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Abstract 

 
Chapter 1: Optimizing Transmission from Distant Wind Farms 

We explore the optimal size of the transmission line from distant wind farms, 

modeling the tradeoff between transmission cost and benefit from delivered wind power. 

We also examine the benefit of connecting a second wind farm, requiring additional 

transmission, in order to increase output smoothness. Since a wind farm has a low 

capacity factor, the transmission line would not be heavily loaded, on average; depending 

on the time profile of generation, for wind farms with capacity factor of 29-34%, profit is 

maximized for a line that is about ¾ of the nameplate capacity of the wind farm. 

Although wind generation is inexpensive at a good site, transmitting wind power over 

1,000 miles (about the distance from Wyoming to Los Angeles) doubles the delivered 

cost of power. As the price for power rises, the optimal capacity of transmission 

increases.  Connecting wind farms lowers delivered cost when the wind farms are close, 

despite the high correlation of output over time.  Imposing a penalty for failing to deliver 

minimum contracted supply leads to connecting more distant wind farms. 

 

Chapter 2: The optimal baseload generation portfolio under CO2 regulation and 

fuel price uncertainties 

We solve for the power generation portfolio that minimizes cost and variability 

among existing and near-term baseload technologies under scenarios that vary the carbon 

tax, fuel prices, capital cost and CO2 capture cost. The variability of fuel prices and 

uncertainty of CO2 regulation favor technologies with low variable cost and low CO2 

emission. The qualitative results are expected; stringent CO2 regulation cost leads to 

more technology with little carbon emissions, such as nuclear and IGCC CCS, while 

penalizing coal. However, the variability of fuel prices and the correlation among fuel 

prices are the principal attributes shaping the optimal portfolio mix.  We also model a 

Bayesian approach that allows the planner to express his belief on the future cost of 

power generation technology. 

 

 



 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4

Acknowledgements 
 

I thank the Royal Thai Government for all the financial support. Also the staffs at the 
Office of Educational Affair, Royal Thai Embassy at Washington D.C. help me with 
many issues. I thank the Ministry of Energy Thailand for giving me an opportunity to 
study here. 
  
 I would like to express the deepest gratitude to my advisor, co-author of my 
papers and committee chair, Lester B. Lave. He gives me an opportunity to work on the 
field that I am interested in. He is always available when I need help and guidance. He 
also teaches me many things not only valuable for the research but also for my life. This 
dissertation would not have been possible without him.  
 
 I would like to thank my dissertation committees. Jay Apt helps me with many 
issues. The excellent wind data he provided helped me in formulating the study on wind 
transmission investment. He also gives the critical comments that help improving my 
research. Marvin Goodfriend gives me useful advice on my research and research 
presentation. Keith Florig gives me useful comments and idea for my research. 
 
 I am thankful to the faculties who taught the PhD courses. They give me a chance 
to learn many advanced economics and financial economics lessons. 
 
 I am grateful to my family; my parents, sister, brother and my aunts. They give 
me strength to finish my PhD in a place thousands miles away from home. They have 
supported me for my whole life. I also thank my girlfriend for her love, encouragement 
and patience. I thank all my friends in Pittsburgh for helping me settling my life here and 
making life enjoyable. 
 
 In addition, I would like to thank Lawrence Rapp for all his help since the day I 
applied to the school.  
 

 

 

 

 

 

 

 

 



 5

Chapter 1 
 
Optimizing Transmission from Distant Wind Farms 
 

 

 

1. Introduction 

 

California and 29 other states have renewable portfolio standards (RPS) that will 

require importing electricity generated by wind from distant locations.  A long 

transmission line increases cost significantly since its capacity factor is approximately the 

same as the wind farms it serves, unless storage or some fast ramping technology fills in 

the gaps left by wind generation.  We explore issues surrounding importing wind 

electricity from distant wind farms, including: the delivered cost of power, considering 

both generation and transmission, the cost of the transmission line, when to pool the 

output of two wind farms to send over a single transmission line, and what additional 

distance would the owner be willing to go for a better wind site in order to minimize the 

cost of delivered power. 

Wind energy is the cheapest available renewable at good wind sites. Since no fuel 

is required, generation cost depends largely on the investment in the wind farm and the 

wind characteristics (described by the capacity factor). Assuming $1,915/kW for the cost 

of the wind farm, annual operations and maintenance (O&M) costs of  $11.50/kW-yr, 

variable O&M cost of $5.5/MWh, a blended capital cost of 10.4%, and a 20 year life time 

for the turbine, generation costs at the wind farm are around $76/MWh, $66/MWh, 

$59/MWh, $56/MWh, and $53/MWh, respectively, for the wind farms with capacity 

factors of 35%, 40%, 45%, 47.5%, and 50%, respectively. 

Wind is the fastest growing renewable energy, adding 8,558 MW of capacity in 

2008, 60% more than the amount added in 2007 (Wiser and Bolinger, 2009). Total wind 

capacity in 2008 was 25,369 MW, about 2.2% of U.S. total generation nameplate 

capacity.  
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Good wind sites (class 4-6 with average wind speed 7.0-8.0 m/s at 50 m height 

(AWEA, 2008)), accounting for 6% of the U.S. land, could supply 1.5 times current U.S. 

electricity demand (DOE, 2007). However, transmission is a key barrier for wind power 

development, since good wind sites are generally remote from load centers (DOE, 

2008a).  The low capacity factor of a wind turbine, added to the remoteness of good wind 

sites, makes transmission a major cost component. Denholm and Sioshansi (2008) note 

that transmission costs can be lowered by operating the transmission line at capacity 

through storage or fast ramping generation at the wind farm.  Whether this co-location 

lowers the delivered cost of electricity depends on the site characteristics and other 

factors. 

Low utilization of a long transmission line could double the cost of delivered 

wind power, since a wind turbine’s capacity factor is only 20-50%.  Using actual 

generation data from wind farms, we model the optimal capacity of a transmission line 

connecting a wind farm to a distant load. We show that the cost of delivered power is 

lowered by sizing the transmission line to less than the capacity of the wind farm.   

We assume the wind farm is large enough to require its own transmission line 

without sharing the cost with another wind farm or load in a different location. While we 

know of no example of a wind farm building its own transmission, T. Boon Pickens 

proposed to do this.  If 1,000 MW were to be sent 1,000 miles or more, available capacity 

in short, existing lines would not be helpful. We also extend the model to two wind 

farms, trading off the additional transmission needed to connect the farms against the less 

correlated output.  The relationship between wind output correlation and distance is 

modeled using the wind data from UWIG (2007).  Finally, we model the effect of 

charging wind farms for failing to provide the minimum supply requirement.  
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2. Model 

 

2.1 One Wind Farm Model 

In this model, a wind farm is large enough to require its own high voltage DC 

transmission line to the load. The project consists of the wind farm and transmission line.  

We formulate the model as the owner of the wind farm and transmission line seeking to 

maximize profit.  However, in this case the objective function is equivalent to seeking to 

maximize social welfare, as explained below.  

The general form of the objective function for optimizing the capacities of the 

transmission line is:  
40

2
1 200 1 1 1

 min[ , ] ( )
(1 ) (1 )

N
ji

jijs j i

p WCMAX NPV q sK aC sK WC
r r≤ ≤

= =

= − − −
+ +∑∑  

  K  =  capacity of the wind farms (MW) 

 s  =  transmission capacity normalized by total capacity of the wind farm (called  

          “transmission capacity factor”)  

a = length of the transmission line (mile) 

( )C sK  = cost per mile of sK MW transmission line built in year 0 

i = ith hour in a year  

j = jth year (from 1st – 40th) 

N = 8,760 hours in a year 

jip = the expected price of wind power ($/MWh) in year j at hour i  

jiq = the expected delivered wind power (MWh) in year j at hour i 

r = the discount rate 

1WC  = cost of the wind turbines built in year 0 

2WC  = cost of the wind turbines built in year 20 

The lifetimes of the transmission line and wind turbine are assumed to be 40 and 

20 years respectively. Thus, the turbines must be replaced in year 20. We also assume 

that construction is instantaneous for both transmission and turbines. 

Transmission investment has economies of scale over the relevant range; the cost 

per MW decreases as capacity of the line increases (Weiss and Spiewak, 1999). Line 
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capacity is defined as the “thermal capacity” in megawatts (MW) (Baldick and Kahn 

(1993)). The transmission line cost is C(q) per mile, where q is the capacity of the line. 

C(q) is increasing and concave, )(' qC ≥  0 and )('' qC  ≤  0. 

We assume no line loss (delivered power equals the injected amount) and the wind 

distribution (output) is the same in all years.  

According to Barradale (2008), about 76% of wind power is purchased via a long term 

power purchasing agreement (PPA) that specifies a fixed price or price adjusted by inflation.  

Electricity price paid to the wind farm is assumed to be constant over time and unrelated to the 

quantity of wind power supplied.  Thus, whether the owner seeks to maximize profit or a 

public authority seeks to maximize social welfare, the goal is to maximize the benefit of 

delivered wind power by optimizing the size of the transmission line.  

Given these assumptions, the variables iq and P are used instead of jiq  and jip  to 

represent the constant annual output and fixed price. The optimization problem is 

simplified as follow. 

( )
40

2
1 200 1 1 1

1 min[ , ] ( )
(1 ) (1 )

N

ijs j i

WCMAX NPV P q sK aC sK WC
r r≤ ≤

= =

⎛ ⎞
= − − −⎜ ⎟

+ +⎝ ⎠
∑ ∑   

Let 
40

1

1
(1 ) j

j r
β

=

=
+∑ , ( )

1
min[ , ] ( , )

N

i
i

q sK Q s K
=

=∑ and 2
1 20(1 )

WCWC WC
r

+ =
+

. 

The above objective function can be written as; 

0 1
 ( , ) ( )

s
MAX NPV PQ s K aC sK WCβ

≤ ≤
= − −  

The optimal transmission capacity is determined by the tradeoff between the 

incremental revenue from delivering additional electricity and the incremental cost of the 

capacity increase. The optimization problems is solved numerically by using the search 

algorithm to find the maximum point over the range of feasible transmission capacity; 

0 1s≤ ≤ . 

 

2.2 Two Wind Farms Model  

 The model with two wind farms assumes a branch line of “b” miles connecting farm 2 

to farm 1, which is connected to the customer with a main line of “a” miles. If the two farms 

are so distant that it is cheaper to connect each to the customer, the previous model applies.  
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Figure 1: Simplified network topology of the model with 2 wind farms 

This model explores the effect of output correlation on the optimal transmission 

capacity. The basic one-farm model assumptions are retained and the two farms have the 

same capacity. (K MW).  The investor chooses the optimal size of both transmission lines 

to maximize profit.  The objective function is:  

1 2

21 22
1 2 1 2 11 12 200 2, 0 1 1

 ( , , ) ( ) ( )
(1 )

N

is s i

WC WCMAX NPV P q s s K aC s K bC s K WC WC
r

β
≤ ≤ ≤ ≤

=

+
= − − − − −

+∑  

 s1  =  the transmission capacity factor (main line)  

 s2  =  the transmission capacity factor (branch line)  

          1( )aC s K = cost of a miles main transmission line capacity s1K MW built in year 0 

          2( )bC s K =cost of b miles branch transmission line capacity s2K MW built in year 0 

          11 12 and WC WC = cost of 1st and 2nd wind farms built in year 0  

          21 22 and WC WC = cost of 1st and 2nd wind farms built in year 20 

          1 2( , , )iq s s K  = the expected delivered wind power at hour i from both wind farms 

Note that 1 2 1 1 2 2( , , ) ( , ) ( , )i i iq s s K q s K q s K= + where 1 2 1( , , )iq s s K s K≤ .  1 1( , )iq s K is the 

power generated by  the 1st farm. 2 2( , )iq s K is the delivered power from the 2nd farm such 

that 2 2 2( , )iq s K s K≤ . 

Let 1 2 1 2
1

( , , ) ( , , )
N

i
i

q s s K Q s s K
=

=∑ and 21 22
11 12 20(1 )

WC WCWC WC WC
r
+

+ + =
+

. The objective 

function can be formulated as;  

1 2 1 21, 2
 ( , , ) ( ) ( )

s s
MAX NPV PQ s s K aC s K bC s K WCβ= − − −  

 The optimization problem is solved numerically by evaluating the objective 

function over a two-dimensional grid of s1 and s2 values. 
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3. Data and variables 

 

1. Wind data 

We use hourly wind power generation data from four Northeastern U.S. wind 

farms covering January-June and assume the July-December data are similar. The data 

are shown in figure 1. The data were normalized so that the maximum output (the 

nameplate capacity) was equal to 1. Descriptive statistics and output correlation & 

distance between farms are shown in the tables below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Hourly distribution of wind power 

Wind farm Capacity factor (%) Variance 

A 32.73 0.0840 

B 34.73 0.0871 

C 29.92 0.0821 

D 29.77 0.0738 

Table 1: Descriptive statistics of the wind farm output 
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Farm A B C D 

A 1.0 0.77 0.69 0.35 

B 56 1.0 0.71 0.46 

C 19 63 1.0 0.36 

D 219 250 200 1.0 

Note: correlations are shown on and above the diagonal and distances are shown below the diagonal.  

Table 2: Output correlation and distance between farms (mile) 

 iq , ( , )Q s K , 1 2( , , )iq s s K  and 1 2( , , )Q s s K are derived from this actual wind data.  

 

2. Financial variable 

The discount rate in this model is 10.4% (20% equity at 20% and 80% debt at 8%).   

 

3. Transmission cost data and estimation 

The cost of a transmission line varies with distance and terrain, but the greatest 

uncertainty concerns regulatory delay and the cost of acquiring the land. To reflect this 

uncertainty, we perform a sensitivity analysis with cost varying between 20% and 180% 

of the base cost in the next section. We use DOE (2002) data to estimate the transmission 

line cost function. The data are adjusted to reflect the current cost of DC transmission 

construction1.1.  

The functional form of the cost function is; cost per mile = e MWα β . The 

coefficient β indicates how much cost increases as the line capacity increases by 1%; 

elasticity with respect to line capacity. By using a log-log transformation, the 

transmission line cost function is estimated as a log-linear function of transmission 

capacity (MW). The transmission line cost, as a function of capacity is estimated using 

ordinary least square (OLS); see Appendix A. As expected, the estimated result displays 

economies of scale of transmission line investment.  

cost per mile = 10.55415 0.5759e MW  

                                                 
1 The reported cost for high voltage transmission line covers a wide range (ISO-NE, 2007). If the cost of 
the transmission line were half or twice the cost we assume, the cost of the transmission would be halved or 
doubled assuming the capacity of the line is fixed. 
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The regression equation has R2 = 0.94 and all parameters are statistically 

significant. The t-statistics for the constant and the parameter of MW are 35.31 and 10.24 

respectively.  

 

4. Wind turbine cost  

Costs of new wind turbines have risen and then fallen in the past few years; we 

use $1,915/kW as the installed cost of a wind farm (Wiser and Bolinger, 2009), 

$11.5/KW-year fixed O&M cost and $5.5/MWh variable O&M cost (Wind Deployment 

System (WinDS) model (DOE, 2008b)).  

 

5. Electricity price 

The electricity price in this study is the real hourly electricity price paid to the owner 

of the wind farm and transmission.  Since the wind farm operator has little control over when 

the turbines generate electricity, we assume that she receives the average price for the year 

for each MWh.  We assume that the delivered price paid to the wind farm investor is 

$160/MWh included all federal and state subsidies. In addition, for simplicity, we assume the 

electricity price over the next forty years is constant, after adjusting for inflation. 

 

 

4. Results 

 

 4.1 Results for One Wind Farm 

 We focus on delivering wind power over a distance of 1,000 miles, about the 

distance from Wyoming to Los Angeles; California’s renewable portfolio standard will 

require large amounts of wind energy from distant sites. For a 1,000 mile long 

transmission line, the optimal transmission capacity, utilization rate, profit and delivered 

output for the four wind farms are shown in Appendix C, Table C1. The optimal capacity 

is 74 - 79% of the wind farms’ capacity.  As expected, among the four wind farms, those 

with higher capacity factors have higher optimal transmission capacity, profit and 

delivered output, with lower delivered power cost.  

 



 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12 x 10
7

Transmission capacity factor (s)

D
el

iv
er

ed
 o

ut
pu

t (
M

W
h)

Farm A

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Farm A: 1,000 miles

Price ($/MWh)

Tr
an

sm
is

si
on

 fa
ct

or
 (s

)

 

 

 

 

 

 

 

 

Figure 3: Transmission capacity and delivered output 

Figure 3 shows the relationship between the capacity of the transmission line and the 

delivered wind power of Farm A. The slope of the curve represents the marginal benefit of 

transmission capacity. As transmission capacity increases, marginal benefit decreases since 

the turbine’s output is at full capacity for only a few hours per year. Farm A’s optimal 

transmission capacity is 79% of the farm’s capacity, but the transmission line delivers 97% of 

the wind power generated. Adding 21 percentage points to transmission capacity increases 

delivered output by only 3 percentage points.   

 

 

 

 

 

 

 

 

 

 

Figure 4: Price vs. transmission capacity factor (s) 

Figure 4 shows the relationship between price and transmission capacity (s) of 

farm A derived from the first order condition. The first order condition shows the optimal 
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capacity decision, even when profit is negative, although the investor would not build the 

wind farm and transmission for a negative return. At price below $55/MWh, the optimal 

capacity is zero.  Optimal transmission capacity and delivered power rise rapidly as price 

goes from $55 to 200/MWh due to economies of scale in transmission investment and the 

initial high marginal benefit of the transmission line (as seen in Figure 3).  The scale 

economies are essentially exhausted and virtually almost all of the generated power is being 

delivered by the time a $300 price is reached; higher prices would increase transmission 

capacity little. 

As price rises, the value of the delivered electricity rises, increasing the value of 

transmission capacity; almost all of the generated power is being delivered by the time a 

$300 price is reached. The supply curve is shown in Figure 5. 

The delivered cost of wind power (transmission cost included) ranges from $144 

to 169/MWh for these 4 wind farms.  Since the generation cost is $78 to 92/MWh, 

transmission is 44-46% of the total cost; see Appendix C, Table C1. Note that the price 

paid to the investor is $160/MWh. 

 

 

 

 

 

 

 

 

 

Figure 5: The supply curve  

The output distribution of a wind farm also affects the optimal transmission 

capacity.2 In order to test the effect of the distribution, all 4 wind farms’ output data are 

modified to have a 50%capacity factor. As shown in Appendix C Table C2, the optimal 
                                                 
2 Consider two wind farms with 30% capacity factor, if the turbine produced at 100% of capacity 30% of 
the time and zero capacity the rest, the optimal transmission capacity would be 100%; if it produced at 30% 
of capacity 100% of the time, the optimal transmission capacity would be 30%.   
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transmission capacity, profit and delivered output of farms A, B and C are about the 

same. However, Farm D has the lowest transmission capacity and the highest profit, since 

it has less output distributed in the 80-100% of nameplate capacity range. As a result, 

farm D faces less trade-off between transmission capacity and loss of high level output. 

In addition, the farm with lower output standard deviation tends to have lower optimal 

transmission capacity. 

 

 
Transmission 

capacity 

factor (s) 

Transmission 

cost $ 

Additional 

transmission 

cost $ 

Additional 

revenue $ 

Decrease in 

profit $ 

A 0.7880 1.785 x 109 2.626 x 108 1.248 x 108 1.378 x 108 

B 0.8075 1.810 x 109 2.373 x 108 0.946 x 108 1.427 x 108 

C 0.7747 1.767 x 109 2.799 x 108 1.534 x 108 1.265 x 108 

D 0.7388 1.720 x 109 3.276 x 108 1.049 x 108 2.227 x 108 

 Table 3: Implication of increasing transmission to 100% of wind farm capacity 

 

Table 3 shows profit reduction in present value term when the transmission line is 

expanded from the profit maximizing capacity to the wind farm’s nameplate capacity. 

Profit reduction is calculated as the difference between the additional cost of building the 

line at full capacity and revenue from additional delivered wind power (in present value); 

expanding the line to full capacity costs $127 to $223 millions.   Although it may seem 

wasteful to spill some of the power generated by the wind farm, beyond the optimal 

transmission capacity, the incremental cost of increasing transmission capacity is greater 

than the value of the additional power delivered. For example, building a line at full 

capacity for Farm A increases the cost of the line by 15% while delivering only 3% of 

additional power.  

The best wind sites are distant from load and so there is a tradeoff between lower 

generation cost and lower transmission cost.  Figure 6 shows the delivered cost of power 

from wind farms with capacity factors of 35% and 50% as a function of the distance of 

the wind farm from load.  For a 50% capacity factor wind farm, the delivered cost of 

power doubles when it is just over 1,063 miles away.  For a 35% capacity wind farm, the 

delivered cost of power is doubled when the wind farm is just under 1,000 miles away. 
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Figure 6: Cost and length of the transmission line of 2 wind farm sites 

A more interesting interpretation of the figure is to see how much further you 

would be willing to go to get power from a 50% capacity factor wind farm compared to a 

35% capacity factor wind farm.  At a cost of delivered power of $100/MWh, a 35% 

capacity wind farm could be 300 miles away while a 50% capacity wind farm could be 

1,000 miles away. Thus, if a 35% capacity factor wind farm were located 300 miles 

away, the customer would be willing to go up to an additional 700 miles.  For any 

delivered cost of electricity, the horizontal difference between the two lines is the 

additional distance a customer would be willing to go to get to a wind farm with capacity 

factor 50% rather than 35%.  Since much of the USA has a minimally acceptable wind 

site within 300 miles, they would not find it attractive to go to the best continental wind 

sites in the upper Midwest.  

To ensure reliability, power systems must satisfy an N – 1 criterion. The 

variability of wind output puts an additional burden on the generation system. The 

cheapest way of meeting the N – 1 criterion is by using spinning reserve; this reserve can 

also ramp up and down to fill the gaps in wind generation. As reported by CAISO (2008), 

the total cost of ancillary services per MWh in 2008 (monthly average) is from $0.42-

1.92/MWh. This cost includes spinning reserve, non spinning reserve and regulation. The 

cost of spinning reserve alone is about $0.15-0.67$/MWh. Thus, the cost of purchasing 

spinning reserve would add less than 1% to the cost of delivered power.     
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Farm A: 1,000 miles at price $160/MWh

60%

65%

70%

75%

80%

85%

90%

95%

100%

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80

Percentage change in tranmission cost

Tr
an

sm
is

si
on

 fa
ct

or
 (s

)

80

100

120

140

160

180

200

220

C
os

t o
f d

el
iv

er
ed

 p
ow

er
 ($

/M
W

h)

Transmission factor (s)
Delivered power cost

Sensitivity analysis 

 We perform 4 sensitivity analyses: transmission cost vs. optimal capacity, the 

optimal transmission capacity vs. length of the line, transmission capacity vs. the 

discount rate, and profit vs. the discount rate. Other parameters are assumed to stay at 

former levels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Transmission cost and optimal line capacity of farm A 

Transmission cost and optimal capacity 

 The optimal transmission capacity is solved for transmission cost varying plus or 

minus 80% of the base line. When the transmission line costs 80% less than the base 

case, the optimal size of the transmission line is 96% of the wind farm capacity and the 

cost of delivered power is $96/MWh.  When the transmission line costs 80% more than 

the base case, the optimal capacity of the transmission line is 62% of the wind farm 

capacity and the cost of delivered power is $210/MWh. The base case values have the 

transmission line at 79% of the capacity of the wind farm with a delivered cost of 

$149/MWh. 
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Figure 8: Optimal transmission capacity and transmission length of farm A 

Transmission capacity and length:  Transmission cost increases with the length of the 

line.  Figure 7 can be interpreted as showing the effects of shortening the line to 200 

miles or lengthening it to 1,800 miles. As transmission cost increases, the optimal 

capacity of the transmission line relative to the wind farm capacity decreases for a given 

power price, as shown in Figure 8.  A longer transmission line results in lower delivered 

output. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Profit and discount rate of farm A 
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Profit and a discount rate: Profit steadily decreases as the discount rate increases. As 

shown in Figure 9, the IRR (Internal Rate of Return) of this project is around 14% at a 

$160/MWh price (the discount rate giving zero NPV).  

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Optimal transmission capacity and discount rate of farm A 

Transmission capacity and discount rate:  Increasing the cost of capital (equity and loans) 

increases the cost of the transmission line. Figure 10 shows that the capacity of the line 

declines as the discount rate increases.  

    

4.2 Results for Two Wind Farms 

The data from 4 wind farms is used to maximize profit when two wind farms 

share the same central transmission line.  By bundling 2 wind farms, the capacity of the 

main transmission line is almost double compared with the one wind farm case and so the 

transmission line can take advantage of economies of scale at this level (see Appendix C 

Table C3 for detail). The correlation between outputs of wind farms generally decreases 

as the farms are more distant.  Here we investigate connecting wind farms that are more 

distant, trading off the cost of the additional transmission against the lower correlation of 

output. We examine each of the 12 possible pairs. Note that the pair AB means that the 

main transmission line goes to A, with a secondary line to B. The results from AB and 

BA are similar. The model is solved under 3 scenarios. 

− Scenario 1: a = 1,000 miles and b = the actual distance between farms 
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− Scenario 2: a = 1,000 miles and b = the distance calculated from the estimated 

relationship between correlation and distance (Appendix B). Farm A is paired 

with a fictitious wind farm whose capacity factor is the same as A where the 

correlation between the outputs of the two wind farms is calculated from the 

estimated correlation-distance relationship. 

− Scenario 3: This scenario has the same configuration as scenario 2 but 

imposes a penalty per MWh when the delivered power from the wind farms 

falls below a minimum requirement level.   

 In scenario 1, the total cost of wind power (both generation and transmission cost 

included) ranges from $134 to 153/MWh, taking advantage of the economies of scale in 

transmission. The cost of generation ranges from $80 to 92/MWh, approximately the 

same as the one wind farm model. Transmission cost still accounts for more than one 

third of the delivered wind power cost. 

When the second wind farm is close to the first, the output from the two wind 

farms are highly correlated. The second wind farm would help lower the delivered cost of 

electricity through economies of scale of transmission but this cost saving must be traded 

off against the length of the connecting transmission line.  

In addition, when the length of the second transmission line is shorter, the 

capacity of the line (s2) is higher. A shorter line translates to lower cost, which makes a 

slightly higher capacity more profitable. In addition, like the one wind farm model, 

capacity factor is the key factor that determines profit from the project.  

  Given the correlation-distance relationship, in scenario 2, we vary the correlation 

over the relevant range, calculate the implied distance, and then optimize the capacity of 

the transmission line to maximize profit.  Farm A is paired with a wind farm of the same 

capacity, but we vary the distance (and thus the output correlation) between the two 

farms. The simulated data used in scenario 2 are random numbers generated with the 

specific correlation with farm A and have capacity factor 30%. 

While the correlation of output from two wind farms decreases with the distance 

between them, the correlation also varies with terrain and wind direction. The pair of 

wind farms with lower correlation tends to have higher utilization rate of the main 

transmission line. This can be considered as the effect of output smoothing by 
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aggregating wind farms with low output correlation. The transmission line is used more 

efficiently when output is smoother (see Appendix C Table C4 for detail). If the system 

needs the smoother wind power output, more money is needed to invest in longer 

transmission.  

 Lower output correlation implies lower transmission capacity and higher 

transmission (main line) utilization rate. Without a price premium for smoothed output, 

the shorter distance between farms is more profitable than a low correlation. Thus, for 

this distance-correlation relationship, investors would want to build wind farms close 

together, despite the high correlation of their outputs. Thus, the optimal distance between 

wind farms is zero, as long as the second farm has the same capacity factor as the first. 

 

 

 

 

 

 

 

 

Figure 11: Profit at penalty $160/MWh with minimum delivery requirement 400 MW 

 Scenario 3 analyzes the effect of imposing a minimum output requirement of 400 

MW (20% of the total nameplate capacity) by the buyer. If the wind farm cannot fulfill 

this requirement, it has to buy power from other generators or pay the buyer the financial 

penalty. This cost is defined as an imbalance price. In addition, this imbalance price is 

assumed to be higher than or equal to the price paid to the wind farm.  

 As expected, the pair with lower correlation has lower imbalance output. As 

shown in Appendix C Table C5, the imbalance output (the amount in MWh that cannot 

meet the requirement) increases steadily as the correlation between wind farms’ output 

increases. In addition, the result from this scenario shows the different investment 

decision from scenario 2. In scenario 2 without the minimum output requirement penalty, 

the wind farm projects with high output correlation and short transmission line are more 
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profitable. Imposing the minimum requirement increases the optimal distance between 

wind farms, resulting in an optimal output correlation in the range 0.4 – 0.6, as shown in 

Figure 11. 

 

 

5. Conclusion  

 

This analysis illustrates the complications with deciding where to site wind farms, 

trading off the lower cost of better wind potential against transmission cost, how large a 

transmission line to build, and where to locate a second wind farm if it is to be connected 

to the load with the same transmission line.  The results are based on actual data with 

some extensions.  The wind farm capacity factors, costs of transmission, and correlation 

among wind farms are unique to each location; an analysis of a specific location could be 

optimized using the methods presented here.  

Since a 1,000 mile transmission line roughly doubles the delivered cost of power, 

decreasing the variability of generation at the wind farm lowers power costs.  However, 

two connected wind farms only raise the capacity factor slightly. Imposing a minimum 

requirement penalty leads to changes that increase firm output, although raising the 

generation cost.  

For a wind farm with a 1,000 mile transmission line, about the distance from 

Wyoming to Southern California, the intermittency and low capacity factor of wind farms 

increases the cost of transmission significantly.  We find that the delivered cost of power 

and optimal capacity of the transmission line increase with the price paid for the power, 

and decrease with the wind farm’s capacity factor, the distance from load, and the 

discount rate.   

For a delivered price of $160/MWh, the optimal capacity of the transmission line 

is 74-79%; only 3% of generated power is wasted for this transmission line.  When two 

wind farms are bundled, economies of scale in transmission increase the optimal capacity 

of the transmission line and lower the cost of delivered power.  When we examine the 

distance between wind farms, trading off lower output correlation with greater distance 

between farms, we find that closer farms have the lowest cost of delivered power.  
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However, when there is a penalty for failing to deliver a minimum amount of power, the 

distant wind farms become more profitable. 
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Appendix A: Transmission cost function estimation 

 

 The data used for transmission cost function estimation are from DOE (2002) which 

is the cost data from 1995 study. The data are adjusted by the factor of 3. We need to adjust 

the data that makes the approximation close to the current cost range of transmission line. 

The factor of 3 gives the estimated transmission within the range of the observed 

transmission project cost. The transmission cost data is the limitation in this model. The cost 

data at different thermal capacity from the same source is necessary for estimating the cost 

function. In the future, when more appropriate cost data is available, the approach here can be 

applied. In addition, the actual cost of the DC line, if available, is an alternative for the study. 

ln(cost) = 10.55415+ 0.5759*ln(MW) 

Variable Coefficient Std. Error t-Statistic Prob. 

constant 10.55415 0.298873 35.31313 0.0000 

ln(MW) 0.575873 0.056237 10.24006 0.0000 

R-squared 0.937421     F-statistic 104.8589

Adjusted R-squared 0.928481     Prob(F-statistic) 0.000018

S.E. of regression 0.194477     Log likelihood 3.097459

Sum squared resid 0.264748     Durbin-Watson stat 1.814451

Table 1: Transmission cost function estimation result 

 

 

 

 

 

 

 

 

 

Figure 1: Estimated transmission cost vs. actual cost (log-linear) 
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Appendix B: Relationship between distance and wind-output correlation 

 We use the wind speed data from 9 wind speed observation sites in Colorado 

(UWIG, 2007) to estimate the relationship between distance and correlation. There are 

3,909 hourly wind speed observations used for correlation coefficient estimation.  

According to Manwell et al (2002), wind power (P) per area (A) is the function of the 

wind speed (V) and air density (ρ). 

31
2

P V
A

ρ=  

 Note that we used the same data source as DOE (2005) but we set some wind 

speed observations that are lower than the cut-in speed or higher than the cut-out speed to 

be 0. The cut-in speed and the cut-out speed 3 of the wind turbine is 4.5 m/s and 30 m/s 

respectively (Gipe, 2004). We calculate the correlations coefficients of the cubic wind 

speed (V3) among the wind speed observation sites. Given that other variables in the 

formula (A and ρ) held constant, the correlation coefficients calculated V3 are the 

estimated correlation coefficients of wind power among the wind sites. 

 Various models of distance and correlation are estimated including linear, 

quadratic and linear-log (correlation is a function of ln(distance)). Ordinary Least Square 

(OLS) is used for the estimation. The linear-log model used by DOE (2005) is more 

suitable than the linear and quadratic models.  

 Note that in Figure B1 (right) some observations are deviate far from the 

estimated line, for example, close wind stations with low correlation. This could be due 

to terrain such as a ridge between the nearby locations.  

 

 

 

 

 

 
                                                 
3 From Gipe (2004), cut-in wind speed is the wind speed that a wind turbine starts to generate power. The 
wind turbine cannot generate power if the wind speed is lower than the cut-in level. Cut-out wind speed is 
the wind speed at which the wind turbine stops generating electricity in order to protect the equipment from 
an excessive wind speed. The wind turbine cannot generate power if the wind speed is higher than the cut-
out level.   
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Figure B1: Linear and quadratic models (left) and linear-log model (right) 

 The linear-log model, correlation = a + b*ln(distance),  seems best for this study. 

The shape of the curve is similar to the curve from NREL (2007).  

Correlation = 1.557018 – 0.231544*ln(distance) 

 

 

 

 

 

 

  

 

Table B1: Correlation and distance estimation result  

 

 

 

 

 

 

 

 

 

 

Variable Coefficient Std. Error t-Statistic Prob.   

constant 1.557018 0.145054 10.73408 0.0000 

ln(distance) -0.231544 0.029868 -7.752362 0.0000 

R-squared 0.638679 F-statistic 60.09911 

Adjusted R-squared 0.628052 Prob(F-statistic) 0.000000 

S.E. of regression 0.123475 Durbin-Watson stat 1.446861 

Sum squared residual 0.518366 Log likelihood 25.24887 
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Appendix C: Computation results 

 

Farm 
Capacity 

factor  

Trans. 

factor (s) 

Trans. 

utilization 
Profit 

Cost 

$/MWh 

$/MWh 

(turbine) 

Delivery 

(MWh) 

Delivery/ 

Generation  

A 32.73 % 0.7880 40.22% 1.75 x 108 153.31 82.24 1.11 x 108 97.10% 

B 34.73 % 0.8075 42.00% 4.43 x 108 144.20 77.78 1.19 x 108 97.93% 

C 29.92 % 0.7747 37.02% -2.05 x 108 168.68 91.99 1.01 x 108 96.11% 

D 29.77 % 0.7388 39.11% -1.28 x 108 165.35 91.31 1.01 x 108 97.32% 

 

Table C1: 1,000 mile transmission line at price $160/MWh 

 

Farm 
Standard 

deviation  

Trans. 

factor (s) 

Trans. 

utilization 
Profit 

Cost 

$/MWh 

$/MWh 

(turbine) 

Delivery 

(MWh) 

Delivery/ 

Generation 

A 0.2472 0.9135 54.39% 3.39 x 108 77.45 53.10 1.74 x 108 99.64% 

B 0.2594 0.9117 54.56% 3.40 x 108 77.33 53.04 1.74 x 108 99.77% 

C 0.2337 0.9212 53.95% 3.39 x 108 77.55 53.09 1.74 x 108 99.66% 

D 0.2231 0.8817 56.44% 3.42 x 108 76.84 53.02 1.74 x 108 99.79% 

 

Table C2: 1,000 mile transmission line with 50% adjusted capacity factor farm at price 

$160/MWh 
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Table C3: 1,000 mile main transmission line and actual distance between farms at price 

$160/MWh 

 

 

 

 

 

Pair 
Corr. 

(mile) 

Trans (s1) 

utilization,% 

Trans 

(s2) 
Profit 

Cost 

$/MWh  

Cost $/MWh 

(turbine) 

Delivery 

(MWh) 

Delivery/ 

Generation 

AB 
1.6330 

(40.61) 
0.8952 1.50 x 109 132.69 79.57 2.32 x 108 98.78 % 

BA 

0.7665 

(56) 1.6326 

(40.61) 
0.8988 1.50 x 109 132.71 79.58 2.32 x 108 98.85 % 

AC 
1.5586 

(39.22) 
0.9864 0.95 x 109 141.08 86.33 2.14 x 108 97.83 % 

CA 

0.6919 

(19) 1.5587 

(41.32) 
0.9925 0.95 x 109 141.09 86.33 2.14 x 108 97.83 % 

AD 
1.4013 

(43.32) 
0.8124 0.69 x 109 146.18 86.93 2.13 x 108 97.74 % 

DA 

0.3471 

(219) 1.3984 

(43.32) 
0.8829 0.69 x 109 146.65 87.01 2.13 x 108 97.71 % 

BC 
1.5641 

(40.36) 
0.9382 1.12 x 109 138.40 83.59 2.11 x 108 98.05 % 

CB 

0.7074 

(63) 1.5678 

(40.29) 
0.9196 1.13 x 109 138.37 83.55 2.21 x 108 98.06 % 

BD 
1.4073 

(44.50) 
0.7929 0.89 x 109 142.79 84.25 2.19 x 108 97.88 % 

DB 

0.3552 

(250) 1.4141 

(44.33) 
0.8649 0.87 x 109 143.27 84.18 2.20 x 108 97.87 % 

CD 
1.4159 

(40.80) 
0.8038 0.33 x 109 153.12 91.34 2.02 x 108 97.49 % 

DC 

0.4572 

(200) 

 
1.3981 

(41.21) 
0.8980 0.30 x 109 153.66 91.59 2.02 x 108 97.21 % 
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Pair 
Corr. 

(mile) 

Trans (s1) 

utilization, % 

Trans 

(s2) 
Profit 

Cost 

$/MWh 

Cost $/MWh 

(turbine) 

Delivery 

(MWh) 

Delivery/ 

Generation 

A, 

A30 

0.30 

(227) 

1.1865 

(51.70) 
0.5799 1.07 x 109 138.81 86.03 2.15 x 108 98.28 % 

A, 

A35 

0.35 

(184) 

1.1948 

(51.13) 
0.5769 1.10 x 109 138.25 86.38 2.14 x 108 98.26 % 

A, 

A40 

0.40 

(147) 

1.2105 

(50.64) 
0.5771 1.16 x 109 137.07 86.07 2.15 x 108 98.36 % 

A, 

A45 

0.45 

(119) 

1.2180 

(50.34) 
0.5980 1.20 x 109 136.37 86.07 2.15 x 108 98.32 % 

A, 

A50 

0.50 

(96) 

1.2493 

(49.53) 
0.6459 1.27 x 109 135.23 85.27 2.17 x 108 98.28 % 

A, 

A55 

0.55 

(77) 

1.2503 

(49.13) 
0.6186 1.25 x 109 135.57 85.90 2.15 x 108 98.43 % 

A, 

A60 

0.60 

(62) 

1.2585 

(48.75) 
0.6224 1.24 x 109 135.45 86.00 2.15 x 108 98.35 % 

A, 

A65 

0.65 

(50) 

1.2716 

(48.22) 
0.6382 124 x 109 135.47 86.06 2.15 x 108 98.30 % 

A, 

A70 

0.70 

(40) 

1.2952 

(47.49) 
0.6323 1.26 x 109 135.21 85.78 2.16 x 108 98.44 % 

A, 

A75 

0.75 

(33) 

1.3240 

(48.04) 
0.6689 1.23 x 109 135.82 85.89 2.15 x 108 98.49 % 

A, 

A80 

0.80 

(26) 

1.3314 

(46.07) 
0.6769 1.22 x 109 135.95 86.03 2.15 x 108 98.32 % 

 

Table C4: Farm A paired with farms at different correlation (capacity factor 30%) with 

1,000 mile main transmission line and the distance between farms calculated from 

relationship in Appendix B at price = $160/MWh 
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Pair 
Corr. 

(mile) 

Profit @ 

penalty 

$160/MWh 

Profit @ 

penalty  

$180/MWh 

Profit @ 

penalty   

$200/MWh 

Imbalance 

(MWh) 

Delivery 

(MWh) 

Imbalance

/ Delivery 

(%) 

A, 

A30 

0.30 

(227) 
4.71 x 108 3.95 x 108 3.20 x 108 1.60 x 107 2.15 x 108 7.44% 

A, 

A35 

0.35 

(184) 
4.84 x 108 4.08 x 108 3.31 x 108 1.63 x 107 2.14 x 108 7.61% 

A, 

A40 

0.40 

(147) 
5.28 x 108 4.49 x 108 3.70 x 108 1.68 x 107 2.15 x 108 7.81% 

A, 

A45 

0.45 

(119) 
5.44 x 108 4.62 x 108 3.81 x 108 1.73 x 107 2.15 x 108 8.06% 

A, 

A50 

0.50 

(96) 
5.89 x 108 5.05 x 108 4.20 x 108 1.79 x 107 2.17 x 108 8.28% 

A, 

A55 

0.55 

(77) 
5.39 x 108 4.52 x 108 3.64 x 108 1.86 x 107 2.15 x 108 8.63% 

A, 

A60 

0.60 

(62) 
4.97 x 108 4.04 x 108 3.10 x 108 1.98 x 107 2.15 x 108 9.21% 

A, 

A65 

0.65 

(50) 
4.58 x 108 3.60 x 108 2.62 x 108 2.08 x 107 2.15 x 108 9.68% 

A, 

A70 

0.70 

(40) 
4.35 x 108 3.52 x 108 2.51 x 108 2.14 x 107 2.16 x 108 9.92% 

A, 

A75 

0.75 

(33) 
3.50 x 108 2.40 x 108 1.30 x 108 2.33 x 107 2.15 x 108 10.81% 

A, 

A80 

0.80 

(26) 
3.09 x 108 1.96 x 108 0.83 x 108 2.41 x 107 2.15 x 108 11.20% 

 

Table C5: Farm A paired with farms at different correlation (capacity factor 30%) with 

1,000 mile main transmission line and the distance between farms calculated from 

relationship in Appendix B at price = $160/MWh with 400 MW delivery requirement 
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Chapter 2 
 
The optimal baseload generation portfolio under CO2 regulation and 

fuel price uncertainties 

 

 

 

 

Introduction 
 

 NERC (North American Electric Reliability Corporation) predicts that many 

regions in the US will need significant investment in electricity generation in the near 

future (NERC, 2009). Electricity suppliers face difficult decision concerning which 

technology to invest. New generation plants are capital intensive and have a long lead 

time. Once a plant is built, capital becomes sunk and the plant/technology will be locked 

in for 20-60 years. Uncertainty about environmental regulation and variability in fuel 

price during the plant’s lifetime make the decision difficult.   

According to Awerbuch (2003), traditional power system planning attempts to 

minimize cost of power generation while risk factors are not taken into account explicitly. 

In the next few decades, the power sector will face many challenges especially the tighter 

environmental regulation on green house gas emission. Future cost of CO2 regulation is 

uncertain.  

While choosing the best technology for each plant is important, choosing a 

portfolio of technologies/fuels is more important in managing risks in an uncertain world. 

A natural gas combined cycle (NGCC) generator may have the lowest expected cost but 

the observed past volatility in gas price suggests that a portfolio of 100% NGCC is likely 

to have higher variability than a portfolio of different technologies. An optimal portfolio 

can have the dominated technology if it has negative correlation with other technologies 

leading to lower variance portfolio.  
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The expected cost and cost variability of the generation assets portfolio depend on 

the mix of generation technologies in the portfolio. Each generation asset (technology) 

has a different risk and cost profile. Even if a single fuel-technology choice had lower 

cost and variability than all others, the variability of the portfolio would be greater than 

one with a mix of technologies/fuels (a more conventional way of stating this that it 

would be imprudent to have only one type of asset in the system). Thus, the planner has 

to choose the mix of fuel-technology plants that optimizes cost and risk of the generation 

asset.  

The mean-variance portfolio model is a tool that can formulate the efficient trade-

off between risk and return. This model has been widely used in the finance field. This 

study applies the mean-variance portfolio theory to a model that optimizes the technology 

portfolio for the power system. In this study, we derive the optimal portfolio frontier by 

focusing mainly on the variability in the fuel markets and the range of prices that could 

be imposed on CO2 emissions. Whether the regulation is in the form of a carbon tax or a 

cap and trade system, there will be a market clearing price for a ton of CO2 emissions.  

We refer to this as the CO2 prices. The model constructs optimal portfolios assuming 

scenarios with a range of CO2 price, fuel prices, capital cost and the cost of carbon 

capture and storage (CCS). In addition, the study uses the mean variance portfolio model 

with a Bayesian technique that allows decision makers to input their beliefs about the 

likelihood of each scenario. 

 

 

Literature review  
 

 The mean-variance portfolio model was developed by Markowitz (1952). The 

model assumes the mean and variance of the portfolio are the two factors that matter to 

the investor. The investor is assumed to love ‘return’ and avoid ‘risk’ (variance). 

Investor’s utility is a function of wealth derived in term of return (r) from investment. By 

assuming a normal distribution of asset return and using a Taylor’s series expansion, the 

expected utility function can be derived as the function of mean return and variance 

(Huang and Litzenberger, 1988).  
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21[ ( )]  ( [ ])  ''( [ ])
2 rE U r U E r U E r σ= +  

The expected utility function is an increasing function of mean (return) and 

decreasing function of risk (variance); the utility function is concave where '( ) 0U ⋅ ≥  and 

''( ) 0U ⋅ ≤ . Thus, in order to maximize the expected utility, the investor chooses the 

portfolio that yields the highest return at the given variance (standard deviation) or the 

portfolio with the lowest variance at the given return.  

 The optimization of the mean-variance portfolio model is shown below. The 

investor chooses the portfolio weight of each asset that minimizes the portfolio variance 

given the specific value of portfolio return. 

 Min 
1 1

1
2

N N

i j ij
i j

w w σ
= =
∑∑   

Subject to: 
1

1
N

i
i

w
=

=∑   and 
1

N

i i
i

w r μ
=

=∑  

 iw is the portfolio weight of asset i (N assets in total). ijσ is the covariance of asset 

i and j . ir  is the return of asset i. μ  is the target return of the portfolio (constant). The 

optimization problem can also be written in the matrix form. 

w

1Min  
2

Σw' w   

Subject to:  1w'1 =  and R μ=w'  

Σ is the covariance matrix of asset return where the diagonal elements represent 

variance of the asset and the off-diagonal terms represent covariance between assets. w  

is the Nx1 vector of portfolio weight. R  is the Nx1 vector of asset return. 1  is Nx1 vector 

of one. 

 The model is made operational by assuming the return and variance can be 

estimated from recent market data. In effect, this narrows the theory and it is operational 

as short term within the model. The mean-variance portfolio model uses the historical 

movement in asset return to formulate the optimal portfolio. This approach may not 

support the investor’s belief about the future return. Black and Litterman (1991) and 

(1992) (thereafter “BL”) apply the Bayesian statistical theory to the conventional mean-
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variance portfolio model. This model enables an investor to express his belief on the 

future asset return. 

 In order to accommodate the individual’s view in portfolio formulation, BL use 

the market equilibrium portfolio as the neutral starting point. The individual can express 

his subjective view or belief on the asset return which can be different from the 

equilibrium return. (BL use the term “view” to represent the posterior belief on the 

asset’s return). Using Bayesian statistical theory, we can estimate the posterior asset 

return and covariance matrix given the individual belief using the following formulation. 

  Posterior return: 
-1-1 -1 -1 -1' 'blR P P P Q⎡ ⎤ ⎡ ⎤= Σ + Ω Σ Π + Ω⎣ ⎦ ⎣ ⎦  

  Covariance matrix: 1 1 1( ' )bl P P− − −Σ = Σ + Σ + Ω  

Σ  is the covariance matrix of prior asset return (NxN matrix), P is the matrix 

(KxN) represented the assets in the posterior belief, K is the number of assets expressed 

in the posterior belief, Ω  is the covariance of posterior belief (KxK matrix),Π  is the 

equilibrium return (Nx1 vector) and Q is the posterior belief vector (Kx1). The proof of 

the above formulation is presented in Satchell and Scrowcroft (2000).   

The confidence level of the individual’s belief is represented by the covariance 

matrix of belief (Ω ) where 1( 1)P P
c

Ω = − Σ (Meucci, 2005). (0,1]c∈  indicates the level of 

confidence; c close to 0 means low confidence and c close to 1 means high confidence. 

High variance indicates low confidence in belief. Note that the variance of return is the 

sum of prior variance and variance of the posterior belief. 

Many studies have attempted to apply the mean-variance portfolio theory to the 

energy and electric utility sector. Bar-Lev and Katz (1976) did the pioneer study applying 

the model to find the optimal fossil fuel mix for a power utility. “Return” of the fossil 

fuel is defined as Btu4/$; the inverse of the fuel cost. The standard deviation is calculated 

from the inverse of the fuel cost data. However, the model is incorrectly defined such that 

return and weight do not match according to the theory5. 

                                                 
4 Btu or British thermal unit is the unit of energy used for measuring the heat content. 
5 From the mean-variance portfolio theory, return = payoff of asset  ($)

money invested in asset  ($)
i

i
and weight 

= money invested in asset  ($)
total investment ($)

i . The denominator (cost of asset i) from ‘return’ and denominator (money 
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Other studies repeating Bar-Lev and Katz (1976)’s mistake include Humphreys 

and McClain (1998) for U.S. fossil fuel portfolio, Awerbuch and Berger (2003) and 

Awerbuch (2006) for power generation technology portfolio. 

 Alternatively, Doherty et al. (2005) uses the risk-cost framework instead of risk-

return to solve for the efficient generation portfolio for Ireland in 2020. Under the risk-

cost framework, the definition of cost and weight are consistent. However, they do not 

explain the theoretical framework under the mean-variance portfolio theory.  

Roques et al. (2006) applies the mean-variance portfolio theory to solve the 

optimal technology portfolio for the private investors incorporating electricity, fuel and 

CO2 price risks. Historical prices of electricity, fuel and CO2 in UK are used for the 

study. Return is defined as the net present value (NPV) per GW of generation capacity. 

NPV is calculated from electricity sale revenue (using spot electricity price) and 

generation cost. The simulated CO2 tax with the average of £40/ton and standard 

deviation of 10 is included in power generation cost.  

Our study uses the risk-cost framework to analyze the power generation 

technology portfolio. Our definition of cost is the cost of electricity generation per MWh. 

This study aims to find the efficient risk-cost portfolio such that the portfolio has the 

lowest variance (standard deviation) at the given level of cost. 

This study goes further in reinterpreting the mean-variance portfolio theory for an 

electricity investment decision. We calculate power generation cost (levelized cost of 

electricity) using the cost components such as capital cost, economic lifetime, capacity 

factor, discount rate, historical fuel price, operation and maintenance costs and CO2 price. 

This approach gives flexibility in power generation cost calculation and scenario 

formulation.  

The contribution of this study includes the analysis of the optimal portfolio under 

different scenarios on generation cost components such as fuel cost and CO2 price. The 

analysis on capital cost of the plant is also included in the study. The possible range of 

capital cost is tested in order to examine the effect on the optimal portfolio. Our study 
                                                                                                                                                 
invested in asset i) from ‘weight’ match each other. If return on fuel is defined as Btu

money paid for fuel  ($)i
, 

the correct weight must be money paid for fuel  ($)
total payment on all fuel ($)

i  because Btu is the payoff from investing in fuel i.  
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explains the theoretical formulation of the risk-cost framework under the mean-variance 

portfolio theory which is not presented in the previous studies. In addition, we show an 

example applying the Bayesian analysis to formulate the optimal power generation 

portfolio given the investor’s belief on cost.  

 

 

Model  
 

 The first step is to solve for the efficient power generation technology-fuel 

frontier.  Having defined the efficient frontier, the planner must decide which 

combination of risk/cost is preferred.  Rather than suggest an optimal risk/cost ratio, we 

finesse this choice and show the optimal portfolio for all risk/cost ratios on the efficiency 

frontier. The optimal portfolio depends on the planner’s preference regarding to the 

tradeoff between cost and variation in cost. 

The model here is focused on the baseload6 generation that produces 75-85% of 

power during a year. It accounts for the majority of investment and utilities’ expenditure.  

 

Power generation portfolio  

 The model for analyzing the optimal power generation portfolio is modified from 

the conventional mean-variance portfolio model where the individual maximizes his 

utility (wealth) by selecting the portfolio that has the lowest variance given the return. 

For the application to the power generation portfolio, the convention model is adjusted 

such that the optimal portfolio has the lowest variance given the expected cost of the 

portfolio. Another important difference is that the low transactions cost of financial 

markets means that the individual can rearrange her portfolio to the optimal one.  

Electricity generators are illiquid and there are high transactions costs for rearranging the 

generation mix.   

 The utility function is concave and strictly increasing in wealth. The expected 

utility function is a decreasing function of both cost and variance. Let V be the value or 
                                                 
6 According to Energy Information Administration (EIA), the baseload (demand) is “the minimum amount 
of electric power delivered or required over a given period of time at a steady rate” (EIA, 
http://www.eia.doe.gov/glossary/glossary_b.htm). 
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benefit from electricity which is assumed to be constant and independent of electricity 

cost (C). Thus, the utility function from electricity consumption is a function of the net 

value; U( - )V C . Applying Taylor’s series approximation around -E[ ]V C , we can derive 

the expected utility function which is a decreasing function in both cost and variance.  

2
3

1( )  ( [ ]) '( [ ])( [ ]) ''( [ ])(( [ ])
2

U V C U V E C U V E C V C V E C U V E C V C V E C R− = − + − − − + + − − − + +

              2
3

1 ( - [ ]) '( - [ ])( [ ] - ) ''( - [ ])( [ ] - )
2

U V E C U V E C E C C U V E C E C C R= + + +  

2
3

1[ ( )] ( [ ]) '( [ ]) [( [ ] - )] ''( [ ]) [( [ ] ) ] [ ]
2

E U V C U V E C U V E C E E C C U V E C E E C C E R− = − + − + − − +

                  21 ( [ ]) ''( - [ ])
2 CU V E C U V E C σ= − +  

       21( - [ ]) -
2 CU V E C βσ=  

 3R  is the higher degree terms from Taylor’s approximation and 3[ ] 0E R =  from 

the normal distribution assumption. ''( - [ ]) 0U V E C < (from concavity); β is the positive 

constant. Since the utility function is a decreasing function in cost (C), the expected 

utility function is decreasing in the expected cost (E[C]) and variance of cost ( 2
Cσ ). Thus, 

the planner chooses the optimal portfolio which has the lowest variance given the cost of 

the portfolio. Note that there is no theoretical derivation of the expected utility function 

using cost and variance in the previous studies which use the risk-cost framework. 

 

Baseload generation technology portfolio  

 The optimization approach for the baseload generation portfolio is similar to the 

conventional mean-variance portfolio. Additional constraints require that the weight of 

each technology is greater than zero.  

   Min 
1 1

1
2

N N

i j ij
i j

w w σ
= =
∑∑   
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=∑   
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          0iw ≥   for all i 
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 There are N baseload technologies with the respective cost (ci) and weight (wi) for 

i = 1-N. ijσ  is the covariance between generation cost of technology i and j. μ  is the 

positive constant representing the given cost level. 

All portfolios considered are assumed to satisfy baseload electricity demand. In 

other words, all portfolios generate the same amount of electricity. Given that all 

portfolios yield the same output, the optimal portfolio is the one that has the efficient 

tradeoff between cost and variance.  

 The Bayesian analysis or BL model can be applied to the baseload generation 

portfolio model directly. The generation cost calculated from the baseline model is used 

as the neutral starting point (BL model uses an equilibrium return as the starting point). 

An individual can express a belief on power generation cost of one or more baseload 

technologies. The belief can be expressed as an absolute belief (i.e. return of asset A is 

expected to be at 14%) or the relative belief (i.e. return of asset A is expected to be higher 

than asset B by 2%).  

 The baseload generation portfolio in this study includes 7 technologies. The 

current technologies which already operate commercially include nuclear, PC (pulverized 

coal), NGCC (Natural Gas Combined Cycle). The prospective future technologies 

include IGCC (Integrated Gasification Combined Cycle), IGCC with CCS (Carbon 

Capture and Storage), PC with CCS and NGCC with CCS. The detail on power 

generation cost data and assumption on the cost is presented in the appendix. 

 

 

Results 

 
 The mean-variance portfolio model for baseload power generation technology 

evaluates technologies with different characteristics. Nuclear has high capital cost and 

relatively low fuel costs, giving it low variance. PC, IGCC, IGCC CCS and PC CCS are 

technologies with somewhat lower capital cost. NGCC and NGCC CCS are the 

technologies with relatively low capital cost and high variable cost; mainly fuel cost.  

  Nuclear emits zero CO2 in the generation process. PC and IGCC are technologies 

with high CO2 emission per MWh. NGCC emits around half of CO2 per MWh compared 
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with PC. IGCC and NGCC with CCS capture most of the CO2 in the power generation 

process. In this section, we formulate the optimal mean-variance portfolio under various 

scenarios of CO2 price, fuel price structure, capital cost and CCS cost.  

 

1. The baseline model  

 The baseline model uses the fuel price data from 1990-2009.  The optimal 

portfolios are formulated under 2 scenarios of CO2 prices; $20 and 40/ton of CO2.  The 

first 2 models (B1 and B2) include 3 current baseload technologies; nuclear, PC 

(pulverized coal) and NGCC (Natural Gas Combined Cycle). Models B3 and B4 include 

these 3 current technologies and prospective future technologies including IGCC 

(Integrated Gasification Combined Cycle) and PC, NGCC and IGCC with CCS (Carbon 

Capture and Storage). 

• B1: Portfolio of 3 current technologies under $20/ton CO2 price  

 

 

  

 

 

Table 1: Cost/standard deviation (left) and the correlation matrix (right) 

 

 

 

 

 

 

 

 

Figure 1: The efficient frontier (left) and technology mix along the frontier (right) 

 

 The left hand side of figure 1 shows the efficient frontier. The right hand side 

shows the composition of the optimal portfolio for each cost-standard deviation. For 
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example a standard deviation of 6 corresponds to a cost of $68/MWh. The optimal 

portfolio consists of 65% PC and 35% NGCC while the efficient frontier on the left hand 

sides shows cost-standard deviation; it does not identify the composition of the portfolio. 

In the first scenario, the CO2 regulation cost is set at $20/ton with standard 

deviation of 5. NGCC is the lowest cost technology but has the highest standard 

deviation. The opposite is true for nuclear. Thus, the lowest cost portfolio is 100% NGCC 

having high standard deviation at 14. Minimizing the standard deviation leads to a 

portfolio dominated by nuclear with some PC and a tiny share of NGCC. Low correlation 

between NGCC and nuclear leads to a small share of NGCC that lowers the variance of a 

portfolio when the share of nuclear increases. PC and nuclear dominate portfolios on the 

efficient portfolio as the standard deviation decreases. At a portfolio cost around 

80/MWh with standard deviation 4, the portfolio consists of 25% nuclear, 55% PC and 

20% NGCC. 

 

• B2: Portfolio of 3 current technologies under $40/ton CO2 price 

Table 2: Cost/standard deviation (left) and the correlation matrix (right) 

 

 

 

 

 

 

 

 Figure 2: The efficient frontier (left) and technology mix along the frontier (right) 

In the second scenario, CO2 emission charge is at $40/ton. Nuclear is not affected 

by this charge; higher CO2 price increases the generation cost of NGCC slightly and that 

of coal much more. The cost range of the efficient portfolio shifts from $60 – 100/MWh 
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in the previous scenario to $69 – 104/MWh due to higher CO2 price charged to all fossil 

fuel plants. NGCC has a more significant role gaining higher share especially in the first 

half of the efficient frontier at the expense of PC because of its lower CO2 emission. The 

cost difference between coal and gas increases from $13.6 to 24.6/MWh due to an 

increase in CO2 price. Nuclear has a role similar to that is in the previous model. At a cost 

of $80/MWh with standard deviation 8, the portfolio consists of 60% NGCC and 40% 

PC. 

 

• B3: Portfolio 7 technologies under $20/ton CO2 price  

 

Table 3: Cost/standard deviation (left) and the correlation matrix (right) 

 

 

 

 

 

 

 

 

Figure 3: The efficient frontier (left) and technology mix along the frontier (right) 

 In the 3rd scenario, 4 prospective future baseload technologies, IGCC, IGCC, 

NGCC and PC with CCS are included in the portfolio. Nuclear is the highest cost 

technology followed by PC CCS. NGCC and PC have significant share in the part of the 

efficient portfolio frontier where portfolio cost is low and cost variation is high. For the 
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higher cost portfolio, IGCC CCS starts to gain significant share. Although cost of IGCC 

CCS is high, its volatility is lower than PC since there is volatility in future CO2 price. 

The volatility in CO2 price increases the overall volatility of fossil fuel plants cost.  

IGCC, NGCC CCS and PC CCS have no role in the optimal portfolio. IGCC has 

higher cost and just lower volatility than PC. As a result, IGCC without CCS is a 

dominated technology in our analysis. Also the cost of PC CCS is too high although its 

volatility is less than PC. NGCC CCS is the second lowest cost technology but has the 

highest volatility. NGCC CCS has higher volatility than NGCC because it uses more 

natural gas due to higher heat rate. Thus, the volatility in natural gas price has more 

impact on volatility of NGCC CCS generation cost. When forcing the portfolio to have 

lower variance, more nuclear is required for the system. The lowest standard deviation 

portfolio has about 70% nuclear capacity; its standard deviation of 2.0 is less than 

nuclear’s (also the portfolio cost) due to the covariance of PC, IGCC CCS and NGCC 

with nuclear. At $80/MWh portfolio cost with standard deviation 3.8, the optimal 

portfolio consists of 5% Nuclear, 35% PC, 45% IGCC CCS and 15% NGCC.  

 

• B4: Portfolio of 7 technologies under $40/ton CO2 price 

 

Table 4: Cost/standard deviation (left) and the correlation matrix (right) 

 

 

 

 

 

 $/MWh S.D.   Nuclear PC PC CCS IGCC IGCC 
CCS NGCC NGCC 

CCS 
Nuclear 106.75 2.20  Nuclear 1.00 0.11 0.23 0.10 0.26 -0.02 -0.03 
PC 93.42 5.53  PC 0.11 1.00 0.43 0.98 0.48 0.05 -0.07 
PC CCS 103.68 4.17  PC CCS 0.23 0.43 1.00 0.41 0.85 -0.05 -0.03 
IGCC 96.01 5.25  IGCC 0.10 0.98 0.41 1.00 0.52 0.02 -0.11 
IGCC 
CCS 91.78 3.54  

IGCC 
CCS 0.26 0.48 0.85 0.52 1.00 -0.05 -0.04 

NGCC 68.82 14.03  NGCC -0.02 0.05 -0.05 0.02 -0.05 1.00 0.98 
NGCC 
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NGCC 
CCS -0.03 -0.07 -0.03 -0.11 -0.04 0.98 1.00 
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 Figure 4: The efficient frontier (left) and technology mix along the frontier (right) 

In the 4th scenario with $40/ton of CO2 price (figure 4), cost of technology with 

high CO2 emission such as PC and IGCC increase significantly. NGCC is still the lowest 

cost due to low CO2 emission per MWh. IGCC CCS replaces most of PC and some 

nuclear from the previous scenario (B3). Share of PC decreases significantly due to 

increase in cost from higher CO2 price. Nuclear again reduces portfolio variation but has 

less significant role than the previous scenario. Like the previous scenario, there is no 

share of IGCC, PC CCS and NGCC CCS in the optimal portfolio. At a cost of $80/MWh 

with standard deviation around 5.2, the optimal portfolio consists of 45% IGCC CCS and 

55% NGCC. 

From the 4 scenarios in the baseline model, we can see that each generation 

technology has different characteristic in term of cost and variation in cost. The nuclear 

plant has high capital cost but low variable cost. Generation cost from nuclear does not 

vary in high magnitude when uranium or operation cost change. Nuclear plays the same 

role in all 4 scenarios to reduce the overall portfolio variation. However, because nuclear 

is the highest cost technology more nuclear generation results in higher cost but lower 

variation portfolio.  

 PC is the technology with moderate cost and cost variation. Emission of CO2 per 

unit of power generation from PC is the highest among all technology. IGCC is also the 

coal based technology with the high amount of CO2 emission. Cost of PC and IGCC are 

highly sensitive to CO2 price and some of the cost variation of these 2 technologies is 

attributed to the variation in CO2 price. PC CCS is another coal technology that emits 

small amount of CO2. However, its cost is significantly higher than IGCC CCS with 
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about the same variation. Like IGCC, PC CCS is the dominated technology in this 

analysis and has no share in the optimal portfolio.   

NGCC is the low cost and high variance technology. NGCC has the high portion 

of fuel cost in total generation cost; its generation cost is highly affected by the change in 

natural gas price. NGCC can help lowering the portfolio cost in exchange for higher 

variation. The CO2 price also increases the cost of NGCC but in lower magnitude than 

PC and IGCC. NGCC CCS is another natural gas turbine technology with carbon capture 

facility. Its cost is lower than some technologies but its variation is the highest. Note that 

NGCC CCS uses higher amount of natural gas than NGCC due to its higher heat rate. 

 Technology shares along the efficient portfolio frontier are similar across these 4 

scenarios. NGCC has a high share at the low cost-high variation portion of the frontier. 

On the other hand, nuclear gains share at the high cost-low variation portion. PC and 

IGCC CCS have some share along the frontier with the highest around the middle part of 

the efficient set depending on the CO2 price. 

 When comparing portfolios with CO2 prices of $20 and $40/ton, significant 

change can be observed especially from shares of the fossil fuel technology; NGCC, PC 

and IGCC CCS. NGCC gains significant share when the system moves toward higher 

CO2 price. It replaces most PC and some nuclear. When we introduce IGCC CCS in the 

3rd and 4th scenarios, IGCC CCS seems to replace the share of PC rather than NGCC. 

Shape of NGCC share is about the same after including IGCC CCS which can be seen by 

comparing 1st with 3rd and 2nd with 4th scenarios.  

 

 

 

 

 

 

 

 

 

Figure 5: Generation mix at $80/MWh 
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 When comparing all 4 scenarios and fixing the portfolio cost at $80/MWh, as seen 

from Figure 5, the generation mixes are significantly different under the 2 CO2 prices. 

For example, at a portfolio cost of $80/MWh, the 3-technology portfolio has about 25% 

nuclear in $20/MWh CO2 price scenario but it has no nuclear when CO2 regulation cost 

increases to $40/MWh. As new technologies are introduced to the 7-technology portfolio, 

at $20/ton CO2 price, shares of NGCC is about the same but all shares of PC and some 

nuclear are replaced by IGCC CCS. Also, at $40/ton CO2 all PC is replaced by IGCC 

CCS. The change in portfolio mix is mainly due to the shift in portfolio cost and the 

replacement of some nuclear and PC by IGCC CCS. 

 

 

 

 

 

 

 

 

 

 

Figure 6: CO2 emission of the efficient portfolio  

 Figure 6 shows the amount of CO2 emission per MWh of the efficient portfolios 

of the 3 and 7 technologies options under $20 and $40/ton of CO2 prices. Under $20/ton 

CO2 price for 3 and 7-technology portfolios, the amount of CO2 increases at the 

beginning due to the portfolio mix between NGCC and PC and reaches the peak at the 

portfolio with the highest share of PC (as shown in Figure 2 and 4). When moving toward 

the higher cost portfolio, nuclear and IGCC CCS (for 7-technology model) gain higher 

share resulting in the reduction of CO2 emission. Under $20/ton CO2 price, portfolios 

with 3 and 7 technologies have similar pattern of CO2 emission, it declines after reaching 

the peak, but the 7-technology portfolios perform better in lowering CO2 emission at the 

same level of cost and variation.  
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In contrast, under $40/ton CO2 price, the patterns of CO2 emission between 3 and 

7 technology portfolios are significantly different. CO2 emission under 3-technology 

portfolio increases at the beginning and decreases as the portfolio moves to higher cost 

and lower variance section. Unlike 3 technology portfolio, CO2 emission of 7 technology 

portfolio decreases steadily due to higher share of IGCC CCS and nuclear as the portfolio 

moves to higher cost and lower variance. As seen from the graph, introduction of IGCC 

CCS helps lowering the CO2 emission at the given level of cost and variation compared 

with the portfolio of current baseload technology. 

The results from the baseline model indicate that some technologies such as PC 

CCS and NGCC CCS are the dominated technologies in the optimal portfolio. These 

technologies have higher cost than conventional technology but are insensitive to an 

increase in CO2 price. The following analysis examines the change in portfolio mix if 

significantly higher CO2 prices are imposed to the generator. 

 

 

 

 

 

 

 

 

Figure 7: Portfolio of the baseline model with $60 (left) and $80/ton CO2 (right) 

 Figure 7 shows the portfolio mix when CO2 prices increase to $60 and $80/ton. 

When CO2 prices are $60-80/ton, generation costs of all coal technology without CCS 

increase to a level higher than nuclear. PC which almost disappears from the scenario 

with $40/ton CO2 is not in the optimal portfolio. NGCC CCS becomes the lowest cost 

technology with the highest variation.  

 The shares of IGCC CCS and nuclear are similar to the baseline model with 

$40/ton CO2 price. The obvious change is between NGCC CCS and NGCC. When higher 

CO2 prices are imposed, NGCC CCS has a large share in the optimal portfolio with low 

cost-high variation similar to the role of NGCC in the baseline model. There are some 
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shares of NGCC under $60/ton CO2 price but at $80/ton it almost disappears from the 

optimal portfolio. When $100/ton CO2 price is applied, the result is almost the same as 

the model with $80/ton CO2 price. 

 

 

2. Analysis of the fuel price structure 

 

In this analysis, we divide the time period from 1990-2009 into 2 parts. Each one 

represents a different structure of fuel price movement. The period from 1990-1999 

represents the structure where fuel prices were stable (less volatile) called “the stable 

price period”. The period from 2000- Jun 2009 represents the structure with high gas 

price and volatility called “the volatile price period”.  The figure below shows the 

movement of real fuel price (in 2008 dollar) from 1990- Jun 2009. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Real fuel price movement from 1990-Jun 2009 
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Table 5: Correlation coefficients of fuel prices in 2 price structures 

 From table 5, the correlation coefficients of fuel prices differ in the 2 periods. In 

the ‘stable price’ structure, prices of all fuels are stable (low standard deviation). The 

correlation coefficient between uranium and natural gas is positive but those with coal 

price are negative. In the ‘volatile price’ structure, all fuel prices are positively correlated. 

Uranium price has the highest fluctuation and increases sharply during the volatile price 

period. Note that although uranium has the highest standard deviation, the nuclear power 

generation process uses small amount of uranium per MWh resulting in low standard 

deviation of nuclear generation cost. 

The model includes the same set of 7 technologies as in the baseline model. The 

optimal portfolio frontier is solved separately for each fuel price structure under CO2 

prices of $20 and 40/ton. Note that the correlation coefficient of the fuel cost and that of 

the total generation cost may not represent the same structure of correlation. The 

generation cost includes other cost components such as O&M and CO2 regulation cost.  

• Stable price period (1990-1999) at $20/ton CO2 price 

 

Table 6: Cost/standard deviation (left) and the correlation matrix (right) 

1990-1999  2000-Jun 2009 

 Uranium Coal Gas   Uranium Coal Gas 

Uranium 1.00 -0.21 0.23  Uranium 1.00 0.78 0.42 
Coal -0.21 1.00 0.10  Coal 0.78 1.00 0.35 
Gas 0.23 0.10 1.00  Gas 0.42 0.35 1.00 

         

Mean 14.31 1.82 3.29  Mean 38.62 1.67 6.65 
S.D. 2.56 0.22 0.51  S.D. 33.39 0.24 2.07 

 $/MWh S.D.   Nuclear PC PC CCS IGCC IGCC 
CCS NGCC NGCC 

CCS 
Nuclear 107.32 2.03  Nuclear 1.00 -0.23 -0.44 -0.26 -0.40 0.13 0.10 
PC 73.62 5.16  PC -0.23 1.00 0.55 0.97 0.46 0.32 0.04 
PC CCS 102.49 4.23  PC CCS -0.44 0.55 1.00 0.57 0.83 0.16 0.25 
IGCC 78.43 4.73  IGCC -0.26 0.97 0.57 1.00 0.55 0.28 0.03 
IGCC 
CCS 90.69 3.28  

IGCC 
CCS -0.40 0.46 0.83 0.55 1.00 0.09 0.26 

NGCC 50.23 4.14  NGCC 0.13 0.32 0.16 0.28 0.09 1.00 0.81 
NGCC 
CCS 57.35 4.80  

NGCC 
CCS 0.10 0.04 0.25 0.03 0.26 0.81 1.00 
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Figure 9: Technology mix along the efficient frontier  

 The optimal portfolio in this scenario is dominated by NGCC. Cost difference 

between NGCC and other technologies is large. In addition, standard deviation of NGCC 

cost is not relatively high. This is due to the stable movement of the natural gas price in 

this period. Note that PC and IGCC have high standard deviation partially due to the 

volatility of the simulated CO2 price. The capacity share of PC is small and there is no 

share of IGCC in the optimal portfolio. The share of IGCC CCS is stable; about 25-30% 

along the efficient frontier. Like other scenarios portfolio, nuclear dominates the 

technology mix in the higher cost and lower variation portion of the efficient frontier. 

The largest share of nuclear on the efficient portfolio is around 60%. In this scenario, it 

seems that the change in portfolio mix along the frontier is mainly between NGCC and 

nuclear, since share of IGCC CCS and PC are quite stable. At portfolio cost $80/MWh, 

the optimal portfolio consists of 35% nuclear, 2% PC, 23% IGCC CCS and 40% NGCC. 

• Stable price period (1990-1999) at $40/ton CO2 price 

 

Table 7: Cost/standard deviation (left) and the correlation matrix (right) 

 $/MWh S.D.   Nuclear PC PC CCS IGCC IGCC 
CCS NGCC NGCC 

CCS 
Nuclear 107.32 2.03  Nuclear 1.00 -0.23 -0.44 -0.26 -0.40 0.13 0.10 

PC 93.62 5.16  PC -0.23 1.00 0.55 0.97 0.46 0.32 0.04 
PC CCS 104.49 4.23  PC CCS -0.44 0.55 1.00 0.57 0.83 0.16 0.25 
IGCC 96.43 4.73  IGCC -0.26 0.97 0.57 1.00 0.55 0.28 0.03 
IGCC 
CCS 92.49 3.28  IGCC 

CCS -0.40 0.46 0.83 0.55 1.00 0.09 0.26 

NGCC 59.23 4.14  NGCC 0.13 0.32 0.16 0.28 0.09 1.00 0.81 
NGCC 
CCS 58.25 4.80  NGCC 

CCS 0.10 0.04 0.25 0.03 0.26 0.81 1.00 
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Figure 10: Technology mix along the efficient frontier  

 The optimal portfolio in this case is similar to the previous one except that the 

range of the efficient frontier is shifted due to the higher CO2 charge. NGCC still 

dominates in this scenario because it has low cost, moderate volatility and low CO2 

emission. In addition there are some shares of NGCC CCS at the lower portion of the 

frontier. NGCC CCS has just lower cost than NGCC with slightly higher volatility. The 

share of IGCC CCS is quite stable along the frontier. It increases steadily from the low 

cost portfolio and becomes constant at around 25-30%. At cost $80/MWh, the optimal 

portfolio consists of 25% nuclear, 30% IGCC CCS and 45% NGCC. 

 This $20/ton increase in CO2 price does not significantly change the results in the 

‘stable price’ scenario. Only NGCC CCS appears in the optimal portfolio when higher 

CO2 price is charged. The key technologies are NGCC, IGCC CCS and Nuclear. NGCC 

and NGCC CCS account for large percentage in the low cost and high variation part of 

the efficient frontier. Similarly, nuclear dominates the high cost and low variance 

portfolios. 
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• Volatile price period (2000-2009) at $20/ton CO2 price 

 

Table 8: Cost/standard deviation (left) and the correlation matrix (right) 

 

 

 

 

 

 

 

 

Figure 11: Technology mix along the efficient frontier 

 

 In this scenario, the technologies that dominates the optimal portfolio are PC and 

nuclear. Natural gas price in this case is high and volatile. Although, NGCC is still the 

lowest cost technology but the cost difference between NGCC and other technology is 

smaller than the previous scenario. Shares of NGCC are high for a short portion of the 

efficient frontier and decrease sharply. PC dominates most of the low cost/high variance 

part of the efficient portfolios. IGCC CCS gains significant share in the middle portion of 

the efficient frontier with the highest share around 45%. Like other scenarios, nuclear 

plays a key role in the high cost portion of the portfolio frontier. There are no share of 

IGCC, PC CCS and NGCC CCS in the optimal portfolio. At cost $80/MWh, the optimal 

portfolio consists of 45% IGCC CCS, 50% PC and 5% NGCC. 

   

 $/MWh S.D.   Nuclear PC PC CCS IGCC IGCC 
CCS NGCC NGCC 

CCS 
Nuclear 106.16 2.22  Nuclear 1.00 0.35 0.66 0.32 0.67 0.30 0.35 
PC 72.53 5.41  PC 0.35 1.00 0.43 0.97 0.48 0.17 0.07 
PC CCS 100.46 4.25  PC CCS 0.66 0.43 1.00 0.38 0.83 0.23 0.29 
IGCC 76.94 5.05  IGCC 0.32 0.97 0.38 1.00 0.52 0.17 0.07 
IGCC 
CCS 89.01 3.82  

IGCC 
CCS 0.67 0.48 0.83 0.52 1.00 0.23 0.28 

NGCC 69.62 13.96  NGCC 0.30 0.17 0.23 0.17 0.23 1.00 0.98 
NGCC 
CCS 86.20 17.88  

NGCC 
CCS 0.35 0.07 0.29 0.07 0.28 0.98 1.00 
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• Volatile price period (2000-2009) at $40/ton CO2 price 

 

Table 9: Cost/standard deviation (left) and the correlation matrix (right) 

 

 

 

 

 

 

 

 

Figure 12: Technology mix along the efficient frontier 

 

 In this scenario, IGCC CCS dominates the optimal technology mix portfolio 

especially in the middle part of the efficient frontier. NGCC is still the lowest cost 

technology and the gap of generation cost with PC and IGCC is larger due to higher CO2 

price. NGCC gains more shares in the low cost portion of the portfolio than the previous 

scenario due to low CO2 price. IGCC CCS has significant influence along the frontier. 

This is due to cost advantage over PC and IGCC when higher CO2 regulation cost is 

charged. At cost $80/MWh, the optimal portfolio consists of 20 % IGCC CCS and 80% 

NGCC. 

 This analysis shows that the period of the historical fuel cost to be used in the 

analysis can determine the result. The planner can choose the period which he believes 

 $/MWh S.D.   Nuclear PC PC CCS IGCC IGCC 
CCS NGCC NGCC 

CCS 
Nuclear 106.16 2.22  Nuclear 1.00 0.35 0.66 0.32 0.67 0.30 0.35 
PC 92.53 5.41  PC 0.35 1.00 0.43 0.97 0.48 0.17 0.07 
PC CCS 102.46 4.25  PC CCS 0.66 0.43 1.00 0.38 0.83 0.23 0.29 
IGCC 94.94 5.05  IGCC 0.32 0.97 0.38 1.00 0.52 0.17 0.07 
IGCC 
CCS 90.81 3.82  

IGCC 
CCS 0.67 0.48 0.83 0.52 1.00 0.23 0.28 

NGCC 78.62 13.96  NGCC 0.30 0.17 0.23 0.17 0.23 1.00 0.98 
NGCC 
CCS 87.10 17.88  

NGCC 
CCS 0.35 0.07 0.29 0.07 0.28 0.98 1.00 
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best represents the future structure. The components that account for these differences are 

the expected generation cost, variation and correlation of the cost between technologies. 

 

 

3. Analysis of expected future fuel price 

 

The baseline model used the expected power generation cost calculated from the 

historical fuel cost data. In this analysis, we assume that the distribution of future fuel 

cost is the same as the historical distribution during 1990-2009. The efficient portfolio 

frontier is formulated under different values for the natural gas and coal prices.  

The expected price of natural gas in the baseline model is $4.8/Mcf (Million cubic 

feet). The expected future price of natural gas used in this analysis is $6 and $10/Mcf. 

The Annual Energy Outlook 2010 by EIA (2009) forecasts the price of natural gas for the 

electric power sector to be at the range from $6 – $9/Mcf (2008 dollars) during the next 

25 years. At $20/ton CO2 price, NGCC costs are $68.6 and $97.5/MWh for natural gas 

prices at $6 and 10$/Mcf respectively. In addition, at $40/ton CO2 price, the costs of 

NGCC are $77.6 and $106.5/MWh for natural gas price at $6 and 10$/Mcf respectively. 

Figure 13 below shows the technology mix along the efficient portfolio frontier under 

different scenarios of natural gas and CO2 prices. 

 

 

 

 

 

 

 

 

                  a) $6/Mcf and $20/ton CO2 price                       b) $6/Mcf and $40/ton CO2 price 
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                c) $10/Mcf and $20/ton CO2 price                     d) $10/Mcf and $40/ton CO2 price 

Figure 13: Optimal portfolio mix under different natural gas and CO2 price 

 Since the fuel cost accounts for large portion of power generation from NGCC, an 

increase in fuel cost affects the total generation cost significantly. When the natural gas 

price is at $6/Mcf, NGCC has a significant share when portfolio variance is high but, its 

share decreases sharply compared with the baseline model as we lower portfolio standard 

deviation. 

As the price of natural gas increases to $10/Mcf, there is almost no NGCC in the 

optimal portfolio; the share is less than 1%. At low CO2 price, the efficient portfolio 

mainly consists of PC, IGCC CCS and nuclear. However, when CO2 price is high, IGCC 

CCS and nuclear dominate the portfolio. Note that the optimal portfolio mix is the same 

when natural gas price is at $16/Mcf; it is the dominated technology since NGCC has 

high cost and high volatility.  

Figure 14 shows the optimal technology mix of the efficient portfolio at $2/Mbtu 

coal and $10/Mcf natural gas. Note that the baseline price of coal is at $1.7/Mbtu and the 

forecast coal price in EIA (2009) is around $2/Mbtu over the next 25 years. 
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a) Gas at $6/Mcf and CO2 at $20/ton                   b) Gas at $6/Mcf and CO2 at $40/ton  

 

 

 

 

 

 

 

 

c) Gas at $10/Mcf and CO2 at $20/ton                   d) Gas at $10/Mcf and CO2 at $40/ton  

Figure 14: Optimal portfolio mix at $2/Mbtu coal price and $6 and 10/Mcf gas price 

 With $2/Mbtu coal price and $6/Mcf natural gas price, the optimal portfolio mix 

is similar to the baseline model but when gas price is at $10/Mcf, the optimal technology 

mix is different. Especially, when CO2 price is at $20/ton, PC dominates the portfolio 

frontier at low cost and high variance portion and the high cost and low variance portion 

is dominated by nuclear. However, when cost of CO2 is higher, the optimal technology 

mix is similar to Figure 13 (d) where IGCC CCS and nuclear dominates the whole 

efficient portfolio. 

 The decision rule to choose the optimal technology mix of the planner or utility 

can be based on the marginal rate of substitution (MRS) between cost and variation in 

cost. Theoretically, the selection of the optimal portfolio depends on the utility function 

of the planner. In this study, the decision rule is simplified such that the planner decides 

the MRS between cost and variation and chooses the portfolio that satisfies that 

condition. For example, the MRS of $5/MWh/S.D. can be interpreted that the planner is 
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willing to increase power generation cost by $5/MWh for the reduction of 1 standard 

deviation of the portfolio. 

MRS $/MWh SD Nuclear PC PC 
CCS IGCC IGCC 

CCS NGCC NGCC 
CCS 

3 70.27 5.48 0.0% 76.8% 0.0% 0.0% 0.0% 23.2% 0.0% 
4 70.65 5.37 0.0% 79.7% 0.0% 0.0% 0.0% 20.3% 0.0% 
5 72.58 4.97 0.0% 73.1% 0.0% 0.0% 9.4% 17.6% 0.0% 
6 76.50 4.26 0.0% 55.1% 0.0% 0.0% 30.5% 14.4% 0.0% 
7 78.50 3.95 0.0% 45.9% 0.0% 0.0% 41.2% 12.8% 0.0% 
8 80.80 3.65 4.1% 38.8% 0.0% 0.0% 45.6% 11.4% 0.0% 
9 86.28 3.00 23.4% 29.6% 0.0% 0.0% 38.1% 9.0% 0.0% 
10 89.09 2.71 33.2% 24.8% 0.0% 0.0% 34.2% 7.8% 0.0% 

 

Table 10: Optimal portfolio mix at different MRS 

 Table 10 shows the optimal portfolio under the baseline model with $20/ton of 

CO2 price at different MRS. As the MRS increases, the optimal portfolio moves toward 

the lower variance portfolio (also with higher cost). In other words, higher MRS means 

more risk aversion. Given the marginal rate of substitution (MRS), the optimal 

technology mix can vary significantly depending on the scenario on generation cost as 

shown in figure 15.   

 

 

 

 

 

 

 

 

 

 

Figure 15: The optimal portfolio mix at the MRS of $5/MWh/S.D.  

 The scenario of fuel and CO2 price that the planner uses for deciding the 

technology mix and the actual event could be different. Although demand grows every 

year but the new generation capacity could not change the overall technology mix 
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significantly. The selected portfolio could have different cost and variation if the referred 

scenario does not happen.  

 

 

 

 

 

 

 

 

 

 

Figure 16: Regret graph from decision at the baseline cost at the MRS of $3 and 

$8/MWh/S.D. 

 We define the term ‘regret’ as the change in portfolio cost if the planned scenario 

does not occur. Positive regret means that the portfolio cost is higher when another 

scenario occurs. Figure 16 shows the regret graph of the portfolio mix based on the 

decision at the baseline scenario with $20/ton CO2 price. The figure shows results from 2 

MRS; $3 and $8/MWh/S.D. If the planner is concerned more about variance (at $8/S.D.), 

the portfolio has higher cost but lower standard deviation and less ‘regret’ than at $3/S.D. 

In addition, there are more shares of IGCC CCS and nuclear under MRS $8/S.D. which 

reduces the impact of unexpected higher CO2 price and natural gas cost. 

 

 

4. Analysis of the capital cost 

 

 Various published reports show different capital cost for each technology. The 

actual capital cost especially for the future technology is generally unobservable. 

Manufacturing and construction of the power plant require similar resources for example 

steel, cement and labor. Figure 17 shows the construction cost index (Handy-Whitman 
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Index) of 3 power plant technologies including nuclear, steam turbine and gas turbine 

power plant and chemical engineering plant index.  

Currently there are not many IGCC plants operating and the capital cost is 

uncertain. However, an IGCC plant is a combination of a chemical plant (a gasification 

unit) and power plant (a gas turbine). The chemical engineering plant index and gas 

turbine index together can represent IGCC plant construction cost index.  

 

 

 

 

 

 

 

 

 

 
Data source: Handy-Whitman index and Chemical Engineering (2003, 2009)  

Figure 17: Power plant related construction cost index (1996=100) 

 

Over the 12 years from 1996-2008 the 3 indices are almost identical. The 

anomalous gas turbines during 2004-2005 can be explained by the precipitous drop in 

demand for these plants. Chupka and Basheda (2007) discussed recent increase in utility 

construction costs. Various index, other than four index shown in Figure 17, such as 

labor, steel/metal, manufacturing and heavy construction cost increase altogether. Since 

construction of all power plant types uses common resources, we can imply that cost 

generally move up and down together.  

In this section, we test how the portfolio mix along the efficient frontier changes 

when the capital cost changes. We impose a ± 30% change in capital cost for each 

technology. Note that the percentage change in power generation cost ($/MWh) of each 

technology is not the same since some technologies are more capital intensive. A ± 30% 

change in capital cost changes the generation cost of nuclear by ± 22%; for PC, IGCC 
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and IGCC CCS, the change is ± 11-14%. For NGCC and NGCC CCS, the cost changes 

only by ± 4-8% since capital cost accounts for a smaller proportion than other 

technologies. 

$20/ton CO2 $40/ton CO2 
Cost ($/MWh) 

Baseline -30% +30% Baseline -30% +30% 

Nuclear 106.75 83.41 130.10 106.75 83.41 130.10 
PC 73.42 65.48 81.36 93.42 85.48 101.36 

PC CCS 101.68 88.52 114.84 103.68 90.52 116.84 
IGCC 78.01 68.82 87.20 96.01 86.82 105.20 

IGCC CCS 89.98 77.24 102.72 91.78 79.04 104.52 
NGCC 59.82 57.43 62.22 68.82 66.43 71.22 

NGCC CCS 71.46 65.80 77.12 72.36 66.70 78.02 

  

Table 11: Generation cost as capital cost varies 

 The efficient portfolio mix of these of the tested scenario is shown in figure 18. 

The ranges of the efficient portfolio are different due to the change in capital cost. The 

role of each technology mix along the frontier is similar to the baseline model. In 

addition, the significant change only occurs between PC and IGCC CCS. Shape of 

NGCC and nuclear portfolio mix does not change from the baseline scenario. 

  

 

 

 

 

 

 

a) Capital cost decreases 30%  
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b) Baseline capital cost 

 

 

 

 

 

 

 

c) Capital cost increases 30%  

Figure 18: Efficient portfolio mix at $20 (left) and $40/ton CO2 (right) 

 Figure 19 below shows the share of all technologies along the efficient frontier.  

In order to compare 2 scenarios, in each figure the efficient frontier is normalized to be 

on the same horizontal axis. At $20/ton CO2 price, the change in technology mix occurs 

mainly with IGCC CCS and PC. When capital cost increases, some of PC share is 

replaced by IGCC CCS. The opposite occurs when capital cost increases. At $40/ton CO2 

price, when the capital cost decreases most of PC share is replaced by IGCC CCS and 

NGCC. There is almost no share of PC when capital decreases by 30%. Also, when 

capital cost increases, the change is opposite.  
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Figure 19: Portfolio at ±30% change in capital cost at $20 (left) and $40/ton CO2 price 
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Figure 20: Share of each technology under changes in capital cost at $20 (left) and 

$40/ton CO2 price (right) 

 

The analysis shows that when all capital cost moves together there is no 

significant change in the pattern of the portfolio mix. There are significant changes 

between some technologies, PC and IGCC CCS. These 2 technologies are the 

technologies in the middle portion of the efficient frontier. With moderate change at 

±30%, there is no change in the cost order of the technology at the boundary.  

However, as shown in figure 21, when the change is more extreme for example at 

50% decrease in capital cost, portfolio mix changes significantly. In this case, nuclear is 

not the highest cost technology and the gap between NGCC and NGCC CCS cost is 

smaller. At $20/ton CO2 price, PC and nuclear dominate most part of the portfolio and 

there is only small share of IGCC CCS. When CO2 price increases, nuclear dominates the 

portfolio since cost of all fossil fuel technology is higher. Also, NGCC CCS replaces 

NGCC at the low cost and high volatility portfolios.  

 

 

 

 

 

 

 

 

Figure 21: Mix at 50% capital cost decreases at $20 (left) and $40/ton CO2 price (right) 
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In the previous analysis, the efficient portfolio is formulated under the same 

percentage change in capital cost for all technologies. In this analysis, we assume a 

change in capital cost of specific technologies relative to the baseline value. Since the 

capital cost has the range of possible value, we perform a sensitivity analysis at ± 30% 

capital cost range for nuclear, IGCC and IGCC CCS. 

 

− Analysis of nuclear capital cost 

 We perform another analysis where only nuclear capital cost changes ±30% from 

the baseline value. Table 12 shows the generation cost from nuclear from different 

percentages change in the capital cost.  

 
Change in 
capital cost 

Nuclear cost 
($/MWh) 

% Change in 
generation cost 

-30% 83.41  -22% 
-20% 91.19  -15% 
-10% 98.97 -7% 

Baseline 106.75 - 
10% 114.54 7% 
20% 122.32 15% 
30% 130.10 22% 

 

Table 12: Generation cost of nuclear at different capital cost levels 

 

 

 

 

 

 

 

a) 30% decrease in nuclear capital cost 
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b) 30% increase in nuclear capital cost 

Figure 22: Portfolio at different nuclear capital cost at $20 (left) and $40/ton CO2 (right) 

 Under low nuclear capital cost scenario, the share of nuclear replaces the share of 

IGCC CCS compared with the baseline model. Some shares of IGCC CCS  are also 

replaced by PC and NGCC. When CO2 price is high, NGCC and nuclear are the only 

dominant technologies; IGCC CCS does not play a significant role as in the baseline 

model. For high nuclear cost scenario, the shape of the portfolio is similar to the baseline 

model with extended range of the efficient frontier. 

With carbon costs at $20-$40/ton, IGCC CCS and nuclear are direct competitor. 

Low nuclear costs crowd out IGCC CCS and vice versa. Figure 23 and figure 24 show 

share of nuclear and IGCC CCS in all scenarios. Shares of nuclear and IGCC CCS 

change in the opposite direction as the capital cost of nuclear changes. IGCC CCS has 

lowered share in the optimal portfolio when nuclear cost is lower. 

 

 

 

 

 

 

 

Figure 23: Nuclear share along the efficient frontier at different levels of nuclear capital 

cost with $20 (left) and $40/ton CO2 (right) 
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Figure 24: IGCC CCS share along the efficient frontier at different levels of nuclear 

capital cost with $20 (left) and $40/ton CO2 (right) 

 

− Analysis of IGCC and IGCC CCS total plant cost 

 We analyze the change in the share of IGCC and IGCC CCS when capital cost of 

both technology changes. Since IGCC and IGCC CCS have almost the same facility 

except the CCS unit, we assume the same percentage change of both technologies in each 

case. Capital costs of other technology are assumed to be at the baseline level. The test 

percentage change is between ± 30% of the baseline value. Table 13 below shows the 

change in generation cost at different levels of change in capital cost. 

 
$20/ton CO2 

 
$40/ton CO2 

 Change in 
capital cost IGCC IGCC CCS IGCC IGCC CCS 

-30% 68.82 (-12%) 77.24 (-14%) 86.82 (-10%) 79.04 (-14%) 
-20% 71.88 (-8%) 81.48 (-9%) 89.88 (-6%) 83.28 (-9%) 
-10% 74.94 (-4%) 85.73 (-5%) 92.94 (-3%) 87.53 (-5%) 

Baseline 78.01 89.98 96.01 91.78 
10% 81.07 (4%) 94.22 (5%) 99.07 (3%) 96.02 (5%) 
20% 84.13 (8%) 98.47 (9%) 102.13 (6%) 100.27 (9%) 
30% 87.2 (12%) 102.72(14%) 105.2 (10%) 104.52 (14%) 

       Note: percentage change in total generation cost in the parenthesis 

Table 13: Cost/MWh at different capital cost of IGCC and IGCC CCS 

 

 From the baseline model, the result shows that the share of IGCC CCS increases 

significantly when moving from $20 to $40/ton CO2 price. Cost of IGCC CCS becomes 

more competitive compared with other fossil fuel technology especially PC. 
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a) IGCC/ IGCC CCS capital cost decreases by 30% 

 

 

 

 

 

 

 

 

b) IGCC/ IGCC CCS capital cost increases by 30% 

Figure 25: Efficient portfolio mix at different levels of IGCC and IGCC CCS 

capital cost at $20 (left) and $40/ton CO2 price  

 

Figure 26 shows the share of IGCC CCS along the efficient portfolio frontier at 2 

levels of CO2 price. Note that at each level of CO2 price, the range of the efficient frontier 

is approximately the same for all scenarios of IGCC cost since there is no change in the 

cost of NGCC and nuclear which at the high and low end of the frontier. At $20/ton CO2 

price, the share of IGCC increases steadily as the capital cost lowered; it replaces PC and 

there is no significant change in NGCC share. However as the capital cost increases, 

especially from 20-30%, the share of IGCC CCS almost disappears from the efficient 

portfolio. 
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Figure 26: IGCC CCS share along the efficient frontier at different levels of capital cost 

with $20 (left) and $40/ton CO2 (right) 

 When CO2 price increases to $40/ton, IGCC CCS plays a more significant role. 

From the baseline model, IGCC CCS replaces most of PC share when higher CO2 price is 

imposed. When capital cost decreases, IGCC CCS starts to replace some of NGCC share 

in the optimal portfolio with no significant change in nuclear share. However, when 

capital cost increases, the share of IGCC CCS is replaced by NGCC and PC because 

IGCC CCS is more expensive. Especially, when the capital cost increases by 30% (or 

14% increase in total generation cost), there is almost no share of IGCC CCS in the 

optimal portfolio. 

 

 

 

 

 

 

 

Figure 27: IGCC share along the efficient frontier at different levels of capital cost with 

$20 (left) and $40/ton CO2 (right) 

 IGCC is the dominated technology under the baseline model; there is no share of 

IGCC in the optimal portfolio. When capital cost of IGCC is lowered by 20% (or 9% 

decreases in total generation cost), IGCC becomes more competitive and replaces the 

share of PC in the optimal portfolio. Under $20/ton CO2 price, IGCC replaces all PC in 

the optimal portfolio; it acts like PC under the baseline model. When CO2 price increases 
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to $40/ton, it also replaces the tiny share of PC since the efficient portfolio is dominated 

by NGCC, IGCC CCS and nuclear.  

 

 

5. Sensitivity analysis of the CCS cost 

 

In this analysis, we formulate 4 different scenarios of CO2 prices and CCS cost. 

CO2 prices are low ($20/ton) and high ($40/ton). The CCS cost includes capture and 

transportation and storage (T&S) costs. In this analysis, we assume no change in the 

capture cost. The focus is on the uncertainty of T&S cost. We formulate 2 scenarios of 

T&S cost; high and low. According to EPRI (2008), cost for CO2 transportation and 

storage (T&S) for IGCC CCS with different types of coal and gasification technology is 

in the range of $8.90 – 10.90/MWh. We set the baseline cost for CO2 T&S at $10/MWh 

in the baseline model. The scenario with high CCS cost has the CO2 T&S cost at 

$20/MWh. 

 

 

 

 

 

 

 

 

Figure 28: Scenario analysis on CCS cost 

The results from the scenarios with baseline CCS cost at 20 and 40 $/ton CO2 

prices are presented in the previous section scenarios B3 and B4. Figure 29 shows the 

technology mix of the portfolio on the efficient frontier under 4 scenarios.  
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        (a) High CCS and Low CO2 price                       (b) High CCS and High CO2 price 

 

 

 

 

 

 

 

 

            (c) Baseline CCS and Low CO2 price              (d) Baseline CCS and High CO2 price 

Figure 29: Technology portfolios on the efficient frontier in 4 scenarios 

Cost of CCS and CO2 are the important factors in this analysis. The optimal 

portfolio changes significantly across these 4 scenarios. In the high CCS cost scenarios, 

Figure 29a and b, share of IGCC CCS is small in both $20 and 40/ton of CO2 prices. 

When price of CO2 is low (at $20/ton), PC has a large share in the portfolios especially 

when cost of CCS is high, figure 29a. When price of CO2 increases to $40/ton, share of 

PC decreases and is mostly replaced by NGCC.  

 When we compare models with low CO2 price at different CCS cost, shares of 

NGCC along the efficient frontier change significantly. Large share of PC is replaced by 

IGCC CCS. Some share of nuclear is also replaced. In figure 29a and c, the efficient 

frontiers have about the same range in term of cost and standard deviation. It can be 

obviously seen that the share of nuclear decreases significantly as CCS cost decreases. In 
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addition, IGCC CCS gains higher share in the high cost and low variation portion of the 

efficient frontier. 

From figure 29d, low CCS cost and high CO2 price, NGCC, IGCC CCS and 

nuclear play a significant role in the optimal portfolio. NGCC and IGCC CCS dominate 

portfolios in the first half of the efficient frontier (low cost/high variation). In the second 

half of the efficient frontier (high cost/low variation), IGCC CCS and nuclear have 

significant share in the portfolios with small share of PC.   

 

 

5. Bayesian analysis of power generation portfolio (applied BL model) 

 

From the baseline model, we apply the Bayesian analysis to formulate the optimal 

baseload generation portfolio. In this section, we show an example of the expression of 

the posterior belief on the NGCC cost such that the investor forms his belief after 

considering the the information on the baseline optimal portfolio mix, generation cost and 

his expectation on the fuel market.  

Example: The investor expects that cost of NGCC under the scenario with $40/ton 

of CO2 will increase from $69/MWh to 90$ MWh due to high demand on natural gas. 

From the baseline model with high CO2 price, NGCC is the technology that dominates 

most part of the portfolio. The investor expresses different level of confidence (c) of his 

belief on NGCC cost at the range. The optimal portfolio will be solved for 20, 50 and 

80% level of confidence in the posterior belief.  
Cost ($/MWh) Baseline 20% CI 50% CI 80% CI 

Nuclear 106.75 106.74 106.72 106.70 
PC 93.42 93.51 93.64 93.77 
PC CCS 103.68 97.51 97.44 97.37 
IGCC 96.01 96.04 96.09 96.14 
IGCC CCS 91.78 91.72 91.63 91.55 
NGCC 68.82 73.06 79.41 85.76 
NGCC CCS 72.36 78.04 86.55 95.07 
Posterior belief S.D. - 28.05 14.03 7.01 

Table 14: Power generation cost under different belief’s confidence 
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 Table 14 shows power generation cost from the baseline model and the model 

with beliefs at different confidence levels. The value of NGCC cost that the investor 

expects is $90/MWh. As confidence grows, the expected cost of NGCC is close to the 

mean value. For example, at 80% confidence cost of NGCC is $85.76/MWh. In addition, 

as shown at the bottom of the table, lower confidence translates to higher belief’s 

standard deviation (variance). Costs of other technology also change when cost of NGCC 

changes due to the correlation with NGCC cost. However, since the correlation of NGCC 

and other technologies is low, costs of other technologies do not significantly change.  
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  (c) 50% confidence    (d) 80% confidence 

Figure 30: Optimal portfolios under different view’s confidence 

 From figure 30, the optimal portfolios are solved under different confidence levels 

in the belief. In this example, cost of NGCC is expected to increase to $90/MWh. Shapes 

of the optimal portfolio changes in the direction toward using more NGCC when keeping 

the portfolio cost fixed because the lower bound of the efficient portfolio frontier cost 

S.D.

Cost ($/MWh)

S.D.

Cost ($/MWh)

Nuclear

PC

IGCC CCS

NGCC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

79.4 81.3 83.1 85.0 86.8 88.7 90.5 92.4 94.2 96.1 97.9 99.8 101.6 103.5

17.17 14.55 11.99 9.54 7.29 5.51 4.68 4.25 3.85 3.49 3.19 2.98 2.84 2.79

Nuclear

PC

IGCC CCS

NGCC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

85.8 87.2 88.6 90.0 91.5 92.9 94.3 95.7 97.2 98.6 100.0 101.4 102.9

15.35 11.73 8.34 5.59 4.60 4.27 3.96 3.67 3.41 3.19 3.02 2.89 2.81 2.78



 74

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline 20% CL 50% CL 80%

Nuclear
IGCC CCS
NGCC
PC

moves up as NGCC cost increases. Portfolio mix at $90/MWh is shown in figure 31 

below.  

 

 

 

 

 

 

 

 

 

Figure 31: Generation mix at $90/MWh 

 Higher natural gas cost shifts the lower bound cost of the efficient frontier. NGCC 

cost is significantly higher but it is still the lowest cost technology. It is still the dominant 

technology in the first half of the efficient frontier. Since this is under $40/ton of CO2 

price, IGCC CCS plays significant role in this scenario. Nuclear and IGCC CCS replaces 

NGCC shares as NGCC cost increases.   

 

 

6. Portfolio with existing capacity 
 

 In the previous analysis, we assume all generation capacity in the portfolio is the 

new capacity. In this section, we relax this assumption by assuming that there is some 

existing capacity in the portfolio already. The planner’s decision is to choose the choice 

of technology for the additional investment given that there is already existing capacity in 

the portfolio.  

 In the model, there are 3 existing baseload capacity including NGCC, PC and 

nuclear. EIA (2009c) estimates the average annual growth of generation capacity at 0.6% 

during the next 3 decades; over the 15 year period, the cumulative growth is about 10%. 

We assume that in the medium term (around 10 – 15 years) the system will need 10% of 

new capacity. The existing capacity will be 90% of the future portfolio.  
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Although the existing capacity is kept constant in the optimization process, the 

result also depends on the existing mix. The correlation between the existing capacity and 

the new capacity affects the optimal portfolio mix since the overall portfolio variance 

calculation includes the weighted variance and covariance from the existing capacity. The 

weight and variance of the existing capacity are fixed but the weighted covariance with 

new capacity depends on the weight put on each new generation technology. The cost of 

existing technology used in the calculation is only the variable cost since the investment 

was already made. The cost series of the existing capacity are calculated from the 

variable cost of the existing technology (for nuclear, PC and NGCC) in the baseline 

model. We assume that variable cost of the existing capacity is 10% higher than the new 

capacity due to lower efficiency. We will show the result of the optimal portfolio with 4 

different mixes of the existing capacity. 

 

 

 

 

 

 

 

 

a) Existing capacity with 30% nuclear, 50% PC and 10% NGCC 

 

 

 

 

 

 

 

 

b) Existing capacity with 80% nuclear, 10% PC and 10% NGCC 
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c) Existing capacity with 10% nuclear, 80% PC and 10% NGCC 

 

 

 

 

 

 

 

 

d) Existing capacity with 10% nuclear, 10% PC and 80% NGCC 

Figure 32: Portfolio mix with existing capacity with $20 (left) and $40/ton CO2 (right) 

 The optimal portfolios of the new capacity shown in figure 32 are different due to 

existing technology mix that varies in each case. However, the pattern of the technology 

mix is similar to the baseline model. The portfolios with existing technology consisting of 

30% nuclear, 50% PC and 20% NGCC (figure 32a) can approximately represent the 

baseload technology mix in the current US power system. Like the baseline model, 

NGCC is the dominant technology when portfolio cost is low and variation is high. There 

are some shares of PC when CO2 price is low but they disappear when imposing higher 

CO2 price. IGCC CCS plays key role when CO2 price is high. Nuclear dominates high 

cost and low variation portfolios.  

 The optimal portfolios with existing capacity having nuclear 80%, PC and NGCC 

10% (figure 32b) have no new nuclear capacity in the portfolio. Instead of having nuclear 
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as the technology to reduce portfolio variation, the optimal portfolios have IGCC CCS to 

play this role. Since nuclear accounts for the majority of the existing portfolio, the 

weighted covariance of old nuclear with other technology is large especially with the new 

nuclear capacity. IGCC CCS has the lowest variation among the fossil fuel technology 

and has lower cost than nuclear. Thus, in order to optimize the portfolio IGCC CCS is 

selected for the high cost and low variation portfolios.  

 Similar effect of existing capacity can also be seen from the portfolio with 

existing 80% PC, 10% nuclear and NGCC (figure 32c). Normally at $20/ton CO2 price 

there are significant PC shares in the portfolio in other cases (also in the baseline model). 

Since there are significant PC shares in the portfolio, more IGCC CCS and NGCC are 

selected instead of PC to reduce overall variation. In addition, the mix of IGCC CCS and 

NGCC can also lower the cost of portfolio; cost of PC is in the range between IGCC CCS 

and IGCC.  

Also, for the case with existing capacity 80% NGCC and 10% PC and nuclear 

(figure 32d), there is small share of PC CCS instead of nuclear to reduce portfolio 

variation. The mix of PC CCS and IGCC CCS play the role to reduce portfolio variation 

in this case where NGCC has large share in the existing capacity. The correlation 

between NGCC and PC CCS/IGCC CCS are lower than the correlation with nuclear. 

Including both technologies can give lower portfolio variation than having nuclear while 

cost of nuclear is in the range between these 2 technologies. 

 Examples of the optimal portfolio with various existing technology mixes indicate 

the importance of correlation/covariance of existing capacity and new technology.  In 

general, the portfolio of the additional investment looks similar to the one in the baseline 

model. However, share of some technologies can be different depending on the mix of 

existing capacity. 
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Conclusion 

 

 In this study, we present the methodology to apply the mean variance portfolio 

theory to solve for the optimal power generation portfolio. Rather than choosing a 

winning technology, we propose power generation planning in term of the portfolio. The 

baseload generation is the focus of the study because it accounts for most of electricity 

generation and cost of the power system.  

 Different technologies play different roles in the portfolio (power system). The 

nuclear power plant has high capital cost and low variable cost compared with other 

technologies. The generation cost from nuclear is high but has low variation. In addition, 

power generation cost from nuclear is not affected by cost of CO2 regulation. NGCC is 

the technology with low cost but high variation in cost since the majority of the 

generation cost of the natural gas plant is fuel cost. Variation in natural gas price 

significantly affects variation in NGCC generation cost. 

We solved the efficient portfolio frontier in term of generation cost and variation 

in generation cost. Models with different CO2 prices show significantly different 

technology mixes along the portfolio frontiers. Since one of the key factors that 

determines the optimal mix is the order of the cost. Increase in CO2 price changes the 

relative cost or order among all technologies. The change in CO2 pricelargely affects the 

high CO2 emission technology such as PC and IGCC. When the CO2 price increases, 

NGCC IGCC with CCS replace most of the PC share in the portfolio. The baseline 

portfolio mix shows that cost of CO2 at $20/ton is not high enough to encourage 

investment in clean coal technology (IGCC CCS) which can reduce both cost and 

variation in cost and importantly CO2 emission. 

In addition, the model is analyzed under different fuel price. The first analysis 

separate the time period into “stable price” and “volatile price” periods. The results from 

these 2 periods are different due to differences in average fuel price and correlation 

structure. The second analysis assumes different scenarios of natural gas price. The result 

shows that if natural gas price significantly increases from the baseline value, portfolio 

planned using the baseline cost will impose additional cost in the future. The additional 

cost can be reduced if the planning is based on more risk aversion preference.  
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The model is also analyzed with different capital cost levels since most reported 

cost is in range. Changes in capital cost have more effects on technology with higher 

capital intensive. The result from model where all technologies capital cost change in the 

range ±30% shows different portfolio mix from the baseline model but significant change 

occurs to few technologies such as PC and IGCC CCS. Significant change occurs when 

the cost order of technology at the boundary of the efficient portfolio (for example NGCC 

and nuclear) changes. 

 We also show an example applying the Bayesian analysis to power generation 

portfolio. This approach has been used in finance so called “Black and Litterman” model. 

With this model, the investor can express his belief on one or more technology cost with 

the level of confidence in the belief. We show an example of different confidence levels 

that can lead to significantly different power generation portfolios.  

Our model has limitation in accounting for all types of risk in the power system. 

Risks, for example power plant outage and other environmental regulations, are not 

included in the model. However, this study can give portfolio selection criteria and policy 

implication regarding to investment under uncertainty in CO2 and fuel prices. Especially, 

it underlines an importance of planning in term of portfolio. If most of the new generation 

capacity is NGCC, as most utilities plan today, it could impose significant cost in the 

future when natural gas price increases from the scenario they plan. 
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Appendix 
 

A. Data and Assumptions  

The key variable in this study is power generation cost ($/MWh). There are 2 

major components of cost; fixed and variable cost.  In our study, we assume that all 

generating capacity in the system is new capacity. To calculate the fixed cost per unit, we 

need the following data; the total plant cost7, capacity factor, economic lifetime of the 

power plan and discount rate. The investment cost that we use is the total plant cost 

assuming that the power plant is built overnight and all costs are evaluated in the present 

value term. Total amount of power generated each year is calculated from the capacity 

factor. Using the annual fixed cost and output, we can find the fixed cost per MWh. The 

detail on the sources of data is presented later in this section. 

To calculate the variable cost, we use the data on fuel price, O&M cost, heat rate 

and CO2 emission rate (per MWh). The fuel cost for the fossil fuel plant is calculated 

from the fuel cost ($/Btu) and heat rate8 (Btu/kWh).  For the nuclear plant, the calculation 

for fuel cost is different from the fossil fuel power plant. We use the approach in “The 

Economics of the Nuclear Fuel Cycle”, Nuclear Energy Agency (1994) and the nuclear 

fuel cost calculator from the WISE Uranium project (http://www.wise-

uranium.org/index.html). This requires the data on uranium, conversion, enrichment and 

fabrication prices. In addition, the CO2 price is the part of the variable cost. Different 

types of fossil fuel plant emit different amount of CO2 per MWh. Thus, they have 

different cost of CO2 depending on their emission rate. The variable cost per MWh is the 

sum of fuel, O&M and CO2 price (for fossil fuel plant). Mean, correlation and the 

covariance matrix are calculated from the series of generation cost.  

 

 

 

                                                 
7 DOE (1999) defines “the total plant cost” as the capital cost including all construction related costs such 
as equipments, material, labor and contingencies.   
8 According to the definition from Energy Information Administration (EIA), “heat rate is a measure of 
generating station thermal efficiency commonly stated as Btu per kilowatt hour” (EIA, 
http://www.eia.doe.gov/glossary/glossary_h.htm). 
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Total plant 

cost a ($/kW) 

Heat rate b 

(Btu/kWh) 

Capacity 

factor (%) 

CO2 emission d 

(ton/MWh) 

Economic 

life (years) 

Nuclear 6,000e NA c 90 - 40 

PC 1900 9,000 80 1.00 40 

PC CCS 3,150 12,500 80 0.10 40 

IGCC 2,200 8,850 80 0.90 25 

IGCC CCS 3,050 10,700 80 0.09 25 

NGCC 550 7,000 80 0.45 25 

NGCC CCS  1,300 8,600 80 0.045 25 

 

Table A1: Assumptions on generation cost  

Note:  

a) The total plant cost is estimated based on many sources for example EPRI (2008), 

EIA (2008a), NETL (2007) and Synapse (2008). However, currently, investment 

cost is increasing and there is no consensus on the number especially for nuclear 

and IGCC plants. The cost used in this study is from the median value of the 

reported cost.  

b) The heat rate data is estimated based on many sources such as EIA (2008b), EPRI 

(2008), NETL (2007) and IECM (Integrated Environmental Control Model). 

c) The heat rate from the nuclear plant is calculated from the approach in “The 

Economics of the Nuclear Fuel Cycle”, Nuclear Energy Agency (1994) and the 

nuclear fuel cost calculator from the WISE Uranium project (http://www.wise-

uranium.org/index.html).  

d) The CO2 emission rate is estimated based on data from eGrid (2006) and EPRI 

(2008). 

e) Nuclear total plant cost reported in Synapse (2008) ranges from $3,600-

8,081/kW. Cost at $6,000/kW is selected for the study. It is around the median of 

the reported range. This cost is higher than other estimate such as EIA (2008b). 

However, the realized cost of the nuclear plant tends to be higher than the initial 

estimate. EIA (1994) showed that during 1966-1977 the realized overnight cost of 

nuclear power plants were 2-3.5 times of the initial estimate.  

 



 85

 

Fuel cost  

The fossil fuel cost data is from EIA (2009a) “Cost of Fossil-Fuel Receipts at 

Electric Generating Plants”. This is the monthly data in $/MBtu unit.  

Uranium: Monthly uranium price data is from the Cameco Corp. 

(http://www.cameco.com/marketing/uranium_prices_and_spot_price/longterm_complete

_history/).  

 

O&M cost  

The O&M cost data of the existing technology is from EIA (2009b), “Average 

Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities”. The 

data is from 1995 – 2009. The data from 1990-1994 is estimated by using the average 

growth rate. The O&M cost for IGCC and IGCC CCS are estimated from EPRI (2008). 

 

CO2 price  

 The CO2 regulation price in our study is the simulated data with a certain mean 

and variance. The CO2 price is simulated from normal distribution with mean $20 and 

40/ton with standard deviation 5. The study by Roques et al. (2007) simulated the CO2 

price at mean of ₤40/ton and standard deviation of 10.  
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B. Generation technology portfolio: All load types 

 

 The first step in analyzing portfolio for all load types is to categorize technology 

from load serving characteristic and derive power generation cost. Previous studies do 

not take into account the load curve and capacity factor of the plants serving different 

load portions. For example, a baseload plant has a higher capacity factor than the plants 

serving the intermediate load or peak load.  

 

 

 

 

 

 

 

 

 

Figure B1: PJM load duration curve divided to 3 parts 

 From figure B1, the load duration curve is divided into 3 types of load; baseload, 

intermediate and peak load. The percentages by amount of power (MWh) of baseload, 

intermediate and peak load are about 78, 18 and 4% respectively. In addition, the shares 

in terms of capacity (MW) of the plants serving each load are 44, 18 and 38% for the 

base, intermediate and peak load respectively. In addition, we need to define the capacity 

factor for the technology serving each load. The baseload plant has a capacity factor 

around 80-90% while those of intermediate and peak load plants are 50-60% and 5-10% 

respectively. The capacity factor is important for the calculation of the fixed cost per 

MWh.   

 To solve the portfolio optimization problem, we set the “load weight” in term of 

energy (MWh) for each load type. For example, the load weight for the base, 

intermediate and peak load are 78, 18, and 4% respectively. In each load category, there 

is a mix of fuel-technology plants serving the load. While each plant has some flexibility, 

we assume that each plant can only serve the load it was designed for.  Nuclear and coal 

0

20000

40000

60000

80000

100000

120000

140000

160000

1 514 1027 1540 2053 2566 3079 3592 4105 4618 5131 5644 6157 6670 7183 7696 8209 8722

Hours

M
W

Baseload

Intermediate load

Peak load

0

20000

40000

60000

80000

100000

120000

140000

160000

1 514 1027 1540 2053 2566 3079 3592 4105 4618 5131 5644 6157 6670 7183 7696 8209 8722

Hours

M
W

Baseload

Intermediate load

Peak load



 87

plants serve baseload. (Some old coal plants are also cycled for serving intermediate 

load.) A natural gas combined cycle (NGCC) serves base and intermediate load. A simple 

gas turbine (GT) and diesel plants which can be ramped up and down quickly serve peak 

demand.  

 Power generation investment has a lumpy nature that may create a discontinuity 

in portfolio analysis. In this study, power generation capacity is assumed to be perfectly 

divisible. The planner solves the optimal risk-cost portfolio from the following quadratic 

programming problem. Additional constraints are imposed on the weight of each load 

type. In addition, all weights are greater than or equal to zero (similar to a no short sale 

constraint in the conventional mean-variance portfolio model).  

 Min 
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 iw is the portfolio weight of technology i (N technologies in total). μ  is a specific 

value of portfolio cost. ijσ is the covariance of technology i and j. N = nB + nI + nP where 

nB,  nI and  nP are the number of technology serving base, intermediate and peak load 

respectively. WB, WI and WP  are weights in term of energy (MWh) of base, intermediate 

and peak load respectively.  
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C. Analysis of nuclear plant shutdown  

 

 Nuclear plants experienced extensive shutdowns for safety or inspection in the 

decade of 1970s, since the technology and safety measures were not fully developed. 

However, we expect that the future nuclear power plant will have less evidence of 

shutdown for safety because the technology is more developed and improved. In this 

analysis, we formulate the optimal portfolio under the situation that some capacity of the 

nuclear power plant is shut down for some periods. The shutdown is not permanent and 

for maintenance or regulatory inspection.  

 Prior to the decision on the portfolio mix, the planner forms an expectation about 

the possibility of the shutdown by a certain period of time. We assume that the shutdown 

affects the overall capacity of the plant. When the plant is shut down, its overall capacity 

factor decreases. Decrease in capacity factor depends on the length of shutdown; the long 

period of shutdown leads to low capacity factor. For the nuclear plant that is shut down, 

the maintenance cost is assumed to be higher than the normal plant. In addition, the 

variation of the maintenance cost of the shutdown plant is also higher. 

 In this analysis, we test few cases of nuclear plant shutdown by varying the 

probability and loss of capacity factor. The probabilities of shutdown are set at 10 and 

20% and the loss of capacity is set at 10 and 20%. Note that the baseline assumption sets 

capacity factor of the nuclear plant at 90%. At 10% probability of shutdown, the expected 

generation costs from nuclear are $108.3 and $109.6/MWh for capacity factor loss 10 and 

20% respectively. Also at 20% probability of shutdown, the expected generation costs 

from nuclear are $109.7 and $112.6/MWh for capacity factor loss 10 and 20% 

respectively. In addition, for all cases the variation of the nuclear plant cost increases due 

to the change in maintenance cost but not in a high magnitude. 

 The portfolio mix of each scenario is shown in figure C1. Since the shutdown 

increases cost of the nuclear plant, it is still the highest cost-lowest variation technology; 

the variation in cost does not increase significantly. The optimal portfolios from all 

scenarios look similar to the baseline portfolio.  
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a) 10% shutdown probability and 10% loss in capacity factor 

 

 

 

 

 

 

 

b) 10% shutdown probability and 20% loss in capacity factor 

 

 

 

 

 

 

 

c) 20% shutdown probability and 10% loss in capacity factor 

 

 

 

 

 

 

 

d) 20% shutdown probability and 20% loss in capacity factor 

Figure C1: Portfolio mix of all scenario at $20 (left) and $40/ton CO2 (right) 
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 The shapes of portfolio mix along the frontier of all scenarios are similar. Figure 

C2 shows the plot of the share of nuclear along the efficient frontier by normalizing the 

frontier on the horizontal axis. At each level of CO2 price, the line graph shows that there 

is no significant difference in the share of nuclear along the efficient frontier.  

 

 

 

 

 

 

 

Figure B2: Share of nuclear in all scenarios at $20 (left) and $40/ton CO2 (right) 
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