power are incurred mainly at hourly and subhourly time scales and wind power is 

variable over time scales of subminute to weekly (Northwest Wind Integration Action Plan, 2007; 

Katzenstein et al., 2010; Apt, 2007).  Wind plants will seek to use flexible technologies to reduce 

their variability in the hourly and subhourly time scales.   

Here we develop a metric to determine the cost of variability of individual wind plants and 

then show its use in valuing reductions in wind power variability.  Keith and DeCarolis state that it 

should be “possible…to assess the overall cost of wind’s intermittency” by “portioning the cost of 

wind’s variability between various markets…and market participants” (Keith and DeCarolis, 2005).  

Here we present an unbiased method to partition wind energy between hourly and subhourly 

markets and use the corresponding market prices to determine the cost of variability from individual 

wind plants.   

The methods used to estimate the integration costs of bulk wind energy are not suitable to 

evaluate reductions in wind power variability for individual wind plants.  First, all of the integration 

studies have focused on the net wind energy in a system and not the energy produced by individual 

wind plants.  Second, the integration studies use large complex models that are either proprietary or 

difficult to replicate and are inappropriate to implement on a small scale.  Third, the majority of the 

studies have focused on future large penetrations of wind energy instead of current levels.        

There are additional advantages to estimating the variability cost of individual wind plants 

instead of the net wind power in a system.  First, doing so provides a method to determine cost 

effective solutions to reduce wind power variability.  Second, it is important to determine if all wind 

plants in a system equally contribute to the wind integration costs or if there are a few wind plants 

sited in poor locations that are causing the majority of the incurred costs.  Finally, system operators 
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may be able to prioritize wind plant projects in their interconnection queues to minimize their 

integration costs for wind energy.     

3.4 Data 

We use 15-minute time sampled wind power data from 20 ERCOT wind plants in 2008 and 

2009.  In addition, we use 15-minute ERCOT balancing energy service (BES) price data and hourly 

load following and regulation capacity price data for years 2004 through 2009.  The locations of the 

20 ERCOT wind plants are plotted in figure 3-7 in appendix B.  Figures 3-8 through 3-13 in appendix 

B are box plots of the ERCOT ancillary service prices for years 2004 through 2009. 

3.5 Methods 

Our method partitions all of a wind plant’s energy among the suite of markets available.  We 

first describe a generalized formulation of this principle that is representative of the electricity 

markets in the United States and then present a metric specific to ERCOT.  The three types of 

services a generator in a United States electricity system can provide are energy, capacity, and 

ancillary.  Each service is necessary to maintain a functioning electricity system although each 

electricity system in the United States does not offer competitive markets for all of the services 

described.   

Providing energy is the primary service of an electricity system, accounting for 70 to 95% of 

the wholesale cost of electricity (ISO New England, 2009; PJM, 2009; Potomac Economics, 2009).  

Energy markets are typically operated on an hourly basis and, depending on the ISO, a generator can 

submit bids for each hourly interval in day-ahead markets, hour-ahead markets, or real time 

markets.    System operators accept enough generator bids to meet the predicted load for a given 

hour plus a specified reserve margin.  Generators whose bids are accepted are required to supply 

power at the specified level for that hour.   
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From a system point of view, capacity markets ensure a system has enough generators it 

can call upon to meet their maximum load plus a reserve margin.  From a generator’s point of view, 

energy markets are designed for generators to recover their variable costs while capacity markets 

are designed for generators to recover their fixed costs.  Capacity markets are typically longer term 

markets that operate on a yearly basis.   

Ancillary services are a suite of products designed to handle the variability present in an 

electrical network.  Variability exists in electricity grids due to fluctuations in load, transmission, and 

generation.  The nature of electrical networks and the lack of cost effective storage in electricity 

systems means that the exact amount of electricity produced must be consumed if the system is to 

remain stable.  Small deviations can be tolerated but need to be corrected according to the 

standards set by the North American Electricity Reliability Council (NERC).  The suite of ancillary 

services are traditionally defined as load following, regulation, energy imbalance, spinning reserve, 

supplemental reserve, frequency control, voltage control, nonoperating reserve, and standby 

service (Hirst and Kirby, 1997).  

Renewable energy credit (REC) markets value the additional benefits renewable energy 

generators add to a system.  The primary benefits of renewable energy are that it is a zero emissions 

source and that it satisfies policy goals mandated by over 29 states. The additional yet less tangible 

benefits are a decreased dependence on foreign energy sources, an increase in portfolio diversity, 

and a hedge against future fuel prices.  Typically, one renewable energy credit is the environmental 

and social value of one MWh of renewable energy.   

From a system operator’s point of view, the value of energy from a wind plant is the sum of 

the wind plant’s energy, capacity, REC, and ancillary service benefits and its ancillary service costs.  

The costs of incorporating wind power into a system can be classified based on the two defining 
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characteristics of wind power: uncertainty and variability.  Systems incur costs due to wind power’s 

uncertainty because system operators can never know with a 100% certainty what the output of a 

wind plant will be at a given time.  The difference between the forecast and the actual output of a 

given wind plant must be eliminated using either hourly energy markets or ancillary services 

markets.  We do not estimate the cost of forecast errors in this paper but note that the cost of 

forecast errors can be included in our metric. 

Wind power variability, the fact that the output of a wind plant is constantly changing, also 

causes systems to incur costs.  Any change in the power output of a wind plant must be 

compensated by another source in the system.  This source could be other wind plants, loads, 

conventional generators, or energy storage.  If conventional generators are used, the inefficiencies 

suffered due to changing its power level are costs directly related to wind power.  We note that 

wind power variability also changes the loading of transmission lines and we do not attempt to 

calculate the resulting changes in transmission profitability. 

We estimate the cost of wind power variability in ERCOT by partitioning the power output of 

a wind plant between hourly energy and ancillary service markets (figure 3-1).  For each hour, we 

determine a constant amount of a wind plant’s energy to partition to the hourly energy market.  We 

remove the hourly energy component from the wind signal and then determine the residual 

ancillary services required.  For the example in figure 3-1 we assume a simplified ancillary services 

market, representative of ERCOT’s ancillary services, that consist of load following and regulation 

markets.  Regulation is the ancillary service that handles rapid fluctuations on time scales of minutes 

and load following is the ancillary service that handles larger fluctuations on time scales of 15 

minutes.  We first determine the amount of load following capacity and energy needed and then 

determine the amount of regulation capacity and energy required.  We do not attempt to calculate 
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the capacity or REC benefits of wind plants because they do not affect the variability costs of wind 

plants.  Only the energy portioned to the hourly energy market affects the estimated variability cost.   

 

Figure 3-1 - Conceptual diagram of how we partition wind energy into hourly energy, load 
following, and regulation components. 

 

Equation 3-1 is the simplified formulation of the variability cost of wind energy for wind 

plants in ERCOT.  We calculate only the load following component of the ancillary service cost of 

wind energy because we were able to obtain only 15-minute time-resolved wind energy data for 20 

ERCOT wind plants.  The yearly variability cost of energy from a wind plant is the sum of its hourly 

costs.   
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QRSTRUTVT�W XYZ� �  ∑ [\�\]\^_ � �̀ a min�[\� � �bG max�[\�                       (3-1) 

and 

Yearly Cost �  d Hourly Cost�
efg'

�^_
 

Where   Pk is the subhourly price of energy 

  PUP is the subhourly price for up regulation capacity 

  PDN is the subhourly price for down regulation capacity 

  qH is the amount of firm hourly energy partitioned 

  [\ � h\ � ij, the amount of subhourly energy per time period k 

 

In formulating equation 3-1, we make two key assumptions.  The first is that each wind plant 

is a price taker and does not affect market prices for energy or ancillary services.  The second is that 

deviations from the hourly energy level are costs and are to be avoided.   

The variability cost of wind energy, as calculated from equation 3-1, is dependent on what 

value is chosen for qH (the hourly energy component).  In order to create an unbiased cost metric, 

each hour we use the set of energy and ancillary services prices and wind power data to determine 

the qH that minimizes the variability cost.  Thus, we are estimating what the variability cost of wind 

plant’s in ERCOT was in a given year, and not attempting to predict what it will be.  Equation 3-2 is 

the formulation of the optimization problem for ERCOT.  Constraints on the optimization problem 

are: 

1. The sum of energy components in each 15-minute interval must equal the energy 

produced by the wind plant in the 15-minute interval. 

2. The maximum ancillary services capacity during the hour plus the hourly energy 

component is equal to the maximum wind power produced during the hour. 
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3. The hourly energy component plus the minimum ancillary services capacity 

(assumed to be negative) during the hour is equal to the minimum wind power 

produced during the hour.   

 

We determine qH, εk, max(εk), and min(εk) for each hour (using the Matlab fmincon function). 

Minimize k�ij , [_, [�, … , []�: ∑ [\�\]\^_ � �̀ a max�[\� � �bG min�[\�              (3-2) 

Where  [\ � h\ � ij                 k = 1:4 

Subject to  1) 2\�ij , [\�: ij � [\ � h\,                k = 1:4 

  2) o�ip, max �[\��: ip �  max �[\� �  max �h\�                k = 1:4 

  3) q�ip , min �[\��: ip � min �[\� �  min �h\�                k = 1:4 

We use ERCOT’s balancing energy service (BES) as the prices for Pk.  Each hour for PUP we use the 

minimum of ERCOT’s up-regulation price for capacity and responsive reserve price for capacity.  

Each hour for PDN we use the minimum of ERCOT’s down-regulation price for capacity and 

responsive reserve price for capacity.  We use the minimum of the prices because we are trying to 

find the minimum variability cost of each wind plant in ERCOT.   

3.6 Results 

Figure 3-2 displays the estimated variability costs of 20 ERCOT wind plants sorted by their 

capacity factors for 2008.  The mean variability cost was $8.73 per MWh (16% of the mean BES price 

of electricity in ERCOT in 2008) with a standard deviation of $1.26 per MWh.  As the capacity factor 

increases, the variability cost decreases, indicating wind plants sited in locations with good wind 

resources cost a system less.  In 2008, the range of costs for wind plant variability was $6.79 to 11.5 

per MWh.  We do not observe a dependence of variability costs on the nameplate capacity of a wind 

plant, although a larger data set with a larger range of nameplate capacities is needed to make a 

conclusive statement.   
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Figure 3-2 - Estimated variability costs for 20 ERCOT wind plants versus their capacity factors for 
2008.  The variability cost of wind power decreases as the capacity factor of a wind plant 
increases. 

 

Figure 3-2 also displays the estimated variability costs of 20 ERCOT wind plants sorted by 

their capacity factors for 2009.  The mean variability cost in 2009 was $3.90 per MWh (12% of the 

mean BES price of electricity in ERCOT in 2009) with a standard deviation of $0.52 per MWh.  The 

same relationship of declining variability costs versus capacity factor is present.  In 2009, the range 

of costs for wind plant variability was $3.16 to 5.12 per MWh.  The estimated variability costs for 

2009 were substantially lower than the variability costs estimated for 2008 and are a direct result of 

lower ancillary service prices in 2009 compared to 2008 (see figures 3-14 and 3-15 in appendix B).   

Variability costs decline as the capacity factor increases for two reasons.  First, we measure 

variability costs per MWh of wind energy produced and the amount of energy partitioned to 

ancillary services does not grow as fast as the amount of energy produced by the wind plant.  

Second, wind turbines produce power from wind based on a cubic power curve (see figure 3-16 in 

appendix B).  As the capacity factor of a wind plant increases, it produces more of its power in 

region 3 where the turbines produce their maximum power.  Actual power curves are not as smooth 
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as the one depicted but nonetheless in region 3 there is less of a chance for significant changes in 

power output from one minute to the next compared with regions 1 and 2.     

We use this cost metric to value the reductions in wind plant variability when wind plants 

are interconnected to each other.  Previous research has shown that wind power variability is 

reduced as wind plants are interconnected to each other with transmission lines (Katzenstein et al., 

2010).  We compare the variability costs of individual wind plants to the variability cost of 20  

interconnected wind plants.  Figure 3-3 shows how the variability costs of wind energy are reduced 

as wind plants are interconnected.  In figure 3-3, we selected the wind plants with the highest, 

median, and lowest variability costs and then interconnected the remaining 19 wind plants to them 

based on distance (closest to farthest) and calculated the variability cost after each interconnection.   

 

Figure 3-3 - Variability costs of wind energy decrease as wind plants are interconnected.  
Interconnecting 20 wind plants together produces a mean savings of $3.76 per MWh compared to 
the 20 individual ERCOT wind plants (green dots).  Only 8 wind plants need to be interconnected 
to achieve 74% of the reduction in variability cost.  Three cases are shown where the highest, 
median, and lowest variability cost wind plants were used as starting points and the remaining 19 
wind plants were interconnected to them based on distance (closest to farthest). 
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In 2008, twenty wind plants interconnected to each other with transmission lines of infinite 

capacity (sometimes referred to as a copper plate interconnection) have a variability cost of $4.35 

per MWh (8.1% of the mean BES price of electricity in ERCOT).  Interconnecting twenty wind plants 

produces a mean savings of $3.76 per MWh compared to the variability costs of individual ERCOT 

wind plants.  A minimum savings of $2.44 per MWh and a maximum savings of $7.15 per MWh are 

achieved.  The majority of the reductions in variability cost are achieved quickly as only 8 wind 

plants need to be interconnected to obtain the maximum reductions in variability costs.  Our 

estimated load following variability costs for interconnected wind plants are comparable to the load 

following costs previously determined in integration studies and BPA’s integration tariff (Acker, 

2007; BPA, 2009; EnerNex Corp., 2007; EnerNex Corp. and Idaho Power Co., 2007; PacificCorp, 2007; 

Puget Sound Energy, 2007).   

As seen in figure 3-4, the marginal benefit of interconnecting another wind plant decreases 

rapidly as more wind plants are interconnected.  The marginal benefit of interconnecting another 

wind plant is less than $3.43 per MWh for 1 wind plant already interconnected, less than $1.36 per 

MWh for 2 wind plants, less than $0.7 per MWh for 3-7 wind plants, and less than $0.19 per MWh 

for 8 or more wind plants.  If the worst case (Highest Variability Cost Wind Plant as Starting Point) is 

excluded, the marginal benefit of interconnecting another wind plant is less than $0.72 per MWh for 

1 wind plant already interconnected, less than $0.05 per MWh for 2 wind plants, less than $0.68 per 

MWh for 3-7 wind plants, and less than $0.19 per MWh for 8 or more wind plants.   
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Figure 3-4 - Marginal benefit of interconnecting an additional wind plant in reducing variability 
costs.  For example, with one wind plant interconnected to a system, the maximum marginal 
benefit of interconnecting another wind plant is $3.43 per MWh. 

 

The reduction in integration costs is sometimes used as a reason for building large 

transmission lines to remote locations (for example, see EnerNex, 2010).  We estimate how much 

farther a system would be willing to build a transmission line to interconnect a wind plant based on 

how much it reduces wind variability costs.  We modeled the cost of transmission lines based on 

data from Fertig and Apt (2010) and found a quadratic equation, with input variables distance and 

transmission line capacity, produced the best fit (adj. R2 of 0.84) (equation 3-3).  In order to estimate 

how many additional miles a system would be willing to extend their transmission line, we first 

calculated the cost of a transmission line to a location 100 miles away.  We then calculate the 

present value of a wind plant’s interconnection benefit using a discount rate of 0.1, a transmission 

line capacity of 2000 MW, and lifetime of 30 years for the transmission line.  We add the resulting 

PV benefit to the cost of the transmission line and calculate how long the new transmission line is.  

The difference in distance between the old and new transmission line distances is the maximum 
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distance a system would be willing to build a transmission line to interconnect the wind plant solely 

to recapture the reduction in variability costs. 

 Xr3H�sI�ss�O� � $1,000,000 � � , u�840 � 0.62u�   (3-3) 

Where   CTransmission = the cost of transmission line 

P = the capacity of transmission line 

 D = the distance of transmission line. 

A system should not be willing to build transmission lines to interconnect wind plants to 

reduce their load following variability costs (figure 3-5).  A system with less than 10 wind plants 

would initially be willing to build a transmission line an additional 2-5 miles to interconnected wind 

plants and reduce their variability costs.  When more than 10 wind plants are interconnected, a 

system would be willing to extend a transmission line at most 2 mile to reduce their wind 

integration costs.   
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Figure 3-5 - Marginal benefit of interconnecting an additional wind plant valued in terms of miles 
ERCOT would be willing to extend a 2GW, 100 mile transmission line. 
  

Figure 3-6 displays how the rankings of wind plants based on their variability costs change 

from 2008 to 2009.  For 2008, we ranked the 20 ERCOT wind plants based on their estimated 

variability costs and assigned the labels A through T to the 20 wind plants, with A being the wind 

plant with the highest variability cost and T being the wind plant with the lowest variability cost.  For 

2009, we reordered the wind plants based on their variability costs.  The labels were kept the same 

in order to track how the rankings changed.  The grey lines are visual guides to help the reader track 

the changes. 
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Figure 3-6 - The change in wind plant ranking of variability cost from 2008 to 2009.  For 2008 (left 
side), we ranked the 20 ERCOT wind plants based on their estimated variability costs and 
assigned the labels A through T to the 20 wind plants, with A being the wind plant with the highest 
variability cost and T being the wind plant with the lowest variabilty cost.  For 2009 (right side), 
we reordered the wind plants based on their variability costs but kept the labels the same. 

 

As seen in figure 3-6, ERCOT wind plants significantly change their rankings from 2008 to 

2009.  Three of the 4 least cost wind plants in 2008 become 3 of the 10 wind plants with the highest 

variability cost.  Eight of the 20 wind plants change their rank by two spots or less.  This indicates 

some wind plants are persistent in their variability costs while others vary significantly year to year.  

A longer data set is required to determine conclusively if there are wind plants that have consistent 

variability costs.  The significant reordering of wind plants from 2008 to 2009 is because of the 

change in power output of the wind plants from 2008 to 2009.  Our results are insensitive to yearly 

changes in ancillary service prices (see appendix B).   

3.7 Conclusions 

We have developed a cost metric capable of estimating the variability cost of individual 

wind plants from observed 15-minute power output data and found it produces results similar to 
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plants with higher capacity factors have lower variability costs and cost a system less to integrate.  

We find that the relative ranking of wind plants based on variability costs is dependent on the wind 

power produced from the wind plants and not on ancillary service prices.   

We have also provided a method to value reductions in wind power variability.  

Interconnecting 20 wind plants produced a mean savings of $3.76 per MWh.  Our cost metric can be 

used to evaluate the cost-effectiveness of storage solutions8 to mitigate wind power variability.  

Systems can use the methods we developed to determine if building long transmission lines to good 

wind sites is cost-effective.  Our estimates for wind power variability costs do not include the 

regulation costs of wind.  Future work should extend our analysis to examine how much regulation 

adds to wind power variability costs.  In addition, future work should examine how variability costs 

plus uncertainty (forecast error) costs compare to wind integration costs. 

System operators need to determine if the cost of variability from wind plants should be 

socialized or assigned to wind plants.  Currently in most systems rate payers are providing a subsidy 

to the wind industry by paying for the integration costs of wind energy.  BPA, on the other hand, 

determined the wind plants in their system should pay for the cost of integrating their power and is 

recovering wind integration costs ex-ante with a flat tariff applied equally to all wind plants in its 

system.  If other systems follow BPA’s example, system operators will have to decide if they want to 

recover wind integration costs ex-ante or ex-poste.  By recovering integration costs ex-ante, systems 

can provide wind plants with more certainty on how much they will have to pay over the course of a 

year, however wind plants may then pay more (or less) than what it actually cost to integrate their 

power into a system.  By recovering costs ex-poste, wind plants will pay each year what it actually 

                                                           
8 Batteries in preproduction development scale currently have projected costs of less than $10 per MWh for 

greater than 10,000 cycles.  How much lower than $10 per MWh their costs are is to be determined as well as 

whether they are cost effective solutions for mitigating wind power variability.   



57 

 

cost to integrate their power into a system.   Ex-poste recovery would inject a significant amount of 

uncertainty into wind plant financial pro formas and would make it more difficult for wind plants to 

obtain financing.   

System operators must also determine whether a flat tariff (such as BPA’s tariff) or a 

capacity factor based tariff indexed to the price of electricity is appropriate to recover integration 

costs.  Figure 3-2 supports a capacity factor based tariff indexed to the price of electricity.  

Variability costs decline as the capacity factor of a wind plant increases so wind plants with higher 

capacity factors should pay less than wind plants with lower capacity factors.  In addition, wind 

integration costs vary significantly year to year (figures 3-14 and 3-15) and any tariff should be 

indexed to the price of electricity to capture this variation.  Yet, as figure 3-4 shows, the variability 

cost of 20 interconnected wind plants is less than the sum of the 20 individual wind plant variability 

costs, so even lower capacity factor plants contribute to reduced integration costs (although the 

marginal benefit of smoothing by interconnection of more than a few plants is minimal).  

Additionally, systems should offer a reduced tariff to wind plants that actively mitigate their 

variability to encourage the development of market based solutions to minimize wind power 

variability.  

Finally, if system planners can identify wind plants in their interconnection queues with the 

highest capacity factors they could take an active approach to decrease their integration costs by 

giving priority to these projects.  While the benefit a wind plant adds to a system is more 

complicated than just its projected variability cost (for example, transmission costs are important) 

system planners should have the ability to prioritize projects within their queue based on the 

benefits they provide.  Wind plants should also be given priority in the interconnection process if 

they implement flexible technologies to mitigate their variability costs. 
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3.9 Appendix B  

 

Figure 3-7 - Location of the 20 ERCOT wind plants in Texas 

 

  



61 

 

 

Table 3-1 - Mean and Median values for ERCOT's Down Regulation (DR), Up Regulation (UR), and 
Balancing Energy Service (BES) 

Year 2004 2005 2006 2007 2008 2009 

Mean DR 

($/MW) 11.09481 19.60145 7.961669 8.297936 19.51802 7.251425 

Mean UR 

($/MW) 11.47404 18.94291 15.24432 13.13814 22.70802 9.701911 

Mean BES 

($/MW) 41.79429 66.37815 51.35951 52.21617 53.53612 25.77374 

Median DR 

($/MW) 7.98 13.5 6.19 7.26 16.8 5.01 

Median UR 

($/MW) 9 14.425 11.555 9.89 15.265 6.03 

Median BES 

($/MWh) 39.06 55.29 45.02 48.13 49.39 23.08 

 

 

Figure 3-8 -  Box plots for 2004 ERCOT ancillary service prices 
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Figure 3-9 - Box plots for 2005 ERCOT ancillary service prices 

 

 

Figure 3-10 - Box plots for 2006 ERCOT ancillary service prices 
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Figure 3-11 - Box plots for 2007 ERCOT ancillary service prices 

 

 

 

Figure 3-12 - Box plots for 2008 ERCOT ancillary service prices 
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Figure 3-13 - Box plots for 2009 ERCOT ancillary service prices 
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service prices spanned 2004 through 2009.  Each subplot in figure 3-14 displays the estimated 
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prices are used as inputs to the cost metric.  Figure 3-14 shows the sensitivity of our metric to six 
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services each year.  Years 2005 and 2008 had the highest ancillary service prices and as a result, our 

metric estimates the highest variability cost for the 20 ERCOT wind plants for 2005 and 2008.  The 

converse is true for 2009 ancillary service prices.  Similar results were obtained using 2009 ERCOT 

wind data (figure 3-15).   

0

50

100

150

200

250

300

350

400

450

500

1

Down Regulation

C
a
p
a
c
ity
 P
ri
ce

 (
$
/M

W
)

0

50

100

150

200

250

300

350

400

450

500

1

Up Regulation

C
a
p
a
c
ity
 P
ri
ce

 (
$
/M

W
)

-1000

-500

0

500

1000

1500

2000

1

Balancing Energy Service

E
n
e
rg
y 
P
ri
ce

 (
$
/M

W
h
)



65 

 

 

Figure 3-14 - Sensitivity of our 2008 wind power results to different years of ancillary price data 

 

 

Figure 3-15 - Sensitivity of our 2009 wind power results to different years of ancillary price data 
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Figure 3-16 - Actual power curve for a wind turbine 

 

As seen in figure 3-17, a wind plant’s rank is insensitive to ancillary price data.  In other 

words, wind plant A, the wind plant with the highest estimated variability cost using 2004 ancillary 

price data and 2008 wind power data, had the highest variability cost in all six years.  Fourteen of 

the twenty wind plants change their rank by two spots or less over a six year span.  The greatest 

change is by wind plant T when from 2006 to 2008 it changed 5 spots then returned to its original 

rank in 2009.  This indicates our results are sensitive to the energy output of the wind plants rather 

than ancillary service prices.  Similar results were obtained using 2009 ERCOT wind data (figure 3-

18). 
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Figure 3-17 - Change in 2008 wind plant rankings based on variability cost for six different years 
of ancillary service prices 

 

 

Figure 3-18 - Change in 2009 wind plant rankings based on variability cost for six different years 
of ancillary service prices 
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A through T with A being the wind plant with the highest variability cost and T being the wind plant 

with the lowest variability cost.  The labels were kept the same for the 2009 wind data but 

reordered based on the 2009 variability costs. 

 

Figure 3-19 - Change in wind plant rankings when the ancillary price data is held constant.  In the 
left subplot, 2008 ancillary price data was used with 2008 and 2009 wind power data.  In the right 
subplot, 2009 ancillary service prices were used with 2008 and 2009 

 

Compared to figures 3-17 and 3-18, the ranking of wind plants based on variability costs in 
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Chapter 4 - Air Emissions Due to Wind and Solar Power 

4.1 Chapter Information 

Authors: Warren Katzenstein and Jay Apt 

Published Jan 2009 in Environmental Science and Technology. 

Citation: Katzenstein, W., Apt, J., 2009.  Air Emissions Due to Wind and Solar Power.  Environ. Sci. 

Technol., 43(2), p.253-258.  

Section 4.8 was published July 2009 in Environmental Science and Technology. 

Citation: Katzenstein, W., Apt, J., 2009.  Response to “Comment on ‘Air Emissions Due to Wind and 

Solar Power.’” Environ. Sci. Technol., 43(15), p.6108-6109. 

4.2 Abstract 

Renewables portfolio standards (RPS) encourage large scale deployment of wind and solar 

electric power, whose power output varies rapidly even when several sites are added together. In 

many locations, natural gas generators are the lowest cost resource available to compensate for this 

variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of 

NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-minute time 

resolved emissions and heat rate data from two types of natural gas generators, and power data 

from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 

emissions achieve ~80% of the emissions reductions expected if the power fluctuations caused no 

additional emissions. Pairing multiple turbines with a wind plant achieves ~77 to 95% of the 

emissions reductions expected. Using steam injection, gas generators achieve only 30-50% of 

expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We 

quantify the interaction between state RPSs and constraints such as the NOx Clean Air Interstate 

Rule (CAIR), finding that states with substantial RPSs could see upward pressure on CAIR NOx permit 

prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and 

solar power variability. 
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4.3 Introduction  

Renewable electricity generated by sources whose output varies rapidly – wind and solar 

photovoltaic – provided 0.65% of the United States’ 2006 net electricity generation (DOE, 2007), but 

these sources are growing. Renewables portfolio standards (RPSs), enacted by 25 states, along with 

federal subsidies, have encouraged renewable energy sources (DSIRE, 2008; Rabe, 2006; Wiser and 

Bolinger, 2007). California requires that 20% of its electric power be generated from renewables by 

2010, New Jersey 12% by 2012, and Texas ~ 3% by 2015 (California State Senate, 2002; Fraser, 2005; 

NJ Board of Public Utilities, 2006).  

When these sources provide a significant fraction of electricity, other generators or rapid 

demand response must compensate when their output drops (Apt, 2007; Curtright and Apt, 2008). 

Renewable energy emissions studies (Keith et al., 2003; National Research Council of the National 

Academies, 2007; UNFCCC, 2007) have not accounted for the change in emissions from power 

sources that must be paired with variable renewable generators such as wind and solar. In many 

locations, natural gas turbines will be used to compensate for variable renewables. When turbines 

are quickly ramped up and down, their fuel use (and thus CO2 emissions) may be larger than when 

they are operated at a steady power level. Systems that mitigate other emissions such as NOx may 

not operate optimally when the turbines’ power level is rapidly changed. 

Renewables that substitute for fossil generators avoid emissions (emissions displacement). 

Life cycle assessments (LCAs) estimate the emissions attributed to producing, constructing, 

operating, maintaining, and decommissioning a given technology (Weisser, 2007).  Although 

integration studies have discussed increased reserve requirements for variable renewable sources, 

Weisser notes the resulting ancillary emissions are not typically included in LCAs (Weisser, 2007).   
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Two methods used to identify the displaced generators are economic dispatch analysis and 

generation portfolio analysis (Keith et al., 2003).  Economic dispatch analysis assumes the displaced 

generators are those with the highest marginal costs of operation (transmission constraints are 

considered in a few studies). Typically these generators are natural gas and oil fired turbines, 

although coal plants are on the margin at times (PJM-MMU, 2008). In portfolio analysis the 

emissions displaced are the differences in a system’s generation portfolio before and after variable 

renewable power is added. That approach assumes a renewable plant displaces generation equally 

from all assets, not solely from the generators operating on the margin (National Research Council 

of the National Academies, 2007).  

LCAs and emissions displacement studies use emissions factors (kg of pollutant per MWh) to 

calculate produced or displaced emissions.  When fossil-fuel generators are used to compensate for 

renewables’ variability, their emissions are likely to be underestimated by emissions factors 

calculated for full-power steady-state operations. 

Denny and O'Malley (2006) modeled emissions reductions from wind power penetration 

using an economic dispatch model for Ireland and an emissions factor that varies with turbine 

power for a natural gas combined-cycle turbine (NGCC) and a simple-cycle natural gas combustion 

turbine (CT), concluding that CO2 would be reduced 9% for a wind penetration factor of 11% (82% of 

the expected reduction for that penetration of wind) and NOx emission reductions would be 90% of 

the expected reductions. Their model uses hourly data sets that are not able to capture a portion of 

the rapid fluctuations of wind (Apt, 2007) and does not depend on ramp rate; they did not examine 

the effects of different NOx mitigation methods.  
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4.4 Model 

To estimate emissions from fossil fuel generators used to compensate for variable wind and 

solar power, we model the combination of variable renewable power with a fast-ramping natural 

gas turbine to provide baseload power. We use a regression analysis of measured emissions and 

heat rate data taken at one minute resolution from two types of gas turbines to model emissions 

and heat rate as a function of power and ramp rate (appendix C). The required gas turbine power 

and ramp rate to fill in the variations in one minute data from four wind plants and one large solar 

photovoltaic (PV) plant are determined, then the emissions are computed from the regression 

model. The system emissions are compared to the emissions of a natural gas plant of the same size, 

and to the emissions reductions expected from displacement analysis.  

4.5 Data  

We obtained 1-minute resolution emissions data for seven General Electric LM6000 natural 

gas combustion turbines and two Siemens-Westinghouse 501FDs natural gas combined-cycle 

turbines.  The LM6000 CTs have a nameplate power limit of 45 MW and utilize steam injection to 

mitigate NOx emissions.  A total of 145 days of LM6000 emissions data was used in the regression 

analysis.  The Siemens-Westinghouse 501FD NGCC turbines have a nameplate power limit of 200 

MW with GE’s Dry Low NOx system (lean premixed burn) and an ammonia selective catalytic 

reduction system for NOx control.  Emissions data for 11 days were obtained for the 501FD NGCC.  

The renewables data includes 1-second, 10-second, and 1-minute resolution and is from 

four wind plants and one large solar photovoltaic facility located in the following regions in the 

United States: Eastern Mid-Atlantic, Southern Great Plains, Central Great Plains, Northern Great 

Plains, and Southwest (table 4-8 in appendix C).   
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4.6 Approach 

The objective of the model plants is to maintain a constant power output by minimizing the 

error ε between the expected output and the realized output of the model plant at time i (equation 

4-1). The gas turbine model is subject to physical operating constraints: the upper and lower power 

limits (equation 4-6) and how quickly the turbine can change its power output (equation 4-7). As 

discussed in appendix C, the emission and heat rate data we obtained for the gas turbines did not 

cover all combinations of power and ramp rate. We therefore further constrain the model to 

operate only in regions of the power-ramp rate space for which we have data.  Here we focus on 

estimating the additional emissions caused by variability, and caution that we have made no 

attempt to ensure the stability of an electrical grid. Grid dynamic response may somewhat change 

our results. 
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We average the wind data to 1-minute resolution to match the time resolution of the 

natural gas generator emissions data and scale each wind or PV data set's maximum observed 

power generated during the data set to the nameplate capacity of the paired natural gas turbine.  

From each renewable data set we calculate the required power levels and ramp rates of the natural 

gas turbine needed to keep the output of the baseload power plant constant. The operating and 

data constraints of the natural gas turbine are applied, causing the model gas generator’s output 

power to differ slightly from this ideal power profile, as it would in practice.  

The power level and ramp rate of the turbine are used as inputs for an emissions model 

based on a multiple regression analysis of the measured emissions of two types of natural gas 

turbines. We model only NOx and CO2 emissions from the turbine.  Power plant CO emissions 

account for less than one percent of CO emissions in the United States and are not considered in our 

analysis (Masters, 1997).  

We calculate CO2 emissions from the measured heat rate of the generator and the type of 

fuel used. Assuming complete combustion, the CO2 emission rate can be derived from the heat rate 

by multiplying by EIA’s natural gas conversion factor of 0.053 metric tons of CO2 per MMBTU (DOE, 

2001a).  Although operating a turbine at low or medium power loads generally results in incomplete 

combustion, assuming complete combustion is a reasonable approximation for calculating CO2 
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emissions, since most CO and hydrocarbon radicals are oxidized to CO2 in the atmosphere (Seinfeld 

and Pandis, 2006).  Using one-minute resolution emissions data obtained from an electric 

generation company for two types of gas turbines, we modeled CO2 emission rates as a function of 

power level and ramp rate.  We use the emissions models to calculate the mass emitted during a 

given time interval and sum over all time intervals to obtain the mass emitted during a simulation: 

 ∑
=

∆=
T

t

t t
dt

dM
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( 4-8 ) 

where:   
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 SetDataofIntervalTime=∆t   

 SetDataofLengthTime=T   

4.7 Results 

If a given level of penetration α of wind or solar energy causes no additional emissions from 

gas generators, we can define the mass of expected emissions (φ) in terms of the mass of emissions 

from the gas units (MGT) as  

φ = MGT * (1-α)                ( 4-10 ) 

The expected emissions reductions are MGT * α. That is, emissions are expected to be displaced 

linearly according to the penetration factor of the renewables, an assumption we refer to as 

equivalent displacement. Dividing equation 4-10 by the energy produced, we define the emissions 

expected predicted by an equivalent displacement model:  
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  vw � x∑ ay<z{                  (4-11 )  

If the actual system mass emissions are MA then the fraction of expected emissions reductions (η) 

that are achieved is 

  | � �}~�=}��
�}~�=x�                      ( 4-12 ) 

We define the difference between the expected emissions and the actual emissions of a system as  

ϕ−= AV MM
               ( 4-13 ) 

Consider a system with generators that emit 2 tons of CO2 per MWh without renewables in the 

system. Suppose with 10% variable renewables in the system, system emissions are 1.8 tons per 

MWh. Then η would be (2-1.8)/0.2 = 100% and MV would be 0. On the other hand, if the emissions 

were 1.9 tons per MWh with 10% renewables, η would be 50% and MV would be 0.1 tons per MWh.  

This framing allows an assessment of the degree to which the introduction of variable renewables 

displaces emissions from fossil generators, and of the equivalent displacement assumption. 

Table 4-1 summarizes results for the five variable power data sets when used in their 

entirety (without nights, for the solar data).  A system with renewables that uses LM6000 turbines 

for fill-in power achieves 76 - 79% of the expected CO2 emissions reductions and 20 - 45% of the 

expected NOx emissions reductions.  An emissions displacement analysis would have overestimated 

emissions reductions by ~ 23% for CO2 emissions and by 55% - 80% for NOx emissions.  Similar 

penalties of 24% are incurred for 501FD CO2 emissions reductions, but NOx emissions increase by 

factors of 2 to 6 times the amount emissions were expected to be reduced, because of the un-

optimized NOx performance of the 501FD system below 50% power.     
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Table 4-1 - Baseload power plant model results for 5 variable renewable power plant data sets. 
Note that with night periods removed, the day-only capacity factor for the solar PV plant was 45%. 
The 95% prediction intervals are shown for a least squares multiple regression analysis 
(Mendenhall, 1994). 

 Energy Produced NOx CO2 

 Renewable 

(MWh)  

Natural gas 

(MWh) 

Baseload 

Total (MWh) 

Percent of 

expected 

emissions 

reduction (η) 

Variability 

emissions 

(MV, in kg) 

Percent of 

expected 

emissions 

reduction (η) 

Variability 

emissions 

(MV, in 

tonnes) 

LM6000        

Eastern 

Wind 

1,300 9,600 10,900 45% ± 4 270 79% ± 1 160 

Northern 

Great 

Plains Wind 

660 450 1,100 20% ± 3 350 76% ± 1 88 

Central 

Great 

Plains Wind 

3,400 2,800 6,200 33% ± 4 820 76% ± 1 440 

Southern 

Great 

Plains Wind 

7,700 9,000 16,700 22% ± 3 2,300 77% ± 1 1,000 

Southwest 

PV (days) 

170,000 210,000 380,000 23% ± 3 36,000 78% ± 1 15,000 

501FD        

Eastern 

Wind 

6,000 42,000 48,000 -220  

(+300, -120)  

1,000 76%  

± 1 

770 

Northern 

Great 

Plains Wind 

2,940 1,950 4,890 -620%  

± 100 

1,100 76%  

± 1 

400 

Central 

Great 

Plains Wind 

15,000 12,500 27,500 -500%  

(+150, - 10) 

4,500 76%  

± 1 

1,900 

Southern 

Great 

Plains Wind 

34,000 38,000 72,000 -600%  

± 100 

13,000 76%  

± 1 

4,800 

Southwest 

PV (days) 

730,000 930,000 1,660,000 -640%  

± 100 

230,000 77% ± 1 70,000 
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To investigate the dependence of system emissions on the penetration of renewable 

energy, we select time periods in our long data sets that have different capacity factors. For wind 

power data, a sliding window of 1,000 minutes was used. We note the high correlation between the 

nth data subset and the n+1 data subset, which differ by only 2 data points, but this method allows 

us to explore a wide range of penetration of renewable power. For solar data, each day was treated 

as a data subset (night periods are removed from the data). The solar data set was 732 days in 

length, yielding 732 different capacity factor results. We combined the results from each analysis 

and in penetration factor intervals of 1% plot the mean and area encompassed by two standard 

deviations in figures 4-1a to 4-1d.   

 

Figure 4-1 - Mean renewable plus natural gas emission factors vs. renewable energy penetration 
levels (α) (solid black line); area shown represents 2 standard deviations of all five data sets 
(shaded brown area); see figure 4-2 for representative single data set variability.  The expected 
emissions factor (green, lower line in each figure) is shown for comparison.  (a) LM6000 CO2. (b) 
LM6000 NOx. (c) 501FD CO2. (d) 501FD NOx. 
 

 Our model predicts that CO2 emission factors decrease linearly with renewable penetration 

at a slope of -0.5 (compared to the expected -0.65, the negative of the emissions factor, equation 4-

11 ) for LM6000s and -0.48 compared to -0.64 (expected) for 501FDs (figures 1a and 1c).  At 
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penetration levels of 1, predicted emissions are not eliminated because the natural-gas turbine is 

modeled as a spinning reserve.  Below 65% renewable penetration, the LM6000 NOx emission factor 

is roughly constant. Thus, adding renewables is not effective in reducing NOx for such a system 

(figure 4-1b).   

A threshold effect is observed for the 501FD turbine: for penetration values below ~15%, 

the predicted NOx emission factor nearly matches the expected emission factor (figure 4-1d).  Since 

the dry low NOx control system is optimized for constant high power operations, it is not surprising 

that this turbine design exhibits high NOx emissions as the penetration of wind or solar energy 

increases to the point that the turbine must cycle to low power. Limiting the 501FD’s Pmin limit to 

>50% nameplate capacity avoids the poor NOx regions of the DLN system (discussed in appendix C), 

and results in NOx emissions reductions.  This approach is applicable only if the ratio of energy 

provided by natural gas generators with DLN to variable power plants is greater than 2:1.    

Viewed in terms of η, as the penetration of variable power increases the fraction of 

expected emissions reductions achieved from a system with LM6000 turbines supplying fill-in power 

decreases from ~87% to 78% for the Eastern wind data and from 80% to 76% for the Southern and 

Central Great Plains wind data sets (figure 4-2a).  Increasing the penetration factor of variable power 

effectively reduces the natural gas turbine from steady-state full power conditions to transient-state 

cycled power conditions and results in higher NOx emissions. NOx reductions from a system using 

LM6000 turbines are roughly half the expected value at 10% penetration, reaching a minimum of 

10% to 30% at a penetration of ~50% (figure 4-2b).   
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Figure 4-2 - Renewable plus gas generator system mean expected emission reductions (η) vs. 
variable energy penetration factors (α).  95% prediction intervals (dashed lines) are shown only 
for the Eastern Wind plant.  (a) LM6000 CO2. (b) LM6000 NOx. (c) 501FD CO2. (d) 501FD NOx. 

 

Emissions of CO2 from a system with 501FD turbines are ~76% of that expected with no 

significant dependence on penetration (figure 4-2c).  The large inertia of the 501FD combined-cycle 

plant results in a heat rate that depends only on power (appendix C, figure 4-9), and the deviations 

from a constant fraction of achieved expected emissions are caused by the constraints we impose 

on operating the turbine to stay within the limits of the data.  As more variable renewable power is 

added, the NOx emission factor (figure 4-2d) increases because the 501FD is forced to spend a 

higher percentage of its time operating in high NOx emissions regions (as discussed previously).   

4.8 Multiple Turbine Analysis for CO2 Emissions Results 

Theoretically, CO2 emissions are displaced linearly for both the LM6000 case and the 501FD 

case (Mills et al., 2009).  If the fraction of expected emissions reductions for CO2 achieved is 

calculated according to equation 4-12, η would be constant for all values of α.  For the 501FD 
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results, η ~ 76%.  For an LM6000, η ~ 77%.  Deviations from η seen in figure 4-2 are due to either 

ramp rate effects (LM6000) or model error (501FD). 

Mills et al. (2009) modeled the fuel use of multiple generators compensating for wind power 

and determined that multiple generators can increase the efficiency of a wind + gas plant.  They 

assumed that generators are turned on when needed and that there are no spinning reserves.  We 

adapt their model to calculate how η varies with wind penetration (α) and the number of generators 

in the system.  The fundamental equation, assuming no spinning reserves, is  

  | � s�� ���z�A�_=∑ �<�<��� �
� ���z�A�s��                (4-14) 

where s is the slope of a generator's fuel consumption curve,  f0 is the generator's fuel consumption 

at zero load, n is the number of identical gas turbines, α is the penetration level of wind energy, Pmax 

is the nameplate capacity of each generator, and ui is the operating status of a each generator (1 if it 

is on, 0 if it is off).  For the results displayed in figure 4-3, 501FD specific data were used.  

Specifically, Pmax =200 MW, s = 0.035 MBTU per MW-minute, and f0 = 2.23 MBTU.  The Southern 

Great Plains wind power data was used to determine what the mean value of η is for a variety of 

penetration levels.  Figure 4-3 displays the results for four cases: 5 generators are paired with one 

wind plant and no generators are used as a spinning reserve (a); 20 generators are paired with one 

wind plant and no generators are used as a spinning reserve (b); 5 generators are paired with one 

wind plant and 1 generator is used as a spinning reserve (c); 20 generators are paired with one wind 
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plant and 1 generator is used as a spinning reserve (d).   

 

Figure 4-3 - Fraction of expected CO2 emission reductions achieved (η) when (a) 5 generators are 
used to compensate for wind’s variability, (b) 20 generators are used, (c) 5 generators and one 
generator is used as a spinning reserve, (d) 20 generators and one generator is used as a spinning 
reserve.  The black line represents the mean η and the area shown (shaded brown area) 
represents one standard deviation from the mean when the Southern Great Plains wind data set is 
used. 

 

These results show that a higher fraction of expected CO2 emission reductions can be 

achieved when multiple turbines are used to compensate wind power, but still only 77-87% of the 

expected CO2 emission reductions are achieved for wind penetration of 20%.  Increasing the number 

of turbines used to backup wind power increases the efficiency of the wind plus gas system.  At 20% 

wind penetration and no generators used as a spinning reserve, approximately 83% of expected CO2 

emission reductions are achieved when 20 generators are used to provide ancillary service, as 

opposed to 77% when 5 generators provide ancillary service.  Realistically, spinning reserves will be 

(a) 5 Turbines, No Spinning Reserve (b) 20 Turbines, No Spinning Reserve

(d) 20 Turbines, 1 Spinning Reserve(c) 5 Turbines, 1 Spinning Reserve
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necessary to compensate for wind’s variability and ensure a stable system.  Adding one spinning 

reserve generator reduces the system’s CO2 emission efficiency versus the wind penetration level.   

4.9 Interactions between RPSs and CAIR 

We examine the implications of our results by analyzing the potential interaction between 

state RPSs and the Clean Air Interstate Rule (CAIR).  The District of Columbia Circuit Court of Appeals 

vacated CAIR in July 2008 (US Court of Appeals, 2008), but here we examine the interactions 

between an RPS and CAIR, under the assumption that a similar NOx emission rule will come into 

force in the future.  CAIR was designed to reduce annual NOx emissions 60% by 2015 (EPA, 2008). 

States with large RPSs may experience NOx emissions from gas turbines used to fill in the variable 

renewable power that can make it more difficult to meet CAIR requirements. We estimate what 

percentage these ancillary emissions could consume of a state’s CAIR annual NOx emissions 

allocation in 2020 (EPA, 2005) (most RPSs are fully phased in by 2020; here we assume that the 2020 

NOx limits are the same as in 2015).  

We assume all RPSs in CAIR states are fulfilled and that all RPS targets that can be, are met 

with wind.  We convert RPSs that are specified by a percentage to MWh of wind generation in 2020 

by using the EIA assumption that load will grow linearly to 3% above 2008 load (DOE, 2001b).  We 

also assume all displaced and fill-in generators are similar to either LM6000s or 501FDs.  We 

estimate the expected emission reductions (MGT - φ) by using NOx emission factors of 0.2 kg/MWh 

for LM6000s and 0.15 kg/MWh for 501FDs obtained from EPA’s AP-42 database (EPA, 1995).  For 

each state, we average the estimated η for the four wind plant data subsets and use equation 4-12 

to estimate MA.  Finally, we use equation 4-13 to derive the mass of NOx emissions attributed to 

variability that are not currently included in most emissions displacement studies.  
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Table 4-2 summarizes the CAIR analysis.   When LM6000 turbines are used, the potential 

emissions associated with variability are significant for Illinois, Minnesota, and New Jersey: 

countering wind’s variability could consume 2 to 3% of each state’s annual CAIR allocations.  If 

501FDs are used, 7 of the 12 states could have 2 to 8% of their annual CAIR allocations used to 

provide fill-in power for wind or PV power plants.  

In states like New Jersey, careful selection of the NOx controls used for wind compensation 

may be warranted to avoid upward pressure on NOx permit prices, similar to when the NOx budget 

was first implemented (Farrell, 2000).  Using the emissions from table 4-2 and assuming an annual 

NOx emission permit price of $2,800 per ton, the costs associated with degraded emissions 

performance can be as high as 0.24 cents per kWh of renewable energy for NOx emissions.  With a 

carbon price of $50 per ton carbon dioxide, the costs can be as high as 0.50 cents/kWh for CO2 

emissions. We caution that these costs do not include the additional maintenance costs that may 

arise from cycling the gas turbines to compensate for the renewables’ variability. 

As part of their NOx control strategy, states may choose to award NOx allowances to eligible 

renewable energy and energy efficiency projects. These awards range from a few percent of the NOx 

allowances to as much as 15%. New Jersey’s set-aside is 5%, and Minnesota has proposed a 15% 

renewable set-aside (EPA, 2006). Our results caution that annual average emissions factors may not 

be appropriate for the summer ozone control months, since the character of the variability of both 

wind and solar PV is dependent on the season.  We note that the awards are based on the 

equivalent displacement assumption, and states that use gas generators to compensate for wind or 

solar PV variability may find that assumption is not warranted.  
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Table 4-2 - Summary results of CAIR analysis for the 12 CAIR states with a renewables portfolio 
standard. The wind penetration fraction is the larger of the fraction of the state’s 2020 RPS 
requirement that could be fulfilled by wind, or currently installed wind. The CAIR allowance is the 
2015 allowance. Note: fractions may not match exactly due to rounding. 

State 

Wind 
penetration 

Fraction (α) 

 

State’s annual 

CAIR NOx 
allowance 

(thousand 
tonnes) 

LM6000 with steam 
injection 

501FD with DLN 

MV 

annual 
(tonnes) 

% MV of 

state’s 

CAIR 

allowance 

MV 

annual 
(tonnes) 

% MV of 

state’s 

CAIR 

allowance 

Delaware 0.18 8.6 48 0.56 140 1.6 

Illinois 0.18 60 1200 2.0 3400 5.8 

Iowa 0.07 43 29 0.07 59 0.13 

Maryland 0.075 11 40 0.37 260 2.4 

Minnesota 0.25 34 730 2.2 2000 6.0 

Missouri 0.11 60 250 0.42 220 0.37 

New Jersey 0.16 12 350 3.0 910 7.7 

New York 0.077 19 120 0.64 820 4.2 

North Carolina 0.11 44 320 0.72 290 0.65 

Pennsylvania 0.07 65 180 0.27 1000 1.6 

Texas 0.033 150 590 0.04 120 0.08 

Wisconsin 0.1 31 140 0.45 120 0.40 

 

 The calculations above assume that variability in renewable generation results in similar 

variability in the natural gas generators used to compensate. There are several reasons this may not 

be correct, including use of coal and oil generators for compensation and interaction between 

renewable variability and load variability (Apt, 2007). While we have no data on ramping emissions 

of coal and oil generators, the estimates in table 4-2 are likely to provide an upper bound on 

estimates of the emissions increase associated with wind and solar generation's variability. Storage 

systems other than pumped hydroelectric are presently not cost-effective (Walawalker et al., 2007), 

but may reduce the need for ramping generators should their costs fall. 

4.10 Discussion 

Carbon dioxide emissions reductions from a wind (or solar PV) plus natural gas system are likely 

to be 75-80% of those presently assumed by policy makers.  Using multiple generators improves the 

CO2 emission efficiency of a wind + gas system by 3-15% for wind penetration levels of 5 to 95%.  

Nitrous oxide reduction from such a system depends strongly on the type of NOx control and how it 
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is dispatched. For the best system we examined, NOx reductions with 20% wind or solar PV 

penetration are 30-50% of those expected. For the worst, emissions are increased by 2-4 times the 

expected reductions with a 20% RPS using wind or solar PV.   

The fraction of expected emissions reduction, η, is calculated assuming that the emissions 

predicted to be displaced originate from the same generator type that provides fill-in power:  figures 

4-2a and 4-2b assume a LM6000 is displaced and a LM6000 is providing compensating power; 

figures 4-2c and 4-2d assume 501FDs.  Realistically, displaced generators will differ from the 

generators providing fill-in power and would produce different results.  We have shown that the 

conventional method used to calculate displaced emissions is inaccurate, particularly for NOx 

emissions. A region-specific analysis can be performed with knowledge of displaced generators, 

dispatched compensating generators, and the transient emissions performance of the dispatched 

compensating generators. The results shown here indicate that at large scale variable renewable 

generators may require that careful attention be paid to the emissions of compensating generators 

to minimize additional pollution.  We note that special emphasis should be placed on the NOx 

emissions of compensating generators because natural gas generators are located within load 

centers. 

If system operators recognize the potential for ancillary emissions from gas generators used to 

fill in variable renewable power, they can take steps to produce a greater displacement of 

emissions.  By limiting generators with GE’s DLN system to power levels of 50% or greater, ancillary 

emissions can be minimized.  Operation of DLN controls with existing (but rarely used) firing modes 

that reduce emissions when ramping may be practical. On a time scale compatible with RPS 

implementation, design and market introduction of generators that are more appropriate from an 

emissions viewpoint to pair with variable renewable power plants may be feasible. 
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4.12 Appendix C 

4.12.1 Regression Analyses 

4.12.1.1 Data 

Each emissions data set contains six variables: date, time, power generated, heat rate, NOx 

mass emission, and a calibration flag.  We model only NOx and CO2 emissions from the turbine.   

Carbon monoxide is emitted and is regulated for natural gas turbines but we do not consider CO in 

the present analysis. 

4.12.1.2 CO2 Approach 

The LM6000 data (figures 4-4 and 4-5) were divided into four regions corresponding to 

startup, ramping up to full power, full power, and ramping down to shutdown phases (identified as 

regions 1, 2, 3, and 4, respectively in figure 4-6).   

 

Figure 4-4 - LM6000 raw NOx emissions data 
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Figure 4-5 - LM6000 raw CO2 emissions data 

 

 

Figure 4-6 - LM6000 emissions data.  The emissions data were divided into four regions which 
were modeled independently.  The constraint curves imposed by the populated data are shown 
for each region. 

 

We performed a multiple regression on each region (equations 4-15 – 4-18); the goodness 

of fit is shown in figures 4-7 and 4-8, by graphing the absolute percent error between a regression 

model and the corresponding NOx emissions data.  The 501FD CO2 data were not divided into 
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multiple regions, as they depend on only the turbine’s power level; a linear regression analysis was 

performed (equation 4-7 and figure 4-9).  Adjusted R2 values are in table 4-3 and detailed statistical 

information on the regression analyses can be found in tables 4-4 and 4-5. 

4.12.1.3 LM6000 CO2 Regression Results (in tonnes / min) 
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4.12.1.4 501FD CO2 Regression Results (in tonnes / min) 

Region 1 
6000

31501,2
1084.11018.1 LM

FDCO
Pxx

dt

dM −− +=
 

(4-19) 

 

Table 4-3 - Adujsted R2 values for the regressoins used to model each region of each turbine and 
pollutant. 

Adjusted R
2 
Values 

Region 1 2 3 4 

LM6000 
 

   

CO2 0.85
 

0.99 0.86 0.99 

NOx 0.85
 

0.84 -
 

0.94
 

501FD   
  

CO2 0.99
 

- - - 

NOx 0.72 0.64 0.28 - 
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Figure 4-7 - Absolute percent error between calculated CO2 emissions based on regressions and 
actual CO2 emssions from LM6000 data set. 

 

 

Figure 4-8 - Absolute percent error between calculated CO2 emissions based on regressions and 
actual CO2 emissions from LM6000 data set.  Results are colored according to the regions (figure 
4-6).  Top: absolute percent error for each data point versus power level.  Bottom: absolute 
percent error for each data point versus ramp rate.  
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Table 4-4 - LM6000 Region CO2 Regression Results 

 
 

  



94 

 

 

Figure 4-9 - CO2 emissions rate for the 501FD turbines as a function of turbine output power (blue 
dots) and the linear regression model used to characterize the CO2 emissions rate (red line).  The 
linear regression equation is y = 0.00184x + 0.118 and has an adjusted R2 value of 0.991. 

 

Table 4-5 - 501FD Region CO2 Regression Analysis Results 

 
 

4.12.1.5 NOx Approach 

 

Available NOx combustion control technologies are water (liquid or steam) injection systems 

and dry low-NOx combustion designs (EPA, 1993).   The LM6000 data were obtained from 45 MW 

turbines that injected steam into the combustion chambers, lowering flame temperatures to reduce 

NOx.  The 200 MW 501FD turbines used General Electric’s Dry-Low NOx (DLN) system of lean 

premixed combustion.  The median nameplate size for all US natural gas turbines using Dry Low NOx 

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Power (MW)

C
O
2
 E
m
is
s
io
n
s
 R

a
te
 (
to
n
n
e
s
/m

in
)

2

Regression Line: y = 0.001836*x + 0.118

Adj. R2: 0.991



95 

 

control is 170 MW; using steam injection it is 80 MW. Thus, the turbines for which we have data are 

moderately representative. 

In GE’s Dry-Low NOx systems, fuel is premixed with air to create a fuel-lean mixture that is 

burned in a two-stage process to reduce flame temperatures and residence times. At full generator 

output, GE’s DLN operates at a mixture just richer than the flame blowout point of natural gas. As 

the generator load is reduced, less fuel is fed to the combustion chamber resulting in lower flame 

temperatures. As load is reduced further the flame blowout point is reached and GE’s DLN system 

can no longer employ the fuel-lean premixed firing mode, and shifts to a diffusion flame where high 

flame temperatures are present. As a result, low NOx emission rates are achieved in the power 

range of approximately 50% to 100% of nameplate capacity and NOx emission rates an order of 

magnitude greater are observed in the power range of 0% to 50% (Davis and Black, 2000).  

Taking the same approach used to model CO2 emissions, we modeled NOx emission rates as 

a function of power level and ramp rate (equations 4-20 – 4-23).  For region 3, no satisfactory result 

could be derived and the mean of the data was used (standard deviation of 0.022).  Figures 4-11 and 

4-12 display the goodness of fit for each regression.   

The 501FD NOx data were divided into three regions: low power, medium power, and full 

power (labeled regions 1, 2, and 3, respectively).  Equations 4-24 – 4-26 are the regression results 

for the 501FD data and figure 4-10 compares the regression results with the 501FD NOx emission 

data.  Adjusted R2 values can be found in table 4-3 and detailed statistical information can be found 

in tables 4-6 and 4-7. 
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4.12.1.6 LM6000 NOx Regression Results (in kg / min) 
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4.12.1.7 501FD NOx Regression Results (in kg / min) 
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Figure 4-10 - 501FD NOx emissions data as a function of power (blue dots) and regression (red 
line).  The emissions data were divided into three regions which were modeled independently of 
each other. This combined-cycle turbine is designed to produce low NOx only when operated at 
high power. 
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Table 4-6 - 501FD Region NOx Regression Results 
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4.12.1.8 LM6000 Regression Analysis 

 

Figure 4-11 - Absolute percent error between NOx emissions based on regressions and actual NOx 
emissions from LM6000 data set. 

 

 

Figure 4-12 - Absolute percent error between calculated NOx emissions based on regressions and 
actual NOx emissions from LM6000 data set.  Results are colored according to the regions (figure 
4-6).  Top: absolute percent error for each data point versus power level.  Bottom: absolute 
percent error for each data point versus ramp rate.  
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Table 4-7 - LM6000 Region NOx Regression Results 

 
 

4.12.2 Regressions Constraints 

4.12.2.1 LM6000 Regression Constraints 

The LM6000 turbines were generally operated in a consistent manner (figures 4-4 – 

4-6): initialized, ramped up quickly and held at or near full power, and ramped quickly down, 

and turned off.  Thus, not all the power-ramp-rate control space is sampled in the data we 
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obtained.  We applied constraints to our LM6000 model to ensure the model turbine was 

operated in regions sampled by the actual data (green lines in figure 4-6).  

Compensating for wind or solar power fluctuations in the simulations required some 

power and ramp rate combinations not situated on a constraint curve; we created an ensemble 

of samples from points on the constraint curves to match the desired combinations. We found 

that in doing so, the maximum error in the base load plant’s output was 7.6% and the mean 

error was 1.6%.  It is possible that our approach produces inaccurate results due to the 

incompletely sampled power-ramp-rate control space.   

 

Figure 4-13 -501FD emissions data.  The boundaries on the model's ramp rate, imposed by the 
populated data points in the control map, are shown.  The 501FD was operated in a manner that 
sampled more points in its control map than the LM6000 and as a result the 501FD model is not as 
constrained as the LM6000 model. 

 

The 501FD was cycled through its control space in a manner that sampled more points (figure 4-

13) than the LM6000 turbines.  As a result, the 501FD model is not as strictly constrained as the 

LM6000 model.  The only constraints imposed on the 501FD model were limitations on the 

maximum and minimum ramp rates, set at 5 MW/min and -5 MW/min, respectively.   
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4.12.3 Profile Sensitivity Analysis Raw Data 

 

The results of the model are dependent upon how much the gas turbine(s) ramp through 

their power range and at what power levels they are required to operate.  Therefore, the results 

seen in table 4-1, obtained from using the full time series of the 5 data sets (see table 4-8), 

estimates only the emission reductions for the conditions that existed during the periods when the 

data were collected.  Ideally, a significant number of high time-resolution independent power plant 

outputs would be used in our simulations.  However we did not have access to such a data set, only 

to the 5 data sets described.   

Table 4-8 - Wind and solar photovoltaic data sets from utility-scale sites used in the analysis. The 
maximum observed power of several of the power plants exceeded their nameplate capacity; in 
other cases the nameplate capacity was not reached during the period for which data were 
obtained. 

Data set Power plant 

type 

Capacity factor 

based on 

nameplate 

wind or PV 

size 

Normalized 

capacity 

factor based 

on maximum 

observed 

power 

Resolution Data set length 

Eastern Wind 0.07 0.12 1 second 240 hours 

Northern Great Plains Wind 0.57 0.59 10 second 15 hours 

Central Great Plains Wind 0.53 0.54 10 second 84 hours 

Southern Great Plains Wind 0.50 0.46 10 second 370 hours 

Southwest Solar PV 0.19 0.19 1 minute 732 days 

 

For wind data, one could imagine generating theoretical wind data, subject to certain 

constraints, such as ensuring the appropriate frequency and phase characteristics (Apt, 2007; 

Curtright and Apt, 2008).  Instead, we relied on the actual high time resolution data, creating smaller 

data subsets from the initial data thereby creating a large collection of data sets that represent a 

variety of variable power plant outputs.  To create the smaller data sets, a sliding window 1,000 

minutes in length was used to produce smaller data samples 1,000 minutes long.  The Eastern wind 



102 

 

plant data, recorded over a 10 day period, is 14,400 minutes in length and using the sliding window 

produced 13,401 data subsets.  Each data subset differs from the preceding data subset by two data 

points.  Therefore, there is a significant amount of correlation between the smaller data sets and it 

is this correlation that produces the lines, or tracks, seen in Figures 4-14 through 4-17.   

For the solar PV data, each day that power was produced was used as a data subset.  The 

solar data obtained was 732 days in length and thus produced 732 data subsets used in the profile 

sensitivity analysis. 

 

Figure 4-14 - 501FD CO2 expected emissions reduction raw results from profile sensitivity 
analysis. 
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Figure 4-15 - 501FD NOx expected emissions reduction raw results from profile penetration 
analysis. 

 

 

Figure 4-16 - LM6000 CO2 emissions reduction raw results from profile penetration analysis. 
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Figure 4-17 - LM6000 NOx expected emissions reduction raw results from profile penetration 
analysis. 

 

4.12.4 Multiple Turbine Analysis 

 In order to investigate how emissions are affected by the penetration factor of wind, the 

constraint of pairing the wind plant with only one natural-gas turbine is relaxed.  One to five natural-

gas turbines were paired with the wind plant to produce a base load variable plant of size n·P MW, 

where n is the number of turbines and P is the power limit of the turbine.  The fill-in power required 

is divided equally among the turbines and as a result the lower power limit of the turbines is P - P/n 

MW.   
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Figure 4-18 -501FD multiple turbine analysis using the Eastern wind data set.  By pairing n 501FD 
turbines with a variable power plant, the lower power limit (Pmin) of the turbines is P - P/n MW.  
For 2 or more turbines, Pmin is greater than 50% of the 501FD’s nameplate capacity and NOx 
emissions are reduced according to expectations.  If no attention is paid to Pmin, NOx emissions 
increase. 

 

Figure 4-18 shows the results of the multiple turbine analysis for 501FD turbines using the 

Eastern wind data set.  Limiting the minimum operating power level of the natural-gas turbine in the 

variable base load plant produces significantly better NOx emissions performance.  By limiting a 

501FD to power regions of 50% of nameplate capacity or greater, the poor emissions performance 

region of GE’s DLN system, where NOx emissions are an order of magnitude higher, is avoided and 

emissions are displaced at effectively a linear rate and match expectations.   
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Chapter 5 - Conclusion 

Utilities are striving to better understand wind power variability and its impact on their 

system.  Results reported in this thesis are intended to help system operators understand the 

variability of large penetrations of wind power and how it affects their systems. Chapters 2 and 3 

presented new methods to better characterize wind power variability and estimate its cost to a 

system.  Chapter 4 estimated how wind power variability affects wind power’s ability to displace 

emissions.  Finally, we also discuss the implications of our results for policy makers and identify 

further work that should be completed.  

5.1 Summary of Results 

Chapter 2 presented a metric that better characterizes the variability of large penetrations 

of wind power.  The variability of twenty interconnected wind plants is less than that of twenty 

individual wind plants when measured in the frequency domain with power spectrum analyses.  We 

showed for the first time the reductions in variability that occur from interconnecting wind plants 

result from the spectrum of wind power departing from a Kolmogorov spectrum.  The amount of 

smoothing (or departure from a Kolmogorov spectrum) is a predictable function of frequency, 

correlation coefficient, nameplate capacity ratio, and the number of interconnected wind plants.  

Reductions in variability diminish as more wind plants are interconnected as only 4 wind plants need 

to be interconnected to achieve 87% of the reductions in variability produced by interconnecting 20 

wind plants.  Yearly wind power production is likely to vary, and have year-to-year variations about 

half that observed nationally for hydropower.   

Chapter 3 presented a cost metric capable of estimating the variability cost of individual 

wind plants and valuing reductions in power variability.  The cost metric divided the energy 

produced by a wind plant into hourly energy components and 15-minute load following energy and 



107 

 

capacity components.  In order to create an unbiased metric, each hourly energy component was 

set at a level that minimized the cost of the four 15-minute load following components.    

Wind plants with higher capacity factors have lower variability costs (roughly half of lower 

capacity factor wind plants) and cost a system less to integrate.  In 2008, the mean variability cost 

for 20 wind plants in ERCOT was $8.73 per MWh with a standard deviation of $1.26 per MWh.  In 

2009, the mean variability cost was $3.90 per MWh with a standard deviation of $0.52 per MWh.  

The substantial reduction in cost was largely due to decreased ancillary service prices (natural gas 

prices declined significantly in 2009).  The relative ranking of wind plants based on variability costs is 

dependent on the wind power produced from the wind plants and not on ancillary service prices.  

Interconnecting 20 wind plants reduced the variability costs of ERCOT’s 20 wind plants by 

approximately half (a mean savings of $3.76 per MWh).   

Chapter 4 presented a wind + gas baseload power plant model that estimated how effective 

wind power is at displacing CO2 and NOx emissions.  Carbon dioxide emissions reductions from a 

wind (or solar PV) plus natural gas system are likely to be 75-80% of those presently assumed by 

policy makers.  Using multiple generators improves the CO2 emission efficiency of a wind + gas 

system by 3-15% for wind penetration levels of 5 to 95%.  Nitrous oxide reduction from such a 

system depends strongly on the type of NOx control and how it is dispatched.  For the best system 

we examined, NOx reductions with 20% wind or solar PV penetrations are 30-50% of those expected.  

For the worst, emissions are increased by 2-4 times the expected reductions with a 20% RPS using 

wind or solar PV. 

5.2 Future Work 

The methods and results presented in Chapters 2-4 have answered many questions but have 

left a few unanswered that should be resolved by future research in this field.  In Chapter 2, we 
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observed a difference between using real wind power data versus simulated wind power data in the 

frequency domain.  The PSD of forty interconnected modeled 1.5 MW GE turbines located 

throughout the Great Plains and Midwest did not depart from a Kolmogorov spectrum as the PSD of 

twenty interconnected wind plants did. It is important to resolve this discrepancy because wind 

integration studies rely on simulated wind power data and their results may be inaccurate if 

simulated wind power data does not behave in the same manner as real wind power data.  

The methods presented in Chapter 2 should be applied to a system’s net variability (wind + 

load variability).  It is unclear how wind power and load interact and Chapter 2 provides a method 

for system operators to measure how their net variability changes as more wind power is added.  In 

the wind industry many believe a system’s net variability will be less variable than its wind power 

due to the interaction of wind power with load.  The methods presented in Chapter 2 are ideally 

suited to answer this question. 

In addition, researchers or system analysts should estimate and model the departures from 

a Kolmogorov spectrum for the following cases: 

• Wind plants spread over a larger area than west Texas  

• Net wind power capacities greater than the 1 GW 

• Wind power located in different regions 

By doing so, system operators can obtain a better understanding of how wind plant correlation 

coefficients, capacities, and location determine their systems net wind power variability.   

In addition, the slope at which the magnitude of a system’s wind power PSD depends on 

frequency (defined as β in Chapter 2) is a better metric to define wind power variability than current 

metrics (such as energy or capacity penetration levels).  For example, in Chapter 2 we analyzed 1 
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GW of wind power capacity in ERCOT and 1.5 GW of wind power capacity in BPA in 2008.  Even 

though BPA had a greater amount of wind power capacity, we observed BPA had a β greater than 

ERCOT, indicating BPA’s wind power is more variable than ERCOT’s wind power9.  As a result, system 

planning and operation charts should be developed where a system can determine how ancillary 

service requirements, generation capacity levels, and ramp rate resources are needed for given β 

levels of wind energy.  System planners would then have a better idea of how much wind power to 

build and where to build it to achieve the least adverse affect on their systems.   

In Chapter 3, regulation costs were not estimated due to a lack of high time-resolution wind 

power data sets.  In addition, forecast error and unit-commitment costs were not estimated.  Future 

work should expand our cost metric to estimate how much regulation, unit commitment, and 

forecast error add to a wind plant’s integration costs.  The resulting cost estimates should be 

compared to the results of the large integration studies to ensure the cost metric produces similar 

results. 

In Chapter 4, the baseload wind + gas power plant model indicated variability adversely 

affects the emission efficiency of fossil-fuel generators but a more extensive analysis of the 

emissions performance of a system’s generator fleet needs to be completed in order to have a clear 

picture of how wind power will displace emissions, particularly NOx and SOx emissions.  If a more 

detailed study is undertaken, how the type of generator and the type of NOx mitigation technology 

affects the results of NOx emission displacement should be examined.  The results of such an 

analysis can be used to provide a more accurate method to estimate the emissions displaced by 

wind power.  In addition, system operators could identify dispatch scenarios that maximize the 

displacement of NOx emissions.   

                                                           
9 This is because all of BPA’s wind plants are located in the Columbia River Gorge and their outputs are likely 

highly correlated with each other. 
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Finally, gas turbine manufactures should investigate creating a generator(s) suited to 

compensate for wind power variability.  The generator would have better emissions efficiencies over 

larger power and ramp rate ranges.  This could possibly be achieved easily through the utilization of 

firing modes not commonly used in today’s gas turbines or it could be more complicated and require 

redesigning combustion chambers.  A potential market could develop in the next decade for such a 

technology when the aggressive growth of wind energy begins could conflict with stricter generator 

emission limits.   

5.3 Policy Implications 

Wind plants pose two problems to system operators.  The first is they are a variable source 

of power and system operators have been going through great efforts to determine how they will 

integrate significant penetrations of variable power.  The second is the best wind sites are primarily 

located far from load centers in areas with little to no transmission capacity.  System operators are 

currently analyzing if they should construct billions of dollars worth of long transmissions lines to 

encourage wind plant development in wind rich regions.  

Electricity systems will not be able to mitigate wind power variability simply by 

interconnecting more wind plants to their system.  It is true a system of interconnected wind plants 

exhibit less variability than the individual wind plants it is composed of, but the majority (~87%) of 

the reductions in variability are achieved by interconnecting 4 to 6 wind plants together.  All but one 

of the electricity systems in the United States currently have more than 6 wind plants 

interconnected to each of their systems (the southeast is the exception).  As a result, there will likely 

be little benefit, in terms of mitigating wind power variability, in interconnecting additional wind 

plants.  This is true from a cost perspective as well.   
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Additionally, we have provided system operators with a regression model capable of 

estimating how much their wind power variability is reduced as their future penetration of wind 

energy increases.  By better understanding how the variability injected into their system changes as 

more wind plants are built, system operators can better understand what assets they will need to 

have to compensate for the injected variability.  

The benefit of interconnecting distant wind plants is adding higher capacity factor wind 

plants to a system.  Higher capacity factor wind plants are more profitable and they cost a system 

less to integrate.  But transmission lines are expensive while wind integration costs are not.  The 

reductions in wind power variability, from a system’s cost perspective, are not enough to justify 

significant investments in transmission lines.  For example, ERCOT would be willing to extend a 

transmission line a maximum of 2 miles based on the benefit an additional wind plant would provide 

in reducing ERCOT’s wind integration costs.  Based on this, system operators should determine if it is 

better to incentivize the development of wind plants in poor wind resource areas located close to 

load centers instead of building long transmission lines to encourage the development of wind 

plants in wind rich resource areas. 

System operators will have to decide if they want to recover wind integration costs ex-ante 

or ex-post.  By recovering integration costs ex-ante, systems can provide wind plants with more 

certainty on how much they will have to pay over the course of a year.  Wind plants could also pay 

more or less than what it actually cost to integrate their power into a system.  By recovering costs 

ex-post, wind plants will pay each year what it actually cost to integrate their power into a system.   

Unfortunately, doing so would inject a significant amount of uncertainty would into wind plant 

financial pro formas and would make it harder for wind plants to obtain financing.    
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As a result, if electricity systems follow the precedent set by BPA and recover integration 

costs of wind power through tariffs levied on wind plants, they should consider a capacity factor 

based tariff indexed to the price of electricity that recovers integration costs ex-ante.  Systems 

should offer a reduced tariff to wind plants that actively mitigate their variability to encourage the 

development of market based solutions.  If system planners can identify wind plants in their 

interconnection queues with the highest capacity factors they could take an active approach to 

decrease their integration costs by giving priority to these projects.  Wind plants should also be 

given priority in the interconnection process if they implement flexible technologies to mitigate their 

variability costs.   

Finally, the results shown in Chapter 4 indicate that at large scale variable renewable 

generators may require that careful attention be paid to the emissions of compensating generators 

to minimize additional pollution.  If careful attention is not paid, emission allowance prices could 

increase substantially.  Finally, on a time scale compatible with RPS implementation, design and 

market introduction of generators that are more appropriate from an emissions viewpoint to pair 

with variable renewable power plants may be feasible. 

 

 


