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Abstract 

Traditionally, the participation of customers in the electric market has been weak or non-existent.  

Almost all customers have paid a flat rate for power without variations based on the time of their 

consumption, so these customers have had no incentive to reduce their usage during times of 

capacity shortage and very high wholesale prices.  Perhaps even more importantly, customers 

have not participated in forward decisions about whether it would be better to build additional 

capacity at very high cost or to commit to peak load reductions during a few peak hours each 

year.  In this thesis I present the status of efforts to incorporate customer decisions into the 

electric market place and calculate the possible system benefits. 

 

In Part I I discuss recent activities relating to demand response and demand-side management.  

Although interest in demand response is growing among policy-makers and industry participants, 

the process of making this possible will be a complicated navigation among the incentives of 

involved parties and the jurisdictions of state and federal regulators.  One of the key problems in 

developing a coordinated policy is that the wholesale markets covering generation and 

transmission are under the jurisdiction of the federal government represented by the Federal 

Energy Regulatory Commission while electric distribution and retail markets are under the 

jurisdiction of the state, represented by state public utility commissions (PUC).   

 

In Part II I investigate the value to the system of reducing peak demand and compare this value 

to the current costs of peak load reductions.  Peak load reductions are currently being achieved at 

$21/kW·y, or less than one fourth of the $94/kW·y it costs to build new capacity.  Similarly, 

energy efficiency is being achieved at $29/MWh, or roughly one third of the $92/MWh retail 

price for electricity.  At current rates, peak load could be cost-effectively reduced by some 17%, 

although I expect that at greater levels of peak reductions the marginal cost of achieving more 

reductions will increase, it is clear that significant peak load reductions can be achieved cost-

effectively.   

 

I further investigate the value to the system of shifting the burden of uncertainty in peak load on 

to customers and the utilities acting on their behalves who have the most ability to determine 
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what peak load will be.  The traditional means of accounting for uncertainty in peak load has 

been to build enough excess capacity that the chance of shortages is low.  I calculate that a right-

sizing peak capacity to the best estimate of peak load would reduce the amount cost of supplying 

capacity by 8.5% below the current level. 

 

In Part III I investigate the short-run economic impacts of a policy change from flat-rate retail 

electric pricing to real-time prices (RTP) or time-of-use (TOU) prices.   If retail prices reflected 

hourly wholesale market prices, customers would shift consumption away from peak hours and 

installed capacity could drop.  I use hourly price and load data from Pennsylvania-New Jersey-

Maryland Regional Transmission Organization (RTO) to estimate consumer and producer 

savings from a change toward RTP or TOU.  Surprisingly, neither RTP nor TOU has much effect 

on average price under plausible short-term consumer responses. Consumer plus producer 

surplus rises 2.8%-4.4% with RTP and 0.6%-1.0% with TOU. Peak capacity savings are seven 

times larger with RTP. Peak load drops by 10.4%-17.7% with RTP and only 1.1%-2.4% with 

TOU. Half of all possible customer savings from load shifting are obtained by shifting only 1.7% 

of all MWh to another time of day, indicating that only the largest customers need be responsive 

to get the majority of the short-run savings. 

 

Placing customers on an RTP can benefit them through lower average rates for energy and 

capacity, but the advanced metering infrastructure (AMI) required to make RTP and customer 

response possible is a large investment.  In Part IV I determine how many customers can be cost-

effectively placed on RTP from the perspective of a PUC.  I calculate that for wide scale 

implementation of AMI, all customers above 2.5 kW in coincident peak load (about 40% of all 

customers, representing all industrial, all commercial, and large residential customers) could be 

cost-effectively placed on RTP if there are no benefits to the AMI other than demand response 

from RTP.  For the customers below size 0.31-0.73 kW (the smallest 10%-20% of customers, 

representing small residential loads), installing an AMI is not cost effective even under the most 

favorable assumptions about other AMI benefits and highly responsive customers.  For 

intermediate-size customers the investment would be justified in some cases but not others. 
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Part I Introduction to Electric Demand-Side Issues 

Part I of this thesis introduces the state of affairs in policy and research on demand response and 

demand-side management1. 

 

Chapter 1 The Importance of Price Responsive Demand 

Historically, end users have had few or no opportunities to interact with electric market.  Most, 

although not all, customers have paid a flat price for electricity no matter when they use it, even 

during times of peak electric use when wholesale prices skyrocket and capacity shortages 

threaten system stability.  Even beyond these short-term considerations, customers have not been 

engaged in the process of deciding how much generation capacity to build now in order to supply 

their future peak electric use.   

 

Hourly, daily, and seasonal fluctuations in consumer demand require additional generating 

capacity, particularly peaking plants that were needed only a few hours per year.  If these 

fluctuations are treated as facts of life where load must be served at lowest cost, then the 

traditional utility would build baseload plants, usually coal, with high capital costs and low 

operating costs to run most of the time; they would also build peaking plants, usually gas plants, 

with low capital costs and high operating costs to run only a few hours per year.  Therefore 

peaking plants add cost in two ways: first, their operating costs are much higher than average, 

meaning that the marginal cost of supplying electric energy is very large during peak events; 

second, even though the capital costs of these peakers are low on a per kW basis, their very low 

capacity factors result in very high capital costs per unit of peaking MWh produced.. 

 

Under regulation, the cost of peakers was spread over all kilowatt-hours generated, adding little 

to the average cost of producing power, and therefore to customer price.  Even though the capital 

                                                 

 
1The substance of Part I was published under Spees and Lave [1]. 
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costs of these peakers represent only a small addition to the average cost of power, they do 

represent a large total amount.    

 

To avoid some of these costs, some utilities, under the oversight of their state Public Utility 

Commissions (PUC), have implemented load management programs, with examples of radio-

controlled end-use devices going back to the 1930s [2].  These load management programs 

would alleviate both capital and operating costs associated with peaking plants. 

 

A more advanced load management system would benefit the system by allowing customers 

respond to real-time system conditions and real time prices2 (RTP) as Fred Schweppe envisioned 

decades ago [3-5].  However, despite decades of advances in technology and more recent 

developments in the industry structure, Schweppe’s vision of a dynamic demand-side electric 

marketplace has as yet failed to materialize. 

 

Industry restructuring has breathed new life into demand response and generated a wide range of 

demonstration projects and pilot programs [6].  Many market operators in the United States have 

developed initiatives to invite demand into the marketplace, but enrollments have been small and 

sluggish.  Market operators publish lists of private parties who provide demand response 

services, but only a few end users currently employ these services [7, 8].  I explore here the 

obstacles that public regulators and private ventures face in developing the load-side resource 

and also the possible benefits to be had. 

 

Market restructuring turned the issue of high peak demand into a major problem.  On the demand 

side, the systems operators run markets that represent customers who are presumed not to want 

to alter their electricity use, no matter how high the price. Thus customers face a fixed retail 

                                                 

 
2 I will use RTP to refer to any combination of day-ahead and balancing market prices and distinguish among these 
only where relevant.  I do note however that I am usually referring to a price that is essentially represented by the 
day-ahead market price as discussed in Chapter 12. 
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price, e.g., $0.10/kWh3, even when the wholesale price hits its maximum of $1/kWh.  A 

customer has no reason not to use an electric dryer at 5 PM on the hottest day in August because 

she always pays the same $0.10/kWh.  If the customer faced the wholesale market price of 

$1/kWh, she would demand much less electricity at that price.  Once consumers have the 

technology to respond to day-ahead or balancing market prices, they would be able to reduce 

consumption during these hours and mitigate the high price extremes that we see in current 

wholesale energy markets.    

 

On the supply side, the Independent System Operators (ISOs) and Regional Transmission 

Operators (RTOs) 4 determine the price in an auction market with all successful generators paid 

the locational market clearing price (capped at $1000/MWh5 in most RTOs).  All generators 

receive this price, from a baseload nuclear plant generating power at a marginal cost of 

$20/MWh to an expensive light oil generator at $240/MWh (which operates only a few hours per 

year) [11].  In a competitive wholesale market, baseload plants can earn high profits during the 

high demand periods in a competitive market, but, if the market clearing price reflects the 

marginal cost of the most expensive peaker running as intended, the highest cost peaking unit 

only receives its marginal costs and cannot cover its fixed costs.   

 

Recognizing the problem of peakers being unable to cover their fixed costs through energy 

markets alone, some market operators have introduced installed or forward locational capacity 

markets, with nettlesome early results and rapidly evolving market rules.  Another way to 

                                                 

 
3 Retail prices are higher than wholesale prices because the retailer ads an additional amount for billing and local 
distribution.    

4 I will use RTO to refer to both ISOs and RTOs.  When referring to a single state or multi-state entity, the acronym 
ISO or RTO will be used as appropriate. 

5 ERCOT is one exception with the recent increase of its price cap to $2,250/MWh [9].  California ISO is another 
exception with a $400/MWh soft cap on energy and ancillary service bids [10].  Generators may bid above a soft 
price cap and will be paid as bid; other generators will receive payment only as high as the cap.  The neighboring 
Western Electricity Coordinating Council (WECC) has the same price caps although WECC is not a market 
operator.   
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recover peaker costs proposed by economists such as Bill Hogan is to remove all price caps and 

allow very high prices during peak hours of capacity shortage [12].   

 

 Pennsylvania-New Jersey-Maryland (PJM) RTO, ISO New England (ISO-NE), and New York 

ISO (NYISO) have created capacity markets to pay for fixed costs.  Although these market 

structures might provide a price incentive for suppliers to build new peaking capacity, the 

structures will ultimately be economically efficient only if the price signal also reflects the true 

demands of customers.  Even if a reasonable wholesale market structure for incenting peaking 

capacity investments were to materialize through the RTOs’ rapidly evolving market structures, 

customers’ demands would not be accurately represented on the demand side.  Current capacity 

market “demand curves” are not gathered based on information from customers or their 

representative load-serving entities (LSE) at all, but rather are developed by the RTO staff.  The 

curves are developing using engineering estimates of the cost of peaking capacity, a target level 

of capacity based on traditional resource planning methods, and an essentially arbitrary shape 

and slope for the downward-sloping “demand curves” [13, 14]. 

 

The essence of this problem from a policy standpoint is that the regulation of wholesale markets 

for generation and transmission is under the jurisdiction of the federal government through the 

Federal Energy Regulatory Commission (FERC), while the regulation of electric distribution and 

retail rates is under the jurisdiction of state lawmakers represented by state PUCs.  This means 

that an appropriate wholesale market structure would not translate into an appropriate retail 

market structure without additional legislative action in each state.  The level of complication 

and muddling through that will be required in order to create efficient markets for peaking 

capacity is daunting at a time when many states are doing their best to grapple with the effects of 

rapid fuel price increases and adjust to the consequences of a first wave of retail restructuring 

[15].   

 

State regulators will have to navigate through the traditional commitment to finding the lowest 

rate possible for utility customers, the physical reality of one set of distribution lines, the 

promises of innovative retail structures with electric choice, and the lack of control over 

wholesale structures.  The trick for state regulators will be to allow retailers enough latitude and 
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flexibility to provide retail customers the array of retail agreements to best meet true demands 

and represent the fast wholesale market structure changes without giving retailers the ability to 

exploit the natural monopoly created by the physical distribution and metering system.   

 

This thicket of policy issues and business incentives will be difficult to straighten out, but I do 

not see the problems as intractable.  I lay out these problems and opportunities for utilities, state 

regulators, and federal regulators more fully in Part I and place them within the historical context 

of related regulatory efforts, beginning with a discussion of traditional demand-side 

management. 
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Chapter 2 Conservation Initiatives and Effectiveness 

Electricity conservation policies since 1975 have been expensive but cost-effective.  A recent 

Resources for the Future (RFF) retrospective estimated expenditure and savings numbers from 

large federal energy efficiency efforts with results shown in Table 2.1 [16].  Voluntary programs 

appear to have energy savings on the same scale as some mandatory programs with small federal 

government costs, but voluntary program results are uncertain and difficult to verify.  Mandatory 

residential appliance standards and utility demand side management (DSM) programs both show 

benefits at more than twice the cost even without considering environmental costs. 

 
Table 2.1. Slice-of-time program costs and benefits for the year 2000, 2007$6 [16]. 

Program Costs 
Program 

Energy7 
Savings 

Quads/Year 
$Billion/  

Year 
Costs 
Reported 

Cost-
Effectiveness 

$/MWh8 

Retail 
Price9 

$/MWh 

Benefit-Cost 
Ratio10 

Residential 0.77 $2.89 Consumer, 
manufacturer $43.78 $99.22 2.27 

A
pp

lia
nc

e 
St

an
da

rd
s 

Commercial 0.43 -- -- -- -- -- 

M
an

da
to

ry
 

Utility DSM 0.62 $2.05 Utility  $38.57 $82.00 2.13 

Energy Star11 less than 0.93 $0.06 Government -- -- -- 

1605b Registry less than 0.41 $0.0004 Government -- -- -- 

V
ol

un
ta

ry
 

DOE Climate 
Challenge less than 0.81 -- -- -- -- -- 

                                                 

 
6 These dollar values are updated to 2007$ using Bureau of Labor Statistics inflation data [17].  Costs and benefits 
result from all programs or standards up until the year 2000, the numbers have been annualized so that the costs and 
benefits can be viewed over a one year slice of time. 

7 Energy savings are reported in quadrillion BTUs of source energy. 

8 Cost effectiveness numbers are reported assuming that all energy is converted to electric energy.  A conversion 
factor of 11660 BTUsource/kWhelectric corresponding to a conversion efficiency of about 29% was used. 

9 Year 2000 residential and average retail prices are reported for comparison with residential appliance standards 
and utility DSM programs respectively, although the prices are updated to 2007$ as are the rest of the numbers [18]. 

10 Benefit:Cost ratio compares benefits accrued to the end user to costs reported.  Environmental benefits and costs 
to unlisted parties are not considered. 

11 Energy Star cost and savings numbers are reported for the year 2001; all other program numbers are reported for 
the year 2000. 
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2.1 Efficiency Standards  

Conservation activists insist that appliance efficiency regulations are needed because consumers 

notice an increase in purchase price but give less attention to the lower electricity payments over 

time.  Regulations initiated in California and other states were later adopted at the federal level.  

Standards covering devices from washing machines to exit signs to mobile homes have had a 

large impact on end user efficiency.  Federal appliance efficiency standards began in earnest with 

the sweeping 1987 National Appliance Energy Conservation Act and have been supplemented 

and updated frequently [19].   

 

Table 2.1 shows that the year 2000 residential savings from appliance efficiency standards are 

estimated to be $43.78/MWh, less than half the retail residential electricity price of $99.22/MWh  

[16, 18] 12.   

 

Building efficiency codes have developed similarly, with an indispensable role played by 

professional societies.  In 1977 the American Society of Heating, Refrigerating, and Air-

Conditioning Engineers (ASHRAE)13 and the Council of American Building Officials (CABO)14 

developed initial versions of their energy codes for commercial and residential buildings 

respectively.  Every state had instituted a building energy code based on one of these standards 

before the 199215 Energy Policy Act mandated them [21].  Given the high level of technical 

                                                 

 
12 Original RFF and EIA numbers were both converted to 2007 dollars.  The EIA number refers only to retail 
residential sales; commercial and industrial rates were $76.7/MWh and $47.9/MWh respectively. 

13 The ASHRAE 90.1 series with its periodic updates has been widely adopted for commercial and high rise 
residential facilities.  Forty states have adopted a version of this code [20].  

14 The CABO developed the original Model Energy Code (MEC) for residences, which is now the International 
Energy Conservation Code (IECC).  Some version of this code is enacted in 40 states.  The list of noncompliant 
states is not identical between commercial and residential sectors [20]. 

15 Federal standards were again updated in the 2005 Energy Policy Act to reflect the most recent versions of these 
codes, ASHRAE 90.1-1999 and IECC.  
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complexity and domain expertise necessary to develop and maintain these standards, the roles of 

ASHRAE and CABO have been essential. 

 

2.2 Demand Side Management  

In the mid 1970s, California and Wisconsin ordered utilities to work with customers to increase 

energy efficiency.  Congress picked up DSM in the 1978 National Energy Conservation Policy 

Act [22].  Utilities were expected to treat peak demand reduction as an alternative to capacity 

growth from an integrated resources planning (IRP) perspective. During the next decade the 

meaning of DSM evolved to incorporate efficiency as well as load profile management.  Since 

utilities were compensated for their DSM programs and reported energy savings without a 

detailed audit, some analysts were skeptical of the reported savings, but Parfomak and Lave used 

ex post econometric analysis to verify that 99.4% of the reported savings were statistically 

observed [23, 24]. 

 

Effective DSM programs are expensive and labor intensive; if the administrator of a DSM 

program wants to ensure that certain measures are taken and implemented according to plan then 

the surest method is to purchase and install more efficient equipment at many locations.  Utility 

DSM programs grew both in size of expenditure and size of electric energy savings from their 

conception until their peak expenditure in 1993, partially shown in Figure 2.1 [25]16.  The RFF 

2000 cost estimate for avoided energy from DSM programs is $38.57/MWh which shows 

slightly better performance than appliance efficiency standards with benefit-cost ratios of 2.13 

and 2.27 respectively17 [16].  Although DSM has cost customers less than it has saved them, the 

programs do require large expenditures to  

 

                                                 

 
16 Spending trends are from the EIA as estimated from numbers reported by utilities.  

17 See Table 1.   
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Figure 2.1. DSM expenditure18 and savings 1989-200419 [25, 26]. 

 

With industry restructuring, DSM expenditure declined dramatically as shown in Figure 2.1.  

Restructuring focused on lowering price and there was less ability to hide the program 

expenditures from customers.  Incremental20 energy and peak savings from efficiency efforts 

have generated net benefits.  From Figure 2.1 it appears that load management expenditure had 

almost no payoff in energy savings and a volatile relationship with peak shaving.  Peak shaving 

spiked just as much of the industry was preparing for restructuring, even though load 
                                                 

 
18 Total utility DSM expenditure includes indirect costs as well as efficiency and load management costs.  Indirect 
costs represent between 8.5% and 17.7% of total expenditure in this time period. 

19 Only total expenditure data were available prior to 1993 because the EIA did not collect the more complete data 
before that year. 

20 “Incremental” savings are attributable to expenditures in the current year, not from previous years.  The EIA also 
reports “annual” numbers that represent current year savings from all previous investments. 
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management investments were on a steady decline.  This might indicate that utilities were 

increasingly accountable for coincident peak load.  Some federal and state efforts have tried to 

stem the decline in efficiency investments with public benefit funds such as the Low Income 

Weatherization Assistance Program, which may account for the increased expenditures on 

efficiency after 1998. 

 

2.3 Energy Services Companies 

The energy services sector was created by DSM programs.  Some utilities created subsidiaries 

for the DSM programs while others contracted with independent companies. In 2000 90% of all 

energy services company (ESCO) revenues were earned by subsidiaries of an energy company as 

shown in Figure 2.2 [27].  Although independent ESCOs are numerous, they are not nearly as 

large as their subsidiary competitors21.    

 

0% 10% 20% 30% 40%

Independent

Other Energy
Company

Equipment
Manufacturer

Electric Utility

Market Revenue Percentage

0 5 10 15 20 25 30
Number of ESCOs

Number of
Subsidiaries
Market
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Figure 2.2. Year 2000 market percentage based on 54 ESCOs by parent company type [27]. 

 

                                                 

 
21 “Equipment Manufacturers” generally make building equipment and controls; “Other Energy Companies” can be 
fuel producers, pipeline owners, etc. 
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Initial ESCO industry revenues were from performance based contracts22, but have shifted 

toward packages of services including procurement and risk management.  Throughout the entire 

restructuring period of the late 1990s, ESCOs have continued to grow; market revenues first hit 

$2 billion in 2000 [27].   

 

Chapter 3 State of Demand Response Technology and Policy  

Customers could save money from demand response and load shifting by using less expensive 

energy.  System benefits from economic load response should be larger than a responding end 

user’s benefits per unit, especially in the long run, since they include congestion relief, improved 

reliability, and a lower capacity requirement.   

 

Day-ahead prices have been used in nearly all related programs and demonstrations to date, 

allowing the end user time to plan and respond even without having to invest in automated 

enabling technology.  Even though the day-ahead price is a strong predictor of the balancing 

price under most normal conditions, it cannot communicate unforeseen system conditions such 

as unplanned outages or other emergencies.  System benefits from immediate load curtailment 

and load shedding in contingency situations can only be garnered from active load management 

or immediate prices, for example PJM’s five-minute balancing locational marginal prices 

(LMPs) [28]. Immediate response requires automated enabling technology that acts on behalf of 

the end user in response to an electronic price broadcast.  Providing customers with information 

on both balancing and day-ahead prices would allow both planning and real-time response as 

long as the retail agreement reflected both numbers. 

 

                                                 

 
22 A performance based contract is an arrangement in which an energy services company will install efficiency 
upgrades for a client.  The client and the energy company then share the savings accrued from the lower energy 
bills. 
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3.1 Real-Time Pricing 

Electricity retailers, whether traditional utilities or alternative generation suppliers under retail 

choice, buy electricity from the wholesale market and sell it to the end user.  Most of the roughly 

70 utilities that offer RTPs in the US developed optional programs in the mid-1990s in order to 

retain large industrial customers under the threat of retail competition or relocation.  Other 

primary motivations were to lower peak consumption, to encourage overall load growth, and to 

comply with a mandate.  These non-exclusive motivations are shown in Figure 3.1 [29].   These 

utilities tend to offer implicit hedges to protect valuable customers from price spikes.   

 

0% 10% 20% 30% 40% 50% 60%

Share Price Risk

Market Pricing Experience

Regulatory Compliance

Load Growth

Peak Management

Customer Retention

Percentage of Programs
 

Figure 3.1. Utility reported motivation for offering RTPs to customers. 

 

When some utilities offered all their large customers the option of RTP, they did so knowing that 

some would pay lower average prices without making any changes.  Because some utilities never 

expected customers to respond to the RTP, it is not surprising that only 35% of them offered 

technical assistance for RTP response, and only 49% provided customers a way to monitor usage 

regularly23.  What is surprising is that these utilities have reported 12-33% reduction in 

participants’ coincident peak load even under these circumstances [29]. 

 

                                                 

 
23 “Regular” means real-time energy consumption or consumption information from the previous day. 
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3.2 Economic Load Response 

Even if a current consumer paying a fixed tariff learned the five-minute LMP values by looking 

at the PJM website, the price would be irrelevant since the consumer would face a fixed price.  

Although operational demand response programs have yet to demonstrate large enrollment, most 

market operators in the United States offer some combination of economic load response, 

emergency response, and ancillary service programs as shown in Table 3.1.   

 
Table 3.1. Market operator demand response programs. 

Demand Response Programs [30] Market 
Operator24 Economic25 Contingency Ancillary Services26 Size [31] 

CAISO None 

Voluntary load 
reduction27, investor-
owned utility 
curtailment 

Non-spinning reserve, 
replacement reserve, 
supplemental energy28

500 MW in VLRP, Up to 
800 MW shaved in 2005 

ERCOT 
[32] None Included in ancillary 

services All ancillary services 2.5% of total load is 
registered 

ISO-NE Day-ahead, 
real-time  Emergency  Investigating stage 

for operating reserves 
Up to 5% of peak demand 
in emergency  

MISO None Emergency  None -- 

NYISO Day-ahead Emergency  Installed capacity or 
special case 

2,300 customers, $75 
million in capacity 
revenues 

PJM  
[33, 34] 

Day-ahead,  
real-time Emergency 

Limited ancillary 
services including 
spinning reserve [35] 

6,000 commercial and 
industrial customers, more 
than 45,000 small 
customers [34] 

SPP None None None -- 

                                                 

 
24 All of the members of the ISO/RTO Council that are in the United States are examined here.  California ISO 
(CAISO), Electric Reliability Council of Texas (ERCOT), ISO New England (ISO-NE), Midwest ISO (MISO), New 
York ISO (NYISO), Pennsylvania-New Jersey-Maryland (PJM) RTO, and Southwest Power Pool (SPP).  

25 Market operators that do not offer economic response programs state that they allow price response via a third 
party intermediary, but do not support such response with electronic price broadcasts.  

26 All ancillary services here require that load have automated response to identical signals given to generators and 
demonstrate their ability to respond. 

27 CAISO used to offer more programs but has eliminated them as investor-owned utility distribution companies 
(UDCs) have increased their own load curtailment programs. 

28 Supplemental energy is a near real-time response. 
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The economic load response programs within ISO-NE, NYISO, and PJM are similar.  If a 

customer is not large enough to interact directly with the wholesale market, it must participate in 

demand response programs via a licensed curtailment service provider (CSP).  Minimum 

individual or aggregated curtailment is 100 kW in PJM and ISO-NE.  At low prices, load usually 

has the option to respond to day-ahead prices but will be compensated for curtailment only when 

prices are above $75/MWh in PJM or $100/MWh in ISO-NE.  Reporting and metering 

requirements are extensive; curtailments are verified based on a weather-adjusted customer 

baseline usage. 

 

Double-counting is implicit in the early versions of these programs because load not only has the 

choice not to pay for the power, but also receives a payment.  The customers that do not 

participate benefit from lower electricity prices.  Curtailment payments do not reflect the systems 

benefit of response; they were set at an arbitrary level to jumpstart enrollment.   

 

Even though PJM, ISO-NE, and NYISO compute day-ahead and balancing LMPs for every bus 

in the system, only a subset of these are posted online in real time [28].  All demand response 

programs are settled at the aggregate zone level.  This averaging prevents localized congestion 

from being reflected and alleviated through demand response.  The internet-based 

communication system used in ISO-NE to transmit the real-time zonal prices might be the most 

advanced system in operation.  Responders in New England can receive up to $2800 in 

reimbursement for compatible communications devices [36].   
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Back-up generation can be employed in these programs with proper permitting, but not if the 

same resource receives capacity payments as then it is treated as a capacity resource rather than 

as a demand resource.   Table 3.2 shows the sizes of several contingency and market-based 

demand response programs, many of which are not operated by ISOs or RTOs.  Actual 

curtailments are much higher in contingency programs than they are in economic response 

programs, possibly because involvement is often binding.  Back-up generation serves as a 

significant but not overwhelming proportion of curtailed load [6]. 

 
Table 3.2. Response rates and back-up generation proportion of several demand response programs [6]. 

Percent29 of Enrolled Load
Program 

Type 
Number of 
Programs 

Average 
Curtailable 
Load, MW 

Average Load 
Curtailed, MW Actually 

Responded 
Back-Up 

Generation 
Contingency 8 158 84 64% 31% 
Market 10 204 21 17% 12% 

 

3.3 Load in Ancillary Service 

Using load as an ancillary resource is an old idea that has been developed for specific 

applications from voltage support, to spinning reserve, to stochastic frequency control [37, 38].  

National laboratory projects have also demonstrated the technical feasibility of using municipal 

pumped water and residential air conditioners to provide spinning reserve.  Incorporating load as 

a regulation and reserve resource might become even more important if wind resources grow into 

a significant generation asset [39-41].   

 

Many enacted projects fall under the category of demand response in ancillary services.  Most 

common among these are emergency load curtailment programs instituted by investor owned 

utilities [6].  Market operators also employ load shedding under stress; in PJM an emergency 

responder collects either $500/MWh or the zonal LMP, whichever is higher.    

 

                                                 

 
29 Percentages are an average of percentages for individual programs, not a percentage of totals from all programs. 
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Market operators ERCOT, CAISO, and more recently PJM have instituted programs allowing 

load resources to bid and receive payment for the provision of ancillary services [32, 35].  Load 

receives the same control signal given to generators for spinning reserve and regulation response.  

A licensed provider must demonstrate both ability to respond and the level of response before the 

market operator will recognize bids.  These programs have been developed and implemented 

quickly considering that the Federal Energy Regulatory Commission (FERC) and the North 

American Electric Reliability Corporation (NERC) regulations only began allowing for ancillary 

services on the demand side beginning in 2002 [40].  Including loads as a resource became 

possible when national standards moved away from proscriptive standards of how ancillary 

services should be provided and toward performance-based standards.  Regional reliability 

bodies and market operators can still decide whether to allow demand-side provision of ancillary 

services. 

 

So far, ERCOT appears to lead the market operators in providing technical and market tools for 

the private sector to use in integrating load into ancillary provision.  In its Load Acting as a 

Resource program, ERCOT will employ load for any ancillary service as long as it is enabled 

with the stipulated communications and control devices [32].   

 

Chapter 4 Magnitude of Electric Energy Savings  

Comparing the magnitude of possible savings from efficiency with that from demand response is 

important for guiding public and private investments.  The comparison is nuanced because 

energy savings are most important in evaluating efficiency investments while peak load 

reduction is most important in evaluating demand response.  There are cases where incentives 

toward load flattening would be at odds with those toward energy efficiency; for example if 

cheap off-peak power were used to charge batteries which were then discharged on-peak there 

would be an efficiency loss via the battery.  In other cases, the incentives are in line; for example 

very high peak prices would affect air conditioning load more than other loads and may incent 

the investment in a more efficient model.  Potential savings from both types of DSM investments 

will be informed by exploring retrospective and prospective estimates.   
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4.1 Energy Efficiency Savings 

An energy efficiency savings projection relies on the combination of an economic model and a 

policy scenario.  A 1999 study that analyzed environmental energy policies over the entire 

United States projected electric savings of 5% in a moderate and 11% in an advanced policy 

scenario30 [42].  A set of nine prospective efficiency savings estimates from seven studies is 

featured in Figure 4.1 [43].  The national study and five state or regional studies show variability 

stemming from policy assumptions, locational differences, and fundamental uncertainty.  The 

“economic” savings are those that can be achieved at less than the retail price of electricity; the 

“achievable” savings are lower than the “economic” savings because some upgrades that would 

make sense economically could not be implemented for practical reasons. 
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Figure 4.1. Economically feasible and practically achievable electric savings31 [43]. 

 

These nine studies project a range of 10-33% in potential energy efficiency gains from 

aggressive policy changes.  Policy strategies included in these studies reflect efforts similar to 

traditional demand side management tools and have time horizons from 5 and 20 years. 

 
                                                 

 
30 These numbers represent yearly savings after a 10 year time horizon based on the Energy Information 
Administration (EIA) base case projection. 

31 Source reports additional numbers that are not reported here.  Those numbers are higher possible gains from 
technically feasible but economically infeasible options; only “economic” or “achievable” results are examined here.   
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4.2 Elasticity of Demand 

Many analyses and experiments have been undertaken in order to examine price responsiveness 

as well as the responsiveness to shifting demand to a lower cost hour32 [44].  Some experiments 

are more relevant to demand response because they examine responsiveness to day-ahead hourly 

prices or with enabling technology [45]33. Results are highly variable, partly because 

responsiveness behavior is complex and highly dependent on the details of the experiment 

including how prices are communicated.  For example, if customers are recruited into a program 

by being assured that they would not have to pay a higher bill than if they had not participated in 

the experiment, their incentives are eroded.  Similarly, if they know the program will last for 

only a year or two, they have little incentive to replace appliances or make a capital expenditure 

that would pay off under a long-term program. 

 

Price responsiveness is much greater when customers have an incentive to react by purchasing 

more efficient appliances and equipment; in the short run end users can reduce usage only by 

forgoing consumption.   A 198434 review of 34 short run and long run estimates found median 

elasticities of -0.20 and -0.90 respectively, implying that a 10% price increase would reduce 

consumption by 2% in the short-run and 9% in the long-run  [44].  Over the long run these same 

customers can make additional choices about buying efficient appliances and equipment. Figure 

4.2 shows the difference between short-run and long-run responsiveness. 

 

                                                 

 
32 Price elasticity of substitution is a measure of load shifting in this context, generally measured between on peak 
and off peak hours.  There is no standard definition of peak hours. 

33 Appendix C of this source contains a review of elasticity studies and their relationship to demand response.  
Elasticity numbers reported here are obtained from this source. 

34 The short run numbers were recently updated in another review of 36 estimates with a median of -0.28 [44]. 
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Figure 4.2. Short-run and long run residential elasticity median and confidence intervals (CI) [44]. 

 

A recent Department of Energy review published price elasticities of substitution under TOU, 

critical peak pricing (CPP), and day-ahead RTP situations [45].  Figure 4.3 shows averages and 

ranges reported from four of these studies in residential and commercial and industrial (C&I) 

sectors.  The range of elasticities of substitution was 0.02 to 0.27.   
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Figure 4.3. Elasticity of substitution average and range [45]. 

 

In the future, short-run price elasticity and elasticity of substitution will depend on the 

sophistication of enabling technologies.  Modern electronics allow customers to respond to each 

price change without further thought or effort by having an “energy manager” run electric hot 

water heaters, dishwashers, pool pumps, and air conditioners during less expensive hours.  
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4.3 Demand Response Savings 

Projecting the savings in a switch from an average-price system to a real time price (RTP) 

system is complicated by the uncertainty in how customers will respond.  Borenstein has 

projected that if all customers faced the RTP, equilibrium35 customer dollar savings would range 

from 2.0% to 13.7% depending on the responsiveness of demand [46]36.  Table 4.1 shows the 

theoretical projected savings when different fractions of load face the RTP and the demand 

elasticity is -0.1.  Coincident peak load reductions are large, implying that RTPs would indeed be 

an effective means of addressing peak demand problems.   

 
Table 4.1. Equilibrium savings in switching from average price to RTP, elasticity -0.1 [46]. 

Participating 
Load 

Customer 
Bills, $ 

Energy 
Consumption, 

MWh 

Peak Power, 
MW 

33.3% 3.51% -0.53% 14.0% 
66.7% 5.25% -0.92% 20.3% 
99.9% 6.52% -1.23% 24.5% 

 

Overall energy consumption actually increases under this model because customers can increase 

usage when prices are low.  An increase in energy consumption or profile-dependent pollution37 

under RTP is a real concern.  One effect that this model does not address is that responsive 

customers who have greater control over when they use electricity would also have greater 

control over how much electricity they use.  For example the Carrier ComfortChoice thermostats 

that have been used to demonstrate spinning reserve from load reductions also allow customers 

to specify timed usage [40].  A homeowner can leave the air conditioner off all day while she is 

at work and have it turn on in time to return to a cool house; she can also control the device over 

the web if she forgets to turn it off before a vacation. A converse effect is that if customers get a 

                                                 

 
35 This simulation used California market loads and a mix of three generator types.  

36 The elasticity reflecting these estimates ranges from -0.025 to -0.5.  It also reflects scenarios in which demand is 
more, less, or equally responsive during peak times. 

37 For example if peak generation is natural gas and baseload is coal, a flat load profile would increase emissions of 
sulfur, particulates, mercury, and other pollutants which are much higher from coal generation than from gas 
generation [47]. 
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lower average rate for power they may end up wanting to use more of it; for example by using 

more electricity to pre-cool a space at a time when electric rates are lower. 

 

One question to ask is whether most of the savings from RTPs could be gained from applying the 

much simpler time of use (TOU) rates.  Borenstein has projected that when switching from flat-

rate tariffs, total economic surplus38 increases with TOU rates are only 8% to 29% of the surplus 

increases with RTPs as shown in Figure 4.4 [48].  The surplus increase is expressed as a 

percentage of customer baseline expenses.  The three TOU rate schedules represent 

progressively more detailed price granularity.  This indicates that if end users really can be 

responsive in real time, then the savings from the most accurate price signals are substantially 

greater than those from TOU. 

 

 
Figure 4.4. Total surplus increase using RTP or TOU pricing, as a percent of flat rate bills38 [48]. 

 

Chapter 5 Barriers to Electricity Market Efficiency  

A frustration to policy makers is the continued inaction to reap the savings when an investment 

in energy efficiency would have a high return.  Some failures to invest in efficiency appear 
                                                 

 
38 The sum of consumer and producer surplus is the total surplus.  Under all TOU and RTP pricing structures 
examined, the total surplus increased compared to the total surplus under flat rate pricing.  To scale the total surplus 
increase numbers, they are expressed as a percentage of the entire consumer electric bills under the flat rate scenario.  
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irrational from the engineering economic analysis but make sense when hidden costs are 

included.  Other parts are viewed as market failures.  Either way, advocates cite barriers to 

realizing efficiency investments as reasons to enact correcting policies. 

 

Most of the recognized barriers in adopting energy efficiency technology will also inhibit the 

adoption of demand response technology and strategies; some of the same impediments have 

already been noted [49].   

 

Few customers can, or have the time to, calculate the return to energy efficiency investments.  A 

more subtle barrier to implementing efficiency programs might be a limited range of features in 

the efficient models [50].  The EnergyStar program informs consumers about which appliances 

are efficient with an accessible labeling system at very low cost to the manufacturer or federal 

government, although the resulting benefits of EnergyStar are difficult to quantify [16]. 

 

High-level macroeconomic models that attempt to evaluate economically efficient outcomes are 

not detailed enough to capture hidden costs at the technology level where they occur.  

Accounting for the engineering economics of current physical capital and investment costs is 

becoming a more important part of policy modeling.  A proxy for hidden costs is included in the 

National Energy Modeling System by introducing technology adoption rates and hurdle costs.  

Models that incorporate these hidden costs explicitly tend to have outcomes with lower energy 

efficiency [51]. 

 

Lack of consumer knowledge about energy efficiency and related costs can result in a less 

energy-efficient choice.  End users may not be able to afford the more efficient appliance or 

might be financing the purchase with a credit card.  Many efficiency investments that are 

attractive at social rates of return of 2-5% are unattractive at credit card interest rates of 18% or 

more.  Some other situations lead to suboptimal efficiency investments.  When different budgets 

are used for technology investments and for energy costs, the incentive is to decrease up-front 

costs even at the expense of long-term gains.  This situation is acute in a landlord-tenant situation 

where a landlord buys the least expensive, inefficient air conditioning or water heating 

equipment but the tenant will have to pay the electric bills [52].  A similar situation can occur 
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even within one firm with a putative common bottom line; the purchasing department might try 

to minimize the cost of procuring lighting fixtures without considering the long-term electric 

costs that will be paid by facilities management.  Still another situation arises when firms have 

capital budgets with hard limits; such firms may refuse to buy efficient products regardless of 

payback.  At any rate, once technology is installed, the energy efficiency decision is unlikely to 

be undone until the end of equipment lifetime; the only changes that can be made until the 

equipment is replaced are laborious behavioral and usage changes.  

 

Chapter 6 Outlook on Demand-Side Activities 

6.1 National Standards 

In general, choices of demand response technology, communication, and contractual structures 

need not be decided by FERC or NERC.  The role of regulators and standards bodies is to open 

markets to competition and participation for all generators and loads.  Stipulating that large 

customers must face RTPs is a prerequisite to making demand response possible without subsidy 

[53].  Although FERC standards make it possible for demand to have equal opportunity for 

energy and ancillary market participation, policy movement toward more responsive demand 

requires legislative action at the state level and is not under FERC jurisdiction.   

 

Already, some states have mandated or allowed utilities to offer RTPs to their largest customers; 

other utilities create some incentive for load flattening using TOU rates or a customer demand 

charge [29, 54, 55].  The typical demand charge for large customers records and charges based 

on the peak kW usage in a month.  The problem with this type of demand charge is that it is the 

same price applies whether that customer’s peak demand occurred during the peak time of day, 

incurring great cost on the system, or whether that customer’s peak demand occurred away from 

peak hours, incurring little cost on the system. 

 

6.2 Market Operator Responsibility 

Market operators are rapidly updating the structures of their demand response programs and 

especially their capacity markets, with a trend toward forward locational capacity markets [13].  
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The market operators appear to be looking toward a future in which they hope to be able to 

integrate responsive demand into the markets, and are attempting to structure the markets in a 

way that will allow for this type of integration, but each has a long way to go.  As an example of 

the support that market operators are willing to provide for possible load-side integration, PJM 

has structured its energy market to allow LSEs the opportunity to bid in a real demand curve 

rather than a simple quantity at any price [56].   Creating the structure that would allow for wide-

scale energy market participation from demand resources is decidedly forward-looking since in 

their highest activity year reported in 2006, the total participation in energy market demand 

response was less than 250 GWh, or about 0.03% of the total energy market [57, 58].   

 

Ultimately, market operators will have to find structures in which load following, wind 

balancing, and all other ancillary services can be provided by load resources, either directly to 

the market in a few cases of very large customers, or more likely through a load aggregator such 

as the new company EnerNOC [59].  This means at the very least that market operators need to 

be able to broadcast price signals and allow load resources to prove that they can meet the same 

requirements for reliability and response to control signals.   

 

In more ambitious scenarios, the market operators would have to develop support for load-side 

resources by changing the market structures fundamentally.  One of the biggest challenge will be 

to develop forward capacity markets that have true demand curves rather than the artificial 

demand curves that have been used to date [13].  In an improved capacity market, customers 

would truly be a party to the decision of how much capacity they want built and are willing to 

pay for.  Obviously, as in all cases, the market operator alone cannot accomplish the integration 

of customers into the markets because the market operators answer to the FERC and the local 

retailers interacting with customers answer to state regulators.  

 

6.3 State Legislation and Public Utility Commissions 

State efforts toward retail competition could have at least a small impact on demand response.  A 

form of time of use pricing happens in deregulated retail markets when a broker buys electricity 

in the wholesale market for customers.  The price that the broker can offer depends on the time 
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profile of customer usage.  The broker can show a customer how much the total electricity bill 

will decline by shifting some demand to off-peak hours.  Similarly, the broker can contact 

customers to tell them when the current wholesale price is very high or very low. 

 

These retail competition efforts are not likely to go very far without state-mandated hourly 

metering however, because no competitive retailer would be able to assess or prove what the 

customer was actually using without making the investment in such a meter on a customer-by-

customer basis.  For this reason the public utility commission (PUC) approval and even the 

mandate of hourly meters is essential for demand response for all but the largest customers, even 

where competitive retailers are allowed to offer arbitrary rate structures.   

 

In 2006, the penetration of advanced metering was at 5.9% according to a FERC study, although 

an unknown but probably large fraction of utilities reporting advanced metering would not be 

able to implement demand response programs other than RTP or TOU rates without upgrades39 

[60].  Growth in the use and planned use of advanced metering infrastructure (AMI) has more 

than quadrupled in between 2005 and 2008, driven by state legislation and PUC approval of 

these expenditures [61]. 

 

Small customers may not offer enough system benefit to warrant the expense of time of use or 

real-time metering as I discuss in Part IV.  Using the observed variability of wholesale prices, the 

expense of a smart meter, the consumption level of a consumer, and the likely response to higher 

prices, it is possible to estimate whether installing a smart meter will save money for the 

customer.  Aggregators have already organized customers into large loads to realize savings [62].  

Eventually aggregators will organize even residential customers if the state regulations allow it 

and there is profit in it.  Requiring large loads to face RTPs does not mean that they cannot get a 

flat rate contract; a broker would be willing to offer any contract that the customer wants, at a 

suitable price.  Similar implied hedges have already been observed in RTP tariffs [29].   

                                                 

 
39 For example, a system installed 10 years ago may have been able to conduct automated meter reading but have no 
ability for two-way communication. 
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6.4 Distribution Companies 

Traditional distribution companies must propose rate structures and have them approved by the 

PUC.  The PUC in turn must act on behalf of the state legislature and in an effort to fulfill its 

duty to the public.  This means that a distribution company does not have the incentive or even 

the opportunity to move toward RTP or demand response without a state legislative mandate or 

the commitment of the PUC.  Even so, given the trend in states’ regulations toward AMI, peak 

reductions, and demand response, it is likely that many distribution companies are preparing for 

the eventuality of a mandate [60, 61].  This urgency is compounded by the threat presented by 

retail competition at the retail level and the possibility that competitors could offer innovative 

retail rates even if the traditional utilities do not [15].   

 

A big challenge that traditional utilities will have to face in the years to come is in convincing the 

PUC to allow them enough latitude on offering choices among rate structures.  If traditional 

utilities are forced to offer RTPs alone or flat rates alone or are forced to offer both with no 

premium on the flat rates to account for risk and unequal load profiles, then the utility could lose 

customers to competitive suppliers or the new RTP rates could inspire complaints.  In any 

outcome where traditional utilities are able to compete with alternative suppliers, these 

traditional utilities must be able to offer their customers choices without cross-subsidizing 

between flat-rate and RTP rate customers.   

 

6.5 Alternative Retailers and Energy Services Companies 

A study of 1379 recent energy services company (ESCO) projects shows that these companies 

are cost-effectively upgrading the electric efficiency for their clients [27].  When ESCOs have 

upgraded lighting equipment, they have delivered median energy savings of 47%40 below 

original consumption from lighting equipment.  When ESCOs have performed services beyond 

                                                 

 
40 The 50% confidence interval is 37% to 56%.  
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lighting, they have delivered median savings of 23%41 from the entire electric bill.   Figure 6.1 

shows the percentage of these projects that have made improvements of various types.  

Traditionally inefficient systems such as lighting and heating ventilating and air conditioning 

(HVAC) are often addressed, but a significant portion of projects involve “other” services as 

well.  These other services can be backup fuel choices, training, or rate analysis.  
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Figure 6.1. Percent of ESCO projects that employed various cost saving strategies [27].   

 

Energy services are a growing market that would find more opportunities for growth if many 

more customers are subjected to RTPs.  Although most of the customer base for ESCOs is in 

publicly funded facilities, 26% of revenues are from the private sector, especially office space 

and industrial facilities [27].  Demand response can be added to the portfolio of packaged 

services that ESCOs offer.  Some market operators appear to value ESCOs as intermediaries 

between the load and the marketplace, but not all market operators offer demand response 

programs [7, 8].  Market rule changes and additional communication services might be necessary 

for ESCOs to offer demand response and these needs should be communicated to the market 

operators.   

 
                                                 

 
41 The 50% confidence interval is 17% to 32%. 
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While traditional ESCOs could only add value for customers by reducing consumption and in 

some cases by reducing monthly peak load, there are new opportunities for ESCOs in demand 

response.  Before customers or ESCOs have any reason to make efforts at load profile 

management, state regulators must place those customers on interval meters and allow for either 

traditional utilities or competitive retailers to offer these rates to customers.  Further, the 

introduction of retail competition in some states will allow ESCOs and competitive retail 

providers the possibility of offering entirely different retail rates and agreements to customers 

[15]. 

 

6.6 Customers 

When loads are subjected to RTPs, customers will react to the prices and may invest in 

automated demand response with the help of a load aggregator.  Internalizing the externalities 

from limiting emissions of pollutants and greenhouse gases will increase the average cost of 

power; decreasing the relative cost of peaking power with a coal-gas mix and increasing the cost 

of peaking power in regions where hydro is used for peak power [47].  However, no reactions 

can occur unless customers know the price in real time.  

 

Initial load response will reflect the easiest and cheapest ways of reducing expense.  Figure 6.2 

shows the response strategies used by Niagara Mohawk Power Company’s large customers 

under mandatory RTP billing [63].  Among firms that reported shifting load, 47% said they 

would shift to the next day, 18% to the following day, and only 35% to another time of day.  

Evidently time of day is more important than actual day in consuming electricity for these 

customers, possibly because of scheduled shifts and operations.  Large customers might find it 

too expensive and disruptive to flatten their load profiles, even if they are willing to make some 

changes.   

 

Among firms that reported forgoing load, 65% said it had minimal or no impact on facility 

operation, 20% reported significant inconvenience or discomfort, 9% had to adjust business 

operations, and 6% reported not knowing.   If many firms can respond to high prices without 



 44

impacting their missions, then some of the benefits of demand response can be achieved without 

significant drawback. 
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Figure 6.2. Price response strategies employed by various load segments42 [63]. 

 

Although regulators might be hesitant to impose RTPs for fear of end user pushback, in Mohawk 

only 15% of customers were dissatisfied with a switch to RTPs from TOU even though 54% 

reported that they did not respond in real time [64].  Some customers, especially governmental 

and educational facilities, report that they have responded to system emergencies not because 

prices were high but rather because it was a civic duty [49].  The only customer who would 

protest the RTP would be one who refused to change her usage and who used more power during 

the peak hours and so was free-riding on customers who used more power during the off-peak 

hours.   

 

                                                 

 
42 Percentages do not sum to 100% because response categories are non-exclusive.  Sectors had response numbers N 
= 10, 26, 10, 23, and 8 from top to bottom.   
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Chapter 7 Challenges and Opportunities 

One way to lower average demand is to have consumers understand the implications of their 

purchases of appliances and other devices that use energy.  In many cases, consumers purchase 

inefficient air conditioners, hot water heaters, and other devices, although paying a bit more for 

an efficient appliance would save money over time.  Government programs attempt to deal with 

the situation by requiring appliances to have prominent efficiency labels and by setting minimum 

standards.  While much has been accomplished here, much remains to be done in situations 

where the person paying the electricity bill does not select the appliance or the person making the 

purchase does not have the money to buy the more efficient appliance. 

 

Another important way to achieve savings is to allow end users to stop buying additional kWh 

when the RTP exceeds the price they are willing to pay.  Just as consumers have learned to 

respond to the volatile prices of gasoline, fruits and vegetables, and other commodities, so they 

can learn to respond to electricity prices.  The largest difference is that customers purchase 

electricity every hour of the year and therefore need automated devices to react to changing 

prices without spending all their time looking up prices and making decisions.   

 

Customer response has been a neglected way of solving electricity industry problems.  

Historically, providers have focused on supply, assuming that consumers are unwilling or unable 

to modify their consumption.  Contrary to these expectations, customers respond to higher prices 

that they expect to continue by purchasing more efficient appliances and other efficiency 

measures.  When there are power shortages, customers have shown that they will respond to a 

peak price signal to reduce demand.  Large industrial and commercial customers currently 

respond to time of use and real time pricing.   With the addition of an electronic energy manager, 

small consumers could respond in real time to price fluctuations or to the more manageable 

critical peak pricing (CPP) [60].  This customer response has the potential to lower costs by 

eliminating the most expensive peaking generators, as well providing ancillary serves on the 

demand side and virtually eliminating blackouts.  

 

While some policy makers and utilities fear that consumers will protest RTPs, experience has 

found few unhappy customers.  Even if they do not change their usage patterns, most customers 
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would find no change in their total bills, since they already pay the average of all high and low 

price hours.  Those customers who do choose to react to the high priced hours would lower their 

own bills, and even lower the bills of unresponsive customers because peak prices would fall.  

All of the customers on RTP would have to pay an additional charge to cover the cost of the 

AMI.  For some of these customers, the cost of the AMI would outweigh the customer’s savings 

from response, as discussed in detail in Part IV.  

 

A service provider or market operator already has sufficient information to inform individual 

consumers as to the real-time LMP of electricity.  The principal barrier to RTP is the installation 

of an hourly meter.  Even if hourly meters are not cost-effective to change out for very small 

customers, as the current stock of energy meters are replaced, they should be replaced with real-

time meters.  Smart meters do not necessarily have to be monitored in real-time, they only need 

to record hourly consumption data.  Additional communication expense is incurred if an LSE is 

to monitor real-time usage and provide the customer with this information.  Some retailers 

already find it worth their while to install communications with their meters so that they do not 

have to pay the labor costs of meter readers [65].  Customers must decide for themselves whether 

to invest in automated devices or ESCO services that would allow them to react to the RTP.  

 

Demand response will become more important as electricity prices rise due to fuel price 

increases, the need for new generation and distribution, and some of the price increases that have 

come from unfreezing prices after deregulation.  Investment in expensive new capacity can be 

obviated by demand response and market clearing prices can be lowered.  As wind power 

realizes large scale deployment, the ability of load to shift power use to coordinate with 

availability will become more valuable and even essential.  We will have limited ability to 

incorporate wind generation into our portfolio mix at large scale without compensating for 

intermittency on the demand side.  Further, compensating in the traditional method with gas 

causes those units to run less efficiently and emit more air quality pollutants [66]. 

 

Customer ability to respond and adapt to these additional costs and system pressures will be 

greater with more accurate price signals and greater load response.  Demand response capability 

can be part of an overall package of services and greater controls offered by ESCOs.   The 
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adaptability that ESCOs have exhibited through deregulation will be invaluable when taking on 

the additional challenge of making demand response available to consumers.   
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Part II Meeting Peak Capacity on the Demand Side 

In Part II I will present the problem of meeting peak capacity as a two-stage problem within a 

framework of uncertainty in load growth.  The crux of the peak load problem is obvious when 

describing the traditional situation:  

 

 Stage 1 – The amount of peaking generation capacity that will be built and available can be 

determined with high certainty, but the quantity that will be available must be set on a 

three-year time horizon because generation suppliers must have enough time to build new 

capacity.  Once the three-year mark has passed, generation capacity is fixed and no more 

can be built. 

Stage 2 – The amount of peak load that will actually be used is determined in real time with 

high predictive uncertainty and no response to real-time system conditions. 

 

In the traditional model there is no way of ensuring reliability of service except by building a lot 

of capacity that will rarely be used.  This process of building large amounts of excess capacity 

has been very costly.  A more reasonable approach to reliability and meeting peak load would be 

to involve consumers in the decision-making.  If customers were faced directly with a choice 

between paying the full costs of building new capacity that would run only a few hours per year 

and the alternative of forgoing a fraction of their consumption for those hours, perhaps most 

customers would cut their peak use.   

 

Even if customers had to pay some amount of money for devices to control the timing of their 

consumption, they would make those investments as long as the cost of reducing peak load was 

less than their savings.  In an entirely efficient market, the marginal cost of building one more 

kW of peak generation would equal the marginal cost of reducing peak load one kW further.   

 

One problem is the magnitude of peak load relative to average load.  Another problem is the 

uncertainty around the predicted peak load.  As I will show, the uncertainty bounds around the 

prediction of peak load are large and getting larger in ISO-NE.  This means that it is becoming 

more and more costly to meet the North American Electric Reliability Council’s (NERC’s) 
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reliability constraint that the reserve margin be large enough that the loss of load expectation 

(LOLE) is only one day in ten years.  The costs of this reliability are high and getting higher.  If 

the burden of reliability were left to customers rather than mandated system-wide, perhaps some 

would prefer to pay less and bear the risk of shortages themselves.  Perhaps customers would 

prefer to risk a load curtailment two days in ten years, or five days, or one day per year.  I 

suspect that most customers are getting more reliability than they would want to pay for given 

the choice.   

 

Indeed, customers, along with aggregators and LSEs acting on their behalf, are the only parties 

that can do anything to mitigate or reduce the magnitude and uncertainty around peak load.  

There are many ways that end users and their surrogates might cost-effectively reduce the 

magnitude or uncertainty of peak load including time-varying rates, direct load control, 

interruptible rates, or permanent load shifting.  I calculate in Part II the value of these reductions 

in the magnitude and uncertainty in peak load in terms of the avoided costs of building new 

generation.   

 

Chapter 8 Uncertainty in Peak Load, ISO-NE 

In Chapter 8 I use hourly load data for the ISO-NE system (previously the New England Power 

Pool), over the years 1980-2007 to develop a model representing expected peak load [67].   The 

model accounts for growth over time in both expected peak load and also in the uncertainty 

around that expectation. 

 

8.1 Increasing Intensity of Peak Load Problem in ISO-NE 

In 2006, the highest peak load year on record in ISO-NE, 15% of all capacity ran 0.90% of the 

time or less, 25% of all capacity ran 2.92% of the time or less [67].  The number is even more 

astounding when considering that the 9.9% reserve margin that existed at peak load in 2006 was 
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not included in the calculation43 [68].  This statistic is bad and getting worse over time, with a 

comparison of 1980 and 2006 in Figure 8.1 showing how large the fraction of capacity serving 

just peak load has gotten over the years; similar histograms for all years 1980-2007 are shown in 

Appendix A.1.  In each histogram, peak load hours are highlighted.  The width of the colored 

bands indicates the number of kW that can be considered peak hours; the bands’ widths show the 

quantity of capacity that must exist just to serve demand during peak hours.  The darker colored 

bands indicate that a smaller number of hours are considered.  The red band indicates the amount 

of capacity existing to serve just the top 30 hours (corresponding to a capacity factor of 0.34%); 

the combination of all red and yellow bands indicates the amount of capacity that exists to serve 

the top 500 hours (corresponding to a capacity factor of 5.7%).   

 

 
Figure 8.1. Histogram of ISO-NE hourly loads in 1980 and 2006 with peak hours highlighted [67]. 

 

The overall assessment is that an increasingly large amount of capacity must be available in ISO-

NE in order to run a smaller number of hours per year.  This amounts to large capital investments 

that must exist to ensure reliability but that society puts to very little productive use.  If expected 

to make returns only from the energy market, these peakers with 5.7% capacity factors or less 

                                                 

 
43 This low reserve margin is made up for by very large reserve margins in the Canadian portions of the Northeast 
Power Coordinating Council (NPCC) of which ISO-NE is a subregion [68].   
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would never make a return.  Instead they can only be incented if capacity market prices are high 

enough to cover the entire capital costs of a plant that is not running.   

 

8.2 Model of Peak Load Magnitude and Uncertainty  

In this section I develop a model to use later in Chapter 10; this model for peak load accounts for 

an increase in magnitude and uncertainty over time.  I treat peak load as a distribution around the 

median prediction with the shape of a generalized extreme value distribution G(Lpeak|k,σ(t),μ(t)) 

in which the location μ and spread σ parameters, analogous to the mean and standard deviation in 

a normal distribution, are increasing linearly over time t, but in which the shape parameter k, 

indicating skew, is constant over time.   

 

Treating peak load as an extreme value is both theoretically appropriate because of the properties 

of the generalized extreme value (GEV) distribution and empirically supported by examining 

how well the model matches observed data.  The GEV is theoretically appropriate because it is 

the theoretical limit of the maximum value of a sample drawn from any underlying distribution 

with finite variance [69-71].  The way sample maximum converges to a GEV is analogous to the 

way that a sample mean converges to a normal distribution by the central limit theorem.   
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The treatment of the distribution of peak load as a GEV is empirically supported by examining 

how well the distribution matches observations.  Figure 8.2 shows the median prediction as well 

as the 80% and 95% confidence intervals for fitting a GEV over time to the weekly peak load 

observations on the left and the annual peak load observations on the right44.  Figure 8.3 shows 

the annual and weekly fits along with observed data after the time trend has been removed by 

translating the raw data into z-values according to Equation (1).   
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Figure 8.2. Peak load models over time, weekly peak loads (left) and annual peak loads (right).. 

 

                                                 

 
44 I fit the five parameters (one representing k, and two each representing σ and μ as linear over time) using a 
maximum likelihood approach.  The final distributions have negative values for k indicating that they are Type III or 
Weibull type distributions, indicating that the underlying distribution of loads has a finite tail.  This makes sense 
because peak load is bounded on the high end by the system capacity limit.   



 53

 
Figure 8.3. Weekly (left) and annual (right) peak load models shown with observed data with time trend removed. 

 

Chapter 9 Value of Peaking Power  

In this chapter I present an estimate of the annualized marginal cost of building new peaking 

capacity and compare this number with current costs of peak load reductions.   

 

9.1 Engineering Economic Value of Capacity 

The cost of new generation capacity has increased dramatically in recent years, with natural gas 

capacity cost having increased by 86% between 2000 and 200745 [72].  These dramatic increases 

have made peak load reductions ever more important; eliminating or delaying the need to build 

new generation capacity is worth more and more money.   

 

I use the capital cost of a simple cycle gas turbine as the basis of the cost for peaking capacity.  I 

estimate with the recent increases of capacity cost that the price of a simple cycle turbine is 

                                                 

 
45 I calculated the 86% number from the two publicly quoted numbers on natural gas: that the capital cost of natural 
gas has increased 3% between 2007 to 2008, and increased 92% between 2000 and 2008 [72]. 



 54

$728/kW overnight46 or $81/kW·y annually47 [72-74].   The amount of capacity needed to 

reliably serve the system is greater than the amount of end-use load delivered because of system 

losses and the necessary reserve margin.  I use the same 8% transmission losses that ISO-NE 

uses in its forecasting processes [75].  When relevant, I assume a required reserve margin48 of 

15%, which was the requirement for the ISO-NE 2008/2009 capacity market auction [76].   

 

Based on these values of T&D losses and required reserve margin, I estimate that $81/kW·y in 

peak capacity cost translates into a value of $89/kW·y for peak load reductions if T&D losses are 

considered but the margin for reliability is not.  If both reliability and T&D losses are considered, 

then the cost is $94/kW.  I highlight the distinctions among the three numbers to emphasize that 

a kW of reduction in peak load is worth significantly more than a kW of additional new capacity. 

 

9.2 Current Costs of Load Reductions 

The EIA-861 database contains historic data on utility demand-side management programs [77].  

Several hundred utilities reported costs related to load-management and energy efficiency as well 

as total coincident peak load saved for residential, commercial, and industrial customers in 2006.  

Summary numbers are reported49 in Table 9.1 through Table 9.4.  These tables display average 

and peak load reductions from load management and energy efficiency programs.  I show 
                                                 

 
46 I use Integrated Environmental Control Model (IECM) estimates from year 2000 for a natural gas combined cycle 
(NGCC) plant and then inflate the cost by 86% according to the Power Capital Cost Index (PCCI) to year 2007 
values [72, 73].  I then estimate the cost of a simple cycle turbine by applying the ratio of costs between simple and 
combined cycle plants costs used in the National Energy Modeling System (NEMS) [74]. 

47 I inflate the overnight cost over a construction time of three years and then annualize the cost of capital over a 30 
year plant life with an 8% cost of capital. 

48 Reserve margin is expressed as a percent of peak load, distinct from the alternative measure of capacity margin, 
which is expressed as a percent of installed capacity.    

49 I interpret peak reductions as annualized $/kW·y numbers, although the original data were reported as total dollars 
spent in load management programs and total “annual” (as opposed to “incremental”) “actual” (as opposed to 
“potential”) peak reductions.  I similarly treat the energy efficiency numbers as annualized values.  This is because 
although reductions are reported in terms of “incremental” new savings this year and “annual” savings from legacy 
investments, costs are reported as one number for energy efficiency and one number from load management without 
differentiating between operating and capital costs.  I similarly interpret the energy efficiency numbers as annualized 
values, making $/MWh the appropriate reporting unit.  
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median of utilities’ reported values as well as the range of the middle 50%50. Numbers are 

updated from 2006 to 2007 for inflation [78].  

 

One important thing to keep in mind while interpreting these numbers is the concept of low-

hanging fruit.  If a utility’s customers have been very inefficient with their electric use and the 

state has never before implemented a DSM program, then the costs of saving the first few MWh 

will be low since some very easy and effective changes like subsidizing compact fluorescent 

light bulbs will be made first.  The low range of costs reported here are probably of this sort.  

After a DSM program has existed for many years and constitutes a large percentage of what 

would have been used, the marginal cost of more savings will continually increase as savings 

require more complicated customer interactions and more expensive equipment.  Costs of load 

management will similarly increase with a greater scale of reductions.

                                                 

 
50 I report these values rather than mean and extreme value numbers because I believe the database has a large 
number of respondents that misreport their numbers resulting in poor data quality and interpretability outside the 
middle 50% of those reporting.   
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Table 9.1. Utilities’ reported costs of coincident peak load reductions51 from load management [77].  

 

25th 
Percentile, 
2007$/kW∙y 

Median, 
2007$/kW∙y

75th 
Percentile, 
2007$/kW∙y

Number of 
Utilities 
Reporting 

Residential  $8.37  $25.88  $60.04  119 
Commercial  $6.43  $22.18  $60.17  82 
Industrial  $3.92  $18.86  $58.72  80 
Overall  $5.55  $21.34  $59.78  157 

 

Table 9.2. Utilities’ reported costs of coincident peak load reductions from energy efficiency [77].  

 

25th 
Percentile, 
2007$/kW∙y 

Median, 
2007$/kW∙y

75th 
Percentile, 
2007$/kW∙y

Number of 
Utilities 
Reporting 

Residential  $20.89  $50.80  $134  122 
Commercial  $33.00  $91.36  $189  106 
Industrial  $42.62  $75.96  $161  51 
Overall  $24.70  $73.34  $160  141 

 

Table 9.3. Utilities’ reported costs of electric energy reductions from load management [77].  

 

25th 
Percentile, 
2007$/MWh 

Median, 
2007$/MWh

75th 
Percentile, 
2007$/MWh

Number of 
Utilities 
Reporting 

Residential  $75.97  $1,348  $5,228  47 
Commercial  $102  $1,028  $5,857  51 
Industrial  $52.27  $479  $2,448  29 

Overall  $74.87  $501  $2,038  79 
 
Table 9.4. Utilities’ reported costs of average load reductions from energy efficiency [77].  

 

25th 
Percentile, 
2007$/MWh 

Median, 
2007$/MWh

75th 
Percentile, 
2007$/MWh

Number of 
Utilities 
Reporting 

Residential  $12.29  $29.14  $84.29  182 
Commercial  $12.05  $26.18  $74.52  140 
Industrial  $11.34  $24.26  $48.87  79 
Overall  $12.51  $29.40  $94.22  187 

 

                                                 

 
51  
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As expected, load management programs are more cost-effective for reducing peak load 

reductions than energy efficiency programs; similarly, energy efficiency programs are more cost-

effective for reducing energy consumption than load management programs.  The tables show 

that currently coincident peak load reductions are costing $21.34/kW·y52 in the median or $5.55-

$59.78/kW·y in the middle 50% of programs; energy efficiency is costing $29.40/MWh in the 

median or $12.51-$94.22/MWh in the middle 50% of programs.  Clearly, achieving peak load 

reductions and energy efficiency are a much cheaper means of satisfying demand than are 

supplying more capacity and more electric energy, until scaled up to some percent of load where 

the marginal costs of achieving more reductions are much higher and the marginal benefits much 

lower. 

 

Peak load reductions are currently being achieved at $21/kW·y, or less than one fourth of the 

$94/kW·y53 it costs to build new capacity.  Similarly, energy efficiency is being achieved at 

$29/MWh, or roughly one third of the $92/MWh54 retail price for electricity [78, 79].  These 

costs indicate that current markets and regulations do not make sufficient use of demand-side 

means of meeting either peak load or energy efficiency.   

 

Reducing load is cheaper than building new capacity or providing more power right now, but I 

do not expect this to be the case forever.  As successively more investments are made in peak 

load and average load reductions, the low-hanging fruit will have been picked and the marginal 

cost of achieving the next kW or MWh reduction will increase.  When the marginal cost of peak 

reductions and efficiency equal the marginal costs of providing more capacity and more energy, 

then the market will have reached an efficient state.  This possible end state will not exist without 

market structures and state regulations that create appropriate incentives for generators, utilities, 

and customers. 

 
                                                 

 
52 Reported costs include incentive payments to end users for curtailment along with all other costs. 

53 See Section 9.1. 

54 This is the national average retail price for power in 2006, updated for inflation to 2007$. 
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Also noteworthy, although not unexpected, is that in most cases peak reductions and energy 

efficiency are being achieved at a lower cost with larger customers.  Peak reductions and energy 

efficiency are being achieved most inexpensively with industrial customers, followed by 

commercial and finally residential customers.  With large industrial customers, the 

administrators of a DSM program could examine a large quantity of energy use all under one 

roof, rather than incurring the costs of interacting with many small residential customers in order 

to have affected the same total load.  I examine the effects of customer size in scaling up one 

type of peak reduction method, real-time pricing, in Part IV. 

 

Chapter 10 Meeting Peak Capacity on the Demand Side 

In a perfectly efficient market, or under a perfect integrated resources planner, the marginal cost 

of curtailing load at times of peak demand should equal the marginal cost of new capacity.  In 

this Chapter I assume that the cost of a peaking generator determines the marginal cost of supply 

for capacity.  This means that peak load curtailment should be ramped up until the marginal cost 

of achieving more peak reductions is the same as the marginal cost of new supply.   

 

In achieving the first few kW of peak load curtailments, the value per MWh curtailed is very 

large because there are few hours with very high demand.  As curtailment progresses however, 

more and more days and hours of load will have to be curtailed in order to make further peak 

load reductions.  I use the known target $/kW·y for efficient peak reductions to determine a 

perfect integrated resources planner’s willingness-to-pay for peak load reductions on a $/MWh 

basis.   

 

Similarly, I develop a perfect integrated resources planner’s willingness-to-pay customers for 

reducing the uncertainty in peak load.  If customers were willing to accept a relaxed reliability 

constraint, then the quantity of excess capacity that must be available at peak load in order could 

be reduced with capacity savings to the system.  On the customer’s end, a relaxation in the 

reliability constraint could mean that the customer’s utility more carefully manages the size of 

peak load with targeted curtailments that cause minimal end user inconvenience; alternately, 
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relaxing the reliability constraint could mean that the customer does not enter into a curtailment 

program, but rather gets hit by rolling blackouts more often.   

 

10.1 Value of Load Shifting and Curtailment 

Figure 10.1 shows the fraction of total capacity that was used to deliver a given fraction of total 

electric energy in ISO-NE over the year 2007 [67].  It shows that 20% of peak capacity was used 

to deliver only 0.34% of all MWh, and 30% of peak capacity was used to deliver only 1.63% of 

all MWh, even though 2007 was not the highest peak load year on record.  These low capacity 

factors for peaking generators indicate very high capacity costs associated with producing 

peaking MWh.   

 

Figure 10.1 must be interpreted with some nuance, as it is created using only information about 

observed load, not information about the actual installed capacity.  The curve does not account 

for the roughly 16% reserve margin, based on projected capacity55 and observed load [67, 68].  

Recall from Section 9.1 that about 8% of the required reserve margin is necessary to cover T&D 

losses, which would not affect the shape of Figure 10.1 if it were included. The remaining 

roughly 8% is required for reliability, I discuss the impact of the reliability requirement in 

Section 10.2, but note that if that number were included in Figure 10.1, the situation would look 

much more stark, pushing the entire curve some 8% to the right.  

 

                                                 

 
55 Peak capacity is projected by the ISO-NE subregion of NERC using their estimates of capacity that will be 
available from generation within ISO-NE as well as that available for import via tie-lines from Canada or other 
outside locations [68]. 
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Figure 10.1. Fraction of capacity used to deliver a fraction of electric energy in ISO-NE over 2007 [67]. 

 

If peak load reductions are valued at $93.72/kW·y56, then the capital cost associated with a 

generator that runs exactly 1 hour per year is $93,720/MWh.  If the generator runs all 8760 hours 

of the year, then the per-unit capital cost is $10.70/MWh57.  Apportioning capacity costs this 

way, I can calculate the capital cost incurred by each MWh consumed depending on when it was 

consumed.   

 

An integrated system planner could use this method to determine a willingness to pay for load 

curtailment off of peak hours in order to avoid the alternative of building new capacity.  Figure 

10.2 shows the marginal amount per MWh that an integrated system planner should have been 
                                                 

 
56 Based on a capacity cost of $81/kW·y and a 15% reserve margin as in Section 9.1. 

57 More realistically, a baseload generator that will operate nearly all the time would be a capital-intensive coal plant 
with a lower operating cost than the peaking gas generator.  A baseload coal generator would have an overnight cost 
of about $2040/kW, or $228.31/kW·y [72, 73].  The per-unit capital cost of this generator would be $26.06/MWh at 
100% capacity factor or $32.58/MWh at 80% capacity factor. Therefore, this approach is most valid for peaking 
hours with low enough capacity factors that capital costs dominate the overall cost of supply and thus simple cycle 
gas turbines with their high operating costs are still cheaper than other technologies.  However, I consider an end 
state where no peaking gas generators at all are ever used to be an unrealistic end state and therefore do not consider 
that possibility here. 
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willing to pay to shift or curtail peak consumption off of peak times.  That is, if peak load 

reductions were already achieved up to a given percent on the x-axis, the downward sloping 

curve represents the value of curtailing one additional MWh off of peak load.  The left-hand side 

of the figure shows the full range of values, and the right-hand side shows a blown-up version for 

detail.  In order to compare the value of curtailment with the costs of curtailment, utilities’ 

reported costs for load management from Table 9.3. 

 

 
Figure 10.2. Downward sloping curve is willingness to-pay for curtailment per MWh in order to avoid paying for 

capacity as a function of how much capacity is reduced.  Left: the entire range58 of willingness-to-pay values; range 

of utilities’ reported costs of load curtailment programs are shown from Table 9.3.  Right: vertical axis blown up for 

detail; range of wholesale prices59 from the day-ahead and balancing markets are shown for scale [67].   
 

From Figure 10.2 it is clear that the value to the system for curtailing the first few MWh off peak 

hours is enormous, being some two orders of magnitude larger than the average price for power.  

                                                 

 
58 The very first MWh reduced is worth $93,720/MWh as discussed previously; the large magnitude of value for the 
first few MWh curtailed dwarfs the rest of the figure.   

59 The ISO-NE Hub price is the number shown here.  The Hub price is the simple (not load-weighted) average of 
prices in the ISO-NE market each hour.  
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The capacity costs associated with providing peak power dwarf even the highest peak prices 

observed in the hourly energy market.  When looking at the curtailment costs incurred in current 

peak load reduction programs, with the 50% confidence interval shown in red on the left and the 

median shown in both graphs, it is clear that the costs of curtailing peak load are currently much 

less than the cost of supplying more peak capacity.   

 

Table 10.1 displays the cross-over points from Figure 10.2, indicating what fraction of peak MW 

and peak MWh could be cost-effectively curtailed if the current $/MWh costs of peak load 

reductions from Table 9.3 persisted.  The table indicates that at the current median cost of 

curtailment of $501/MWh, 16.9% of peak MW should be curtailed while only having to curtail 

or shift 0.2% of all electric energy consumed.  Eliminating the need to build such a large amount 

of capacity while inconveniencing customers only a few hours per year would clearly result in 

large systems benefits. 

 

It is more realistic to think that the cost of peak reductions would become more expensive as 

more peak load is curtailed and most of the low-hanging fruit is gone.  In that case we might 

expect that the cost of peak curtailments would rise to the current 75th percentile of reported 

utility program costs of more than $2000/MWh for peak reductions.  Even at this higher price, 

8.8% of peak MW could be cost-effectively reduced, representing the curtailment of only 0.03% 

of annual MWh consumption.    

 
Table 10.1. Fraction of peak load to curtail at current peak reduction costs.  

 
Current 

Curtailment 
Costs, $/MWh 

Peak Load to 
Curtail, 
%MW 

Peak Energy 
to Curtail, 
%MWh 

25th Percentile  $74.87  29.9%  1.60% 
Median  $501.35  16.9%  0.20% 
75th Percentile  $2,038.99  8.8%  0.03% 

 

Under any realistic assumption about the cost of curtailing progressively more MWh from peak 

load, including the additional costs associated with imperfect implementation of such a program, 

significant reductions in peak load could be cost-effectively implemented with small 

inconvenience to the end user.   
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10.2 Moving the Risk of Peak Load Uncertainty onto Customers 

One of the key problems in meeting peak demand has been the traditional practice of placing the 

entire burden of uncertainty on the supply side.  The result is that systems planners require that 

additional capacity be built to maintain a low likelihood of capacity shortage.  Holding 

customers and the utilities that represent them harmless in the case of unexpectedly high peak 

load is puzzling since these demand-side parties are in the best position to do something to 

reduce that uncertainty and decide what peak demand will be.  Further, if customers had a real 

choice between paying more to overbuild capacity and paying less while enduring a larger 

chance of curtailment a few days per year, I believe customers would prefer to pay less.   

 

In Section 10.1, I asked how much an integrated system planner ought to be willing to pay 

customers to reduce peak demand; in Section 10.2 I ask how much a system planner ought to be 

willing to pay customers to reduce the uncertainty in coincident peak load, or at least bear the 

consequences of the uncertainty.  This does not mean that customers would necessarily have to 

have smaller deviations in unconstrained peak demand, but would have to bear the risk of the 

uncertainty themselves by enduring blackouts or curtailment in the case of high demand.   

 

Each NERC region, sub-region, or RTO acting in conjunction with one or more NERC regions 

establishes its own reliability criterion, nearly all60 of which are some variation on the criterion 

that the target frequency for outages due to capacity shortages should be once in 10 years [80-

82].  In different regions the loss of load expectation (LOLE) is more specifically described as 1 

day in 10 years, 0.1 days per year, or 1 event in 10 years, and is calculated in different ways61 

                                                 

 
60 Notably different is the Maritimes sub-region of the Northeast Power Coordinating Council, which does not use a 
probabilistic assessment of peak load as the basis for the reliability margin.  The reserve margin of 20% there is 
based an N-1 criterion, indicating that the reserve margin must be greater than the largest one power source in the 
system.   

61 In some cases the model predicts daily peak loads with uncertainty for every day and the probability that the 
reliability margin will be exceeded is summed over all days with a limit of 0.1 days per year.  In other cases, the 
model predicts only average and peak load each year, with the uncertainty around peak load being more analogous 
to the probability distribution that I use. 
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depending on how projected load is modeled [81].  For my purposes, I treat the criterion to mean 

that there should be no more than a 10% chance that peak demand will exceed available capacity 

in any given year.   

 

I calculate the system cost of building to meet the reliability constraint at the current level, and 

the cost incurred if the reliability constraint were relaxed to 15% chance of peak shortage, or 

20%, or 50%.  No matter how the criterion is evaluated, a resource adequacy planner could use 

this same approach to determine the cost imposed on the system from various levels of reliability 

and the value to the system if the risk of high peak loads could be shifted to customers.   

 

In Figure 10.3 and Table 10.2 I display the results from setting the reliability constraint at 

various levels.  Using the projected distribution around peak load developed in Section 8.2, I 

determine the total capacity necessary to serve load in the median projection.  I refer to this 

median projection as the uncurtailed demand.  I calculate the quantity of capacity required in 

order to ensure meeting peak demand with a given certainty; in each case I use ISO-NE 

assumption that T&D losses are always 8% of generation62 [76].   

 

The left-hand side of Figure 10.3 shows the reserve margin implied by a certain level of 

reliability.  Relaxing the reliability constraint reduces the required reserve margin, even moving 

to a negative value with low levels of reliability.  Traditionally, a low or negative reserve margin 

would indicate that customers would experience rolling blackouts at times of peak demand, but 

this need not be the case in the future.  If customers were able to enroll in peak curtailment 

programs, their non-essential loads could be shifted or shut off during times of peak demand, 

without suffering from a low quality of service.   

 

The right-hand side of Figure 10.3 shows the cost of meeting peak demand with a given level of 

certainty, using the calculated reserve margin and $81/kW·y for supplying peaking capacity.  If 

the reliability constraint were any more stringent, the cost of meeting it would increase steeply; if 

                                                 

 
62 Without the inclusion of T&D losses, the reserve margin would be zero at 50% chance of exceeding peak load. 
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the reliability constraint were more relaxed, the cost of meeting it would drop, but at a slower 

pace. 

 

The numbers from Figure 10.3 are displayed for sample reliability levels in Table 10.2, with the 

current reliability level of 10% highlighted for reference.  The reserve margin I have calculated 

here is larger than the 15% that ISO-NE required in their 2008/2009 capacity market auction, 

indicating that their model predicts a tighter spread around  their peak load projections, although 

their required reserve margin has been higher in other years [76].   

 

 
Figure 10.3. Impact of reliability constraint on necessary reserve margin (left) and cost of meeting peak load (right). 
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Table 10.2. Impact of reliability constraint on necessary reserve margin and cost of meeting peak load..  

Chance that 
Peak Demand 
Will Exceed 
Capacity 

 Reserve Margin 
Needed to Meet 

Reliability 
Constraint 

Marginal Capacity 
Cost per Unit of 
Unconstrained 
Peak Demand, 

$/kW∙y 

1%  26.8%  $103.32 
5%  21.6%  $99.14 
10%  18.8%  $96.78 
20%  15.2%  $93.90 
30%  12.7%  $91.86 
40%  10.6%  $90.15 
50%  8.7%  $88.59 
60%  6.8%  $87.07 
70%  4.9%  $85.49 
80%  2.7%  $83.71 
90%  ‐0.2%  $81.36 

 

The results displayed in Figure 10.3 and Table 10.2 indicate that dropping the reliability criterion 

from 10% to 50% would drop the cost of supplying peak demand from $97/kW· y to $89/kW·y.  

Meaning that right-sizing peak capacity to the best estimate of peak load would reduce the 

amount cost of supplying capacity by 8.5% below the current cost of overbuilding capacity for 

reliability. 
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Part III Short-Run Impacts of Market-Wide Response 

Part II of the thesis will investigate the impacts of demand response using a model of PJM’s 

wholesale electricity market63.   

  

Chapter 11 Introduction and Literature Review  

The electricity industry uses much of its generation and transmission capacity only a small 

fraction of the time.  Over the calendar year 2006, 15% of the generation capacity in the 

Pennsylvania-New Jersey-Maryland (PJM) territory ran less than 1.1% of the time (96 hours or 

less), and 20% of capacity ran less than 2.3% of the time (202 hours or less) [84]64.  The result is 

tens of billions of dollars65 invested in peaking generation that has low capital cost, but high 

generation cost and life cycle social cost.  

 

The excessive peaking capacity has two causes.  The first is technical: there must be enough 

system capacity to satisfy demand at all times or there will be a blackout.  The second is 

regulatory: most customers pay a constant flat price for power rather than responding to the 

changing hourly price of the wholesale market.  Flat-rate customers have no incentive to shift 

consumption away from times of peak demand.   

 

Some electricity customers face “time of use” (TOU) pricing that charges them a higher price 

during on-peak hours, with the fixed on-peak and off-peak rates calculated as the delivered cost 

averaged over a year.  A few customers face “real time pricing” (RTP) where the hourly 

wholesale generation price determines the retail price.  The TOU price gives better information 
                                                 

 
63 The substance of Part III was published under Spees and Lave [83]. 

64 This is based on the entire PJM hourly load profile in 2006 [84]. The system had 17.5% excess available 
generation capacity.  We do not include generation excess at coincident peak load in this calculation because some 
generation excess is necessary for reliability purposes.   

65At $700/kW, a reasonable simple-cycle natural gas generator cost from 2006, this 15% of PJM’s generation 
capacity is worth $15 billion.  At $2000/kW, a reasonable price for a coal generator, 15% of PJM’s capacity is worth 
$43 billion.  
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and incentives than a single fixed tariff, but does not account for the times when wholesale prices 

spike because of high demand or equipment problems.  Some view a TOU rate as a good 

compromise that frees customers from having to be informed about constantly changing prices 

and adjusting their consumption accordingly.   

 

Few end users have any opportunity to react to real-time market conditions or to the location-

specific costs of generation and transmission.  A PJM survey of load-serving entities (LSE) 

reported that only 5.4% of end user MW are on rates directly or indirectly related to the real-time 

or day-ahead locational marginal price (LMP) [54, 55]66.  Companies currently offering RTP 

rates usually have a variety of partial-hedging options as well [29].  Some additional customers 

are enrolled in direct load control, interruptible contracts, or other subsidy programs that offer 

curtailment incentives during the top few load hours per year.  A Federal Energy Regulatory 

Committee (FERC) report estimates that 4% of peak MW in ReliabilityFirst Corporation (RFC) 

territory67 could potentially have been curtailed via either RTP rates or non-price response 

programs, but the maximum response in 2005 was only 0.7% of MW [60].  Actual reductions are 

usually much smaller than program enrollments, partly because reduction is often voluntary [6].   

 

I view the current flat tariff as both inefficient and inequitable.  It is inefficient because it raises 

system costs and requires much more capital equipment to deliver the same quantity of power.  It 

is inequitable because flat and counter-cyclical customers subsidize customers with high 

coincident peak demand.   

 

I present a short-run analysis of a change to a more responsive demand-side market.  In Chapter 

13, I use one year of PJM data to build a supply model that implicitly accounts for dispatch 

constraints and varying conditions observed over a year.  I use this model in three different 

simulations to estimate the impacts of responsive load.  The first in Chapter 14 is an assumed 
                                                 

 
66 Estimate is from 3716 MW on locational marginal price (LMP) based rates and 69,064 MW represented in survey 
responses.  Both distribution utilities and competitive suppliers are represented as survey respondents and the rates 
charged by both types are reported here. 

67 The RFC territory does not match up exactly with PJM territory. 
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load-shifting scenario that finds the effects of small changes in load profile on overall price.  The 

load-shifting simulation does not consider customer time preference, but does show how quickly 

savings could be achieved.  The final two simulations in Chapter 15 are more realistic; they use 

hourly demand curves to predict short-run impacts from change toward TOU or RTP from flat-

rate pricing. 

 

Borenstein’s long-run RTP analysis predicts more than double the peak load savings I predict in 

my short-run analysis, see Chapter 15 [46].  His conclusion results from using a long-run supply 

curve in estimating hourly equilibrium conditions.  Because Borenstein includes capital costs in 

his supply curves, he predicts hourly prices up to $90,772/MWh; this implies that 22% of the 

annual bill is accounted for from the top hour.  Those high wholesale prices would only be 

possible if market rules change dramatically since hourly energy prices are hard-capped at 

$1000/MWh68 in all but one United States market and determined based on short-run conditions 

with a fixed generation portfolio [11].  The high prices that Borenstein uses represent a case in 

which the RTP reflects the results of both an energy market and a capacity market in which the 

entire cost of capacity is applied to the consumption of just one hour.  Further, I believe that 

Borenstein’s exercise is intended to be primarily illustrative on peak load reductions since his 

resulting load duration curves are abruptly leveled off on the high end.  The short-run analysis 

presented here reflects current PJM conditions using observed market data. 

 

Holland and Mansur predict less than half the short-term peak load savings that I predict from 

RTP, see Section Chapter 15 [47, 85].  The modest impact is due to their method of using one 

constant stacked marginal cost curve to represent supply over the entire year69.  I use observed 

                                                 

 
68 California ISO is the exception with a $400/MWh soft cap on energy and ancillary service bids [10]. Generators 
may bid above a soft price cap and will be paid as bid; other generators will receive payment only as high as the cap.  
The neighboring Western Electricity Coordinating Council (WECC) has the same price caps although WECC is not 
a market operator. 

69 Their stacked marginal cost curve is based on generator heat rates, fuel prices, emissions prices, and other publicly 
available data for the time frame in question.  
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market prices to account for transmission and other constraints70 while they assume constraint-

free economic dispatch of system generators to estimate marginal cost.   Holland and Mansur 

attempt to correct for one of these constraints, generator availability, by discounting the capacity 

of each generator by an expected “outage” factor, but the method cannot capture the observed 

phenomenon of very high prices at moderate demand levels.  Based on the empirical analysis in 

Appendix C, I find that a constraint-free stacked marginal cost curve underestimates price by 

$15.88/MWh on average71, and, more importantly, it also underestimates the slope of the real 

supply curve.  The supply curve slope determines the impact that a small change in load has on 

price, meaning that ignoring transmission and dispatch constraints can lead to qualitatively 

wrong policy conclusions for RTP, see Appendix C. 

 

Power engineers account for real-time transmission constraints by solving the security-

constrained direct-current optimal power flow (DCOPF) problem in example cases.  This 

approach is similar to how PJM sets market prices.  Wang, Redondo, and Galiana used a 

DCOPF-based model to examine demand-side participation in wholesale energy and ancillary 

services markets [86].  Their results indicate that demand participation erodes generator market 

power.  However, results from test systems with a few buses do not translate directly into 

implications for the PJM system with roughly 7800 pricing points.  Fitting supply curves to daily 

market data accounts for the effects these constraints have on the resulting energy market price.  

 

Chapter 12 Data  

The data that I use for this analysis are system-wide hourly PJM market clearing results.  I 

examine aggregate load and PJM average prices72 in the day-ahead and real-time (balancing) 

                                                 

 
70 Examples of other constraints include limits on run times, ramp rates, reserve margins, local reactive power 
generation, scheduled maintenance etc. 

71 The estimate uses PJM generator bid data over a calendar year from June 2005 through May 2006.  The bid data 
are publicly available after a six-month delay.  Full details of this calculation are available in our working paper  
[83]. 

72 The PJM price is a load-weighted average of all system LMPs.   
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markets over 2006 [84].  Day-ahead demand bids LDA from LSEs are charged at the day-ahead 

price PDA, the real-time increment or decrement LRT-LDA is charged or credited at the real-time 

price PRT.  .  Overall revenue and price are calculated with Equations (2) and (3). 
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Overall realized price and the real-time demand for each hour are the most accurate data for 

evaluating demand response.   In the implementation of RTP rates, customers should have access 

to both day-ahead and real-time market prices.  I assume that nearly all power continues to be 

purchased in the day-ahead market; both markets are counted as RTP.  

 

Chapter 13 Market Model 

I construct a short-term equilibrium model accounting for producer, consumer, and LSE 

participation.  Results from the full model for RTP and TOU pricing are in Chapter 15.  The 

load-shifting scenario in Chapter 14 uses only the supply-side model developed in this section. 

 

13.1 Short-Term Equilibrium Model 

My base case model treats the retail and wholesale markets separately as shown in Figure 13.1.  

In the retail market, I assume that all consumers currently pay a flat rate P0 for all their power, 

making the supply curve appear completely elastic to consumers.   In the wholesale market, the 

market operator treats hourly demand L0 as completely unresponsive to price.  While each hour 

has wholesale price PW above or below retail price, the profits and losses are temporarily 

absorbed by the LSE and sum to zero over the year.  This disconnect between wholesale and 

retail is a good characterization of current conditions since few customers face RTP [44, 54, 55, 

60]. 
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Under TOU the retail price takes on a value of pon during on-peak hours and poff during off-peak 

hours.  In PJM off-peak hours are weeknights 11 PM to 7 AM and all day on weekends and the 

six NERC holidays [87].  On and off-peak prices are set so that LSE profit sums to zero over on-

peak hours and off-peak hours separately.   

 

When modeling RTP, I set the retail price equal to the wholesale price, eliminating the 

disconnect between the wholesale and retail markets (neglecting distribution costs). 

    

13.2 Demand Side 

I assume that each hour has a unique demand curve with constant own-price elasticity as shown 

in Equation (4) where the hourly offset parameters β are determined by base case price and 

hourly load [46, 85].  The assumed constant elasticity of demand E is assumed to be zero in the 

base case. 

 

(4) 
( )

E

E
D

L
P

LLP

1
0

0

1

=

⋅=

β

β
 

 

The left side of (4) is replaced with the retail price PD(L) that applies in the flat (5), TOU (6), or 

RTP (7) cases.  
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In order to model demand using the most realistic elasticities, I use estimates from the literature.  

A 198473 review of 34 studies found short run and long run price elasticities to be approximately 

-0.20 and -0.90 respectively, implying that a 10% price increase would reduce consumption by 

2% in the short-run and 9% in the long-run  [44].  Most of these estimates were made based on a 

change from one flat rate for power to another, not responses to hourly changing prices, and so 

the short run number only hints at the appropriate number for my purposes.   

 

More telling is that after 5 years of experience with default RTP for customers larger than 2 MW, 

Niagara-Mohawk Power Corporation has observed an average demand elasticity of substitution 

of -0.11 [88, 89].  A Department of Energy study reviewed price elasticities of substitution under 

TOU, critical peak pricing (CPP), and day-ahead RTP situations [90].  The range of elasticities 

of substitution was 0.02 to 0.27.   

 

The level of responsiveness that would be observed under RTP is uncertain and could depend on 

a variety of factors including customer class, weather, and enabling technology.  Regardless, 

there have been enough empirical estimates to place the plausible short-run elasticities of 

demand between 0 and -0.4 under RTP conditions.  I examine this full range.  I will not specify 

exactly how an aggregate elasticity is achieved, for example having all customers on RTP with 

an elasticity of -0.1 would be approximately the same as having only half of all MW on RTP 

with an elasticity -0.2.  

 

13.3 Wholesale Supply Side 

At one extreme, I might hypothesize that the wholesale supply-side relationship between price 

and load is the same over an entire year.  At the other extreme, I might hypothesize that the 

relationship is unique to each day. The market clearing price at a specified load level may differ 

from one day to another because some generating units or transmission lines are not available, 

fuel prices have changed, or weather is impeding supply.  Fitting unique parameters for each day 

                                                 

 
73 The short run numbers were recently updated in another review of 36 estimates with a median of -0.28. 
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would give a better fit than insisting that one set of parameters must fit the entire year.  However, 

the former is not a parsimonious model and says nothing about what parameter values should be 

used in future days.   

 

The wholesale price of electricity for each hour in a day follows a predictable pattern of being 

low in the early morning and at night with one or two peaks during the day.  I fit the price and 

load data for each day with a third-degree polynomial.  To investigate the similarity of the 

polynomial parameters across days, I employ dummy variables, taking on values of 0 or 1. 

 

Equation (7) models price as a function of load represented by an intercept, load, load squared, 

and load cubed.  The equation uses dummy variables δ1 and δ0 to allow for the possibility that 

the coefficient of load and the intercept might vary each day.  I also examined the possibility that 

the coefficients of the squared and cubed terms take on unique values each day but determined 

that the additional dummy variables improved explanatory power very little.  I explored a range 

of specifications and selected (7) as a model with good explanatory power, only half the number 

of parameters as employing the additional two dummy variables, and as a good fit to the plotted 

data.  For detailed results from trying a range of models, see Appendix A. 
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The adjusted R2 is 0.949, the F-statistic of 223 is highly significant74, and the estimated 

parameters a and b are highly significant75 all with p-values á 0.001.  This model accurately 

represents observed data and is therefore an accurate base case, but I must add a note of caution 

to the reader when interpreting the simulation cases.  I cannot presume to know all of the 

structural changes that would be part of integrating the expectation of responsive load into the 

                                                 

 
74 Model significance test has F(731,8028) = 223 with p-value á 0.001. 

75 Studentized t-tests have ta(8028) = 10.9 and tb(8028) = 33.0 with p-values á 0.001 in each case. 
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wholesale market76.  Therefore, the larger the difference between the base case and the 

simulation cases, the less confidence I have in the results. 

 

13.4 Economic Result Definitions 

Changes in consumer surplus ΔCS and producer surplus ΔPS between flat rate and RTP 

conditions are calculated in Equations (9) and (10) and shown graphically in Figure 13.1.  

Producer surplus is easier to calculate by integrating over load than over price.  Change in 

consumer surplus in Equation (9) can be calculated in the TOU case by replacing P* with the 

retail TOU price poff or pon.  Change in producer surplus calculated in Equation (10) is the same 

formula under a change toward TOU or RTP because the wholesale electric price determines the 

producer surplus.   
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With flat-rate or TOU pricing there is deadweight loss in both high-priced hours and low-priced 

hours.  Because the RTP case has no deadweight loss, we calculate the deadweight loss in the 

flat rate and TOU cases based on the surplus changes in Equation (11).  Both deadweight loss 

and LSE profit Π are shown in Figure 13.1for a sample high-priced hour.  In particular, note that 

                                                 

 
76 For example, we speculate that the market operator would use some different scheduling rules when dispatching 
generators if a downward-sloping demand curve were part of the day-ahead dispatch problem.  
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the increase in total surplus increase after accounting for the customer, the LSE, and the supplier 

is exactly the same size as the deadweight loss decrease between any one rate and any other rate.  

For this reason all information about deadweight loss is exactly contained in the total surplus 

results, which are the numbers I will report in the results.   
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The model is shown graphically in Figure 13.1for a sample high-priced hour.  The base-case 

retail market is represented by demand curve PD(L) and completely elastic supply P0; the 

wholesale market is represented by supply curve PS(L) and completely inelastic demand L0.  The 

base case model has two different resulting prices P0 and PW that apply in the retail and 

wholesale markets respectively, but resulting load has to be the same in both.  The arrow shows 

how load drops under RTP when the integrated market is represented by supply and demand 

curves PD(L) and PS(L). 

 

The shaded areas in Figure 13.1show a change from flat-rate to RTP for a high-price hour.  The 

farthest left plot shows the LSE’s hourly deficit under flat-rate pricing due to buying power from 

the wholesale market at PW and retailing it to consumers at P0; under RTP the LSE’s hourly 

deficit is eliminated, increasing its welfare by (PW-P0)·L0.  The increase in the LSE’s welfare in 

moving from a flat-rate to RTP comes from three places as shown in the remaining three shaded 

areas from left to right: 1) hourly consumer surplus drop in moving from flat-rate to RTP due to 

having to pay the higher price as in (9); 2) hourly producer surplus drop in moving from flat-rate 

to RTP due to the drop in price and quantity as in (10) ; and 3) hourly deadweight loss as in (11).    

Note that in a corollary low-price hour, load would increase under RTP but the mathematical 

definitions would hold.  Although the LSE may have a positive or negative profit in any one hour 

with TOU or flat rate, it has zero profit over the year under any of these pricing scenarios. 
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Figure 13.1. From left: retailer loss, producer surplus drop, consumer surplus drop, and deadweight loss. 
 

Chapter 14 Load Shifting  

Assume that customers can be induced to shift their demand to be more level over the day.  

Although the resulting load profiles may not be realistic, I use this simulation to show how much 

shifting is necessary to flatten load and how quickly savings can be achieved.  

 

14.1 Method 

I scale possible consumer savings from demand response by incrementally shifting load to 

achieve a totally flat daily load profile without changing total consumption.  Although this 

method does not consider real-world preference effects, it does set an upper bound on customer 

savings.  The simulation allows load shifting to any other time of day but does not allow shifting 

from one day to another.   

 

For a particular day, I simulate shifting an increment of demand from the highest load hour to the 

lowest load hour.  I continue shifting demand increments so that there is one wholesale price for 

the hours of greatest use and another (lower) wholesale price for the hours of least use.  The 

maximum fraction f that is curtailed off the peak load hours is the same for all days.  I stop 

shifting load when the quantity and wholesale price are the same for the high and low-priced 

hours.  The simulation reaches maximum shifting with 5.3% of all MWh shifted away from peak 

hours and f = 0.158 (or 15.8% of MW) at which point the load profile is flat over each day, but 

not between days.   
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Figure 14.1 illustrates the effects of shifting on load and price profiles of one week beginning 

Monday, June 19, 2006.  This week originally exhibited moderately high load and price.  Results 

are shown when 3% of all yearly MWh are shifted and after the maximum shifting of 5.3% of all 

yearly MWh.  This method does not change total daily consumption in MWh, but the extremes 

of usage and price variation are reduced. 

 

 
Figure 14.1. Load and price profiles for a July week; base case, 3% shifting (f = 0.093), and max shifting. 

 

14.2 Results 

I remind the reader that the load shifts are imposed, rather than resulting from consumer 

preferences and so no conclusions can be drawn about consumers being better or worse off.   

 

Customer expenditure savings from load shifting are shown in Figure 14.2.  Savings are also 

split out by the amounts received by shifters and those received by free riders that do nothing.  

The left-hand plot in Figure 14.2 displays decreasing marginal savings with more shifting; when 

the daily load is leveled, there are no further savings.   The right-hand plot of Figure 14.2 shows 

that shifters’ percentage savings drop with increased shifting.  This is because the price 

differential over a given day can be large under current conditions but approaches zero in the 

limit; small marginal savings steadily reduce average calculated savings. Total customer savings 

increase with the amount of shifting with an ultimate limit of 10.7% of the annual electric bill. 
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Figure 14.2. Savings to shifters, free riders, and total in dollars (left) and as a percentage of bill (right). 

 

Load shifting reduces peak load dramatically as shown in Table 14.1, obviating the need for 

costly investment in generation and transmission.   

 
Table 14.1. Peak load and overall cost savings with daily shifting. 

Shifted 
Load, % 

Peak 
Load, GW 

Peak Load 
Saved 

Total Expense, 
$Billion77 

Average Cost, 
$/MWh 

Customer Bill 
Savings 

0% 145 0.0% $36.17 $51.96 0.0% 
1% 138 4.8% $34.90 $50.13 3.5% 
2% 134 7.3% $34.03 $48.88 5.9% 
3% 131 9.3% $33.37 $47.94 7.7% 
4% 128 11.6% $32.84 $47.17 9.2% 
5% 122 15.8% $32.38 $46.51 10.5% 

5.3% 122 15.8% $32.32 $46.43 10.7% 
 

                                                 

 
77 This is the total customer bill to all customers, shown in order to scale the magnitude of savings in relation to the 
total market size. 
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Table 14.2 shows how quickly customer savings are reached by load shifting.  Half of all the 

possible savings from load shifting are achieved by shifting only 1.69% of all energy.  This 

indicates that a small amount of demand response is all that is needed to get most of the benefits.  
 

Table 14.2. Load shifting necessary to achieve a portion of limiting savings with daily shifting. 

% of Savings 
in Limit % Load Shifted 

Maximum 
Hourly % 
Curtailed  

25% 0.70% 3.9% 
50% 1.69% 6.6% 
75% 3.15% 9.6% 
90% 4.26% 12.4% 
95% 4.66% 14.0% 
99% 5.06% 16.5% 

 

Chapter 15 Time of Use and Real Time Pricing 

I turn from calculating the savings from assuming that load can be shifted to an analysis of how 

much consumers would shift load in response to price differentials between high and low 

demand hours.  I use a simulation to determine the magnitude of effects from a change to RTP or 

TOU. 

 

15.1 Sample Price and Load Profiles  

The new price and load under RTP and TOU conditions are calculated as in Chapter 13.  Figure 

15.1 shows load and wholesale price profiles PS over a week in the base case, under TOU, and 

under RTP conditions with elasticity -0.2.  Under RTP, the price that consumers face is the same 

as the one paid to generators in the wholesale market, PD = PS as in (6).  Under flat or TOU rates, 

the wholesale price PS can be higher or lower than the retail prices.  For reference the flat and 

TOU retail rates p0 and pTOU are shown in dashed lines for the flat-rate and TOU cases 

respectively (without accounting for the distribution charge).  The June week shown originally 

had moderately high load and wholesale price, so the RTP case shows steep drops in price and 

load during peak hours.   
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The left-hand graph in Figure 15.1 shows that RTP reduces peak loads much more than TOU 

pricing, which is only slightly better than flat rate pricing.  The right-hand graph shows 

wholesale prices reflecting the marginal generation cost as solid lines; retail tariffs are in dashed 

lines.  Under RTP the wholesale and retail prices are the same solid line.  Wholesale price peaks 

are moderated much more under RTP than under TOU pricing.  A TOU rate actually exacerbates 

wholesale price peaks on weekends because end users see the off-peak price all day.  

 

  
Figure 15.1. Load and price profiles with elasticity -0.2 for a July week with flat-rate, TOU, and RTP. 

 

15.2 Economic Impacts 

Market outcomes depend on the assumed demand elasticity78. Table 15.1 and Table 15.2 

summarize impacts on consumption, expense, average price, and peak load with TOU and RTP 

rates respectively.  The impacts from TOU pricing are a fraction of those from RTP.  Impacts 

from TOU in peak load shaved, consumption increase, and consumer expense saved are never 

more than 14.4%, 22.3%, and 21.9% respectively of the impacts from changing to RTP at any 

elasticity.   

 

                                                 

 
78. Customers are more responsive when elasticity is more negative; responsiveness increases as one moves to the 
left in these plots. 
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Impacts on consumer expense and consumption increase are small under either rate structure 

change.  The most striking result in these tables is that with RTP, peak load reductions are large 

even with highly (but not completely) inelastic demand.  I estimate a 10.4% reduction in peak 

demand at elasticity E = -0.1, a huge reduction at a modest assumed responsiveness.  Holland 

and Mansur’s prediction with all customers on RTP at this same elasticity is less than half mine 

at 3.91%, while Borenstein’s estimate is more than twice the size at 24.5% 79,80 [46, 85].   

 
Table 15.1. Load increase, peak shaving, and price savings with TOU pricing. 

Elasticity 
of Demand 

Peak 
Load, 
GW 

Peak 
Load 
Saved 

Total 
Energy, 

TWh 

Consumption 
Increase 

Total 
Expense, 
$Billion 

Consumer 
Expense 
Saved 

Average 
Price, 

$/MWh 

0 145 0.0% 696 0.0% $36.17 0.0% $51.96 
-0.05 144 0.6% 697 0.1% $36.04 0.4% $51.72 
-0.1 143 1.1% 697 0.2% $35.95 0.6% $51.54 

-0.15 143 1.5% 698 0.3% $35.91 0.7% $51.44 
-0.2 142 1.9% 699 0.4% $35.90 0.8% $51.38 

-0.25 142 2.2% 699 0.4% $35.90 0.7% $51.35 
-0.3 141 2.4% 700 0.5% $35.91 0.7% $51.34 

-0.35 141 2.6% 700 0.5% $35.93 0.7% $51.34 
-0.4 141 2.8% 700 0.6% $35.95 0.6% $51.34 

 

                                                 

 
79 Holland and Mansur also predict a 5.88% peak load reduction at E = -0.2, where I predict a 15.1% savings.  
Borenstein also predicts 35.2% peak load reduction at E = -0.3 where I predict a 17.7% savings.  The modest 
impacts predicted by Holland and Mansur are largely dictated by their method of using a stacked bid curve, see 
Appendix C.  Borenstein’s large projected peak reduction has to be understood knowing that his supply curve 
comprised of three generator types results in a load duration curve that is completely chopped off on the high end; 
he does not argue that this is a realistic resulting load duration curve. 

80 Holland and Mansur examine the PJM electricity market as I do.  They used observed load data as I do and their 
own price estimates based on generating units’ operating performance from eGrid [85, 91].  Borenstein uses 
observed hourly load data from California along with sample costs from a mix of three generation technologies [46].   
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Table 15.2. Load increase, peak shaving, and price savings with RTP. 

Elasticity 
of Demand 

Peak 
Load, 
GW 

Peak 
Load 
Saved 

Total 
Energy, 

TWh 

Consumption 
Increase 

Total 
Expense, 
$Billion 

Consumer 
Expense 
Saved 

Average 
Price, 

$/MWh 

0 145 0.0% 696 0.0% $36.17 0.0% $51.96 
-0.05 137 5.7% 699 0.4% $35.52 1.8% $50.82 
-0.1 130 10.4% 702 0.8% $35.11 2.9% $50.02 

-0.15 126 13.3% 705 1.2% $34.94 3.4% $49.59 
-0.2 123 15.1% 707 1.6% $34.90 3.5% $49.35 

-0.25 121 16.6% 709 1.9% $34.93 3.4% $49.23 
-0.3 119 17.7% 711 2.2% $34.99 3.3% $49.18 

-0.35 118 18.7% 713 2.4% $35.07 3.0% $49.18 
-0.4 117 19.5% 715 2.7% $35.16 2.8% $49.20 

 

On-peak, off-peak, and average wholesale prices are shown in the left-hand side of Figure 15.2 

for TOU pricing and in the right-hand side for RTP.  Prices drop more with RTP; they are about 

4% lower.  Both schemes moderate on-peak and off-peak prices on average.   

 

Table 15.3 shows the same on- and off-peak prices as in Figure 15.2 at sample customer 

elasticities as well as showing results for the most extreme prices.  A regulator looking only at 

prices might be deceived by the apparently small difference between RTP and TOU on average 

prices, the actual impacts on price and total customer bill are more meaningful on a percentage 

basis as shown in Table 15.4.  We must also look at the impacts on peak load reduction and 

equity among customers to get a full picture of the factors important to policy makers.    

 

  
Figure 15.2. On-peak, off-peak, and average prices under the TOU scenario (left) and RTP scenario (right).  
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Table 15.3. Yearly prices with a change to TOU or RTP. 

On-Peak Price, 
$/MWh 

Off-Peak Price, 
$/MWh 

Highest Price, 
$/MWh 

Lowest Price, 
$/MWh 

Elasticity 
of 

Demand TOU RTP TOU RTP TOU RTP TOU RTP 
0 $60.92 $60.92 $40.01 $40.01 $292.03 $292.03 $5.23 $5.23 

-0.05 $59.87 $58.86 $41.03 $40.28 $286.12 $234.09 $5.89 $10.13 
-0.1 $58.86 $57.23 $42.08 $40.72 $280.43 $189.03 $6.58 $14.42 
-0.15 $58.08 $56.17 $42.96 $41.20 $276.02 $160.92 $7.13 $17.76 
-0.2 $57.46 $55.43 $43.70 $41.69 $272.50 $141.83 $7.60 $20.50 
-0.25 $56.95 $54.89 $44.33 $42.16 $269.63 $128.14 $7.99 $22.80 
-0.3 $56.53 $54.49 $44.87 $42.61 $267.23 $117.90 $8.33 $24.78 
-0.35 $56.18 $54.17 $45.34 $43.04 $265.20 $109.99 $8.62 $25.96 
-0.4 $55.87 $53.92 $45.75 $43.43 $263.46 $103.72 $8.88 $26.86 

 

Consumers elect to buy more energy under RTP or TOU conditions as shown in Figure 15.3.  

Note that TOU and RTP result in prices above the flat-rate price for some hours and below it for 

others.  The result is a drop in the quantity demanded during the high price period and an 

increase during the low price period.  Since there are net customer savings, there is a small net 

increase in the quantity demanded.  Marginal impacts diminish with more responsive load.  

Customer expenditure on electricity decreases steeply if elasticity is low in magnitude as shown 

in Figure 15.4.  With inelastic demand most of the changes in consumption patterns are small 

reductions at peak prices.  With greater elasticity, dollar savings drop as the effect of greater 

consumption dominates the overall expense.   

 

These RTP results are explained by the large positive skew in electricity prices and the 

increasing steepness of supply curves at high load.  Large price reductions from small amounts 

of curtailment at high prices dominate results at elasticities near zero.  With increasing 

responsiveness, the load profile becomes flatter and flatter but overall consumption increases. 

Under these conditions, the effect of the consumption increase dominates other results.  Results 

with TOU pricing have similar characteristics but only a fraction of the magnitude. 

 

These load flattening and overall consumption increases indicate environmental concerns for two 

reasons.  First, the greater consumption means greater generation and more of the carbon dioxide 

and air quality emissions associated with that generation.  Second, PJM’s resource mix is such 

that peak power is supplied primarily with natural gas and baseload power is supplied primarily 
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with coal.  Therefore, a flatter load profile would be supplied by a greater proportion of baseload 

and shouldering coal plants, resulting in greater emissions of carbon dioxide and air quality 

pollutants.   

 

 
Figure 15.3. Consumption increase, TOU and RTP. 

 

 
Figure 15.4. Customer bill savings, TOU and RTP. 

Because consumers are buying more energy with less total expenditure, the overall impact on 

consumers is more easily understood by looking at a customer who refuses to change behavior as 

others do under TOU or RTP.  In Figure 15.5, savings are shown for a single customer who has 

elasticity zero, while the aggregate system has an elasticity shown on the x-axis.  I show savings 

for three types of customers:  

 

Flat – Customer uses a constant level of power during all hours of the year. 

Typical – Customer load profile is proportional to the original system load profile. 

50% More Extreme – During each hour, the customer demands the typical customer’s load 
plus an additional 50% of the difference between the typical customer’s load for that hour 
and the minimum load for the day.  
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An unchanging typical customer saves less per unit than a responsive customer, but slightly more 

overall because she does not increase consumption81.  More interesting is that a flat customer 

would save 7.0% of her annual electric bill even if no one responded to price.  She would save 

the amount that currently goes to subsidize the excesses of more peaky customers.  This savings 

highlights the issue of equity that I raised earlier: under flat rates, moderate and counter-cyclical 

customers subsidize the consumption of customers with high coincident peak loads. 

 

The more extreme customer loses money under RTP if no one responds, but will have net 

savings if the aggregate elasticity is even slightly responsive, E ≤ -0.04.   

 

 
Figure 15.5. Expense savings to an unresponsive customer if others respond, TOU (left) and RTP (right). 

 

Peak load reductions are extreme with a small amount of responsiveness but marginal savings 

taper with greater responsiveness as shown in Figure 15.6.  Discontinuities in Figure 15.6 are 

caused by a change in the day upon which peak load is observed.   

 

                                                 

 
81 At E = -0.2, the typical responsive customer saves 5.0% per unit and 3.5% overall; the typical unresponsive 
customer saves 3.6% although her quantity consumed is constant. 
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The large peak load reductions under RTP may have huge implications for total system cost if 

such reductions persisted over the long run.  Peak load determines the total capacity investment 

necessary for the system to operate reliably.   Although no short-run savings will be made on 

peak capacity that has already been built, there will be long-run savings via unneeded capacity 

investment as generators have to be replaced or load increases over time.   

 

At elasticity -0.2, peak load drops by 15.1% with RTP.  At that level, an overnight capacity value 

of $700/kW or $2000/kW, corresponding roughly with the overnight capital costs of gas and coal 

generation from 2006, translates into a dollar savings of $15- $43 billion from a change to RTP if 

the peak reductions persist in the long run.  A change to TOU pricing would reduce $2.0 to $5.6 

billion in overnight capacity investments under the same conditions.   Note that these capacity 

savings numbers are ballpark numbers that apply only if our short-run peak savings estimates 

persist in the long run. 

 

If state regulators and utilities begin to treat RTP as an alternative to investments in new 

generating capacity, then they will have to compare the costs of investing in new capacity against 

the costs of implementing RTP.  At $15 billion in avoided capacity costs, an integrated resources 

planner would be willing to spend $294 for each of the 51 million people (note that the 

population quoted here is much larger than the actual number of customers and therefore the 

actual number of meters) in PJM territory to implement RTP [92].  Compared to the hardware 

and installation costs of $243-$311 per unit82 for the advanced metering infrastructure required 

to implement RTP, these capacity savings justify RTP rates starting with the largest and most 

responsive customers [60].  

 

Although I fully investigate these issues is Part IV, I conjecture here that only large customers 

need to face RTP to achieve most of these savings.  From the experience in Niagara Mohawk, 

the “18% [of customers] with elasticities greater than -0.1 provide 85% of the aggregate price 
                                                 

 
82 Original numbers were updated to year 2006$ for inflation [78]. 
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response” [88].  If only a fraction of customers need smart meters, then the cost of implementing 

RTP would be much smaller than the social benefit, with all customers receiving some benefits 

via lower average price.   

 

 
Figure 15.6. Peak load reductions, TOU and RTP. 

  

Figure 15.7 and Table 15.4 show surplus increases with a time-varying rate.  Neither consumer 

nor producer surplus changes monotonically with elasticity.  Producer surplus drops slightly with 

peak price reductions but then increases with overall consumption.  Producer surplus is equal to 

revenue minus operating costs and so indicates profitability if capital costs are not considered.  

Because we see almost no change in producer surplus, these results indicate that producers will 

not see the large reduction in profits that they might have feared from RTP.  There is no change 

in consumer surplus for an elasticity of zero, but for an elasticity of -0.2, consumer surplus 

increases 0.7% for TOU pricing and 3.2% for RTP.  We find that TOU pricing has only 20.3%-
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21.8% the impact in increasing total surplus that RTP would have83.  No matter what the 

assumed elasticity, consumer surplus increases with RTP or TOU84.   

 

 
Figure 15.7. Surplus increases with TOU (left) and RTP (right) as a percent of baseline expense. 

                                                 

 
83 Although the magnitude of our surplus estimates are much smaller than Borenstein’s and much larger than 
Holland and Mansur’s, the ratio of surplus increase between TOU and RTP are remarkably close given the different 
definitions of TOU used in each case.  Borenstein predicted that TOU would have 8-25% the effect of RTP on 
surplus; Holland and Mansur predicted 15% [46, 85]. 

84 The reason for the lack of monotonicity in consumer surplus can be understood by seeing what happens to the area 
representing ΔCS in Figure 13.1 with extremely steep, moderate, and extremely flat demand curves.  A similar 
figure should be drawn and examined for the case in which load and price increase with RTP. 
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Table 15.4. Economic outcomes with RTP as a percentage of baseline expenditure. 

Surplus Increase with TOU Surplus Increase with RTP Elasticity 
of 

Demand 

Flat-Rate 
Deadweight 

Loss 

TOU Rate 
Deadweight 

Loss Consumer Producer Total Consumer Producer Total 

0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
-0.05 1.6% 1.3% 0.4% -0.1% 0.3% 1.9% -0.3% 1.6% 
-0.1 2.8% 2.2% 0.7% -0.1% 0.6% 3.2% -0.4% 2.8% 
-0.15 3.5% 2.8% 0.8% -0.1% 0.8% 3.9% -0.4% 3.5% 
-0.2 4.0% 3.1% 0.9% -0.1% 0.9% 4.3% -0.3% 4.0% 
-0.25 4.3% 3.3% 1.0% -0.1% 0.9% 4.5% -0.3% 4.3% 
-0.3 4.4% 3.5% 1.0% 0.0% 1.0% 4.6% -0.2% 4.4% 
-0.35 4.5% 3.6% 1.0% 0.0% 1.0% 4.6% -0.1% 4.5% 
-0.4 4.6% 3.6% 1.0% 0.0% 1.0% 4.6% 0.0% 4.6% 

  

Before looking at these results, a regulator might be concerned about charging RTP for 

customers who have no ability to respond.  It would seem unfair to charge customers high RTPs 

if they could not react.  These results indicate that even if customers had no means of knowing or 

responding to the RTP, the adverse effect of extremely high prices would not cause any problems 

on average over the year.  Flat and countercyclical customers would benefit by not having to 

subsidize the excesses of others.  Even customers with high coincident peak load would not have 

a large change in average price and could actually save money from other customers’ responses.  

These results indicate that regulators need not worry about the effect of RTP on poor or 

unresponsive consumers since they will be better off under RTP even if they did not respond.   
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Part IV How far can Demand Response Go? 

Based on the results from Part III, it appears that the installation of an advanced metering 

infrastructure (AMI) is a cost-effective alternative to new investments in peaking capacity from 

an integrated resources planning (IRP) perspective.  Further, RTP benefits customers by 

lowering their overall electric bills.  It is not yet clear however, how far it makes sense to take 

those results.  Because I expect most of the response and most of the peak load reductions from 

RTP to come from a small number of customers, perhaps almost all of the benefits from peak 

load reductions can be achieved by placing only a small number of customers on AMI at a much 

reduced cost.   

 

In this section of the thesis I attempt to discover how many customers can be cost-effectively 

placed on RTP the market model for predicting the short-run impacts of RTP developed in Part 

III, again using PJM data.  I use known load and price information covering a real set of utility 

customers to determine how many customers should be placed on RTP and how large the peak 

reductions from those customers are likely to be. 

 

Chapter 16 The Costs of AMI and the Demand Response Gap  

In order to determine the per-customer costs of an AMI, I examine a historic range of costs, as 

well as examining the non-demand response benefits of these systems.  I again use PJM data as 

the basis for simulations, but I used the more recent year 2007 data.  

 

16.1 Costs of Advanced Metering Infrastructure  

In a recent report on advanced metering infrastructure (AMI), the Federal Energy Regulatory 

Commission (FERC) presented the hardware and total capital cost information in Table 16.1, 

updated here for inflation [60, 78].  I have annualized these numbers over 20 years using an 8% 

cost of capital.  The total capital cost number includes all infrastructure, communications, and 

installation costs that were included in the AMI, as well as the hardware costs that are also 
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reported.  Based on these numbers, I expect installing an AMI to cost $15-$27/meter annually in 

hardware costs or $26-$32 annually in total capital costs.   

 
Table 16.1. Hardware costs and total capital costs for AMI systems [60, 78]. 

Utility85  Year  Meters, 
Millions

Total, 
Million 
2007$ 

Total 
Capital, 
Million 
2007$  

Annualized 
Hardware 
per Meter, 
2007$ 

Annualized 
Capital per 
Meter, 
2007$ 

DLC  1996  0.6  $159   ‐‐  $26.79   ‐‐ 
Virginia Power  1997  0.5  $114   ‐‐  $25.81   ‐‐ 
PREPA (Puerto Rico)  1998  1.3  $332   ‐‐  $25.99   ‐‐ 
Enel (Italy)  2000  30  $6,456   ‐‐  $21.92   ‐‐ 
JEA86  2001  0.7  ‐‐  $352   ‐‐  $25.55  
PPL  2002  1.3  $259   $370   $20.29   $28.98  
Bangor Hydro  2004  0.1  $17   $33   $15.29   $30.58  
TXU  2005  0.3  $40   $81   $16.40   $32.54  
PG&E 87  2005  9.8  $1,536   $2,828   $15.96   $29.39  
SDG&E 87  2006  2.3  $411   $679   $18.16   $30.06  

 

Note that the costs reported in Table 16.1 do not represent a uniform type of AMI.  The 

definition of AMI used by the FERC report is as follows. 

 
Advanced metering is a metering system that records customer consumption [and possibly 
other parameters] hourly or more frequently and that provides for daily or more frequent 
transmittal of measurements over a communication network to a central collection point 
[60]. 
 

                                                 

 
85 Utility full names are Duquesne Light Company (DLC), (Dominion) Virginia Power, Puerto Rico Electric Power 
Authority (PREPA), Ente Nazionale per l’Energia Elettrica (Enel), Jacksonville Electric Authority (JEA), 
Pennsylvania Power and Light (PPL), Bangor Hydro Electric Company, Texas Utilities (TXU) now the Energy 
Future Holdings Corporation, Pacific Gas and Electric Company (PG&E), and San Diego Gas and Electric 
(SDG&E). 

86 Electric and water meters. 

87 Electric and gas meters. 
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This indicates that any of these systems would be capable of implementing an RTP rate, but 

these systems could have very different other sets of other capabilities.  For instance, these may 

or may not allow for bi-directional communication or remote connect and disconnect.   None of 

the costs reported here include the additional costs that would be incurred by supplying end users 

with price displays or equipment for automated price response.   

 

16.2 The Demand Response Gap 

The primary intent of Part IV is to examine the benefits from peak load reductions and reduced 

customer bills in comparison with the costs of implementing an AMI that would make RTP 

possible.  Examining the full costs of an AMI leaves out a good bit of the picture however, since 

AMI systems have other benefits aside from the possibility of achieving peak load reductions.  

For example, one of the other reasons a company might roll out an AMI would be if it had very 

large labor costs from meter reading or service calls for initiating and ending service.   

 

For these reasons, I present in Figure 16.1 results from three AMI business case filings with the 

California Public Utility Commission (CPUC), showing these utilities’ estimates of the full costs 

and benefits from their proposed AMI installations [78, 93-96].  San Diego Gas and Electric 

(SDG&E), Southern California Edison (SCE), and Pacific Gas and Electric (PG&E) each 

presented a different set of costs and benefits to the CPUC.  Issues particular to each utility and 

the legacy system that the AMI is to replace have had a large impact on the numbers reported.  

Perhaps most relevant is to note that in two of the three cases the utility is installing a system for 

gas as well as electric meters.  In each case I updated present value numbers for inflation and 

annualized over 20 years at the cost of capital used in the original source as shown in Table 16.2 

along with other parameters from the original analysis.   

 

I have shown separately the costs and benefits in terms of capital and operations and 

maintenance (O&M), and shown the benefits from demand response separately.  In each case the 

demand response benefits are in two components: capacity savings from peak load reductions 

and energy savings from load shifting to consumption of less expensive electricity. 
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In none of these three cases is the installation of an AMI justified based solely on the O&M and 

capital cost savings to the utility; in each case the AMI benefits outweigh the implementation 

costs only if the utility expects to achieve demand response benefits as well.  The additional cost 

that is not justified by O&M and capital savings is referred to in these studies as the demand 

response (DR) gap; I will also use this term.  Based on these three case studies I expect that the 

DR gap might be $4.92-$10.34/meter/year, but caution that these numbers could be low since the 

three utilities examined here may have had more non-DR benefits to gain from an AMI than a 

typical utility and therefore have been more inclined to be first movers in this area. 

 

 
Figure 16.1. Estimated costs and benefits of AMI for all customers in three California utilities [78, 93-96].   
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Table 16.2. Benefit-cost analysis parameters and number of meters for three AMI business cases [93-96]. 

Millions of Meters 
Utility 

Weighted 
Cost of 
Capital  Electric   Gas 

Capacity Cost, 
Nominal 
$/kW∙y 

Year of 
Nominal 
Dollar  

SDG&E  8.18%  1.4  0.9  $85   2005 
SCE  10%88  4.5  0  ‐‐  2007 
PG&E  7.6%  5  4.1  $85   2004 

 

Chapter 17 The Cost of Building New Peaking Capacity89 

The cost of new generation capacity has increased dramatically in recent years, with natural gas 

capacity cost having increased by 86% between 2000 and 200790 [72].  These dramatic increases 

have made peak load reductions ever more important; eliminating or delaying the need to build 

new generation capacity is worth more and more money.   

 

I use the capital cost of a simple cycle gas turbine as the basis of the cost for peaking capacity.  I 

estimate with the recent increases of capacity cost that the price of a simple cycle turbine is 

$728/kW overnight91 or $81/kW·y annually92 [72-74].   The amount of capacity needed to 

reliably serve the system is greater than the amount of end-use load delivered because of system 

                                                 

 
88 This study used this assumed interest rate, but it does not represent the weighted cost of capital as it does in the 
cases of the other two studies.  

89 The content of this Chapter is largely replicated from that in Section 9.1. 

90 I calculated the 86% number from the two publicly quoted numbers on natural gas: that the capital cost of natural 
gas has increased 3% between 2007 to 2008, and increased 92% between 2000 and 2008 [72]. 

91 I use Integrated Environmental Control Model (IECM) estimates from year 2000 for a natural gas combined cycle 
(NGCC) plant and then inflate the cost by 86% according to the Power Capital Cost Index (PCCI) to year 2007 
values [72, 73].  I then estimate the cost of a simple cycle turbine by applying the ratio of costs between simple and 
combined cycle plants costs used in the National Energy Modeling System (NEMS) [74]. 

92 I inflate the overnight cost over a construction time of three years and then annualize the cost of capital over a 30 
year plant life with an 8% cost of capital. 
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losses and the necessary margin for reliability.  I assume a reserve margin93 of 15% based on the 

requirements of the ReliabilityFirst Corporation (RFC), the NERC reliability region that 

primarily overlaps with the Pennsylvania-New Jersey-Maryland (PJM) Regional Transmission 

Organization (RTO) [82].  Of this about half is needed for reliability and about half is needed to 

cover transmission and distribution (T&D) losses; the national average for T&D losses 7.1% 

[97].   

 

Based on this required reserve margin, I estimate that $81/kW·y in peak capacity costs translates 

into a value of $94/kW·y for peak load reductions.  I highlight the distinction between the two 

numbers to emphasize that a kW of reduction in peak load is worth significantly more than a kW 

of additional new capacity.   

 

I make one other note about the numbers presented in Figure 16.1 and Table 16.2.  In both 

studies where the annualized value of capacity is noted, the number is $85/kW·y; a number that 

is somewhat lower than my expectation.  I believe that the higher, updated number more 

accurately represents the cost of building new capacity and the value of reducing peak load, but 

recognize that others’ assessments may differ.  For this reason I show results for my estimate in 

Chapter 19 as well as providing a full sensitivity analysis in Appendix D. 

 

Chapter 18 Method and Data 

The method and data that I use to predict the impacts of a policy change from flat-rate pricing to 

RTP in PJM are based largely on the method and data used in Part III.  I have updated numbers 

and data to represent the calendar year 2007 and altered the method in order to address a new set 

of questions.  Namely, what is the effect of moving to RTP by placing the largest customers on 

                                                 

 
93 Reserve margin is expressed as a percent of peak load, distinct from the alternative measure of capacity margin, 
which is expressed as a percent of installed capacity.    
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the RTP tariff first and progressively adding smaller customers; at what point do the costs of an 

AMI outweigh the benefits from RTP? 

 

18.1 Economic Model 

I calculate the market equilibrium results with RTP as in Part III but alter the fraction of 

customers on RTP.  The supply side model is unaltered as in Equation (12).  
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The demand side model is now considered in two parts.  Total load L consists of load LRTP from 

customers on RTP and load Lflat from customers on flat rates as in (13).  The fraction of load L 

on RTP is f.  Load from flat-rate customers does not change with RTP as in (14).   

 

 (13) L = LRTP + Lflat 

(14) ( ) 01 LfL flat ⋅−=  

 

Load from RTP customers does change as a function of price according to the constant elasticity 

demand function in (15), where PD0 is the flat-rate price of power in 200794. 
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94 The number PDO is the sum of the average wholesale price as calculated in (3) and the distribution charge C 
assessed by the local utility.  
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Equilibrium conditions when only a fraction f of customers are on RTP is in (16), where C is the 

offset for distribution charges.  Price offset between wholesale and retail rates is 3.21cents/kWh 

in 2006 (cost of delivery-only service); when updated to year 2007 for inflation that results in 

3.30 cents/kWh [78, 79]. 

 

 

(16) )()( RTPDflatRTPS LPCLLP =++  

 

Results can be calculated after determining any fraction 0 ≤ f ≤ 1of load on RTP and any 

assumed aggregate elasticity of those customers E. 

 

18.2 Utility Customer Data 

Not all customers are the same.  There is a small number of large commercial and industrial 

customers and a large number of small residential customers.  The makeup and relative sizes of 

small and large customers determines how many customers have to be on RTP in order to place a 

certain fraction f of the load under RTP.  In general the entire load profile of each customer 

under flat rates is relevant in predicting what that customer’s load profile will be under RTP.  

However, this hourly load profile information generally will not be available prior to the 

installation of an AMI. 

 

An appropriate proxy for my purposes is the use of coincident peak load for each customer.  

Figure 18.1 shows the distribution of customer sizes as measured by coincident peak load for a 

sample utility with the customers sorted from largest to smallest [98].   
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Figure 18.1. Customers sorted from largest to smallest; coincident peak load (left) and fraction of peak load 

accounted for by the largest customers (right) [98]. 
 

I use the coincident peak load contribution of each customer to scale its size, but treat each 

customer as if it had the same load profile.  Coincident peak load is the most relevant piece of 

information for my purposes because peak load reductions that are possible is dependent upon 

how much peak load is placed under RTP.  Note that the more detailed the information available 

on each customer or group of customers, the better the installation of an AMI could be targeted 

to the largest customers and those with the highest coincident peak loads.   

 

Chapter 19 Results  

The results of moving customers onto RTP starting with the largest and moving to progressively 

smaller customers are presented in this section.  I use the model and data from Chapter 18 to 

determine a new predicted load and price profile over the year and then determine the total peak 

load reduction and total energy bill savings that customers would enjoy from RTP.  Although the 

true economic benefits from this type of policy change are measured by the total consumer and 

producer surplus change, the real world decisions about whether an AMI should be installed for 

RTP are made by public utility commissions looking at predictions on customer bills.   
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For these reasons I calculate the same two customer benefits that were calculated and used in the 

three CPUC cost-benefit analyses presented in Figure 16.1.  As in those cases, the demand 

response benefits are calculated in two parts: a peak load reduction and a reduction in electric 

energy bills.  These benefits show much money the PUC should be willing to approve in AMI 

investments in order to place these customers on RTP.  As already noted, these “benefits” are not 

complete from the economist’s point of view.  Benefits as calculated here represent the 

perspective of the PUC which is acting on behalf of the customer based on total energy bill, 

rather than based on consumer surplus or total societal benefits. 

 

  
Figure 19.1. Peak load (left) and customer bill (right) savings from placing the largest to the smallest on RTP; 

various customer elasticities are shown in absolute values in the isocurves.   

 

Once determined on a per-customer, per-year basis, the resulting benefits from placing an 

increasing fraction of customers on RTP starting from the largest customers are shown in Figure 

19.2 through Figure 19.4.  Figure 19.2 shows the annual capacity benefits per customer when 

calculated based on the peak capacity reduction, Figure 19.3 shows the annual electric energy 

bill reductions, and Figure 19.4 displays the sum of both types of demand response benefits.  See 

Appendix D for a sensitivity analysis of the results from Figure 19.2 and Figure 19.4 depending 

on the assumed value of capacity. 
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In each case, the benefits are plotted along with the annualized per-customer costs of installing 

an AMI.  Hardware and total capital costs are plotted based on the numbers from Table 16.1.  As 

discussed in Section 16.2 however, the AMI may have other benefits that are not related to 

demand response as shown in Figure 16.1.  The costs of the AMI minus these other possible 

benefits is also plotted and labeled as the DR gap in the following figures. 

 

Figure 19.1 shows the savings from placing a certain fraction of customers on RTP with a given 

elasticity in terms of both peak load reductions and customer energy bill savings.  The customer 

bill savings are expressed as a percent of the total customer bill, including all of those that are on 

flat and RTP rates, not just those moved to RTP rates.  Benefits from both types of customers are 

relevant because all customers will benefit from lower prices, not just those on RTP.  As 

expected, the more customers are on RTP and the more responsive they are to price, the greater 

the customer benefits.   The most interesting finding from Figure 19.1 is that most of the total 

possible benefits are achieved with the first few customers. 

 

I note here a few complexities in the real-world implementation of a move toward RTP that are 

not captured in this analysis, but that should be examined in a similar benefit-cost analysis before 

moving ahead in a real utility.  First, co-located customers may have to be treated in groups so 

that the communication infrastructure can be implemented effectively; rather than moving from 

the biggest customer to the next biggest customer for roll-out, the average customer size in a 

neighborhood would determine the order of rollout.  For example, a neighborhood with many 

pools would be enrolled early.   

 

Second, the initial rate plans of various customer classes would be known and taken into account 

in more detail than is possible here.  Most utilities have a mix of rate classes for their customers, 
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and in PJM, some 5.4% of end user MW in PJM are on rates related the RTP [54, 55]95.  I have 

not accounted for this complexity, but rather performed the calculations assuming that all 

customers start on flat rates.    

 

In determining how many customers can be cost-effectively placed on RTP at a given cost per 

customer, the PUC might look at the benefits in two different ways.  In the first, the total benefits 

achieved from placing customers on RTP is calculated and then averaged over the number of 

customers that on the new rate.  This average cost-benefit calculation is of the type presented in 

Figure 16.1 and displayed on the left-hand side in Figure 19.2 through Figure 19.4.  In this line 

of thinking, if the total RTP benefits are greater than the total AMI system costs, then the 

investment in the AMI is justified.   

 

Another way of assessing the possible benefits from RTP, is to recognize that a small number of 

customers represent a disproportionately large fraction of the load and potential for demand 

response.  In this case, it is relevant to consider the marginal benefit of adding one more 

customer to RTP.  That is, that the incremental capacity and energy benefits achieved from 

adding the next smallest customer are evaluated and used to determine whether it is cost-

effective to place that next customer on RTP.   Capacity and energy benefits calculated in this 

way are shown on the right-hand side in Figure 19.2 through Figure 19.4.   

 

The three figures show, in order, capacity benefits from demand response, average electric bill 

savings from demand response, and the sum of those two demand response benefits.  In each 

case, the isocurves are labeled with the absolute magnitude of the assumed elasticity of demand.  

The gray-colored bands represent the range of costs of an AMI depending on how these costs are 

measured.  The range of system hardware costs and total capital costs are the range of values 

from actual projects as reported in Table 16.1.  The DR gap is the range of demand response 
                                                 

 
95 Estimate is from 3716 MW on locational marginal price (LMP) based rates and 69,064 MW represented in survey 
responses.  Both distribution utilities and competitive suppliers are represented as survey respondents and the rates 
charged by both types are reported here. 
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benefits that would have had to be justified to the PUC in the three utilities examined in Figure 

16.1. 

 

 
Figure 19.2. Average (left) and marginal (right) capacity benefits from placing a fraction of customers on RTP; 

various customer elasticities are shown in absolute values in the isocurves.   
 

 
Figure 19.3. Average (left) and marginal (right) electric bill benefits from placing a fraction of customers on RTP; 

various customer elasticities are shown in absolute values in the isocurves.   
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Figure 19.4. Average (left) and marginal (right) total capacity and energy benefits from placing customers on RTP; 

various customer elasticities are shown in absolute values in the isocurves.   
 

The results displayed in the previous figures and summarized in Figure 19.4 show that an AMI 

system is justified on average for all customers even if the PUC expects only the very smallest 

levels of responsiveness.   

 

Looking at the marginal benefits of demand response shows a different picture.  If the 

incremental benefit from placing each additional customer on RTP is weighed against the 

incremental cost of placing another customer under an AMI, then it becomes clear that there are 

very large benefits from placing the largest customers on RTP and vanishingly small benefits 

from placing the smallest few customers on RTP.  The figures indicate that it is worthwhile to 

place the very largest 20% of customers on RTP even if they are not expected to respond much 

to price and the expense of placing these customers on RTP is very high.  This means that an 

AMI for RTP is justified for industrial, commercial, and a fraction of the largest residential 

customers.   
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For the next largest portion of residential customers, the costs do not outweigh the benefits in all 

cases.  If the total capital costs of AMI must be paid via demand response benefits, then 20% to 

60% of customers should be placed on RTP depending on the cost of the AMI system and the 

expected responsiveness of the customers.  The tradeoff here is further complicated by the fact 

that these customers can be made more responsive if additional investment is made in enabling 

technology.  Therefore, responsiveness can also be treated as something that can be influenced 

by more advanced technologies such as thermostat controls.   

 

In the case where the AMI system has additional benefits to the local distribution utility and only 

the DR gap must be justified in order to make the investment worthwhile, many more customers 

are cost-effective for RTP.  Some 60% to 85% of customers are appropriate for RTP in that case.  

In no cases should the utility make an investment to place the very smallest 15% of customers on 

RTP. 

 

A more detailed display of the demand response benefits from RTP is shown in Table 19.1 and 

Table 19.2 for cases where the customers are not very responsive with E = -0.05 and where the 

customers are quite responsive with E = -0.25.  If we have an estimate of the cost of an AMI 

system, then we can use the results in the following tables to determine what fraction of 

customers can be cost effectively placed on an AMI under RTP and the minimum size customer 

appropriate for that investment.    
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Table 19.1. Demand response benefits from RTP if customers are not very responsive, E = -0.05. 

Average Benefits, $/Cust/y  Marginal Benefits, $/Cust/y Percent of 
Customers 
on RTP 

Min Customer 
Size, Coincident 

Peak kW  Capacity  Energy  Total  Capacity  Energy  Total 

0.5%  85.7  $3,249  $3,940  $7,189  $351  $407  $758 
1.0%  36.4  $844  $1,013  $1,856  $134  $154  $288 
2.5%  13.0  $501  $599  $1,099  $45.84  $52.06  $97.90 
5.0%  7.04  $207  $246  $453  $24.74  $27.89  $52.63 
10%  5.16  $121  $144  $265  $17.73  $19.79  $37.52 
20%  3.85  $70.57  $83.09  $154  $12.98  $14.27  $27.25 
30%  3.13  $51.46  $60.28  $112  $10.36  $11.26  $21.61 
40%  2.55  $41.13  $47.98  $89.11  $8.37  $9.00  $17.37 
50%  2.13  $35.66  $41.47  $77.13  $6.90  $7.36  $14.26 
60%  1.65  $30.67  $35.57  $66.24  $5.31  $5.63  $10.93 
70%  1.18  $26.91  $31.14  $58.04  $3.78  $3.99  $7.77 
80%  0.73  $23.90  $27.62  $51.52  $2.32  $2.44  $4.77 
90%  0.31  $21.42  $24.73  $46.14  $0.98  $1.02  $2.00 
100%  0.00  $19.30  $22.28  $41.57  $0.00  $0.00  $0.00 

 
Table 19.2. Demand response benefits from RTP if customers are quite responsive, E = -0.25. 

Average Benefits, $/Cust/y  Marginal Benefits, $/Cust/y Percent of 
Customers 
on RTP 

Min Customer 
Size, Coincident 

Peak kW  Capacity  Energy  Total  Capacity  Energy  Total 

0.5%  85.7  $12,868  $13,540 $26,408 $1,151  $922  $2,074 
1.0%  36.4  $3,202  $3,202  $6,405  $420  $313  $732 
2.5%  13.0  $1,876  $1,848  $3,725  $138  $95.10  $233 
5.0%  7.04  $760  $731  $1,490  $72.20  $47.32  $120 
10%  5.16  $439  $414  $853  $49.83  $30.32  $80.15 
20%  3.85  $249  $228  $476  $34.54  $18.66  $53.20 
30%  3.13  $178  $159  $337  $26.44  $12.90  $39.34 
40%  2.55  $140  $123  $263  $20.66  $9.21  $29.87 
50%  2.13  $120  $104  $224  $16.58  $6.82  $23.40 
60%  1.65  $102  $87.41  $190  $12.48  $4.79  $17.28 
70%  1.18  $89.22  $75.34  $165  $8.75  $3.18  $11.93 
80%  0.73  $78.85  $66.14  $145  $5.32  $1.86  $7.19 
90%  0.31  $70.45  $58.86  $129  $2.22  $0.76  $2.98 
100%  0.00  $63.44  $52.95  $116  $0.00  $0.00  $0.00 
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The tables show that to put the very largest few percent of customers on RTP it would be worth 

investing several multiples of the cost of a large-scale AMI.  For the largest 0.5% of customers 

with coincident peak loads at 85 kW and higher, it would be worth making significant 

investments in enabling technology that would be cost-effective even at a cost of some $760 per 

customer per year if they are not expected to be very responsive, and perhaps $2100 per 

customer per year if they are expected to be quite responsive.   

 

For wide scale implementation of AMI, all customers above 2.5 kW (about 40% of all 

customers) could be cost-effectively placed on RTP if there are no benefits to the AMI other than 

demand response from RTP.  For the smallest 10%-20% of customers of size 0.31-0.73 kW in 

coincident peak load, installing an AMI is not cost effective even under the most favorable of 

assumptions about other AMI benefits and highly responsive customers.   
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Part V Conclusions and Recommendations 

The traditional assumption that end users cannot vary their consumption as prices change has led 

to large, unnecessary investments in peaking plants.  In 2006, 15% of the generation capacity in 

PJM territory ran less than 1.1% of the time (96 hours or less), and 20% of capacity ran less than 

2.3% of the time (202 hours or less) [84]96.  These under-utilized peak generation investments 

are a luxury that neither providers nor customers want to pay for.   

 

Peak load reductions are currently being achieved at less than one fourth of the cost of building 

new capacity at a cost of $93.72/kW·y and energy efficiency is being achieved at roughly one 

third the cost of providing more power at $91.50/MWh. 

 

The good news is that the peak load problem can be mitigated by moving some flat rate 

customers onto RTP tariffs.  Even with little price responsiveness, surprisingly large peak load 

reductions can be achieved; at elasticities -0.1 and -0.2, 10.4% and 15.1% respectively can be 

shaved off of coincident peak consumption.  Most other quantities of interest such as generator 

profitability, overall consumption, and average end user expense will not be affected greatly by a 

change toward RTP.  However, policy makers will be disappointed with the short-term reduction 

in overall bills.  A move toward RTP should be driven by concerns about meeting peak load at 

the lowest cost, enhancing system reliability, and creating equity among end users.  

  

Under current conditions counter-cyclical end users subsidize the high coincident peak loads of 

others.  When problematic, high-peak customers are confronted with higher bills, they will want 

to make small but important changes.  If a peaky customer does not want to alter her 

consumption habits, then she will face the full price of her own load profile rather than having it 

subsidized by the rest of the system.  Just as consumers have learned to respond to the volatile 
                                                 

 
96 This is based on the entire PJM hourly load profile in 2006 [84].  Even at peak load, the system had 17.5% excess 
available generation capacity.  We do not include generation excess at coincident peak load in this calculation 
because some generation excess is necessary for reliability purposes.   
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prices of gasoline, fruits, vegetables, and other commodities, so they can learn to respond to 

electricity prices.  The largest difference is that customers purchase electricity every hour of the 

year and therefore some customers will want automated devices to react to changing prices.  

Further, for the customers that place a high value on stability in price, retailers could provide any 

combination of hedges or flat rates; these rates would charge a premium above the RTP rate 

reflecting the higher cost of service. 

 

Because only modest aggregate price elasticities are necessary for large peak capacity savings, 

most of the benefits can be achieved by shifting only large, responsive customers to RTP.  

Further, 50% of all possible customer expense savings from load shifting could be achieved by 

shifting only 1.7% of all MWh to another time of day.  Large, responsive users are the customers 

who would benefit the most by installing the equipment necessary for automated response to 

RTP.  With RTP, each customer is free to react in the ways that best serve her interest.   

 

Even though RTP is beneficial to the system, for some small customers the expense of installing 

an AMI is greater than the possible benefits.  Customers above 2.5 kW (about 40% of all 

customers, representing all industrial, all commercial, and large residential customers) could be 

cost-effectively placed on RTP even under assumptions of high AMI costs and low 

responsiveness to price.  For the smallest 10%-20% of customers of size 0.31-0.73 kW in 

coincident peak load (representing the smallest residential loads), installing an AMI is not cost 

effective even under the most favorable of assumptions about other AMI benefits and highly 

responsive customers.   
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Appendix A Peak Load Problem over Time in ISO-NE 

This appendix shows additional information about the hourly load data from ISO-NE used in 

Part II and the model used to represent load over time. 

 

A.1 Hourly Data for All Years 

Figure A.1. Histograms of hourly load profiles from all years 1980-2007 with peak hours highlighted [67]. 

 Shows histograms of the hourly load data for ISO-NE for each year 1980-2007 [67].  The 

histograms display the information in the same way that the 1980 and 2006 data are displayed in 

Figure 8.1.  The following figure shows more fully the point illustrated and discussed in Section 

8.1 that a larger fraction of capacity in ISO-NE must be available in order to support peak 

demand over fewer and fewer hours per year.   



122 

 

 

 

 
Figure A.1. Histograms of hourly load profiles from all years 1980-2007 with peak hours highlighted [67]. 
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A.2 Additional Peak Load Uncertainty Model Information 

Figure A.2 and Figure A.3 display the results when a generalized extreme value distribution is 

fitted to the weekly observations, with the distribution fitted separately for each year of data.  

The figures show trends over time for shape, spread, and location parameters along with the 95% 

confidence intervals for the parameter estimates from each year.  Also shown are linear trends on 

the parameter best estimates with 95% confidence bounds, although the uncertainty in the annual 

estimates is not accounted for.  

 

The spread parameter σ and the location parameter μ both increase over time; these increases 

appear to be appropriately represented with a linear trend.  The shape parameter k shows that it 

may also have a trend over time, but a constant value over time is well within the predictive 

uncertainty.  I choose to treat the parameter k as a constant for simplicity, although the model 

appears to represent the weekly peak data equally well whether k is treated as constant or with a 

linear trend. 

 

 
Figure A.2. Generalized extreme value shape parameter k, fitted to weekly peak loads for each year. 
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Figure A.3. Generalized extreme value spread (left) and location (right) parameters, fitted to weekly peak loads. 
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Appendix B Detail on Building a General Supply-Side Model 

B.1 Possible Model Structures 

I have examined several possible models for predicting price from load using variations on the 

third-degree polynomial in Equation (17).   
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Each term in (17) is multiplied by a dummy variable δi that has possible values one and zero.  

These dummy variables act as on-off switches for the term parameter based on the time period t.  

For example, if I want to assume that each day has a unique third degree supply curve, then the 

number of time periods is n = 365 and each term will have n = 365 different parameters at, bt, ct, 

and dt, one for each day.  The dummy variables δ0, δ1, δ2, and δ3 ensure that only the parameters 

appropriate for the time period in question are considered; all others are zeroed out.  The 

resulting values of PS(L) are then the same as they would have been had I fit 365 different third 

degree polynomials to the data; overall goodness of fit statistics for that model would have 4·n = 

1460 parameters. 

 

Another advantage of the dummy variable approach is that I am able to selectively drop dummy 

variables from the model to simplify it.  For example, my conclusion from these regressions is 

that the daily fits are the same shape in the second and third degree terms as long as a linear 

offset is applied to each day as in (8). The simplified model includes only the zero and first 

degree dummy variables δ0 and δ1, and has 2·n+2 = 732 p. 
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I have examined models with eight different definitions of time period t and consequent values 

for n.  Table B.1 is a summary description of each of the eight time period definitions and the 

number of model parameters resulting from including a given number of dummy variables from 

1 to 4.  In each case except for the yearly model there are 15 ways to combine dummy variables.   
 

Table B.1. Description of the eight time period definitions examined. 

Number of Parameters by  
Included Dummy Variables Time Period n 

1 
δ0 

2 
δ0, δ1 

3 
δ0, δ1,δ2

4 
δ0, δ1,δ2,δ3

Description 

Year 1 NA 2 3 4 One curve.  Dropping a dummy means 
dropping the entire term. 

Month of Year 12 15 26 37 48 One curve for each month. 

Week of Year 53 56 108 160 212 Week is Mon-Sun.  Data begin and end 
with Wed. 

Day of Year 365 368 732 1096 1460 One curve for each day. 
Week or Weekend of 
Year 105 108 212 316 420 One curve for each week Mon-Fri; one 

curve for each weekend Sat-Sun. 
Week or Weekend, 
Holidays as Weekend 105 108 212 316 420 Append 6 NERC holidays97 to closest 

weekend, all happen to fall on Mon or Fri. 
Day of Week 7 10 16 22 28 One curve for each day of week. 
Hour of Day 24 27 50 73 96 One curve for each hour of day. 

 

B.2 Statistical Significance and Goodness of Fit 

For each of the 109 models I have evaluated the goodness of fit statistics.  By examining 

adjusted R2 values indicating explanatory power, I have concluded that the best way to drop 

dummy variables is starting with the highest order term and working downward.  That is to drop 

δ3, then δ3 and δ2, then δ3, δ2, and δ1.  This ordering is consistent for almost all model types98.  

Table B.2 displays these adjusted R2 values for the 31 models consistent with this drop ordering.  

Models are listed in order of decreasing explanatory power; the ordering of models by 

                                                 

 
97 North American Electric Reliability Corporation (NERC) holidays are considered off-peak hours in PJM [99] 

98 In the day of week model, keeping higher order terms is preferred.  Hour of day and month of year models also 
prefer a higher order term when only two dummy variables are included.  These models are poor representations 
based on the adjusted R2 values, and so I do not consider these issues further. 
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explanatory power is identical no matter how many dummy variables are included.  Even after 

dropping two dummy variables, the daily model has more explanatory power than any other 

model with all four dummy variables.  

 
Table B.2. Model adjusted R2 values. 

Dummy Variables Included Model Sorted in Order of 
Descending Adjusted R2 1 

δ0 
2 

δ0, δ1 
3 

δ0, δ1,δ2 
4 

δ0, δ1,δ2,δ3 
Day of Year 0.9096 0.9488 0.9630 0.9661 
Week/WeekendorHoliday 0.8866 0.9124 0.9223 0.9241 
Week/Weekend 0.8859 0.9118 0.9221 0.9240 
Week of Year 0.8725 0.8961 0.9061 0.9079 
Month of Year 0.8521 0.8774 0.8853 0.8887 
Hour of Day 0.7990 0.8151 0.8208 0.8225 
Day of Week 0.7942 0.8001 0.8085 0.8088 
Year -- 0.6925 0.7453 0.7805 

 

The same ordering for dropping dummy variables is dictated by the F-statistic for overall model 

significance as shown in Table B.3.  Because of the large DOF, the p-values associated with 

these F-statistics are vanishingly small and therefore uninformative.    
 

Table B.3. Overall model F-statistics. 

Number of Dummy Variables Included Model Sorted in Order of 
Descending Adjusted R2 1 

δ0 
2 

δ0, δ1 
3 

δ0, δ1,δ2 
4 

δ0, δ1,δ2,δ3 
Day of Year 241 223 210 172 
Week/WeekendorHoliday 641 433 331 256 
Week/Weekend 637 430 330 255 
Week of Year 1091 707 533 410 
Month of Year 3607 2509 1879 1490 
Hour of Day 1340 789 558 428 
Day of Week 3758 2338 1762 1374 
Year -- 19732 12815 10387 

 

Model ordering is largely dictated by the number of parameters, the only exception being the 

month of year and versus hour of day models.  Because the theoretical import of the model as 

decreases as the number of parameters increases, it may be a good idea to accept a model with 
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less explanatory power to obtain a more parsimonious model.  Table B.4 shows the explanatory 

power as calculated by the adjusted R2 value lost by dropping to the next best model.   

 

Temporal resolution always improves the explanatory power of the model, but the meaning of 

this observation is clouded by the fact that the higher temporal resolution models use more 

parameters.  The largest drop in explanatory power occurs when moving from sequential time-

series to non-sequential bunches of data.  That means that Mondays have no interesting common 

characteristics, but that hours within one day or one week do have common characteristics.  I 

conclude from this observation that system conditions change slowly over time and that grouping 

consecutive hours is a good way to capture these effects. 

 
Table B.4. Adjusted R2 lost by dropping to next best model. 

Number of Dummy Variables Included Model Sorted in Order of 
Descending Adjusted R2 1 

δ0 
2 

δ0, δ1 
3 

δ0, δ1,δ2 
4 

δ0, δ1,δ2,δ3 
Day of Year 0.0230 0.0364 0.0407 0.0420 
Week/WeekendorHoliday 0.0007 0.0006 0.0002 0.0001 
Week/Weekend 0.0134 0.0157 0.0160 0.0161 
Week of Year 0.0204 0.0187 0.0208 0.0192 
Month of Year 0.0531 0.0623 0.0645 0.0662 
Hour of Day 0.0048 0.0150 0.0123 0.0137 
Day of Week -- 0.1076 0.0632 0.0283 
Year -- -- -- -- 
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In deciding how many dummy variables to drop, it is useful to examine the explanatory power 

lost in dropping the least important dummy variable as shown in Table B.5.  I look primarily at 

the models with time-sequential data groupings.  Dropping the δ3 variable drops explanatory 

power a miniscule amount.  Dropping δ2 is only slightly worse.  Based on this assessment, we 

conclude that including only linear offsets is a powerful way to represent price and load data.  By 

dropping the number of dummy variables to two, the number of parameters in the model is 

roughly halved. 

 
Table B.5. Adjusted R2 lost by dropping one dummy variable. 

Adjusted R2 Loss from Dropping One Dummy Model Sorted in Order of 
Descending Adjusted R2 δ0 to 

Year 
δ0,δ1 to 

δ0 
δ0,δ1,δ2 to 

δ0,δ1 
δ0,δ1,δ2,δ3 to 

δ0,δ1,δ2 
Day of Year 0.1291 0.0392 0.0142 0.0031 
Week/WeekendorHoliday 0.1061 0.0258 0.0099 0.0018 
Week/Weekend 0.1054 0.0259 0.0103 0.0019 
Week of Year 0.0920 0.0236 0.0100 0.0018 
Month of Year 0.0716 0.0253 0.0079 0.0034 
Hour of Day 0.0185 0.0161 0.0057 0.0017 
Day of Week 0.0137 0.0059 0.0084 0.0003 
Year -- -- 0.0528 0.0352 

 

For further insight in determining how many dummy variables to drop, I have calculated an F-

statistic for model improvement with and without each dummy variable according to (18) from 

[100].  The variable k represents the number of parameters at through dt; the variable SSE 

represents the sum of squared error between the real data and model prediction; N is the number 

of data.  Subscripts full and reduced refer to the models with and without the dummy variable 

respectively.   

 

 (18) 
( ) ( )
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reducedfullfullreduced
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Calculated F-statistics are in Table B.6; associated p-values are again vanishingly small.  This 

indicates that keeping additional dummy variables would be justified, although the higher order 

dummy variables are less important. 

 
Table B.6. F-Statistic for testing the hypothesis that a model is no better than the next best model. 

F-Statistic for Dropping to the Next Best Model Model Sorted in Order of 
Descending Adjusted R2 δ0 to 

Year 
δ0,δ1 to 

δ0 
δ0,δ1,δ2 to 

δ0,δ1 
δ0,δ1,δ2,δ3 to 

δ0,δ1,δ2 
Day of Year 35 19 10 3 
Week/WeekendorHoliday99 80 25 11 3 
Week/Weekend 79 25 12 3 
Week of Year 123 39 19 4 
Month of Year100 386 120 97 26 
Hour of Day 36 23 24 4 
Day of Week 13 20 65 113 
Year -- -- 1814 1409 

 

Each parameter in each model has a t-statistic and an associated p-value measuring its 

significance in improving the model.  Some of the models I examined have upwards of one 

thousand parameters, so I have grouped the parameters dt through at corresponding to term order 

zero through three respectively. Table B.7 and Table B.8 show mean and median t-test p-values 

in the daily and week or weekend-holiday model respectively.   

 

When the dummy variable associated with each parameter is included, the number of parameters 

is large and the mean and median p-values are displayed without shading.  Shaded p-values 

indicate that the associated dummy variable has been dropped and there is just one parameter of 

that order that applies to the entire model.  In those cases mean and median are the same by 

definition and so only one is displayed.  Bolded results indicate significance at the p<0.05 level.  

                                                 

 
99 The next best model for the F-statistic is “Week of Year”.  The “Week/WeekendorHoliday” model has the same 
number of parameters and a smaller SSE than the “Week/Weekend” model, rendering the F-statistic meaningless for 
that pair.   

100 The next best model for the F-statistic is “Year”.  The “Month of Year” model has fewer parameters and a 
smaller SSE than the “Hour of Day” model, rendering the F-statistic meaningless for that pair.   
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Table B.7. Daily model t-test p-values by parameter order and dummy variables included. 

 

 
Table B.8. Week or weekend-holiday t-test p-values by parameter and dummy variables included. 

 Number of Dummy Variables Included 

Median p-Values 1 
δ0 

2 
δ0, δ1 

3 
δ0, δ1,δ2 

4 
δ0, δ1,δ2,δ3

at 0.000 0.000 0.000 0.277 
bt 0.000 0.000 0.001 0.144 
ct 0.000 0.000 0.001 0.033 
dt 0.000 0.000 0.001 0.003 

Mean p-Values 1 2 3 4 
at       0.311 
bt     0.067 0.234 
ct   0.000 0.000 0.000 
dt 0.147 0.101 0.087 0.136 

 

From Table B.7 and Table B.8 it is clear that if a dummy variable is dropped, then including a 

single parameter for that order term is always a statistically significant improvement to the 

overall model.  The y-intercept, first order, and second order dummy variable parameters are 

statistically significant in the median but not always in the mean.  The median number is a more 

useful measure because these distributions have strong positive skews.  The third order dummy 

variable parameters do not show statistical significance.  Examination of these t-test results 

justifies dropping one dummy variable and keeping the remaining three.  

 

 Number of Dummy Variables Included 

Median p-Values 1 
δ0 

2 
δ0, δ1 

3 
δ0, δ1,δ2 

4 
δ0, δ1,δ2,δ3

at 0.000 0.000 0.000 0.257 
bt 0.000 0.000 0.000 0.131 
ct 0.000 0.008 0.018 0.058 
dt 0.001 0.000 0.000 0.002 

Mean p-Values 1 2 3 4 
at       0.318 
bt     0.046 0.254 
ct   0.000 0.000 0.000 
dt 0.139 0.111 0.106 0.134 
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B.3 Visual Examination of Model Characteristics  

Adjusted R2 results suggest moving ahead with the daily model and only two dummy variables.  

The t-test results indicate that including three dummy variables is justified.  F-statistics suggest 

reducing the time resolution.   

 

Figure B.1 through Figure B.4 display predictions from models including 1 through 4 dummy 

variables respectively. Original data are plotted in black in the background; curves representing 

each time-period t are plotted in red in the foreground.  Prices for each time period t are plotted 

over the range of loads observed in that time period.  Left-hand plots represent the daily models, 

right-hand plots represent the week/weekend-holiday models.   

 

From Figure B.1 it is clear that more than one dummy variable must be included in order to get a 

decent representation of the overall data characteristics.  The weekly/weekend-holiday models in 

Figure B.2 through Figure B.4 do appear to represent general characteristics of the data but do 

poorly in the extremes. Especially obvious is the inability of the weekly/weekend-holiday 

models to capture the excessively high prices that are an important part of a demand-response 

analysis.  The daily models are able to capture these high-price characteristics by including two 

to four dummy variables.   

 

 
Figure B.1. Data plotted with model curves using 1 dummy variable, daily (left) and week/weekend (right). 



133 

 

 

 
Figure B.2. Data plotted with model curves using 2 dummy variables, daily (left) and week/weekend (right). 
 

 
Figure B.3. Data plotted with model curves using 3 dummy variables, daily (left) and week/weekend (right). 
 

 
Figure B.4. Data plotted with model curves using 4 dummy variables, daily (left) and week/weekend (right). 
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Each dummy variable adds some small predictive ability to the daily model, especially in the 

high and low price extremes.  Another important issue is whether the model can make small 

extrapolations outside observed daily loads.  In addressing that issue we have looked at data and 

prediction plots for all 365 days for each set of dummy variables.  I plotted along with those 

curves the most extreme daily demand curves101 to determine the largest amount of extrapolation 

required.  When I include all 4 dummy variables the price predictions can go off-course with 

extrapolation, but with fewer dummy variables the extrapolative ability improves.  Every single 

day appears to have acceptable extrapolative ability when using only two dummy variables. 

 

Based on these observations, I conclude that the best overall supply-side model for analyzing 

RTP effects is the third-degree polynomial model with linear daily offsets as in (8). 

                                                 

 
101 From (4) with elasticity -0.4 and minimum or maximum daily load. 
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Appendix C Split between Supply Curve and Stacked Bid Curves 

I have claimed that using generator marginal cost curves to approximate supply curves 

underestimates both price and slope.  In order to support that claim, I have used PJM data on 

generator bids into the market to construct day-ahead hourly bid curves [84].  Most generators 

supply one bid curve into the market that will apply for the entire 24 hours, but others self-

schedule their generation amounting to an hourly zero-price offset.  A small number of hourly 

increments or decrements are bid at a non-zero price.  I have constructed bid curves for every 

hour of the year from June 1, 2005 to May 31, 2006 by accounting for each of these bid types.  

 

In this Appendix I examine an earlier time period than in the rest of this paper because the 

generator bid data are released only after a six-month delay and are unavailable at this time102.   

 

Aggregate bid curves vary little over the course of one day; the maximum total available load 

offset in the time frame we observed was 5.6% between daily maximum and daily minimum.  On 

the left-hand side of Figure C.1 I have plotted the bid curves for noon of every day on the left.  

The bid curves have the hockey-stick shape typical of system marginal cost curves.  As noted 

earlier it is common in literature to find that the bid curve is assumed to be the true supply curve 

[85, 102, 103].  When this assumption is made the conclusion is that small changes in load have 

almost no effect on price except at high loads above the “elbow”.   

 

On the right-hand side of Figure C.1 real market clearing results are shown along with the same 

noon bid curves.  In this second plot, I have shown only the section of bid curve corresponding 

with the actual daily load range.  If the bid curve were a good approximation of the system 

supply curve, then real market results would be close to the bid curve range.  This graph makes it 

clear that bid curves are a poor approximation of overall supply.  This is because the real-time 

                                                 

 
102 Dominion merged with PJM on May 1, 2005 and increased system peak load increased by 18.6% [101].  The 
data start date allows us to study one contiguous years’ worth of data without a territory expansion; the end date 
allows access to the generator bid data on a six-month delay.  
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constraints on generator dispatch including unit commitment, transmission constraints, and 

operating reserves are ignored.  Real market prices are much higher than would be predicted by 

these bid curves.   

 

Figure C.2 shows the same data along with daily fitted supply curves from (8); this model has 

overall adjusted R2 = 0.942 and an overall model F-statistic of 194.  By comparing Figure 

C.2with Figure C.1, it is clear that after accounting for real-time system constraints, the supply 

curves have a much steeper slope than the bid curves even at moderate and low load.  This 

implies that small changes in load can have large impacts on price that would not be predicted by 

examining bid curves.  Supply curve slope is the most influential factor in determining the 

impact of a small change in load on price. 
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These data covering the summer of 2005 have some qualitative differences from the 2006 data 

examined elsewhere.  High price extremes were greater in 2006 because load extremes were also 

higher.  We also see that high prices were observed even on days when load was moderate or 

low.  This is because electric generators faced high natural gas prices in the fall of 2005 [104].  

Natural gas generators are more versatile in load-following and are scheduled during a few hours 

of day even when overall demand is not high.   

 

 
Figure C.1. Daily bid curves at noon (left); noon bid curves with observed data (right). 
 

 
Figure C.2. Data plotted with daily fits from (8). 
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Many analyses of demand response have assumed away the effects of system constraints outright 

and taken the implications of a constraint-free stacked bid curve to their logical conclusions [46, 

85, 102, 103].  By examining aggregate system results shown here, the magnitude of the 

discrepancy between the bid curves and actual system results becomes clear.  

 

With a fitted supply model and the observed load, I can predict what price would have been in 

any hour.  Table C.1 compares the average, minimum, and maximum prices predicted by a bid-

curve model, a supply-curve model, and the actual observed prices.  Based on this comparison it 

is clear that the bid-curve model predicts prices that are much too low, although not as low as 

they ought to be in low-load hours.  The comparison implies a $15.88/MWh average premium 

for system constraints. 

 
Table C.1. Prices observed versus predicted by bid curve and supply curve models. 

 Bid 
Curve 

Supply 
Curve Observed 

Minimum Price $21.87 $10.66  $3.34  
Maximum Price $138.73  $181.64  $204.46  
Median Price $36.97 $54.17 $53.10 
Average Price $48.57  $69.44  $69.44 

 
The comparison of prediction and observed price duration curves in Figure C.3 again show that 

bid curve price predictions are almost always too low.  The duration curve predicted by the 

supply curves is indistinguishable from the curve actually observed. 

 

 
Figure C.3. Predicted and observed price duration curves. 
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By plotting observed prices against predicted prices in Figure C.4, a richer comparison of model 

quality can be made.  If either model were perfect, then the scatterplot of predicted price and 

observed price would fall along the identity line.  In order to show how close each model comes 

to the identity line I have plotted that along with the line outputted from a linear least-squares 

regression.  Bid curve predicted prices are systematically lower than real prices, and are never 

observed in the high price region.  The odd-looking heteroscedasticity in the left graph can be 

understood by comparing it with Figure C.4, but the general conclusion that the bid curve does 

not accurately represent the characteristics of observed prices and has poor predictability with 

adjusted R2 = 0.673.  The supply curve model best fit line is indistinguishable from the identity 

line and error appears to be evenly distributed up and down except at the most extreme prices. 

 

 
Figure C.4. Observed price versus prices predicted by bid curves (left) and supply curves (right). 
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Appendix D Sensitivity of Smallest RTP Customer to Peak kW Value 

I present here a summary of the results from Chapter 19 with varying capacity costs.    

D.1 Results with $55/kW·y 

The capacity benefit and total benefit results from Chapter 19 are displayed here if the value of 

peak reductions is assumed to be $55/kW·y. 

 
Figure D.1. Average (left) and marginal (right) capacity benefits, peak reduction value $55/kW·y. 
 

 
Figure D.2. Average (left) and marginal (right) total capacity and energy benefits, peak reduction value $55/kW·y. 
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D.2 Results with $70/kW·y 

The capacity benefit and total benefit results from Chapter 19 are displayed here if the value of 

peak reductions is assumed to be $70/kW·y. 

 

 
Figure D.3. Average (left) and marginal (right) capacity benefits, peak reduction value $70/kW·y. 
 

 
Figure D.4. Average (left) and marginal (right) total capacity and energy benefits, peak reduction value $70/kW·y. 
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D.3 Results with $85/kW·y 

The capacity benefit and total benefit results from Chapter 19 are displayed here if the value of 

peak reductions is assumed to be $85/kW·y. 

 

 
Figure D.5. Average (left) and marginal (right) capacity benefits, peak reduction value $85/kW·y. 
 

 
Figure D.6. Average (left) and marginal (right) total capacity and energy benefits, peak reduction value $85/kW·y. 
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D.4 Results with $100/kW·y 

The capacity benefit and total benefit results from Chapter 19 are displayed here if the value of 

peak reductions is assumed to be $100/kW·y. 

 

  
Figure D.7. Average (left) and marginal (right) capacity benefits, peak reduction value $100/kW·y. 
 

  
Figure D.8. Average (left) and marginal (right) total capacity and energy benefits, peak reduction value $100/kW·y. 
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D.5 Results with $115/kW·y 

The capacity benefit and total benefit results from Chapter 19 are displayed here if the value of 

peak reductions is assumed to be $115/kW·y. 

 

  
Figure D.9. Average (left) and marginal (right) capacity benefits, peak reduction value $115/kW·y. 
 

 
Figure D.10. Average (left) and marginal (right) total capacity and energy benefits, peak reduction $115/kW·y. 


