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Abstract 

A number of factors, including the U.S. blackout of August, 2003, have convinced even 

some skeptics that the North American power grid is under increasing stress, and that 

restructuring has failed to attract sufficient transmission investment in areas controlled by 

regional transmission organizations (RTOs).  The architects of electricity restructuring 

hoped that the energy markets run by RTOs would encourage a vibrant non-utility 

transmission segment of the industry.  Analyses by Hogan (1992) and Bushnell and Stoft 

(1996) suggest compensating transmission investors by awarding them financial rights to 

a portion of the congestion rent along a given network path.  An allocation of these 

financial rights that respects the physical constraints of the network will yield the proper 

incentives for market-based transmission planning. 

 

This thesis addresses several issues in transmission planning and investment in the 

restructured electricity industry.  In particular, the thesis exploits topological structures 

common in actual power networks to highlight some problems with market-based 

transmission planning. 

 

The topological analysis of the power grid focuses on identifying and analyzing 

Wheatstone structures embedded in larger systems.  In other networks (such as water or 

gas pipes, the internet, and even crowd control), the Wheatstone network is associated 

with the Braess Paradox, a phenomenon where adding links to a network increases 

congestion throughout the network.  This thesis provides the first quantitative analysis of 

how the presence of a Wheatstone structure can affect the flow of power through electric 
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networks, and develops a fast heuristic algorithm to identify embedded Wheatstone 

structures, which are quite common in real networks. 

 

In power systems that use locational pricing signals to manage congestion and promote 

investment, the presence of an embedded Wheatstone network drives a wedge between 

the price signal and the underlying physical state of the grid.  Locational prices fail to 

identify the active system constraint; simply upgrading the transmission line with the 

highest congestion price fails to relieve physical congestion in the system.  The thesis 

derives conditions under which this phenomenon occurs.  One consequence is that even if 

financial congestion contracts are allocated according to the method suggested by Hogan 

(1992), investors can still profit from exploiting the Braess Paradox – that is, by 

constructing transmission lines that cause congestion rather than relieving congestion. 

 

Wheatstone networks can cause congestion, but they may be justified on the grounds that 

they increase the reliability of the network, helping to reduce the frequency of blackouts.  

Models of market-based transmission investment labor under the assumption that 

congestion and reliability are independent attributes in power networks.  New 

transmission links can be justified as providing either a reliability benefit or an economic 

(congestion-relief) benefit.  The cost of investments made for reliability should be 

socialized, while market incentives will provide for economic investments.  This thesis 

provides the first quantitative assessment of the claim that reliability and congestion are 

independent.  The thesis develops metrics to decompose a line’s reliability benefit from 

its impact on network congestion, and applies these metrics to four embedded 
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Wheatstone sub-networks in the IEEE 118-bus test system.  While it is possible to 

account separately for a transmission line’s effect on system reliability and congestion, 

the two are almost never independent quantities.  Further, the benefit of a particular 

transmission line to the network varies highly with the level of demand and the 

topological state of the rest of the system. 

 

From a policy standpoint, the analysis of Wheatstone networks in this thesis suggests that 

the debate over transmission investment, at least in areas that have undertaken 

restructuring, has been misguided.  The principal problem is not with non-utility 

transmission, but in the way that RTOs have proposed to compensate non-utility 

transmission investments.  RTOs should stop trying to attract transmission investment by 

offering financial contracts based on locational spot-market prices.  RTOs and their 

regulators also need to realize that the network benefit of a given transmission project 

depends critically on identifying the relevant range of demand and the state of the system, 

both at the time of construction and into the future.  Under restructuring, the transmission 

planning problem has been cast as a problem of encouraging competition under peak 

demand conditions.  It should be re-cast as a problem in risk management.  The question 

of who (utilities, non-utility transmission companies, or RTOs) should bear the 

responsibility for transmission investment is a matter of who can manage this risk at the 

lowest cost. 
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Notation Used in the Thesis 

The following notational definitions will be used consistently throughout the text.  

Additional notation will be introduced as necessary, but will not be inconsistent with the 

notation presented here. 

 

NL = Number of lines in the network 

NB = Number of buses in the network 

Sij = Transmission line connecting buses i and j 

Bij = Susceptance of the link connecting buses i and j 

Yij = Complex admittance of the link connecting buses i and j 

Xij = Reactance of the link connecting buses i and j 

θi = Phase angle at the ith bus 

Pi = Net real power injection at the ith bus; positive for net generation and negative for 

net withdrawal 

PLi = Real power demand at the ith bus 

PGi = Real power demand at the ith bus 

δij = Phase angle difference between buses i and j 

Fij = Real power flow between buses i and j 

πi = Nodal price at bus i 

μij = Shadow price of transmission between buses i and j 

Ci = Total cost function at the ith bus. 

MCi = Marginal cost function at the ith bus, equal to dCi/dPi. 

di = Number of buses connected to bus i (that is, the degree of bus i). 
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B = (NB × NB) system susceptance matrix 

Bdiag = (NL × NL) diagonal matrix of line susceptances 

X = (NB × NB) system complex reactance matrix 

Y = (NB × NB) system complex admittance matrix 

Z = (NB × NB) system complex resistance matrix 

N = (NB × NB) node-node adjacency matrix 

A = (NB × NL) system node-line adjacency matrix 

P = (NB × 1) vector of bus injections 

F = (NL × 1) vector of line flows 

θ = (NB × 1) vector of bus angles 

δ = (NL × 1) vector of bus angle differences 

pk = (NB × 1) vector of net bus injections by the kth grid participant 

π = (NB × 1) vector of nodal prices 
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Chapter 1: Electric-Industry Restructuring and Patterns in 

Transmission Utilization 

 

 

On August 14, 2003, a cascading failure in the eastern portion of the North American 

electric transmission grid blacked out 50 million people in the United States and Canada.  

Outages occurred in an area stretching from roughly Chicago to New York.  The blackout 

did not consist of a completely covered area, with many systems in between able to island 

themselves and avoid massive interruptions.  A joint investigation of the blackout, 

undertaken with the cooperation of the U.S. and Canadian governments, placed the 

economic cost of the blackout at $6 billion (U.S.-Canada Power System Outage Task 

Force 2004). 

 

The official report issued by the joint U.S.-Canadian task force avoided laying blame for 

the blackout at the feet of restructuring in the electric power sector.  The task force 

concluded that the blackout resulted from the failure of a specific utility to follow 

industry reliability guidelines.  Maintenance of rights-of-way was not performed 

properly, causing power lines to sag into tree branches.  Control-center operators lacked 

situational awareness due to computer problems.  Even if the control-center computers 

had been operating properly, the report also noted that the operators themselves lacked 

sufficient training to deal with emergencies (U.S.-Canada Power System Outage Task 

Force 2004). 
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Other observers are convinced that restructuring had at least some role to play in how the 

August 2003 blackout proceeded.  Ilić (2003), Joskow (2003) and Joskow and Tirole 

(2005b) have been particularly vocal proponents of this view.  Joskow and Tirole (2005b) 

argue that the current market institutions and vertical dis-integration that characterize 

restructuring in the U.S. do not provide the right incentives for reliability investment such 

as the construction of beneficial new transmission projects or the maintenance of existing 

transmission paths.  Ilić (2003) argues that restructuring has upset the utility hierarchical 

control paradigm without a sufficient new operating regime to take its place.  Further, the 

competitive aspect of restructuring has discouraged the sharing of information among 

control areas who may be potential competitors.  While remaining agnostic regarding its 

cause, Hines, Apt, Liao, and Talukdar (2006) note that the frequency of large blackouts 

appears to be increasing. 

 

1.1 Electricity Restructuring in the United States1 

For years, the fundamental building block of the electric power sector was the 

vertically-integrated utility.  Roughly speaking, the electric power supply chain has three 

links: generation, transmission, and distribution.  Generators are electric power stations 

that produce electricity by various means, including the burning of fossil fuels or waste 

products, harnessing kinetic energy of water and wind, and nuclear fission.  The various 

generators, which are often located large distances from consumption centers, connect to 

a high-voltage transmission network.  Closer to the point of consumption, the 

transmission network is connected (through a series of step-down transformers) to a 

                                                 
1 This section borrows heavily from Blumsack, Apt, and Lave (2005). 
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lower-voltage distribution network.  A second series of transformers connects individual 

customers to the distribution network. 

 

Most electric utility customers in the United States have never known anything except the 

vertically-integrated monopoly provider, regulated on a state-by-state basis.  Up until 

restructuring laws took effect in the mid 1990s, the electric utility industry had not seen 

any radical changes in organization for over eighty years.  As a result, the utility business 

could have been variously described as stable (if you were an investment manager 

choosing stocks for widows and orphans) or dull (if you were a recent business-school 

graduate looking for a high-flying career).  Things were not always this way.  The 

electric utility industry emerged in the late 1800s, alongside the oil industry.  Far from 

being stable or dull, the early decades of the U.S. electric power industry were marked by 

intense competition, corruption, and monopolization. 

 

Regulatory reform in the U.S. electricity industry was not primarily aimed at disrupting 

the existing industrial structure, although it did result in divestitures by many formerly 

vertically-integrated firms.  First and foremost in the minds of policymakers was cost 

control (de Vries 2004).  Figure 1.1 shows the retail price of electricity in the United 

States for the residential sector (primarily homes and apartment buildings) from the 

industry’s beginnings in the 1800s through 2002.  Up until the 1970s, power prices 

generally fell every year with few exceptions.  The trend reversed itself beginning in the 

early 1970s; power prices in the U.S. have been rising ever since.  The cost of electricity 
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to residential consumers in the United States is now, in real terms, roughly the same as it 

was in the 1920s. 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.1. Residential Price of Electricity in the United States, in current-year cents per 
kilowatt-hour.  Source: Morgan et. al. 2005. 
 

The initial step in electric industry reform was the Public Utility Regulatory Policies Act 

(PURPA), passed by the U.S. Congress in 1978.  The goals of PURPA were twofold.  

The first was to reduce the reliance of the electric power industry on crude oil, and the 

second was to introduce competition.  Prior to PURPA, only regulated utilities could own 

and operate power plants.  PURPA paved the way for unregulated independent power 

producers (IPPs) to begin operating in the United States and forced electric utilities to 

purchase energy from these IPPs under long-term contracts. 
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In 1992, Congress expanded the field of eligible players in the electric power industry 

with the passage of the Energy Policy Act (EPAct).2  The 1992 EPAct allowed for 

unregulated IPPs that did not have long-term contracts.  These generators would simply 

be allowed to generate electricity and sell it to traditional utilities at whatever price the 

market would bear.  Hoping to promote risk management and competition in electricity 

the same way that it had developed in natural gas and crude oil (de Vany and Walls 1993, 

van Vactor 2004), the 1992 EPAct also allowed for the wholesale trading of electric 

power as a commodity.  Brokers and marketers (who may or may not have owned any 

physical assets) were now allowed to buy and sell electricity.  Bilateral trading for bulk 

power began in earnest, particularly in the Western U.S. (Lehr and van Vactor 1997).3 

 

Although electricity reform in the U.S. happened largely on a state-by-state basis, nearly 

all restructuring plans have shared a number of common traits.  Most electric-sector 

reforms at the state or regional level have included most, if not all, of the following 

components: 

 

1. Vertical dis-integration of the generation, transmission, and distribution 

businesses of regulated utilities.  In some places, dis-integration was brought 

about through explicit divestiture, while in other places a “Chinese Wall” has 

                                                 
2 So as not to avoid confusion with the more recent Energy Policy Act, passed in 2005, we will refer to the 
Energy Policy Act of 1992 as the 1992 EPAct. 
3 Bilateral trading had been underway in the West for a number of years prior to EPAct.  In 1987, the 
Federal Energy Regulatory Commission (FERC) approved the Western Systems Power Pool (WSPP), 
which allowed utilities in the Western Interconnect to trade surplus electric power at market-based rates.  
Its success paved the way for the EPAct (van Vactor 2004). 
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been erected, limiting flows of information between different parts of the 

business. 

 

2. The creation of centralized hourly and day-ahead spot markets for wholesale 

electricity, ancillary services, and capacity. 

 

3. The designation of a single entity to manage regional transmission grids and 

(often times) to operate the hourly spot market.  These entities are known as 

Independent System Operators (ISO) or Regional Transmission Organizations 

(RTO). 

 

4. Introduction of retail competition, where individual consumers are able to choose 

between the utility and a third-party supplier for their electric generation needs.  

Although the purchase of generation is open to competition, distribution (delivery 

to ultimate consumers) has typically remained regulated.  In some states, retail 

competition has been limited to large industrial customers. 

 

5. Utilities have been given some provision to recover “stranded costs” – debts 

incurred during the regulated era that would leave the utility unable to compete in 

the deregulated era.  Debts remaining from investments in nuclear power plants 

and PURPA contracts are often included in a utility’s stranded costs. 
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Individual states have not been entirely free to design their own reform programs.  Order 

888, passed by the Federal Energy Regulatory Commission (FERC) in 1996, required 

that all transmission owners provide non-discriminatory access to their transmission 

lines.  FERC Order 2000, passed in 2000, required all transmission owners to form or 

join an RTO.  While most areas appear to be compliant with the open-access directive 

under Order 888, the formation of RTOs has been somewhat slower.  At this point, the 

entire northeastern U.S. and much of the Midwest have RTOs approved by the FERC.4  

These FERC-approved RTOs represent less than half of the geographic area of the United 

States (excluding Alaska and Hawaii), and approximately two-thirds of U.S. demand 

(Morgan et. al. 2005, Krellenstein 2004). 

 

The primary effect of industry restructuring on the transmission grid has been to change 

the level of, and protocols regarding, access to the network.  Prior to Order 888, bilateral 

transactions traversing a number of different control areas (known as “wheeling” 

contracts) required the purchase of some form of transmission service from each control 

area being traversed.  At the most general level, transmission service was available in two 

varieties.  Non-firm service was cheaper, but was the first to be revoked during 

contingencies (see the discussion of transmission loading relief events in Section 1.2).  

Firm service was more expensive and accordingly less risky. 

 

Under restructuring, congestion in the grid has largely been managed using price signals 

rather than command-and-control procedures.  Many centralized markets in restructured 

                                                 
4 Texas and California have functioning institutions nearly identical to RTOs.  Since the Texas electric grid 
does not cross any state lines, FERC has no jurisdiction over Texas.  At the time of this writing, California 
was in the process of seeking FERC approval of its RTO. 
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areas generate a set of nodal prices through the operation of the spot energy auction.  

Differences in nodal prices indicate congestion on the network (Bohn, Caramanis, and 

Schweppe 1984, Hogan 1992), and the market operator collects these congestion 

payments from market participants in the network. 

 

Electricity markets established by the major restructuring initiatives in the U.S. have 

largely been focused on the spot market, which includes contracts traded one day prior to 

delivery and sooner.  This stands in contrast to many other commodity markets, such as 

crude oil, in which “spot” markets comprise contracts for delivery days to years ahead of 

time (van Vactor 2004).  Many centralized RTO electricity markets have established 

longer-term markets for financial transmission rights (FTR), which essentially are swaps 

contracts defined over differences in nodal prices.  But no RTO has established a 

long-term centralized spot market for electric energy.  At the onset of electric 

restructuring, the New York Mercantile Exchange, the Chicago Board of Trade, and the 

Minnesota Grain Exchange all sought to capitalize on the industry enthusiasm for bulk 

power trading by offering electricity futures contracts; all have been dismal failures, 

achieving nowhere near the trading volumes seen in benchmark energy futures such as 

crude oil and natural gas. 

 

1.2 Trends in Transmission Investment and Utilization 

Prior to industry restructuring, transmission planning was largely performed at the level 

of the individual utility (Hirst and Kirby 2001).  In the electric utility system, the 

transmission network fills two roles.  First, it acts as a vehicle for delivering power from 
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the utility’s generators to its distribution network (and on to individual end users).  

Second, it acts as a physical hedge against the possibility of outages at generating 

stations. 

 

Thus, system reliability has been the main driver of traditional utility transmission plans.  

Reliability itself has always been somewhat poorly defined, but reflects the goal that the 

system should be redundant enough to avoid service interruptions even in the face of 

contingencies.  Examples of some common reliability metrics are: 

 

1. The N – k criterion; whether the system can continue to provide uninterrupted 

service to customers in the face of a contingency in which k out of N pieces of 

equipment are lost, damaged, or otherwise disconnected from the network; 

2. the Loss of Load Probability (LOLP), defined as the probability over some period 

of time that the network will fail to provide uninterrupted service to customers; 

3. the Loss of Energy Expectation (LOEE) and Loss of Energy Probability (LOEP), 

defined as the expected amount and proportion of customer demand not served 

over some time frame. 

 

For very large N, which can easily grow into the tens and hundreds of thousands in actual 

power systems, once k grows larger one, verifying that the network satisfies the N – k 

criterion becomes computationally burdensome.  While the optimal transmission 

planning problem may be easy to write down (see Section 1.3 for a mathematical 

formulation), it is very difficult to solve.  Actual transmission planning studies consider 
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multiple scenarios involving peak demand, new investments, and contingencies.  Thus, 

the correct characterization of the transmission planning process is a heuristic or (at best) 

local optimization problem rather than a global optimization problem. 

 

The magnitude of the August 2003 blackout led Bill Richardson, former U.S. Secretary 

of Energy, to declare that the North American transmission infrastructure was more 

comparable to that of a poor, developing nation than a rich, industrialized nation.  

Although the comparison was made to drive home the point that more of society’s time 

and wealth ought to be directed towards preventing large-scale electricity interruptions, 

the phrasing does question the adequacy of the North American transmission grid, and 

even “adequate” should be defined. 

 

 

Figure 1.2. The North American transmission grid is divided into three separate pieces 
and multiple coordinating regions.  Source: North American Electric Reliability Council 
(NERC). 
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According to the U.S. Energy Information Administration (EIA), the United States has 

160,000 miles of high-voltage transmission infrastructure, apportioned among three 

reasonably independent regional networks.5  These networks are shown in Figure 1.2.  

The Rocky Mountains divide the North American grid into its two major Western and 

Eastern components.  Much of Texas is on its own system as well.  Back-to-back DC 

Interconnections link the three independent grids, but power transfer between them is 

minimal, and it is reasonable to think of the systems as being completely separated. 

 

Total transmission capacity on the grid amounts to approximately 140,000 gigawatt-miles 

(Hirst 2004), compared to a total peak generating capacity of 1,000 gigawatts.  Thus, in 

the aggregate, enough transmission exists to transport many times more electric power 

than is currently produced.  Resistive losses limit the amount of energy that can be 

transmitted over very long distances, but transmission capacity is generally not a scarce 

resource. 

 

Problems in the transmission grid are not related to the amount of capacity, but rather the 

configuration of existing capacity, as shown in Figure 1.3.  The original purpose of the 

transmission grid, as built and operated by vertically-integrated and regulated utilities, 

was to transport large volumes of power from central-station generation owned by the 

utility to the distribution network owned by the utility, for sale to the utility’s ultimate 

consumers.  With the advent of industry restructuring and the creation of centralized 

regional spot markets, owners of inexpensive generation have found new profit 

opportunities selling into new high-priced markets.  
                                                 
5 EIA web site, http://www.eia.doe.gov/fuelelectric.html. 
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 Figure 1.4 shows an order-of-magnitude summary of these profit opportunities (without 

transmission costs) for a utility in the Southeast looking to sell into the Pennsylvania-

New Jersey-Maryland (PJM) spot market.  In effect, the contract path for these 

transactions may cross multiple utility control areas; the real effect is to alter the inter-

regional dispatch of power plants.  The end result is to increase the amount of power that 

is “wheeled” between control areas, as shown in the right-hand panel of Figure 1.3. 

 

 

 

 

 

 

 

 

Figure 1.3. Electric-industry restructuring has increased the demand for long-distance 
transactions crossing multiple control-area boundaries. 
 

The increase in demand for the transmission system to support such “economic” 

transactions can be measured in two different ways.  In restructured areas, the increase in 

demand should be reflected in higher congestion revenues collected by the market 

operators.  Table 1.1 shows the total and average congestion payment for the PJM 

system.  Using the average congestion payment as a metric allows comparison across 

years for PJM, whose territory has been expanding.  Congestion payments in PJM have  
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Figure 1.4. Generators in the Southeast could often make money selling into the PJM 
market.  The figure plots the difference between the hourly market price in PJM and the 
marginal cost of generation in SERC (at the level of hourly demand in PJM).  Marginal 
costs are calculated using average heat rates from the Environmental Protection Agency 
E-GRID database, and PJM load and market price data.  The calculations assume a coal 
price of $25/ton, oil at $55/bbl, and natural gas at $5/mmbtu.  The marginal costs of 
nuclear, hydro, and wood/waste facilities are assumed to be 3.5cts/kWh, 1.5cts/kWh, and 
4cts/kWh. 
 

 

 

 

 

 

 

Table 1.1. Congestion costs in PJM, 1999 – 2005.  Source: PJM State of the Market 
Reports, available at http://www.pjm.com. 
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grown by a factor of nearly ten, increasing from $0.3 per MWh in 1999 to over $3 per 

MWh in 2005.6 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. TLR levels and procedures.  Source: NERC. 

 

Some areas of the U.S., particularly in the Southeast, have chosen not to go forward with 

restructuring as in the Northeast.  These areas do not manage congestion using price 

signals, and so there is no publicly-available congestion cost for these areas.  Traditional 

utilities use a command-and-control procedure known as transmission loading relief 

(TLR) to manage congestion.7  TLR relieves congestion in a hierarchical fashion.  If a 

                                                 
6 The congestion payment only includes congestion revenue collected by the grid operator.  It does not 
reflect the social cost associated with having to dispatch generation out of merit order due to congestion in 
the transmission network.  This issue will be discussed further in Chapter 2. 
7 TLRs are still used to some degree in restructured areas.  It is interesting to note that for the period 
between 2000 and 2005, no TLRs were issued in the Western Interconnect.  See 
ftp://www.nerc.com/pub/sys/all_updl/oc/scs/logs/trends.htm. 

TLR Level System Operator Action

1 Inform neighboring system operators of possible 
operating limit violations.

2 Freeze interchange amounts; no new transmission 
service granted.

3 Curtailment of non-firm transmission customers, first 
on a pro rata basis and then on a priority basis.

4 Firm transmission allowed up to contingency 
operating limits.

5a Pro rata curtailment of firm transmission service.

5b Curtailment of firm transmission service on a priority 
basis.

6 Emergency measures, including load shedding.

0 End of TLR Event.
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transmission-owning utility is forced to call a TLR event, the holders of non-firm 

transmission service rights are told first that their access to the transmission system will 

be restricted or eliminated for the duration of the event, followed by holders of firm 

transmission service.  Thus, a utility calling a TLR event essentially voids the 

purchase/sale contract held by the generator or load involved in the wheeling transaction.  

The TLR procedure is summarized in Table 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Transmission Loading Relief Events, 1997 – 2004.  Source: NERC. 

 

The number of annual TLR events called  (of at least Level 2, when no incremental 

requests for transmission service can be honored) is shown in Figure 1.5.  The frequency 

of TLR events has increased by several orders of magnitude since NERC records began 



16 

in 1997.  Not reflected in Figure 1.5 is the geographic or magnitude distribution of TLR 

events over time.  Aggregate data collected by NERC indicate that most TLR events are 

called in the Midwestern and Mid-Atlantic portions of the Eastern Interconnect, 

indicating that transmission bottlenecks tend to occur at the upstream end of a given 

transaction, rather than in intermediate control areas or areas closer to generators. 

 

Whether TLRs or congestion payments are the metric of choice, the data indicate that 

certain portions of the transmission system are in very high demand.  Economists usually 

expect that high prices encourage entry and new sources of supply, but this has largely 

not happened in the North American transmission grid.  Hirst (2004) discusses the 

decline in transmission investment since the mid-1970s.  On average, transmission 

investment has fallen by $50 million per year during this period.  However, transmission 

investment has actually risen since 2000; Hirst (2004) does not discuss any possible 

reason.  Joskow (2005a) claims that this investment largely represents incremental 

upgrades to low-voltage lines and should not be seen as representative of investment in 

the transmission grid as a whole. 

 

The U.S. experience has shown that in the restructured electricity environment, 

investments in needed transmission will only occur with the aid of political will.  

Transmission projects with clear social benefits have taken years to complete or gain 

approval, if they have gotten approval at all.  Success stories include the Path 15 

expansion linking Northern and Southern California (Awad et. al. 2004) or the 

Cross-Sound transmission line linking Southeastern Connecticut with Long Island 
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(Krellenstein 2004).  Notable failures include a proposed line linking New York City 

with generators in upstate New York.  Krellenstein (2004) reports that although the 

project was demonstrably beneficial, already had rights-of-way, and faced little 

opposition, it did not go forth due to lack of funding.  Perhaps learning from the 

experience of New York, the governors of four Western states have recently put their 

political muscle behind the Pioneer Line linking coal-fired generation in Montana and 

Wyoming with demand centers in California. 

 

1.3 The Transmission Planning Problem 

In the regulated electric utility industry, the primary function of transmission planning is 

to identify the least-cost set of investments necessary to support a defined level of system 

reliability.  Models of transmission planning can be static, in which the problem is 

formulated for a single state of the electric network, or dynamic, in which certain state 

variables (particularly demand) are allowed to vary over time.  Either way, the key 

feature of these models is that they link the investment problem with the operations 

problem. 

 

This coupling is particularly simple for the static transmission-planning problem since the 

investments only need to support one operations scenario.  One possible formulation of 

the static problem using the lossless DC power flow equations is (Garver 1970, Seifu, 

Salon, and List 1989, Romero and Monticelli 1994): 
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),( max
ijijij FBC  in equation (1.1) represents the cost of transmission additions between 

nodes i and j (whether those additions amount to upgrades of existing paths or the 

connection of two nodes that were previously unconnected), S is the set of existing links 

in the transmission network, PG is the set of generators in the network, and Ω is the set of 

possible additions to the transmission grid.  Thus, the set )( GPS ∪Ω∪ represents all of 

the generation and transmission equipment in the upgraded network.  The problem 

formulation in equation (1.1) only considers additions to the transmission infrastructure, 

and not the generation infrastructure.  The notation 1)( −∪Ω∪ GPS  indicates the set of 

network equipment (generators and transmission lines) with one piece of equipment 

removed.  Thus, the constraint 
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 represents the N – 1 reliability 

criterion.  Coxe and Ilić (1998) provide a mathematical formulation of other reliability 

criteria, such as the loss of load probability. 
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The dynamic transmission-planning problem considers the evolution of transmission 

investments over time as the network changes in various ways.  Focusing on changes in 

customer demands throughout the network, the expected-cost minimizing dynamic 

transmission investment problem can be written as (Yu, Leotard and Ilić): 
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In equation (2.2), ΩT represents the set of possible investments over a T-period time 

horizon (which may differ from the set of possible investments for the static problem), r 

is the discount rate, and ))(,( tPtg Li  represents the law of motion for electricity demand at 

the ith bus.  The remainder of the notation is identical to the static problem, but with the 

time dependency formulated explicitly. 
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The formulation in equation (1.2) incorporates uncertainty in demand, but does not fully 

incorporate uncertainty in the network topology (beyond the N – 1 constraint), nor does it 

capture generator reliability criteria such as the reserve margin.  Yu, Leotard, and Ilić 

provide a formulation in which the matrix of network distribution factors is uncertain 

along with the level of demand at each bus.  The use of expected values to capture 

uncertainty in equation (1.2) assumes that the utility planner is a risk-neutral decision-

maker essentially solving a rational expectations problem.  In the real world, planners 

often consider the value-at-risk (variance) in addition to the expected values of uncertain 

system variables. 

 

A number of numerical methods exist for solving either the static problem (1.1) or the 

dynamic problem (1.2) to produce a static or dynamic optimal transmission investment 

plan; Latorre et. al. (2003) provide a review and extensive list of references.  The 

literature on optimal transmission planning has generally divided the universe of solution 

methods into optimization routines which seek explicit solutions to problem (1.1) or 

(1.2), and heuristic or scenario-based methods.  Since scenario-based modeling involves 

choosing a number of different (usually peak) demand profiles and finding the 

corresponding optimal transmission plan, this method can be viewed as a hybrid of the 

static and dynamic approach. 

 

Optimization models for transmission planning in the literature tend to use small test 

systems as examples.  Real systems have tens of thousands of pieces of equipment.  Thus, 

finding the optimal transmission plan is a computationally intensive problem.  In practice, 
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transmission planners have favored scenario-based methods for deciding among 

competing investments.  As Hirst (2001) points out, the scenarios run by utility 

transmission planners generally do not themselves suggest the best set of transmission 

investments.  Instead, the scenarios are used to determine which investments improve 

system reliability (subject to performance constraints) and which do not.  The planner, 

not the model, chooses the transmission investment plan according to implicit or explicit 

criteria (also chosen by the planner, and not the model). 

 

A notable feature missing from the transmission-planning problem, as formulated in 

equations (1.1) and (1.2), is an explicit cost-benefit test for individual plans or 

investments.  Historically, utility system planning has been done with reliability in mind, 

not cost or economics (Coxe and Ilić 1998, Joskow 2005b).  Reliability constraints drove 

the need for upgrades or new hardware.  Since prices and profits were set by regulators, 

the effect of particular investment plans on electricity rates was a by-product of the 

planning exercise and not an input to the planning problem. 

 

1.4 Integrated Resource Planning and System Planning Under Competition 

In practice, monopoly utility transmission planning has historically been one part of an 

integrated resource planning process (IRP), which seeks to find the lowest-cost set of 

resources that satisfy a given set of generator and transmission reliability criteria.  

Conceptually, the IRP sounds very similar to the planning problem formulated in 

equations (1.1) and (1.2).  However, as Coxe and Ilić (1998) note, utilities often broke up 

the single IRP problem into sequential sub-problems.  Given some expectation for load 
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growth in the system, the first stage of the IRP would involve generator reliability and 

contingency planning.  The utility would plan to have a sufficiently large reserve margin 

to meet expected peak load, and would also choose the appropriate fuel mix to reduce 

dependency on any one technology.  Once the generation-planning stage of IRP was 

complete, the utility would run a series of power flow studies to examine the effects of 

particular transmission enhancements to support the generation investments.  Thus, utility 

transmission planning is inherently suboptimal in the sense that IRP does not solve the 

transmission-planning problem formulated in Section 1.3.  Instead, it solves a sequence 

of problems and there is no guarantee that the solution to the sequence of problems is 

identical to the solution of the problem which jointly optimizes generation and 

transmission.8 

 

With respect to the system planning process, the most important feature of introducing 

competition and markets into the electric power industry is that (at least to some degree) 

the responsibility for generation and transmission reliability falls on decentralized 

decision-makers rather than a single centralized utility.  In the restructured industry, the 

transmission planning process must also accommodate the market for electric energy 

along with investment and operations decisions.  Decentralized decision-makers in the 

restructured energy market take prices as an input to the planning and investment 

problem.  This is in contrast to the utility planning problem, which is primarily concerned 

with reliability and does not consider any possible tradeoffs between prices and 

reliability.  

                                                 
8 Systems dominated by hydroelectric capacity (such as Brazil) represent a possible exception, since the 
marginal cost of generation is very low in these systems.  
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Under industry restructuring, the investment problem is turned on its head.  Decentralized  

players in the electricity market make investment decisions based on market prices (and 

expectations of future market prices.  Thus, the planning and operations problems 

become decoupled in the restructured power industry.  If operations decisions are left 

entirely to the energy market, then the operations problem becomes the market-maker’s 

problem (or a decentralized decision problem, if there is no explicit market-maker).  A 

major policy question and subject of this thesis is the degree to which the market can 

solve not only the short-term operations problem, but also the longer-term transmission-

planning problem. 

 

1.4 Outline and Contributions of the Thesis 

This thesis addresses some technical and policy issues related to competition and 

planning in the transmission network, with special attention to the restructured 

environment.  The prospect for non-utility or “merchant” transmission investment will be 

of particular interest, especially given the decline in utility transmission investment amid 

changes in the regulatory structure of the industry.  The goal of this thesis is to provide 

some quantitative analysis aimed at redefining the transmission investment problem in 

the restructured electric power industry.  The architects of restructuring originally hoped 

to define the transmission infrastructure as an input to competition, much like power 

generation infrastructure.  While it is true that transmission is necessary to facilitate 

competition among generators, this is not the defining element of the transmission 
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system.  This thesis offers the following four policy lessons for transmission management 

and investment: 

 

1. A market-based solution to the transmission problem is neither workable nor 

economically efficient.  At best, compensating new transmission with contracts 

based on nodal prices will not encourage investors to relieve congestion fully.  At 

worst, it may encourage investors to build lines that further congest the network. 

2. Eliminating congestion is a more complex problem than simply upgrading the 

most congested line.  The thesis discusses a network topology, common in actual 

networks, known as the Wheatstone system.  In this system, congestion can only 

be relieved by upgrading multiple lines, or by removing certain other lines.  

Neither remediation option is suggested by looking at nodal prices or the shadow 

prices of transmission.  An enlightened knowledge of the topological properties of 

the network is required to efficiently identify and deal with these constraints. 

3. Reliability and congestion are not independent.  Underlying the premise for 

non-utility transmission is the notion that transmission investments can be cleanly 

divided into those that enhance reliability and those that relieve (or create) 

congestion.  In meshed networks, this is simply not the case.  Over certain ranges 

of demand, reliability and congestion reflect tradeoffs faced by network designers. 

4. The transmission problem is a systems problem, not a competition problem.  

Transmission must facilitate competition among generators, but attempts to frame 

transmission investment as a competitive problem will not get beneficial lines 

built.  The correct way to define the transmission problem is as a risk-
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management problem.  The most efficient institution for transmission investment 

is thus the one that can bear the risks at the lowest cost. 

 

The quantitative analysis behind these five policy lessons is developed in Chapters 2 

through 6. 

Chapter 2 provides a brief outline of proposed mechanisms to encourage and 

compensate transmission investment using market-based signals.  The two competing 

models are the point-to-point financial transmission rights formulation of 

Hogan (1992) and the path-based flowgate formulation of Chao and Peck (1996).  

Bushnell and Stoft (1996, 1997) have shown that, given a certain set of economic 

assumptions, the FTR formulation allows market participants to hedge locational 

price risk in the energy market and gives investors efficient signals for the 

construction of new transmission infrastructure. 

 

Chapter 3 provides a steady-state analysis of the Wheatstone network structure.  

Using the method of Ejebe and Wollenberg (1979), we are able to derive an explicit 

expression describing how flows in the network change once the Wheatstone bridge 

is added.  Thus we can explicitly calculate the conditions necessary for the bridge to 

cause congestion in the network. 

 

In Chapter 4, the Wheatstone network is presented as a counterexample to the FTR 

investment efficiency theorems of Bushnell and Stoft (1996, 1997).  Even if all of the 

restrictive economic assumptions required for the FTR theorems to hold were 
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realistic, investors can still profit from congesting the network by building 

Wheatstone bridges. 

 

The properties of the Wheatstone network, and its implications for operations and 

planning, are easy to decipher in a standalone test network.  Real networks are more 

complicated and interconnected.  Thus, there is some value to being able to detect 

Wheatstone sub-networks within larger systems.  Chapter 5 discusses a 

graph-theoretic method to find embedded Wheatstones and demonstrates the method 

on a modified version of the IEEE fourteen-bus test case. 

 

Chapter 6 applies the search algorithm developed in Chapter 5 to the IEEE 118-bus 

test system, and tackles the question of whether congestion and reliability are really 

independent system attributes.  The Wheatstone test network is interesting because 

while the bridge causes congestion in the network, it may also provide a reliability 

benefit in the case of a line outage.  Chapter 6 analyzes four Wheatstone 

sub-networks within the IEEE 118-bus network, and finds that the congestion-

reliability tradeoff holds for embedded Wheatstones just as it does for standalone 

Wheatstones. 

 

Chapter 7 concludes by attempting to reformulate the transmission investment 

problem for the restructured electric power industry.  Based on the problems with the 

merchant model, Chapter 7 suggests several alternative structures.   The proposals 

range from redefining the compensation mechanism for non-utility transmission to 
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eliminating the merchant transmission sector entirely and having the utility or RTO 

build transmission infrastructure on a regulated basis.  Ultimately, the most efficient 

institutional structure depends on who can use the transmission network to manage 

risk at the lowest cost. 
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Chapter 2: The Economics of Transmission Congestion and 

Market-Based Transmission Planning 

 

Investment in the North American transmission grid has been declining for decades 

(Hirst 2004), while demand for the grid as a transportation network to serve long-distance 

wholesale bulk power contracts is rising.  The increase in demand for transmission 

service is reflected in rising RTO congestion costs and larger numbers of TLR events 

(Joskow 2005b, Blumsack, Apt, and Lave 2006).  Prior to industry restructuring, 

investment in beneficial transmission projects was a matter of securing rights-of-way and 

persuading regulators to allow costs to be passed through to consumers.  The regulatory 

process had high costs and served to inefficiently delay beneficial investments 

(Martzoukos and Teplitz-Sembitzky 1992, Saphores et. al. 2004), but at least the 

institutional framework was well-defined. 

 

Electricity restructuring sought to interrupt this institutional framework by separating the 

businesses of formerly integrated utilities, but without sufficient thought given to a 

replacement framework.  FERC assigned responsibility for regional transmission 

planning to the RTO, but left unclear which entity was supposed to implement the RTO 

transmission plans and how investors would be compensated.   

 

One option is to keep the old institutional framework in place, with transmission 

remaining a regulated monopoly enterprise.  The RTO would conduct regional 
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transmission plans, presumably with the cooperation and input of the utilities in its 

footprint, seeking approval from individual state regulators as was done before 

restructuring.  Regulators would decide whether a given project could be included in the 

rate base.  Joskow (2005b) has noted that nearly all transmission projects built since 

restructuring have, more or less, followed this model.  Keeping transmission a regulated 

enterprise would work, but the RTO introduces a new layer of regulation, in addition to 

FERC and the state public utility commission.  This comes at a cost of increased 

complexity in the planning and approval process, as illustrated in Figure 2.1.  Vajjhalla 

and Fischbeck (2006) have noted that costs involved in the siting and approval process 

are roughly identical to the capital cost required to actually construct a transmission line. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Keeping transmission as a regulated utility business is feasible under industry 
restructuring, but the mix of federal and state jurisdiction would increase the complexity 
of the process. 
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Note that the level of complexity in the right-hand panel of Figure 2.1 would remain 

roughly the same even if the RTO were responsible for transmission planning and 

construction (leaving the utility completely out of the loop).  The reason for this is that 

the states, and not FERC, currently have jurisdiction over transmission regulation.  

Transferring regulation of transmission infrastructure to FERC would reduce the level of 

complexity; the Energy Policy Act of 2005 takes a step in this direction by directing 

FERC to expedite the siting process for upgrades to designated transmission corridors.1 

 

Another option is to rely on market signals to spur investment, particularly among the 

non-utility or “merchant” sector of the industry.  The merchant generation sector invested 

very actively during the early years of RTO market operations, with nearly 50 gigawatts 

of new generating capacity connecting to the grid between 1998 and 2002 (Joskow 

2005a).  The merchant generating sector worked on the simple principle of arbitrage.  

Generators would sell into regional spot markets whenever they expected to be 

inframarginal in the dispatch order – that is, when the expected spot price would exceed 

their generating cost.  Merchant transmission was expected to work on much the same 

principle.  Nodal spot prices would form the basis for the investment decisions of 

transmission-only companies, and would determine the return earned on their 

investments.  This “contract network,” originally envisioned by Hogan (1992), has not 

been successful in encouraging transmission investment.  Joskow (2005a) notes that the 

U.S. has yet to see a transmission line constructed under the merchant-arbitrage 

transmission model.  The remainder of this chapter will explore the economics of 

                                                 
1 Energy Policy Act of 2005 at ¶1221.  Whether the U.S. Congress can constitutionally transfer all 
transmission regulation to FERC (under the Interstate Commerce Clause) is an interesting and unclear 
issue, but will not be discussed in this thesis. 
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transmission congestion, and will offer some explanations as to why the merchant model 

has not worked in the transmission sector. 

 

2.1. The Economics of Transmission Congestion 

Unlike automotive traffic on highways, “congestion” in a transmission line is, at least to a 

first-order approximation, not a monotonically-increasing function of the amount of flow 

through the network.  Power may be transferred across transmission lines with no penalty 

until a maximum power flow is reached.  Flow across a transmission line is governed by 

(Wood and Wollenberg 1996): 

 

).sin()1.2( jijiij VVF θθ −=  

 

Thus, for fixed voltage magnitudes, maximum power transfer between i and j occurs 

when 2/)( πθθ =− ji .  However, the point of maximum power transfer represents an 

unstable equilibrium for the system, as small perturbations in either θi or θj can move the 

system into a region where the power flow problem has no solution (Ilić and 

Zaborsky 2000).  Power engineers have traditionally set thermal limits on transmission 

line flows well below the maximum power transfer in order to avoid damage to 

equipment.  During normal operations, a more stringent set of line constraints is in effect.  

Known as stability limits, these are aimed at maintaining “the ability of an electric system 

to maintain a state of equilibrium during normal and abnormal conditions or 

disturbances” (NERC 2005).  In practice, the stability limit often pertains to maintaining 

the synchronous 60-Hertz frequency of rotating generation equipment in the network. 
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Nodal prices (also called locational marginal prices, or LMP) are calculated as 

by-products of the optimal power flow (OPF) problem for real power: 
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The LMP at the ith bus represents the marginal social cost of providing a unit of power at 

that bus.  It is equal to the marginal cost of generation at the ith bus, plus the cost of 

transporting power to that bus, broken down into the following additive components 

(Bohn, Caramanis, and Schweppe 1984, Wu et. al., 1996): 

 

1. The marginal social cost of losses; 

2. The shadow price associated with the generator capacity constraint, if it is active; 

3. The shadow price associated with the active transmission constraints on all lines 

directly connected to the ith bus. 
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Thus, in a world without transmission constraints, all LMPs are the same and are equal to 

the marginal cost of the most expensive unit dispatched.  This is known as the “system 

lambda.” 

 

The use of nodal pricing is a product of industry restructuring, and serves to signal the 

market that sending power to a given bus is socially expensive (Wu et. al. 1996).  Prior to 

restructuring, congestion was managed without these price signals, using TLRs or other 

administrative measures as discussed in Chapter 1.  The discussion that follows assumes 

the existence of a central dispatching entity (such as an RTO) that calculates LMP as in 

equation (2.2). 

 

Figure 2.2. A two-node network for illustrating the economic effects of transmission 
congestion.  When the line between buses 1 and 2 is constrained to T* megawatts, the 
generator at bus 2 earns a congestion rent equal to A + B.  Social losses are equal to the 
triangle C + D. 
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Transmission congestion is one source of differences in nodal prices, and has distributive 

effects in the system as well as effects on social welfare.  The economic consequences of 

transmission congestion are most easily demonstrated using a two-bus example, as in 

Joskow and Tirole (2005a).  The example system is shown in Figure 2.2.  Assume that an 

inexpensive generator is located at bus 1, and the load (along with more expensive 

generation) is located at bus 2.  The supply-demand diagram on the right-hand side of 

Figure 2.2 shows the supply curve at bus 1 and the (net) demand curve at bus 2. 

 

Suppose that T0 megawatts of real power are demanded at bus 2.  If the capacity of the 

transmission line is large enough to carry T0 megawatts, then the inexpensive generator at 

bus 1 will supply the entire demand at load 2.  Thus, T0 represents the socially optimal 

amount of transmission capacity between buses 1 and 2.  If the line between buses 1 and 

2 is rated to carry only T* < T0 megawatts, then some amount of load must be filled using 

the expensive generator at bus 2.  Because there is a shortfall of transmission capacity, 

the nodal price at bus 2 is higher than the nodal price at bus 1.  This creates a congestion 

rent (area A + B in Figure 2.2); each restructured system has its own method of allocating 

property rights to this congestion rent.2  In the absence of contracts for congestion or 

other allocation schemes, the congestion rent would accrue to the generator at bus 2. 

 

The presence of congestion affects economic welfare.  The shaded triangle in Figure 2.2 

(area C + D) represents the deadweight loss borne by society due to transmission 

congestion.  Increasing capacity on the transmission line to T* + k decreases the 

                                                 
2 In centralized spot markets, the RTO is the counterparty to every transaction, and thus it is the RTO who 
actually collects the congestion rent.  For this reason, Wu et. al. (1996) refer to the congestion rent as the 
merchandizing surplus. 
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deadweight loss, but this decrease is captured by whomever holds the property rights to 

the congestion rent.  Once capacity on the line is increased to T0, the congestion 

disappears, as does the congestion rent.  Consumers now enjoy a portion of the social 

surplus equal to areas A + C, while the producer surplus is equal to areas D + B.  Thus, 

congestion relief amounts to a social gain of C + D, plus a transfer equal to area A from 

those holding congestion contracts to consumers. 

 

The share of the social surplus transferred from the generator at bus 1 to the holders of 

congestion contracts is given by: 

 

(2.3) Producer surplus transferred = *)( 10 Tππ − , 

 

where π0 is the marginal cost of serving the load without congestion.  Thus, the share of 

the social surplus transferred from consumers to the holders of congestion contracts is 

given by the remainder: 

 

(2.4) Consumer surplus transferred to G2 = .*)( 02 Tππ −  

 

Given equations (2.3) and (2.4), we can calculate the total loss in producer surplus (ΔPS) 

and consumer surplus (ΔCS) as: 
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Equation (2.5) represents producer surplus lost by the generator at bus 1.  An amount 

*)( 10 Tππ −  is transferred to the holders of congestion contracts (which may include a 

mix of consumers and producers), while the remainder of equation (2.5) represents the 

social loss (borne by producers) associated with having to use the generator at bus 2 to 

serve *0 TT − megawatts of demand.  The first term in the right-hand side of equation 

(2.6) represents the consumers’ share of total social wealth lost to congestion costs, while 

the second represents the transfer from consumers to the holders of congestion contracts. 

 

Figure 2.2 can also be used to illustrate the different investment incentives faced by an 

integrated utility and a merchant transmission company under a system of nodal pricing.  

An integrated utility upgrading the line from T* to T0 would save some amount in 

dispatch cost equal to area D, but would transfer congestion rent equal to area A back to 

consumers.  Social welfare increases by C + D, but C is captured by consumers.  Thus, 

the private decision rule for the integrated utility would be to invest only if the amount 

D – A was larger than the cost of the transmission upgrade.  This is different than the 

socially optimal investment criteria, which would be to upgrade the line if area C + D 

was larger than the upgrade cost.3  Regulators may be able to force the utility to invest 

according to the socially optimal criteria, but in a deregulated market the utility generally 

would not have the incentive to fully upgrade congested lines. 

 

                                                 
3 This represents the utility’s decision rule in the absence of dynamic effects or uncertainty. 
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The appeal of non-utility transmission arises from the distribution of the congestion rent.  

Referencing Figure 2.2, a merchant that invested in a transmission upgrade would capture 

all of the incremental congestion rent associated with the capacity expansion.  The social 

benefit would be the amount by which the area C + D shrinks following the upgrade.  

The merchant would not collect this benefit; it would accrue to consumers and the 

generators (or utility) in the system.  Thus, a merchant transmission company would 

expand the line up to the point where the incremental congestion rent was equal to the 

cost of the upgrade.  Just as in the utility investment case, a merchant upgrading the 

capacity of the line from T* to T0 would transfer a portion of the congestion rent (part of 

area A) back to consumers.  If the merchant were truly a transmission-only company, then 

it would also transfer another portion of the congestion rent (part of area B) to generators 

in the system.  A merchant transmission company would never, therefore, relieve all 

congestion along a line, since the congestion rent decreases monotonically with the 

capacity of the line. 

 

Allowing investors, whether merchants or utilities, to capture congestion rents will not 

relieve all congestion in the system.  An even stronger statement is that neither a 

merchant nor a utility investor will relieve congestion to the socially efficient point, 

where the marginal social benefit of transmission upgrades is equal to the marginal 

construction cost.  The reason is that the investors do not fully capture the social surplus 

associated with the project.  Although Hogan (2003) is generally dismissive of this issue, 

concern over using market prices to compensate investments with high fixed costs and 

low operation costs can be traced back to Hotelling (1938), who considers the optimal 
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compensation mechanism for investment in a fixed piece of infrastructure such as a 

railroad or a bridge.  Hotelling’s analysis suggests that defining a benefit stream for a 

fixed-cost investment through market prices will yield an “excessively conservative” 

decision rule, relative to the social optimum (Hotelling 1938, p. 267). 

 

In the case of merchant investment, the positive externalities accrue to some mix of 

consumers and other producers in the system.  An integrated utility can do somewhat 

better; it internalizes the portion of the social surplus that would accrue to producers 

under merchant transmission.  Thus, other things being equal, it is possible that utility 

investment might get the system closer to the social optimum T0 than would merchant 

investment. 

 

2.2. Transmission Congestion Contracts 

The discussion in Section 2.1 did not mention a specific market mechanism for allocating 

property rights to the rents generated in the presence of congestion.  There is an implicit 

assumption that they would accrue to the owner of the transmission line.  Schweppe’s 

spot prices and Hogan’s contract network were originally oriented towards short-term 

efficient operation of the electric network and did not explicitly consider any long-run 

implications, although Hogan (1992) discusses long-term transmission rights co-existing 

with nodal spot prices.  Although the spot prices were conceptually simple to compute, 

interpretation was not necessarily straightforward.  Price differences between network 

nodes represent the marginal social cost of moving power from one node to another.  As 

Wu et. al. (1996) discuss, this correct interpretation was often confused with an incorrect 
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analogy to other transportation networks, in which nodal price differences signal market 

participants as to which paths are congested, and also indicate potential profit 

opportunities.4 

 

 

 

 

 

 

 

Figure 2.3. A point-to-point financial transmission right can be defined between any two 
points in the network regardless of the contract path or whether the points are connected 
neighbors. 
 

Subsequent work has thus focused on the role of the contract market to provide incentives 

and recover costs, as opposed to relying purely on the spot market.  Initially, two flavors 

of transmission rights emerged.  The first, initially suggested by Hogan (1992), and 

further promoted by Bushnell and Stoft (1996), would allow for contracts based on the 

difference in nodal prices between any two points in the grid, regardless of the presence 

of congestion on the link(s) connecting the two points.  The two points would not even 

need to be connected neighbors, as shown in Figure 2.3.  Thus, the value of the contract 

is determined as a by-product of the energy spot market.5  Such contracts were initially 

                                                 
4 Wu et. al. (1996) show that nodal price differences in power networks can arise even in the absence of 
congestion, and thus it is not unusual to see power moving from a high-priced node to a low-priced node.  
Absent the exercise of market power, in equilibrium these phenomena should not be observed in other 
transport networks. 
5 For this reason, Oren (1997) refers to these as “passive” transmission rights. 
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referred to as point-to-point transmission congestion contracts, but are now generally 

called financial transmission rights (FTRs). 

 

The revenue stream from a financial transmission right is defined over a set of two nodes 

in the grid a and b, a specified amount of time T, and a specified number of megawatts Q 

as follows: 
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It is possible for an FTR to have a negative value as well as a positive value, although 

FTRs can exist as options instead of obligations.  Hogan’s (1992) original contract 

network formulation describes a “feasibility rule” for the allocation of FTRs by the RTO.  

According to the feasibility rule, FTRs should be allocated in such a way that the total set 

could be physically dispatched without violating any of the system constraints.  The 

impetus for the feasibility rule is to provide a solvency condition for the RTO; 

Hogan (1992) and Wu et. al. (1996) prove the “revenue adequacy theorem,” which says 

that if FTRs are allocated according to the feasibility rule, the RTO will at least break 

even and cannot run an operating deficit.  In practice, FTRs have primarily been used for 

hedging transmission costs on the grid (Patiño-Echeverri 2006), although Bushnell and 

Stoft (1996, 1997) claim that they have superior efficiency properties for encouraging 

merchant transmission investment.  We will return to this second issue in Chapter 4. 
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The second type of transmission rights contract, suggested by Chao and Peck (1996) 

would involve trading transmission rights on a link-by-link basis separately from the 

energy market.  As such, these have become known as “flowgate” rights, as shown in 

Figure 2.4.  Assuming a competitive market for transmission, flowgate rights would have 

a nonzero price only in the case of congested links.  Competition should drive the price of 

flowgate rights down to the marginal cost of transmitting energy between two points.  

Thus, the outcome of the competitive market for flowgate rights could be determined 

through the shadow prices derived from Schweppe’s spot price formulation.6  The appeal 

of flowgate rights was that the contract value would reflect the value of an underlying 

physical good (i.e., transmission).  In this way, the flowgate model would more closely 

mirror the pricing model in transportation networks, where nodal price differences signal 

both the presence of congestion and the cost of transportation between the two nodes.  

Oren (1997) has also suggested that since the value of a flowgate right only needs to be 

computed for congested lines, the market for flowgate rights would be more competitive 

than for FTRs. 

 

 

 

 

 

 

Figure 2.4. Flowgate rights are defined along specific paths in the network. 
 
                                                 
6 In one sense, a competitive flowgate market would be just as “passive” as the FTR market, since the 
equilibrium prices could be determined as a by-product of the nodal price calculations. 
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Despite its appeal in connecting the financial electricity market with the underlying 

physical network, the flowgate rights model has not seen much adoption in practice; 

functioning RTOs and ISOs have largely preferred the point-to-point FTR model.  The 

most serious critique of the flowgate model has come from Hogan (2000).  Among the 

problems with administering a system of flowgate rights is that the set of available rights 

(i.e., the set of congested lines) must be known prior to the energy auction, the number of 

flowgate rights necessary to form a contract path between two points a and b is highly 

uncertain, and the capacity limits on transmission lines are not as fixed as the flowgate 

model portrays (they can change due to contingencies or outages, for example).  In 

addition, Bushnell and Stoft (1996) and Joskow and Tirole (2000) point out that under a 

flowgate rights mechanism, investors can be rewarded for building transmission lines that 

cause congestion in the grid.  The reason, as discussed by Hogan (2000), is that new links 

automatically create the potential for new flowgate rights; these rights have a positive 

value when they become congested.   

 

Hogan’s critiques of the flowgate model are all valid, particularly with respect to 

uncertainty regarding the number of congested lines in the system at a given time.  To the 

extent that market participants are unable to learn over time which paths are likely to 

become congested, and what the equilibrium value of that congestion is (contingent upon 

demand and the state of the network), similar uncertainties are likely to plague the market 

for point-to-point financial transmission rights.  Siddiqui et. al. (2005) note that 

participants in the New York FTR auctions have systematically lost money, even after 

accounting for risk preferences.  Patiño-Echeverri (2006) reports a similar pattern in PJM, 
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but infers from this that FTR market participants are more risk-averse than supposed in 

Siddiqui et. al. (2005).  The claim of Bushnell and Stoft (1996, 1997), that a 

well-designed FTR market can remove the incentives of merchant transmission 

companies to modify the grid in detrimental ways, will be the subject of Chapter 4. 

 

The one advantage of flowgate rights over FTRs would seem to be their connection to the 

underlying physical system.  For example, suppose the only line connecting points a and 

b in the network became disconnected.  In the flowgate model, rights between those two 

points would cease to be well-defined (and traded) until connection was restored.  The 

implications for an FTR market are less clear.  Holders of FTRs could conceivably 

continue to collect congestion rents on a line that, at least temporarily, does not exist. 

 

The driving force behind the debate between flowgate rights and FTRs is likely rooted in 

history and geography.  Hogan’s FTRs are a natural outgrowth of the “tight” power pools 

of the Northeast, in which multiple utility companies formed agreements to centrally 

coordinate dispatch and grid management.  Flowgate rights, birthed at Berkeley, 

complement the bilateral market structure common in the Western Systems Power Pool 

prior to deregulation in California. 

 

As Hogan (2000) points out, the ultimate reason for the adoption of FTRs over flowgates 

may be simplicity; the value of an FTR at any given time can be trivially computed once 

the energy market clears, while the flowgate model requires an entirely new set of 

markets.  Centralized electricity markets in the U.S. have historically faced large start-up 
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costs (Lave, Apt, and Blumsack 2004), so the associated costs of establishing new 

routines and software to handle the transmission-rights market may have deterred RTOs 

from embracing the flowgate model.7 

 

2.3. Other Approaches 

Gribik et. al. (2005) have considered expanding the flowgate concept to include 

admittance payments in addition to capacity payments.  The reasoning of Gribik et. al. is 

that while flow on networks is largely governed by the line admittances, FTR and 

flowgate payments are made on the basis of the line’s megawatt capacity limit.8  RTOs 

auctioning off incremental transmission rights following network expansion would thus 

expand the number of contracts awarded to include these admittance rights.  In the model 

of Gribik et. al., payments for admittance amount to transfers from holders of incremental 

capacity flowgate rights.  Thus, admittance payments expand the number of contracts 

awarded, but also amount to a zero-sum game and thus will not violate the revenue 

adequacy rule.  Of course, this also implies that the electrical properties of transmission 

lines are welfare-neutral; social wealth can neither be created nor destroyed through a 

change in admittance to a particular line or part of the system (wealth can only be 

transferred from one party to another).  Intuitively, it is difficult to see how this can be 

the case, and the examples presented in Chapters 3 and 4 will demonstrate that changes in 

the system admittance matrix can have both positive and deleterious effects on aggregate 

welfare. 

                                                 
7 In current RTO markets, FTRs are purchased in a centralized auction but can be traded several times over 
in the bilateral market. 
8 The capacity and admittance of a transmission line are first-order independent.  However, in evaluating 
the value of a line to the system, they are not necessarily separable.  Thus, the notion of separate payments 
for each has a great deal of appeal. 
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Apt and Lave (2003) have suggested a two-part tariff to fund transmission upgrades.  The 

tariff would be centrally administered by the RTO and would be similar to the 

megawatt-mile approach for costing transmission lines proposed by Yu and David 

(1997).  One part of the cost of transmitting electric energy would be the nodal price, 

calculated from equation (2.2), while the other would be a megawatt-mile charge.  Rather 

than redistributing congestion revenue through FTR or flowgate rights, congestion 

charges and the megawatt-mile fee would go into a central fund to compensate 

transmission owners.  To the extent that LMP provides incentives to keep lines congested 

rather than invest in upgrades (as described in Section 2.1), the megawatt-mile charge 

could offset this incentive problem. 
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Chapter 3: The Wheatstone Network and the Braess Paradox 

in Electric Power Systems 

 

Under industry restructuring, the transmission system is asked to fill two roles.  The first 

is to deliver power reliably to customers, and the second is to support a growing number 

of market transactions.  The current transmission grid may find these two obligations 

conflicting.  Many market transactions involve buyers and sellers separated by large 

geographic or topological distances.  The resulting pattern of network loadings is very 

different from the regulated era, in which vertically-integrated utilities largely relied on 

self-scheduling to fill demand.1  An increased incidence of TLR events and rising 

congestion costs in RTO areas suggest that the stress on certain portions of the 

transmission system is increasing. 

 

One policy response is to build more transmission lines, in much the same way that 

transportation officials order new highways built to ease traffic congestion.  However, 

industry restructuring, specifically the separation of ownership from control of the 

transmission grid, has disrupted the planning process.  The issues of where to build 

transmission lines, who should pay for them, and how investors will be compensated has 

not been fully resolved in the restructured industry. 

 

                                                 
1 “Wheeling” transactions were commonplace prior to industry restructuring, but were not as numerous and 
sometimes involved long-term bilateral contracts.  The overbuilding of transmission capacity by utilities 
decades prior to restructuring also likely dulled the impact of bilateral market transactions. 
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Chapter 2 discussed how a market based on nodal prices could take the place of 

traditional utility planning and investment.  If locational marginal prices convey enough 

information to market participants regarding constraints in the network, then 

market-based transmission investment is a policy with promise.  In simple networks, such 

as those analyzed by Hogan (1992) and Bushnell and Stoft (1996, 1997), all the 

information necessary to make wise investment decisions may be embedded in the 

network LMPs.  This is not the case in more highly meshed networks, as this chapter will 

discuss. 

 

Examining the steady-state properties of a test system known as the Wheatstone network 

shows that LMP is a good way to measure congestion in the network, but in many cases 

LMP cannot identify which constraints should be relieved.  Thus, LMP may give 

misleading signals to investors.  Choosing among projects based on LMP will, in some 

cases, result in investment that does not benefit the system or the investor, and in others 

may yield investments harming the system (these will be discussed in greater detail in 

Chapter 6). 

 

3.1. Wheatstone Networks and the Braess Paradox 

The Wheatstone network describes a graph consisting of four nodes, with four 

corresponding edges on the boundary creating a diamond or circular shape.  A fifth edge 

connects two of the nodes across the interior of the network, thus splitting the network 

into two triangular (or semicircular) subsystems.  This fifth edge is aptly named the 

“Wheatstone bridge.”  Although the network is named for Charles Wheatstone, who was 
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the first to publish the network topology in 1843, the network design was apparently the 

work of Samuel Christie some ten years earlier (Ekelöf 2001). 

 

The original motivation for the Wheatstone network was the precise measurement of 

resistances, as shown in Figure 3.1.  In the network, resistances R1, R2, and R3 are known 

to very high precision, and R2 is adjustable.  The problem is to measure Rx with similar 

precision.  The voltage V across the bridge is equal to: 
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where Vs is the voltage source.  Assuming that 0≠sV , then the voltage drop across the 

bridge will be zero at the value of Rx where 312 // RRRR x= .  If this condition is 

satisfied, then the Wheatstone network is said to be balanced.  If this condition is not 

satisfied, then there will be a voltage drop across the bridge and the network is said to be 

unbalanced. 

 

Figure 3.1. Wheatstone circuit example 
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As a fairly general topology, Wheatstone networks have arisen as structures of interest in 

other network situations such as traffic, pipes, and computer networks.  Much of the 

attention paid to Wheatstone structures has centered around the network’s seemingly 

paradoxical behavior.  Under certain conditions, connecting a Wheatstone bridge to a 

formerly parallel network (or, in the context of the circuit in Figure 3.1, adjusting the 

boundary resistances so that the network is unbalanced) can actually increase the total 

user cost of the network.  First studied by Braess (1968) in the context of traffic 

networks, this behavior has come to be known as Braess’s Paradox. 

 

The exact meaning of the “user cost” of the network has various interpretations 

depending on the network of interest.  In Braess’s original example, and in Arnott and 

Small (1994), the user cost of highways is the time it takes motorists to reach their final 

destination.  An increase in the user cost, therefore, corresponds to wasted time and 

irritation from sitting in larger traffic jams.  Costs incurred through internet routing 

networks, as in Calvert and Keady (1993) and Korilis, Lazar, and Orda (1999), arise 

through increased latency and possibly lost information (Bean, Kelly, and Taylor 1997).  

Even in circuits, “user cost” can be interpreted as the voltage drop across the circuit as a 

whole.  Cohen and Horowitz (1991) describe an example in which the addition of a 

Wheatstone bridge lowers the voltage drop across the network (assuming the network is 

unbalanced to begin with); thus the “cost” incurred by the Wheatstone bridge is reduced 

voltage over the circuit as a whole. Braess’s Paradox suggests that user costs may 

increase for reasons independent of the amount of traffic on the network.  The network 

itself, and not its users, may be the ultimate problem, and managing flows or 
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disconnecting certain network links may actually serve to decrease congestion costs for 

all users.2 

 

Milchtaich (2005) has studied whether Braess’s Paradox is unique to the Wheatstone 

network.  Using a result from Duffin (1965) that every network topology can be 

decomposed into purely series-parallel subnetworks and Wheatstone subnetworks, 

Milchtaich concludes that (apart from uninteresting situations such as simple bottlenecks) 

the paradoxical behavior cannot occur outside the Wheatstone structure.  Thus, 

observation of the paradox serves as proof of an embedded Wheatstone subnetwork.  

Milchtaich (2005), Calvert and Keady (1993), and Korilis, Lazar and Orda (1997, 1999) 

offer the following technical and policy implications of Braess’s Paradox: 

 

1. Braess’s Paradox occurs in any network that is not purely series-parallel; 

2. Local network upgrades (that is, upgrading only congested links) will not resolve 

Braess’s Paradox.  Upgrades must be made throughout the system in order to 

reduce the user cost of the network; 

3. System upgrades should focus on connecting “sources” as close as possible to 

“sinks.” 

 

Underlying the policy recommendations is the assumption that flow networks all behave 

similarly, at least on the surface.   While there are good analogies between the behavior in 

                                                 
2 Viewing network traffic as a routing game, Braess’s Paradox does not seem all that paradoxical.  Each 
user choosing a network path to minimize their private costs easily lends itself to coordination failures such 
as the Prisoner’s Dilemma.  All users would benefit through coordination and cooperation, but no 
individual user has the incentive to initiate (or perhaps even sustain) this coordination. 
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electric power networks and other networks, the analogies are ultimately flawed.  

Kirchoff’s Laws do not hold in other networks.3  In traffic and some internet systems, 

routing is determined by user preference rather than by physical laws (e.g., current flows 

follow Ohm’s Law), although installation of FACTS devices could change this for those 

paths outfitted with devices.  Congestion costs in systems with nodal pricing are 

discontinuous, while in other networks the cost of additional traffic can be described as a 

continuous function of current traffic.  Despite these differences, power networks do 

exhibit some of the behavior described in other networks; in particular, Braess’s Paradox 

can hold in simple systems or in subsets of more complex systems. 

 

3.2.  A Simple Wheatstone Test System 

The four-bus test system used in this discussion is shown in Figure 3.2.  There is one 

generator located at bus 1, an additional generator at bus 4, and one load at bus 4.  Buses 

2 and 3 are merely tie-points; power is neither injected at nor withdrawn from these two 

buses.  From the analogy to Figure 3.1, the Wheatstone bridge is the link connecting 

buses 2 and 3.  The test system is assumed to be symmetric, in the sense that 

3412 BB = and .2413 BB =   The susceptance of the Wheatstone bridge is given by B23 and 

will be a variable of interest in the discussion that follows.  The symmetry assumption 

implies, among other things, that in the DC load flow, 3412 FF =  and 2413 FF = .4 

 

                                                 
3 In the case of laminar flow, a version of Kirchoff’s Law does hold in piping networks.  However, real 
flows through pipes are almost a combination of turbulent and laminar flow. 
4 In the DC load flow, the current magnitude is identical to the admittance (since the voltage magnitudes 
are all set to 1 per-unit).  The symmetry of the admittance matrix implies that the two cut sets in the system 
(buses 1, 2, and 3; buses 2, 3, and 4) are also symmetric, and Kirchoff’s Current Law must hold for each 
cut set. 
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Figure 3.2: The Wheatstone network.  The network is defined to be symmetric if the 
resistances are equal on lines S12 and S34, and if the resistances are equal on lines S13 
and S24. 
 

The following definitions will help solidify concepts: 

 

Definition 3.1:  A four-node network is said to be a Wheatstone network if its topology is 

the same as that in Figure 3.2. 

 

Definition 3.2: A four-node network is said to be a symmetric Wheatstone network if it is 

a Wheatstone network, and if the susceptance conditions 3412 BB =  and 2413 BB =  hold. 

 

Definition 3.3: A four-node network is said to be a symmetric unbalanced Wheatstone 

network if it is a symmetric Wheatstone network, and the magnitude of the flow across 

link S23 is nonzero. 
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Figure 3.3: Thirteen-bus system based on the IEEE 14-bus system.  There are at least six 
Wheatstone subnetworks in the system.  Examples include those formed by lines A, B, C, 
G, and D; lines C, G, D, E, and F; and lines O, P, Q, (R+S), and (M+L+K). 
 

Although the Wheatstone network shown in Figure 3.2 is simplistic, the Wheatstone 

structure is actually quite common in actual systems.  Figure 3.3 shows a slightly 

modified version of the IEEE 14-bus test network.5  There are at least six embedded 

Wheatstone networks in the 13-bus system of Figure 3.3. An interesting issue is how to 

decompose a large complex network into its component Wheatstone subnetworks and 

                                                 
5 It has been modified by removing the synchronous condensers in the system.  This reduces the network to 
13 buses. 
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those subnetworks that are purely series-parallel, and how to treat adjacent and 

overlapping Wheatstone networks.6   

 

3.3. Conditions for Braess’s Paradox to Hold 

Of particular interest here is how the addition of the Wheatstone bridge affects the flows 

on the boundary lines relative to the “base case” with no Wheatstone bridge.  Here we are 

implicitly assuming that the generator injections, load withdrawals, and line susceptances 

are such that there is no congestion in the system prior to the addition of the bridge.  If we 

take lines S12 and S34 and combine them in series to form a line with equivalent 

susceptance Ba, and we combine lines S13 and S24 in a similar fashion to construct a line 

with equivalent susceptance Bb, the network is free of congestion if and only if: 

 

max
1)(

)2.3( kG
ba

k FP
BB

B
<

+
, for k = {a, b}7 

 

To derive an explicit expression for the new network flows following the addition of the 

Wheatstone bridge, we will use the method derived in Ejebe and Wollenberg (1979) and 

Irisarri, Levner, and Sasson (1979), which compares steady-state line flows in the 

network before and after the network modification.  Such modifications are represented 

as changes in the susceptance matrix B. Although the Ejebe-Wollenberg method was 

                                                 
6 A method for network decomposition and Wheatstone detection will be presented in Chapter 5.  Duffin 
(1965) has shown that any non-radial network can be decomposed into series-parallel and embedded-
Wheatstone subnetworks; Milchtaich (2005) also proves the same result.  In the limit, where the mesh 
network consists essentially of everything connected to everything else, isolating particular Wheatstone 
structures may be difficult.  Particularly when the network exhibits Braess’s Paradox, the hardest question 
will be to pinpoint which Wheatstone is “causing” the paradoxical behavior. 
7 A similar condition also holds in AC networks, but uses the complex admittance instead of the 
susceptance. 
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originally designed to model the effects of contingencies (so that the susceptance change 

in a given line, ΔBk, is simply equal to -Bk) it is easily adaptable to the construction of a 

new line. 

 

Since we are using the DC load flow approximation, the admittance matrix consists 

solely of susceptances: 
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We start with the DC model: 8 

 

θBP =)4.3(  

 

Note that equation (3.4) represents the system prior to the addition of the Wheatstone 

bridge.  After the Wheatstone bridge is connected, the load flow equations become: 

 

newθAΔBA'BP diag )()'4.3( += , 

 

                                                 
8 We could also start with the distribution-factor representation of the DC model, F = A’BdiagAθ, where 
Bdiag is a (NL × NL) diagonal matrix of line susceptances.  However, starting with the injection equations 
will allow us to write the new flows in the form Fnew = Fold + {adjustment factor}. 
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where ΔBdiag is a diagonal matrix of changes to the line susceptances.  ΔBdiag has 

dimensionality (NL × NL).  Solving equation (3.4’) for the vector of phase angles yields: 

 

PAΔBA'Bθ diag 1)()5.3( −
+=new . 

 

Using the Sherman-Morrison-Woodbury matrix inversion lemma and substituting 

equation (3.4), we get: 

 

oldnew BθBAABA'ΔBABBθ 1diag11 )')(()6.3( 111 −−−−− +−=
−

. 

 

Distributing terms, 

 

oldoldnew δABA'ΔBABθθ 1diag1 1)()7.3(
1 −−− +−=
−

, 

 

where δ is the (NL × 1) vector of phase angle differences. 

 

Following the network modification, the DC flow equations can be written 

 

newnew θAΔBBA'F diagdiag ))(()8.3( += . 
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Inserting (3.7) into (3.8) and distributing terms yields: 
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The adjustment is oldold δABA'ΔBABAΔBBA'δΔBA' 1diag1diagdiagdiag 1)())(()(
1 −−− ++−
−

. 

 

In the special case where the susceptance of only one line changes (as is the case with the 

Wheatstone bridge example), we can replace the diagΔB matrix with a scalar ΔBk (where 

k indicates the line whose susceptance has been altered), and we can replace the 

incidence matrix with its kth column, denoted Ak.  In this case, equation (3.6) is modified 

to read: 

 

P'AABθ kk
1)()'6.3( −

Δ+= k
new B , 

 

and equation (3.8) becomes: 

 

old
k

new B θAABAB'AIθ kk
1

k
1

k )')(()'8.3( 11 −−−− +Δ−= . 

 

The term k
1

k AB'A −− +Δ 1B  can get pulled out because it is a scalar.  Recognizing that 

Akθ = δk, the phase angle difference along line k, we get: 
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kk
oldnew B δ')()10.3( 11
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1
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k ABAB'Aθθ −−−− +Δ−= . 

 

Returning to the DC load flow equations, the flow across the lth line following the 

network modification is: 

 

.)11.3( new
ll

new
l BF δ=  

 

In the case where l = k, equation (3.11) can be modified to read new
kkk

new
k BBF δ)( Δ+= , 

although the emphasis here will be on lines other than k (since the object of interest is 

calculating the effect of the Wheatstone bridge on flows on the other lines).  Rewriting 

equation (3.11) as: 
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l
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and substituting equation (3.10), we get: 
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In the special case where l = k, equation (3.13) becomes: 

 

( ) ).'1()'13.3( 1
l

1
l ABA −−−Δ−= l

old
ll

old
l

new
l bBFF δ  



60  

The sensitivity of flows in the Wheatstone network to the bridge susceptance, as 

described by equations (3.13) and (3.13’), are shown in Figure 3.4, assuming that the 

boundary links have susceptances B12 = B34 = 30 per-unit (p.u.) and B13 = B24 = 15 p.u..  

The flow limit on each line is assumed to be 55 MW; hence the flow on lines S12 and S34 

plateau at this upper limit.  Note also that the flow on the Wheatstone bridge and the flow 

on the remaining two boundary links appear to converge.  One implication of this 

behavior (which will be of importance in the steady-state analysis of congestion in the 

network) is that if the Wheatstone network is symmetric in the sense of Definition 2, then 

a maximum of two lines can be congested at a given time. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Senstivity of flows in the Wheatstone network to changes in the susceptance 
of the Wheatstone bridge.  The x-axis has a logarithmic scale.  The flows on lines S12  and 
S34 hit the capacity constraint when the susceptance of the bridge reaches 8.6 per-unit. 
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Of particular interest here are the conditions under which any of the boundary links will 

become congested with the addition of the Wheatstone bridge (congestion occurs when 

the generator at bus 4 either does not exist or is not turned on).  Without loss of 

generality, assume that B12 > B13.  Thus, once the bridge is added, more power will flow 

over link S12 than over link S23.9  We are interested in the conditions under which link S12 

will become congested.  The symmetry assumption implies that a similar condition will 

hold for link S34 to become congested. 

 

Link S12  becomes congested if max
1212 FF new ≥ .  An equivalent condition is: 

 

 

 

 

This “feasible region” for the susceptance of the Wheatstone bridge is shown in Figure 

3.5 for the configuration where B12 = B34 = 30 p.u., B13 = B24 = 15 p.u., max
12F = 55 MW, 

and PG1 = PL4 = 100 MW.  From the DC power flow on this network we get 5012 =oldF  

MW and old
23δ = 1.5 degrees. 

 

 

                                                 
9 The symmetry assumption implies that equal amounts of power will flow over both paths in the absence 
of the Wheatstone bridge. 
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Figure 3.5: Whether the Wheatstone bridge causes congestion on line S12 (and also 
congestion on line S34 in the case of a symmetric Wheatstone network) depends on the 
susceptance of the Wheatstone bridge and the stability limit of line S12.  The “feasible 
region” above the line indicates susceptance-stability limit combinations that will not 
result in congestion on the network.  The “infeasible region” below the line represents 
susceptance-stability limit combinations for which the network will become congested.  
Note that the x-axis has a logarithmic scale. 
 

Figure 3.5 shows that unlike other networks such as internet communications (Milchtaich 

2005), the existence of a Wheatstone configuration is not in itself sufficient for the 

network to exhibit Braess’s Paradox.  Equation (3.14) thus provides two “rules of thumb” 

for transmission planning.  First, it shows conditions under which parallel networks can 

become more interconnected without causing congestion in the modified system.  

Second, it provides a condition on the line limit max
12F under which a conversion of a 

parallel network to a Wheatstone network would be socially beneficial. 
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Why would the Wheatstone bridge ever be installed in a parallel system?  One answer is 

that in some circumstances the bridge may provide reliability benefits.  In the 

parameterization of the network represented in Figure 3.5, suppose that the load at bus 4 

represents a customer with a high demand for reliability, that link S24 had an abnormally 

high outage rate, and that the generator at bus 4 did not exist.  In this case, if the 

remainder of the links had sufficiently small stability limits, the network would not meet 

(N – 1) reliability criteria.  With the addition of the Wheatstone bridge, the reliability 

criteria might be satisfied, but at the cost of a certain amount of congestion during those 

times in which link S24 was operating normally.10  Thus, in the Wheatstone network, a 

tradeoff likely exists between the cost of congestion and the benefit of reliability. 

 

3.4. DC Optimal Power Flow on the Wheatstone Network 

Assume that the cost curves for the two generators in the symmetric unbalanced 

Wheatstone network are quadratic with the following parameterization: 

 

(3.15)  C(PG1) = 200 + 10.3PG1 + 0.008PG1
2 

 

(3.16)  C(PG4) = 300 + 50PG4 + 0.1PG4
2. 

 

Also assume that every line in the network has a stability limit of 55 MW.  Prior to the 

addition of the Wheatstone bridge, the DC optimal power flow results show that 50 MW 

                                                 
10 Ideally, controllers would be installed on the system to prevent power from flowing over the Wheatstone 
bridge except during contingencies on link S24.  The congestion cost thus represents the value of such a 
controller to the system. 
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flows on each line towards bus 4; thus there is no congestion in the system.  The nodal 

prices are all equal to $12.11/MWh, and the total system cost is $1,620 per hour. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The addition of the Wheatstone bridge connecting buses 2 and 3 causes 
congestion along links S12 and S34.  The total system cost rises from $1,620 per hour 
without the Wheatstone bridge to $1,945 per hour with the bridge. 
 

Following the addition of the Wheatstone bridge, lines S12 and S34 become congested, as 

shown in Figure 3.6.  The total system cost rises to $1,945 per hour as the economic 

dispatch is forced to run the expensive generator located at bus 4.  Among other things, 

this implies that the value of reliability to the load is at least $325 per hour that link S24 

remains functional. 

 

3.5. Implications of Braess’s Paradox 

Equations (3.13) and (3.14) from Section 3.3 have a number of implications for grid 

management and investment.  Some of these implications mirror results described in 

  

Bus 3 
π3 = $33.72 

Bus 4 
PL4 = 100 MW 
PG4 = 8.33 MW 
π4 = $51.67 

Bus 2 
π2 = $46.96 

Bus 1 
PG1 = 91.67 MW 
π1 = $11.96 

FS24 = 36.7 MW 
μS24 = $0 

FS34 = 55 MW 
μS34 = $20.30 

FS12 = 55 MW 
μS12 = $45.87 

FS13 = 36.7 MW 
μS13 = $0 

FS23 = 18.3 MW 
μS23 = $0 
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Section 3.1 for other types of networks, while some appear to be unique to electric power 

networks. 

 

Result 3.1: A symmetric Wheatstone network is balanced (that is, F23 = 0) if and only if 

24

34

12

13

X
X

X
X

= . 

 

Before proving the result, we note that under the DC power flow approximation, F23 = 0 

is equivalent to 32 θθ = , so another way of stating the result is that 32 θθ =  if and only if 

24
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X
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X
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= . 

 

Proof of Result 3.1:  The first part of the proof is to show that 
24

34

12

13
32 X

X
X
X

=⇒=θθ . 

 

Suppose that 32 θθ = , and thus F23 = 0.  Because all the power is flowing towards bus 4, 

and since there are no losses, this condition is equivalent to stating that F12 = F24 and    

F13 = F34.  From the DC load flow equations, we see that 
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Since 32 θθ = , we see that ( )
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The second part of the proof is to show that 
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Suppose that 
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= .  From the DC load flow equations, we see that 

 

)(
)(

2124

4212

12

24

θθ
θθ

−
−

=
F
F

X
X  

 

and 

 

.
)(
)(

3134

4313

13

34

θθ
θθ

−
−

=
F
F

X
X

 

 

Since 
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X , and thus it must also be true that: 
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By the symmetry of the network, we have F12 = F34 and F13 = F24.  Thus, 
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For (3.17) and (3.18) to hold, it must be true that 32 θθ =  and thus, F13 = F34. 

 

Result 3.2:  In a symmetric unbalanced Wheatstone network, suppose that links S12 and 

S34 are congested following the construction of the Wheatstone bridge, as in Figure 3.6.  

The congestion will be relieved, and the total system cost will decline, only to the extent 

that upgrades are performed on both lines. 

 

Proof of Result 3.2: Using equations (3.12) and (3.14), for the case in which the 

Wheatstone bridge causes congestion: 

 

oldoldnewold BBFFFF 23122312
1

23121212
max

12 ')19.3( δABA 1−−=−≤−  

 

and 

 

oldoldnewold BBFFFF 23342334
1

23343434
max

34 ')20.3( δABA 1−−=−≤− . 
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Since B12 = B34, we get that newnew FFFF 3412
max

12
max

34 =≤= .  Increasing only max
12F  will not 

change this relationship since newnew FFF 3412
max

34 =≤  must still hold.  A similar argument 

holds for increasing only max
34F . 

 

If we increase the stability limit of both lines by the same amount, to Fmax,new, then the 

flows along lines S12 and S34 can simultaneously increase while maintaining the 

relationship newnewnewnew FFFF 3412
max,

12
max,

34 =≤= .  A corollary to this result is that if the total 

cost (capital cost plus congestion cost) of the Wheatstone bridge exceeds the cost of 

upgrading the boundary links to the point where a failure on one link would not violate 

reliability criteria, then the Wheatstone bridge provides no net social benefit and should 

not be built. 

 

Result 3.3: In the symmetric unbalanced Wheatstone network of Figure 3.6, the Lagrange 

multipliers on the congested lines are not necessarily unique.  However, the sum of the 

multipliers on the two congested lines is unique.  Further, the non-uniqueness is solely a 

function of the network topology, and is independent of the actual number of binding 

constraints. 

 

Proof of Result 3.3: Another way of stating Result 3.3 is that in the symmetric 

unbalanced Wheatstone network of Figure 3.6, the DC line-flow constraints are not 

linearly independent.  Thus, proving the result amounts to demonstrating that the 
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constraint set violates the constraint qualification condition of the Kuhn-Tucker theorem 

(Sundaram 1996).  We will show this using the linearized DC optimal power flow. 

 

Define H = A’BdiagA, and also define c to be a vector of generator marginal costs.  In the 

linearized DC optimal power flow, c contains constants (i.e., all generators have constant 

marginal costs), and the power flow problem can be written as the following linear 

program: 

 

Pc'min)21.3(  

 

such that: 

 

.)22.3(
)22.3(
)22.3(

maxFF
HθF
BθP

≤

=
=

c
b
a

 

 

Rewriting to include the equality constraints, the optimal power flow problem is: 

 

Bθc'min)'21.3(  

 

such that: 

 

.)'22.3( maxFHθ ≤  
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The constraint qualification condition says that at the optimal solution θ*, the matrix 

derivative of the constraint set must have rank equal to the number of binding constraints.  

That is, if we define maxFHθθ −=)(g , and define Dg(θ) as the matrix whose (i, j)th entry 

is )(θ
θ j

ig
∂
∂

, then the constraint qualification condition is that the rank of Dg(θ*) be equal 

to the number of constraints that hold with equality. 

 

In the case of the DC optimal power flow problem, we see that Dg(θ*) is a linear 

function of θ* and is independent of θ*.  Specifically, 

 

'*)( Hθ =Dg . 

 

Thus, the constraint qualification condition for the DC power flow problem is that 

rank(H) be equal to the number of binding constraints. 

 

The matrix H in the Wheatstone network is given by: 
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Since we assume that the Wheatstone network is symmetric, it is easy to see that any 

column of H is a linear combination of the other columns.  Thus, rank(H) = 3, meaning 

that only three of the five network constraints are linearly independent.11 

 

Due to the symmetry and parameters of the problem, we can see that, at most, two 

constraints can be binding at the optimal solution.  Since the combined capacity of links 

S12 and S13 is greater than the production capability of the generator at bus 1, these two 

lines cannot be simultaneously congested.  Thus, the number of active constraints is less 

than the rank of H’, and the constraint qualification condition for the Kuhn-Tucker 

theorem is not satisfied.  The dual variables thus may not be unique. 

 

In this special case, it is easy to see that the constraint qualification condition (for the 

inequality constraints) is violated.  In larger and more complex networks, it may be more 

difficult;  verifying the constraint qualification condition would require checking all 

possible combinations of binding constraints.  In real systems, this combinatorial problem 

could get prohibitively large, particularly for calculations requiring fast solutions (such as 

calculating nodal prices). 

 

Another way to verify the constraint qualification condition is to consider the dual of the 

DC optimal power flow problem.  If we let μ be the vector of dual variables associated 

with the network line flow constraints in equation (3.22’), the dual problem can be 

written: 
                                                 
11 The result that H is not of full rank is independent of the choice of reference bus.   In many 
circumstances, H will have full rank, even without a reference bus being explicitly specified.  For example, 
the rank of the complete H matrix in the IEEE 118-bus network is 118. 
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maxFμ'−max)23.3(  

 

such that 

 

0BcμH' =+)24.3( . 

 

In the dual problem the matrix derivative of the dual constraints, evaluated at the optimal 

(dual) solution μ*, is H.  Since the rank of H’ is equal to the rank of H, we again find that 

the rank of the derivative of the constraints is 3.  In order to satisfy the constraint 

qualification condition for equality constraints, the rank of the derivative of the constraint 

matrix must be equal to the number of constraints.12  In the dual formulation of the DC 

optimal power flow problem, there are four constraints.  Thus, the dual problem does not 

satisfy the constraint qualification condition. 

 

The rank of H provides a simple test for uniqueness of the nodal prices.  The nodal prices 

are unique if the rank of H is equal to the number of buses in the network.  Any system 

containing a symmetric Wheatstone sub-network will fail this rank test, since in that sub-

network there will be linearly dependent line constraints.  The Wheatstone network need 

not be unbalanced for the network to fail the rank test.  Thus, the mere existence of a 

symmetric Wheatstone network is enough to result in a degenerate solution to the DC 

optimal power flow problem. 

                                                 
12 This is really just the same condition as in the primal formulation, except that in the dual problem all 
constraints are assumed to hold with equality. 
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Result 3.4: Suppose that ll FF =max  for some line l in a symmetric unbalanced 

Wheatstone network in which 0>old
lδ .  Increasing Bl for any l while simultaneously 

increasing max
lF  will increase the power flow on that line, even if the Wheatstone 

network is unbalanced. 

 

Proof of Result 3.4: We are most interested in those situations in which line l is not the 

Wheatstone bridge, but the result will hold either way.  The proof is a direct application 

of the formula of Ejebe and Wollenberg (1979), using equation (3.13’): 
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To show that (3.29) is greater than zero, we note that old
lδ > 0 and lBΔ > 0 by assumption.  

For the power flow to have a solution, B must be positive definite, implying that B-1 is 

also positive definite and l
1

l ABA −'  > 0. 

 

Result 3.5: In a symmetric unbalanced Wheatstone network with fixed susceptances on 

the boundary links, the stability limits on the boundary links required to avoid congestion 

are strictly increasing in the susceptance of the Wheatstone bridge.  Further, there is an 

upper bound on the boundary-link flow critF12  once the Wheatstone bridge is added. 

 

Proof of Result 3.5:  The first part of the claim, that the max
12F required to keep the 

Wheatstone network from becoming congested is strictly increasing in ΔB23, follows 

from equation (3.22).  To prove the second part of the claim, we examine newF12  in the 

limit as ΔB23 becomes arbitrarily large: 
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3.6.  Discussion 

Results 3.2 through 3.5 have the most interesting implications for pricing, grid 

management, and investment in the electric transmission network. 
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Result 3.2 mirrors the results of Milchtaich (2005) and Korilis et. al. (1997, 1999) for 

internet routing networks.  It says that in a symmetric unbalanced Wheatstone network, 

congestion will occur on two of the four boundary lines (if any congestion occurs at all), 

and that network upgrades amounting to a capacity expansion on only one of those lines 

will not alter the dispatch.  Both congested lines must be upgraded before the dispatch 

will be altered and the marginal and total system costs will be lowered.  In other words, 

relieving congestion in Wheatstone configurations requires more than simply upgrading 

the most congested line.  Congestion may occur on two of the boundary links in the 

Wheatstone network, but the active system constraint is either in those two links together, 

or in the Wheatstone bridge.  Both interpretations are technically correct, but the policy 

implications are different.  If the two boundary links represent the active system 

constraint, then either reducing demand or expanding capacity on both links would be 

optimal policies.  If the Wheatstone bridge is viewed as the active system constraint, then 

the optimal policy would be to remove the bridge entirely, or (if the bridge was viewed as 

beneficial for reliability reasons) equip the bridge with fast relays or phase-angle 

regulation devices that would permit power to flow over the bridge only during 

contingencies.  The preferable policy is largely a matter of network parameters and the 

state of technology. 

 

Result 3.3 illustrates how nodal prices in the DC optimal power flow formulation may 

not always send clear signals to system operators and planners. Note that this 

phenomenon is general in the sense that it depends only on the network topology and not 

on the level of demand. The two congested lines in the Wheatstone network will, indeed, 
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sport non-negative shadow prices (see Figure 3.6, for example).  While Wu et. al. (1996) 

note that nodal price differences do not always have the physical interpretation of being 

congestion costs, Results 3.2 and 3.3 taken together would seem to say that shadow 

prices in power networks do not necessarily represent the equilibrium value of capacity 

expansion in the network.  Result 3.3 is particularly important in the context of electric 

industry restructuring, where nodal prices and shadow prices are supposed to guide 

operations and investment decisions.  In the symmetric unbalanced Wheatstone network, 

the nodal prices and shadow prices are not representative of investments that would be 

profitable or socially beneficial.  Chapters 4 and 6 will discuss this issue further in the 

context of transmission investment. 

 

Result 3.3 also suggests that using the DC power flow approximation for the purpose of 

calculating nodal prices (as well as the value of transmission congestion contracts) may 

not be appropriate for all systems.  One possible remedy is to replace the DC power flow 

model with a full AC power flow.  The nonlinearities in the AC power flow model imply 

that the flow constraints on the transmission lines are more likely to be independent.  As 

a side benefit, it would also allow for the optimization of real and reactive power dispatch 

and would account for marginal losses.  The tradeoff is that the AC model is 

computationally more expensive.13   

 

Another possible remedy would be a two-stage calculation of the nodal prices.  The first 

stage would run the DC optimal power flow, as in equations (3.23) and (3.24).  The 

second-stage optimization problem would choose from among the set of shadow prices 
                                                 
13 Marija Ilić has also pointed out that the solution to the AC power flow problem may be non-unique. 
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satisfying the first-stage problem according to some decision rule.  This two-stage 

method has been proposed in the telecommunications literature, where linear 

independence of the network flow constraints is rarely satisfied (Larson and 

Patriksson 1998). 

 

Result 3.4 shows that increasing the susceptance, rather than the stability limit, of 

congested lines in the unbalanced Wheatstone network will have the desired effect of 

relieving some congestion.  With respect to the current issue of investment in the grid, 

this suggests that strategically adding susceptance in concert with capacity should be 

considered as part of an optimal policy.  In market settings, where policymakers have 

emphasized the role of non-utility parties in grid expansion, Result 3.4 also suggests that 

investors in the grid should be compensated for a portfolio of capacity (megawatts) and 

susceptance, and not just for capacity as is currently the case.14 

 

Result 3.5 shows how congestion in Wheatstone networks can be prevented altogether.  It 

provides an upper bound for the new flows on the boundary links following the 

construction of the Wheatstone bridge (for a fixed level of demand in the system).  In the 

planning stage, the stability limit should be set above Fcrit to avoid the problem of 

congestion in the Wheatstone network.  This introduces yet another aspect of the 

cost-benefit calculus of the Wheatstone bridge.  If the cost of attaining Fcrit on the 

boundary links exceeds the total social cost of the Wheatstone bridge, then the boundary 

                                                 
14 Of course, as Wu et. al. (1996) point out, it is possible to cause congestion by raising the susceptance of a 
line, so any such payments would need to be structured carefully. 
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links should be strengthened and the bridge should not be built; reliability criteria can be 

met more cheaply with a smaller number of higher-capacity transmission links. 

 

3.7. Economic Welfare Analysis 

Aside from causing congestion in the network, Braess’s Paradox has implications for the 

economic welfare of the system, as well as distributional implications.  The power market 

represented in the Wheatstone network is similar to that in Figure 2.2, shown here as 

Figure 3.7.  Suppose that T0 is the amount of power transferred across the network (from 

bus 1 to bus 4) for a given level of demand in the absence of any transmission constraints.  

Once the Wheatstone bridge is built, the transfer capability decreases to T* (thus, T0 – T* 

megawatts must be generated at the load bus).  

Figure 3.7: Distribution of congestion rent, congestion cost, and social surplus in the 
four-bus Wheatstone network. 
 



79  

Figure 3.7 illustrates two distinct welfare concepts.  First, congestion in the network 

results in the generator at bus 4 collecting revenue that would not have been generated in 

the absence of congestion.  This amount, equal to area A + B in Figure 3.7, is known as 

congestion rent (or merchandizing surplus) and can be calculated as max
1214 )( Fππ − .  The 

area C + D represents extra congestion costs borne by the system, equal to the higher 

generation cost from having to use the generator at bus 4.  Area C represents social 

wealth that is lost by consumers in the form of higher congestion costs, while area D 

represents the loss borne by producers.  The general expression for the congestion cost is: 

 

(3.31) .)()(CongCost 00

* 11

*

0 44 ∫∫ −=
− T

T GG

TT

GG dPPMCdPPMC  

 

Assume that there are no congestion contracts in the system; that is, assume that the 

merchandizing surplus amounts to a transfer of social wealth to the generator located at 

bus 4.  Some of this wealth is transferred from consumers and some is transferred from 

the remaining producers in the system (i.e., the generator at bus 1). 

 

The share of the social surplus transferred from the generator at bus 1 to the generator at 

bus 4 is given by: 

 

(3.32) Producer surplus transferred to G4 = max
1210 )( Fππ − , 
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where π0 is the marginal cost of serving the load without congestion (this is also equal to 

the nodal price prevailing at all four buses in the system).  Thus, the share of the social 

surplus transferred from consumers to the generator at bus 4 is given by the remainder: 

 

(3.33) Consumer surplus transferred to G4 = .)( max
1204 Fππ −  

 

Given equations (3.32) and (3.33), we can calculate the total loss in producer surplus 

(ΔPS) and consumer surplus (ΔCS) as: 
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Equation (3.34a) represents producer surplus lost by the generator at bus 1.  An amount 

max
1210 )( Fππ − is simply transferred to the generator at bus 4 (and thus is still social 

wealth captured by producers), while the remainder of equation (3.34a) represents the 

social loss associated with having to use the generator at bus 4 to serve 

max
1212 FF old − megawatts of demand.  The first term in the right-hand side of equation 

(3.34b) represents the consumers’ share of total social wealth lost to congestion costs, 

while the second represents the transfer from consumers to the generator at bus 4 in the 

form of congestion rent. 

 

Equations (3.34) can be applied to the system in Figure 3.6 to illustrate the social losses 

associated with a congested Wheatstone network.  First, we note that with the 
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Wheatstone bridge, the hourly prices for a demand of 100 MW are π1 = $11.96/MW and 

π4 = $51.67/MW, per Figure 3.6.  In the absence of the Wheatstone bridge, the prevailing 

price at all four nodes would be π0 = $12.11/MW.   We note also that T0 = 100 MW, and 

T* = 91.67 MW.  As noted in Section 3.2, the hourly congestion cost is equal to $323.27. 

 

First, we calculate the loss in producer surplus due to the addition of the Wheatstone 

bridge, using equation (3.34a): 

 

71.0$))67.91()100((11.12)67.91100( 11 =−−×−=Δ GG CCPS  per hour. 

 

From this, we evaluate equation (3.34b) to calculate the loss accrued by consumers: 

 

03.949,3$67.91)11.1267.51()71.027.323( =×−+−=ΔCS . 

 

Thus, we see that nearly all of the social losses are borne by consumers.  Note that more 

than 90% of the loss in consumer surplus is reflected in the congestion rent transferred to 

the generator at bus 4. 

 

3.8. Examples 

To illustrate how the behavior described in Result 3.3 could arise in a more realistic and 

interconnected system than that shown in Figure 3.6, consider the 13-bus network of 

Figure 3.3.  The network is based on the 14-bus IEEE test system, though the removal of 
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the network’s synchronous condensers reduces the number of buses to 13.  The assumed 

susceptance matrix of the network, in per-unit, is shown in Figure 3.8. 

Generators are assumed to be located at buses 1, 2, and 8.  For this example, the 

generator marginal cost curves are held constant at MCG1 = $20/MWh, 

MCG2 = $20/MWh, and MCG8 = $40/MWh.  All transmission lines are given a rated limit 

of 55 MW.  The nodal demands are shown in Table 3.1. 

 
 
 
 
B =  
 
 
 
 
 
 
 
 
Figure 3.8: Susceptance matrix for the modified IEEE network in Figure 3.3. 
 
 

 

 

 

 

 

 

 

Table 3.1: Nodal demands in the 13-bus test system.  All loads are given in MW, and all 
demand buses are modeled as PQ buses. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13
1 -13.1 6.6 0 0 6.6 0 0 0 0 0 0 0 0
2 6.6 -28.0 9.8 6.4 5.3 0 0 0 0 0 0 0 0
3 0 9.8 -17.3 7.5 0 0 0 0 0 0 0 0 0
4 0 6.4 7.5 -27.6 6.6 0 5.1 1.9 0 0 0 0 0
5 6.6 5.3 0 6.6 -23.0 4.3 0 0 0 0 0 0 0
6 0 0 0 0 4.3 -16.2 0 0 0 5.3 3.2 3.7 0
7 0 0 0 5.1 0 0 -10.9 5.9 0 0 0 0 0
8 0 0 0 1.9 0 0 5.9 -20.6 9.1 0 0 0 3.8
9 0 0 0 0 0 0 0 9.1 -15.1 6.0 0 0 0

10 0 0 0 0 0 5.3 0 0 6.0 -11.2 0 0 0
11 0 0 0 0 0 3.2 0 0 0 0 -5.4 2.2 0
12 0 0 0 0 0 3.7 0 0 0 0 2.2 -8.8 2.9
13 0 0 0 0 0 0 0 3.8 0 0 0 2.9 -6.7

 Node Demand (MW)
2 77.6
3 7.8
4 94.7
5 7.6
6 11.2
8 29.5
9 9
10 3.5
11 6.1
12 13.5
13 14.9
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Table 3.2: In systems containing symmetric unbalanced Wheatstone networks, the 
shadow prices on congested lines may not be unique. 
 

In this example, we will focus on the symmetric Wheatstone network consisting of buses 

1, 2, 4, and 5.  The nodal demands have been formulated to force lines S15 and S24 to 

become congested.  A DC optimal power flow was run on the 13-bus system; the 

resulting line loadings and shadow prices are shown in Table 3.2. 

 

The optimal power flow algorithm was run using two different methods.  The first 

method is the interior-point default algorithm used in Matlab’s linprog routine, which 

is a variation of the predictor-corrector method.  The second is the simplex method, 

 
Line Flow (MW) μ ($/MW) Flow (MW) μ ($/MW)
1,2 49.7 0 49.7 0
1,5 55.0 17.11 55.0 0
2,3 11.0 0 11.0 0
2,4 55.0 49.69 55.0 66.8
2,5 4.3 0 4.3 0
3,4 3.5 0 3.5 0
4,5 -52.4 0 -52.4 0
4,7 10.1 0 10.1 0
4,8 7.0 0 7.0 0
5,6 15.7 0 15.7 0
6,10 -18.5 0 -18.5 0
6,11 4.6 0 4.6 0
6,12 2.7 0 2.7 0
7,8 10.1 0 10.1 0
8,9 31.0 0 31.0 0
8,13 27.2 0 27.2 0
9,10 22.0 0 22.0 0
11,12 -1.5 0 -1.5 0
12,13 -12.3 0 -12.3 0

Interior-Point Solution Simplex Method
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which looks for corner solutions.  Comparing the shadow prices in the columns of Table 

3.2, the interior-point method computes two distinct positive shadow prices on the two 

congested transmission lines while the simplex method places a positive shadow price 

only on line S24.  The single nonzero shadow price calculated using the simplex method is 

assigned to the line which had the higher of the two shadow prices when the optimal 

power flow was run using Matlab’s default interior-point solver.  Whether there is any 

connection (whether line S24 being assigned the larger of the two shadow prices indicates 

that the constraint on line S24 is somehow more binding than the constraint on line S15) is 

not clear. 

 

Relaxing one of the two constraints in this case has no effect on the shadow prices or 

total dispatch cost computed by the OPF.  The pattern of flows does change to 

accommodate the relaxed capacity constraint. 

 

3.9. Conclusion 

Let us briefly return to the three network characteristics arising from the study of Braess’ 

Paradox in networks other than power systems, as mentioned in Section 3.1: 

 

1. Braess’s Paradox occurs only in Wheatstone networks, and these networks are 

guaranteed to exhibit the Paradox over a certain range of flows; 

2. When the network is upgraded, such upgrades should be made system-wide and 

should not focus on correcting local congestion; 

3. “Sources” should not be located far from “sinks,” at least not topologically. 
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This chapter has largely addressed the first two points, although easy arguments can be 

made that the third is applicable to power systems just as it is to other systems.  The first 

point, that the existence of Braess’s Paradox and the Wheatstone network structure are 

equivalent, simply does not hold in power networks.  The dependency actually fails to 

hold both ways.  A network exhibiting Braess’s Paradox is neither a necessary nor a 

sufficient condition for that network to have an embedded Wheatstone structure.  Nor is 

the presence of congestion a necessary or sufficient condition for the network to have an 

embedded Wheatstone sub-network.  The most general form of Braess’s Paradox, that 

adding capacity can constrain a network, has been shown to hold for a simple two-bus 

parallel network.  The conditions for a Wheatstone exhibiting Braess’s Paradox are much 

more stringent in power systems than they appear to be in other networks.  The line limits 

and susceptance of the Wheatstone bridge must be within certain limits for the addition of 

the bridge to constrain the system.  Transmission and resource planners might keep this 

condition in mind to help determine optimal line limits for new and existing lines. 

 

If a Wheatstone network is constrained by the addition of the bridge, increasing the 

capacity of one congested line will not remove the constraint.  All congested lines must 

receive capacity upgrades, or the bridge must be disconnected.  Thus, the second point 

(that system upgrades should not be made locally) seems to hold true in power systems.  

Local upgrades will at best do nothing and at worst shift the problem somewhere else.  

Further, focusing attention to upgrading the megawatt capacity of a line may, in the 

Wheatstone network, be misguided.  Upgrading the line’s susceptance can also have a 

beneficial effect, depending on the relative upgrade cost. 
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The discussion in this chapter has mentioned several times that the primary motivation 

for installing the Wheatstone bridge is that it may provide a reliability benefit.  This 

reliability, however, comes at the cost of increased congestion.  The amount of 

congestion actually caused is representative of the system’s willingness-to-pay for flow 

control devices (relays, FACTS, and so on).  Based on some simple simulations using the 

four-bus Wheatstone test network, the amount by which the reliability benefit will exceed 

the congestion cost over time is increasing in the variability of demand.  Even with more 

variable demand levels, the probability of a line outage must be relatively large for the 

Wheatstone network to yield any net benefit over time.  We will return to the issue of the 

congestion cost of the Wheatstone network and its reliability benefits in Chapter 6. 
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Chapter 4: The Efficiency of Point-to-Point Financial 

Transmission Rights is Limited by the Network Topology 

 

Early visions of the restructured electric power industry envisioned replacing the 

transmission business of a regulated utility with a “transco,” or regulated transmission 

company.  Such entities would be responsible for maintaining and investing in the 

electric power grid, subject to rate-of-return regulation in much the same way as the 

regulated vertically-integrated utility (Joskow and Schmalensee 1983).  This, however, 

subjects transmission to the same regulatory challenges that were supposed to be 

removed with the deregulation of the generation portion of the business.  A further 

problem is that managing a large power grid is difficult.  Managing congestion and 

deciding what upgrades are needed are extremely difficult tasks. 

 

A different vision of electric-sector restructuring would place transmission under a 

market regime similar to generation.  Sometimes called the “merchant transmission” 

model (Joskow and Tirole 2005a), this institutional arrangement would place the 

responsibility for transmission-grid investment and enhancement on independent 

transmission companies, much in the same way that the deregulated generation sector 

looks to merchant generation to maintain resource adequacy.1  The merchant transmission 

model, like the merchant generation model, relies on nodal prices to send signals to 

investors in a competitive environment.  Price signals would provide incentives for 

                                                 
1 The merchant transmission model has a number of variations other than the direct analogue to merchant 
generation.  One such variation is “participant-funded transmission,” in which a group of firms (possibly 
including merchant parties) makes a joint investment in new transmission infrastructure. 
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independent transmission companies to invest in the grid so as to alleviate congestion; 

these companies would then earn a return on their investment based on nodal price 

differences. 

 

To operate a large grid efficiently, a transco needs to solve the same problems as the 

merchant model, absent the incentive problem.  Managing a network above a small size 

requires calculating congestion costs and indicators of where investments are needed.  

Thus, the only major difference between managing a transco and merchant transmission 

is the incentives that each face. 

 

4.1. The Merchant Transmission Model 

The rationale for the merchant transmission model, as discussed by Hogan (1992), Chao 

and Peck (1996) and Bushnell and Stoft (1996, 1997), and more recently analyzed by 

Joskow and Tirole (2005a) rests on the analysis of investment incentives shown in 

Figure 4.1.2  As in Chapter 2, we assume that the socially optimal amount of transmission 

between the two buses in the system is T0 and that the actual amount of transmission is 

T*.  The total congestion rent is given by *)( 12 Tππ − .3  Assuming that network 

upgrades are compensated on the basis of this congestion rent, an investor other than the 

incumbent utility upgrading the transmission line by one megawatt would earn 

)1*)(ˆˆ( 12 +− Tππ .4  If the construction cost were less than this amount, then the non-

utility investor would proceed with the upgrade.  A vertically-integrated utility investor, 

                                                 
2 Figure 4.1 draws on Figure 2.2 from Chapter 2. 
3 We use “optimal” in the sense of solving the transmission-planning problem in equations (1.1) or (1.2). 
4 This also assumes that the payment is based on the shadow price of transmission congestion. 
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on the other hand, would have to weigh the construction cost and the loss of congestion 

rent against the savings in generation costs from being able to dispatch an additional 

megawatt from bus 1 (and against any congestion rent earned on the first T* units of 

transmission capacity).  Thus, the argument for merchant transmission rests on the degree 

to which a utility’s investment decisions are distorted by its monopoly status. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: A vertically-integrated utility performing an incremental upgrade on the 
transmission line connecting buses 1 and 2 would have to weigh the benefit of lost 
congestion rent, equal to )1*)(ˆˆ(*)( 1212 +−−− TT ππππ , against the savings in dispatch 
cost, equal to 12 ˆˆ ππ −  (area E*).  A merchant transmission company considering an 
incremental upgrade on the transmission line would earn congestion rent equal to 

)1*)(ˆˆ( 12 +− Tππ , and would invest if the rents exceeded the construction cost.  
 

The merchant transmission model has come under attack on a number of fronts.  

Chapter 2 discussed the free-rider effect associated with merchant transmission 

investment; since the merchant only captures congestion rent and not any of the added 

social surplus (the amount by which the triangle C +D shrinks in Figure 4.1), there may 
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be some socially beneficial projects that would not pass the merchant’s private cost-

benefit test.  Side payments from consumers or other generators in the system would be 

required to induce the merchant to invest in the upgrade. 

 

Oren (1997) analyzes the behavior of competitive generators in congested systems and 

finds that the combination of congestion and FTRs encourages implicit Cournot collusion 

among the generators.5  Yu, Leotard, and Ilić (1999) argue that network investments 

should be viewed as risk-management activities and not through the lens of supporting 

competition in the generation market.6  Joskow and Tirole (2005a) examine the 

implications of relaxing the stringent economic assumptions underlying the 

Bushnell-Stoft FTR efficiency theorem.  Unsurprisingly, they find that relaxing the 

competitive and static assumptions introduces inefficiencies, and suggest that in the real 

electric power industry, the merchant transmission model may be untenable. 

 

The final problem with the merchant model rests on a failure in locational marginal 

pricing.  Shadow prices can be good signals as to which lines are congested (and thus act 

as signals to avoid scheduling on these lines), but in meshed networks they often do not 

tell planners how the constraints should be relieved.  As an example, consider the 

unbalanced Wheatstone network in Figure 4.2.7  The existence of the Wheatstone bridge 

(link S23) causes congestion on lines S12 and S34.  Running a DC optimal power flow on 

                                                 
5 Naturally, Oren (1997) suggests that this problem will not occur in systems with tradeable flowgate rights. 
6 Still, if competition among generators is to flourish, then the transmission grid must be robust enough to 
facilitate such competition (Lave, Apt, and Blumsack 2004).  Thus, one important issue is who should bear 
the risk. 
7 This test network was described in more detail in Chapter 3.  These network structures are quite common 
in realistic systems; for example, the IEEE 14-bus test network has at least six embedded Wheatstone 
subnetworks. 
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the network in Figure 4.2 yields Lagrange multipliers of $45.87 on line S12 and $20.30 on 

line S34.8   

 

In a competitive market for flowgate rights, the value of transmission contracts on these 

two links would be based on these Lagrange multipliers.  The other, uncongested links, 

would have zero value attached to their associated transmission contracts. 

 

 

 

 

 

 

 

 

Figure 4.2: A Wheatstone transmission network.  The nodal prices and shadow prices for 
transmission are obtained from a DC optimal power flow simulation. Each line has a 
stability limit of 55 MW. 
 

Under market-based transmission provision, the positive flowgate value assigned to links 

S12 and S34 should signal independent transmission companies to invest in either of those 

two lines.  However, the parameters of the network in Figure 4.2 yield misleading signals 

in two important respects, as discussed in Chapter 3.  First, conservation of energy and 

the symmetry of the network impliy that increasing the carrying capacity of either of lines 

                                                 
8 The load at bus 2 has a constant real power demand of 100 MW.  The line resistances are all 0.03 per-unit, 
except for lines S13 and S24, which have resistances of 0.06 per-unit.  The cost curves for the generators are 
C(PG1) = 200 + 10.3PG1 + 0.008PG1

2 and C(PG4) = 300 + 50PG4 + 0.1PG4
2. 
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S12 or S34 without increasing the capacity of the other will not relieve congestion on the 

system.  This phenomenon is a function of the network parameters since the network in 

Figure 4.2 is symmetric, in the sense that the admittances on lines S12 and S34 are identical 

and the admittances on lines S13 and S24 are identical.  Conservation of energy requires 

that the flow patterns in the cut sets represented by buses {1,2,3} and buses {2,3,4} be 

identical.  Second, the shadow prices obtained through the linearized optimal power flow 

are not unique.  Symmetry in the network implies symmetry in the constraint set; the 

transmission-line flow constraints are parallel to one another.   Thus, the correct signal is 

actually the sum of the two positive shadow prices, indicating that both transmission 

constraints would need to be relieved before the system would see any benefit.9 

 

It may seem obvious that the price signals in the network of Figure 4.2 are misleading.  

But in larger networks, it may be more difficult to identify which price signals are 

misleading, particularly if network participants cannot identify sub-topologies similar to 

the Wheatstone network.  A merchant or other investor, given incentives solely through 

nodal and/or shadow prices, might make an investment (and earn a return on the 

investment, paid for by consumers on the grid) without resolving any congestion in the 

network. 

 

Hogan (1992) and Bushnell and Stoft (1996) have advocated a system of point-to-point 

transmission rights, combined with a feasibility allocation rule, instead of the flowgate 

                                                 
9 An alternative would be to disconnect line S23 from the system entirely.  In this case, the network would 
reduce to a purely parallel system, with 50 MW flowing along each path.  Line S23 might, however, be 
justified on the basis of some system security or reliability criteria.  Chapter 6 includes a quantitative 
analysis of these tradeoffs. 
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model.  The feasibility allocation rule is based on the “revenue adequacy theorem” 

proven by Hogan (1992) and Wu et. al. (1996), which shows that the total congestion rent 

earned by a centralized transmission authority defines the revenue possibility frontier for 

an independent transmission company operating under a system of FTRs.10  If FTRs are 

allocated in such a way that the net position of all the players in the system is identical to 

the actual flow of power through the system, then the holders of FTRs will have 

maximized revenue.  Further, Bushnell and Stoft (1996) show that when the feasibility 

condition is satsified, under a number of other assumptions (including constant returns to 

scale and marginal-cost pricing in spot and forward energy markets), then profitable 

investments are also socially beneficial.  Attempts to extort the system by making 

detrimental investments will yield negative returns for the merchant transmission 

company.  Thus, the feasibility allocation rule for FTRs allows for economically efficient 

merchant transmission. 

 

History has largely supported the analysis of Joskow and Tirole (2005a).  Enthusiasm for 

the purest form of the merchant transmission model has largely waned, amid the 

deteriorating financial position of the merchant sector in electricity (Joskow 2005a, 

Blumsack, Apt, and Lave 2005) and the realization that siting costs, which are not 

reflected in the short-run locational price calculations may be the dominant factor in 

determining which projects are built and which are not (Vajjhalla and Fischbeck 2006).  

RTOs in the northeastern U.S., however, still appear to support the merchant transmission 

                                                 
10 The original motivation for the revenue adequacy theorem was a solvency condition for the transco.  This 
would ensure that the transco collected enough congestion revenue to fulfill its FTR obligations.  More 
recently, Lesieutre and Hiskens (2005) have shown that the revenue adequacy theorem fails to hold in AC 
power flows due to nonconvexity.  Since most RTOs use the DC load flow approximation to determine the 
feasible set of FTRs, the issue may be moot. 
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model, and continue to dangle FTRs as carrots in exchange for investment (see, for 

example, New York ISO 2005).  The contract network is thus not as dead as it might 

appear. 

 

The analysis of Chapter 3 suggests examples where merchant transmission might lead to 

economic inefficiencies.  We elaborate on that analysis here to show the precise problem 

with the merchant model, and more importantly to show the difficulties in designing and 

pricing a transmission grid to serve markets that have undergone restructuring.   

 

Even if all of the assumptions used by Hogan (1992) and Bushnell and Stoft (1996) in 

formulating the contract network hold, there still may be network-specific adverse 

incentive problems associated with merchant transmission. Allocation of incremental 

FTRs to merchant transmission provides an incentive to increase the grid capacity in 

directions in which market participants expect to be using the grid and in which they have 

nominated and have been awarded FTRs. At the same time merchant transmission may 

affect capacity in unexpected directions in which little or no FTRs were nominated. The 

merchant investment can be detrimental if actual flows on the grid move in these 

unexpected directions.  Thus, under certain network specifications with point-to-point 

FTRs, independent transmission companies may still be able to profitably add links to a 

network in ways that cause congestion in other parts of the network. 
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4.2 FTR Efficiency Theorems and Counterexamples 

An FTR is defined as a contract that entitles the holder to the nodal price difference 

between any two points in the network times the number of megawatts specified in the 

contract, for the duration specified in the contract.  Following Bushnell and Stoft (1996), 

we will denote an FTR of size m between nodes i and j by an n-vector m whose only 

nonzero entries are –m in the ith row, and m in the jth row.  The revenue stream accruing 

from an individual FTR in a given hour is therefore mπ' , where π is the n-vector of 

hourly nodal prices.  Since FTRs that are equal in magnitude and duration, but in 

opposing directions cancel each other out, we can write the total (net) amount of FTRs in 

the entire system as ∑=
k

kmM  and the total revenue earned by all parties in the system 

as Mπ' .  Further, define a dispatch as a vector of nodal (net) real power injections p, 

where pi is the real power injection at node i.   The system dispatch can similarly be 

defined as a vector ∑=
k

kpP .  Contracts are said to match dispatch at the individual 

level if m = -p, and at the systemwide level if PM −= .  The physical interpretation of 

contracts matching dispatch is that any physical transaction (e.g., on the spot market) is 

cancelled out by an equal (in MW magnitude) FTR.  Thus, the condition that contracts 

match dispatch is equivalent to individual market participants or the system as a whole 

being perfectly hedged (Patiño-Echeverri 2006).  On a more general level, a set of FTRs 

is said to be feasible if an equivalent dispatch would not violate any of the system 

constraints. 
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In addition, Bushnell and Stoft define the social surplus arising from a system dispatch P, 

denoted W(P), as the difference between the total benefit enjoyed by all loads in the 

system and the (minimized) total cost of serving that load.  Thus, ∑=
k

kkCW )*()( pP , 

where p* is the cost-minimizing dispatch vector and C(p) is the (convex) cost or benefit 

function at each node in the system.  Benefits are assumed to have a positive sign and 

costs are assumed to have a negative sign. 

 

Bushnell and Stoft offer two key results that imply the economic efficiency of FTRs.  The 

first, which is Lemma 2 in their 1996 paper, says that any player in the system whose 

individual contracts match their individual dispatch will be at least as well off in the 

event of a change in (optimal) nodal prices in the system.  The second result, which 

Bushnell and Stoft refer to as Theorem 2, says that when contracts match dispatch at the 

system level, then any player who causes congestion through their investments in the grid 

will be compensated by a set of FTRs that have a negative value.  The Wheatstone 

network shown in Figure 4.2 can be used to construct counterexamples to both of these 

assertions. 

 

Lemma 2 (Bushnell and Stoft):  For any player in the system whose contracts match its 

dispatch (so m = -p for that player), the net benefit accruing to that player is greater than 

or equal to zero for any price change. 
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Counterexample to Lemma 2: Bushnell and Stoft define net benefits for the kth player as 

)('' kkkk CNB pmπpπ −−= .  They show that if contracts match dispatch, mk = -pk, then 

the change in net benefit accruing to the kth player after any price change is: 

 

( ))()*()*(*' kkkkkk CCNB ppppπ −−−=Δ , 

 

where variables with asterisks refer to the new set of prices and associated optimal 

quantities.  Lemma 2 states that 0≥ΔNB ; the proof uses the convexity of Ck , as well as 

the assumption that nodal price differences in the network reflect differences in marginal 

costs (and congestion costs).  As noted in Chapter 3, the symmetry of the Wheatstone 

network leads to non-convexities in the constraint set of the optimal power flow problem.  

Lemma 2 of Bushnell and Stoft will not necessarily hold in the face of these 

non-convexities. 

 

Consider the generator located at node 1 in the network shown in Figure 4.2.  The cost 

function of the generator is assumed to be C(PG1) = 200 + 10.3PG1 + 0.009PG1
2.  Assume 

that the only spot market position taken by the generator is to inject power into the grid at 

node 1.  In other words, the p vectors for generator 1 contains all zeros except for the real 

power production of the generator, which is in the first entry of the injection vector: 
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In addition to injecting PG1 MW of real power into the grid, suppose that the generator’s 

contracts match its dispatch; thus, the generator also has an FTR between node 1 and any 

other node in the network.  The size of the FTR is equal to PG1 in magnitude. 

 

Suppose that prior to the construction of the link between nodes 2 and 3 of the network in 

Figure 4.2, the generator at node 1 could supply the entire load at a lower cost than 

generator 2.  Thus, PG1 = 100 MW and pG1 = (100, 0, 0, 0).  After the construction of the 

link between nodes 2 and 3, the network becomes congested and generator 1 is only able 

to supply 91.67 MW (as shown in Figure 4.2).  Thus, p*G1 = (91.67, 0, 0, 0).  The vector 

of nodal prices following the network expansion is π * = (11.96, 46.96, 33.72, 51.67).  

According to the formula derived by Bushnell and Stoft, the change in net benefit to 

generator 1 from the construction of line S23 is: 
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Thus, generator 1 sees her net benefit decline with the addition of the Wheatstone bridge 

to the network.  This is contrary to the assertion in Lemma 2 of Bushnell and Stoft that 

fully-hedged market participants cannot be harmed by network additions that cause nodal 

prices to change. 

 

Theorem 2 (Bushnell and Stoft):  Suppose that the total set of FTRs in the system 

matches the systemwide dispatch (so that M = -P), and suppose that an investment is 

made in the grid which lowers the social surplus of the system, so that ΔW < 0.  If the 

new set of FTRs m* allocated to the builder of the detrimental investment is feasible, 

then the revenue stream arising from these new FTRs will be negative and larger in 

magnitude than the loss in social surplus.  Mathematically, 0**' <mπ  and WΔ<**'mπ , 

where π * represents the vector of (optimal) nodal prices after the new investment is 

made. 

 

Theorem 2 is meant to illustrate that no player or group of players (whether they be 

merchant transmission owners or not) would ever have an incentive to modify the grid in 

such a way as to cause additional congestion in the network.  (Bushnell and Stoft state 

this explicitly in their two corollaries to Theorem 2.)  The proof of Theorem 2 offered by 

Bushnell and Stoft makes use of Lemma 2.  However, since the result in Lemma 2 does 
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not necessarily hold in the Wheatstone network of Figure 4.2, it follows that Theorem 2 

does not necessarily hold. 

 

Counterexample to Theorem 2:  Again, we will use the Wheatstone network of Figure 4.2 

as an example.  Suppose that a merchant transmission company decided to build a link 

between nodes 2 and 3 in the network of Figure 4.2.  The stability limit of line S23 is 

55 MW.  According to the feasibility allocation rule, the merchant transmission owner 

would be free to take up to 55 MW worth of FTRs in either direction (from node 2 to 

node 3 or from node 3 to node 2).  In this case, line S23 causes congestion along line S12, 

so the nodal price at node 2 is greater than the nodal price at node 3.  The total cost of 

serving the load without line S23 is $1,622.20, while the total cost of serving the load with 

line S23 is $1,945.50.  The difference in social surplus is therefore $323.30.  The profit-

maximizing merchant transmisson owner would clearly take the FTRs from node 2 to 

node 3, earning a net benefit of π2 - π3 = $46.96 - $33.72 = $13.24 per MW.11 

 

Another counterexample to Theorem 2: The first counterexample to theorem 2 is 

somewhat weak in the sense that the positive net benefit earned by the merchant 

transmission company could be made negative by forcing the merchant transmission 

owner to accept an allocation of FTRs that matches the dispatch along the new line.12  In 

this case, when the merchant transmission company builds a line connecting nodes 2 and 
                                                 
11 In private communication, Dmitri Perekhodtsev has suggested that in reality, RTOs would insist that the 
investor has not added capacity between buses 2 and 3, but rather has reduced capacity between buses 1 
and 4.  In both the flowgate model and in the admittance-payment formulation of Gribik et. al. (2005), this 
point is moot, since payments are only made in the case of congested lines.  Both the feasibility allocation 
rule discussed by Bushnell and Stoft (1996) and actual RTO protocols are vague on this issue. 
12 This is technically a stronger condition than that suggested by Bushnell and Stoft, but similar rules are 
used by exisiting RTOs.  For examples, see PJM (2006), New York ISO (2006), and ISO New England 
(2006). 
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3, they will be forced to take 18.3 MW of FTRs from node 3 to node 2.  The net benefit 

of these FTRs is 18.3 MW × ($33.72 - $46.96) = -$242.29, which is in fact negative, 

although smaller in magnitude than the -$323.30 loss in social surplus from the 

construction of line S23. 

 

Note that after construction of the new line, the load carried on lines S12 and S34 increases 

to 55 MW.  For the feasibility rule to be maintained, the merchant transmission company 

would then be given FTRs in order to match the dispatch on lines S12 and S34.  This would 

involve acquiring 5 MW of FTRs from node 2 to node 1 and 5 MW of FTRs from node 4 

to node 3.  The net benefit to the merchant transmission company from this transaction 

would be equal to: 

 

 5 × (π2 - π1) + 5 × (π4 - π3)  

= 5 × [($46.96 - $11.96) + ($51.67 - $33.72) = $264.75.   

 

Combining the net loss from the allocated FTRs on line S23 and the net gain from the 

acquired FTRs on lines S12 and S34, the total net benefit to the merchant transmission 

company is $264.75 - $242.29 = $22.46, so the merchant transmission company would 

still see a net benefit from adding the constraining line to the system.  Recall that the 

construction of the Wheatstone bridge increases the system cost by $323.30, which is 

larger in magnitude than the profits (net of side payments) earned by the investor.  Thus, 

the system sees a net loss in social surplus (a deadweight loss) from the construction of 

link S23. 
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4.3. Discussion and Conclusions 

Although restructuring in the electric power sector has largely been focused on 

generation, with the liberalization of markets for electric energy, arguments have been 

made that the transmission segment of the industry could operate efficiently under a 

competitive model.  Central to the success of commoditization of transmission is a 

competitive market for transmission contracts that will allocate generation resources 

efficiently and encourage investment in new transmission assets in the right places.  Two 

market-based models have been proposed for such a merchant transmission sector.  Both 

use the difference in locational prices as signals for investment.  The flowgate rights 

model would place a positive value on transmission contracts only for congested lines; 

the FTR model would use point-to-point nodal price differences for any nodes, regardless 

of their geographic proximity or the presence of congestion. 

 

Under the contract network regime suggested by Hogan (1992), flowgate rights have 

been criticized for giving independent players an incentive to modify the grid in 

detrimental ways.  The theorems of Bushnell and Stoft (1996) would support the FTR 

model.  The efficiency of the FTR model has been criticized on economic grounds by 

Joskow and Tirole (2005a) who argue that the assumptions used by Bushnell and Stoft 

are unrealistically strict. 

 

Regardless of the economic assumptions made, the efficiency of a contract network with 

point-to-point financial transmission rights is not independent of the network topology.  

The counterexamples provided here using the Wheatstone network show that even if 
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contract markets are complete and competitive, independent players can still invest in the 

grid in ways that are profitable, but not socially beneficial.  The counterexamples also 

show that grid investments must be evaluated on a case-by-case basis; simply expanding 

the grid will not benefit all parties, even in the presence of a robust transmission contract 

market.  The results also caution a transco that making investments to upgrade their grid 

is more difficult than relieving the most congested line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

 

 

 

 

 

 

 

 

 



105 

Chapter 5: Detecting and Analyzing Wheatstone Structures in 

Larger Networks 

 

Chapter 3 derived several important properties regarding the behavior of Wheatstone 

subnetworks within larger systems: 

 

1. The network does not display localized response.  That is, upgrading the capacity 

on one of the two congested lines will not relieve the systemwide constraint. 

2. The shadow prices on transmission generated by optimal power flow calculations 

are positive in the case of congested lines and zero in the case of uncongested 

lines.  They may not show the true value of incremental upgrades to congested 

lines. 

3. Unlike in other sorts of networks, the existence of an embedded Wheatstone sub-

network is neither a necessary nor a sufficient condition for a power network to 

exhibit the Braess Paradox. 

4. Locational marginal prices are effective tools for identifying congestion, but in 

many cases are not effective in suggesting how to best go about relieving 

constraints. 

 

Compensating investors with transmission contracts based on nodal prices or the shadow 

price of transmission across a given path can provide opportunities for investors to earn 

profits while simultaneously lowering the capacity of the system.  Flowgate rights can 
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provide poor incentives since each new path creates a potential new physical right to be 

traded in the transmission market (Chao and Peck 1996, Hogan 2000).  Adding lines that 

constrain the system will necessarily create new flowgates with positive value.  Bushnell 

and Stoft (1996, 1997) illustrate how the use of point-to-point financial transmission 

rights, allocated according to Hogan’s (1992) feasibility rule, can encourage efficient 

investment in the system by non-utility transmission companies.  However, as Chapter 4 

illustrated, even if FTRs are handed out in an enlightened way, certain network 

topologies can still allow investors to profit from modifying the grid in detrimental ways.  

Either a merchant or a utility investor, therefore, could potentiallybenefit from converting 

a parallel network into a Wheatstone network. 

 

The point of Apt and Lave (2003) is well-taken here: LMP may be a good operational 

tool, encouraging market participants not to schedule over congested lines, but in many 

cases cannot convey enough information about the system for planning and investment 

purposes.  Contrary to the claims of Bushnell and Stoft (1996, 1997) or Oren (1997), the 

use of nodal prices cannot systematically substitute for the traditional transmission 

planning method.  Nodal prices alone will not yield a globally optimal investment plan, 

and scenario-based transmission planning can do no better than a local optimum. 

 

Knowledge of the network’s topological properties can aid in both system operations and 

planning.  The ability to identify and detect Wheatstone sub-networks can be particularly 

helpful.  This chapter develops a two-part tool to analyze embedded Wheatstone 

sub-networks within larger systems.  The first part of the tool is a heuristic network 
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search algorithm that uses several unique graph-theoretic properties of Wheatstone 

networks to identify them within larger systems.  Given a known set of Wheatstone sub-

networks, the second part of the tool analyzes the impact of each particular Wheatstone 

on the remainder of the network by constructing an equivalent external network.  In 

effect, the state of the remainder of the network is held constant, and interactions between 

the embedded Wheatstone and the external network are modeled as bulk 

injections/withdrawals at each of the four Wheatstone nodes.  Embedded Wheatstone 

networks can thus be analyzed in the same way as the standalone Wheatstone test 

network developed in Chapter 3. 

 

5.1 A Graph-Theoretic Approach to Network Search 

Wheatstone networks are ubiquitous in real electric power systems.  The IEEE 14-bus 

network, a modified version of which is shown in Figure 3.3, has at least six Wheatstone 

sub-networks.  In small networks such as the IEEE 14-bus network, Wheatstone 

structures can be found easily by visual inspection.  In real power networks, which may 

have tens or hundreds of thousands of buses, a more systematic approach is needed. 

 

A purely combinatorial approach to finding embedded Wheatstone structures is possible 

on extremely small scales, but quickly becomes infeasible as the number of nodes 

increases.  On a topological basis alone, comparing all four-node substructures of an 

n-bus network requires checking 4n different combinations.  To find all Wheatstone 

networks in the IEEE 14-bus network by brute force would therefore require 2.7 × 108 

calculations.  Checking for Wheatstones in the IEEE 118-bus network would require 
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approximately 1071 calculations.  By comparison, the approximate number of seconds 

since the beginning of the universe is only 3 × 1017. 

 

Designing a feasible algorithm for detecting Wheatstone sub-networks is essentially a 

problem of decomposing the network into portions that might represent Wheatstones, and 

portions that definitely do not.  From a graph-theoretic perspective, electric power 

systems are nice test-beds for decomposition algorithms, since they tend to be very 

sparsely connected, with a given bus attached to a reasonably small number of other 

buses. 

 

Gabriel Kron (1953) and Henry Happ (1973, 1974) pioneered the study of diakoptics, or 

tearing, in electric circuits.  Kron, in particular, developed a method of tearing very large 

physical systems into smaller, tractable sub-systems.  Each of these sub-systems could be 

analyzed separately and then the pieces could be put back together.  Kron and Happ 

focused on applying this method to the analysis of large power systems; a more general 

mathematical formulation, applicable to general physical systems, is provided by 

Aitchison (1983). 

 

Inspired by the study of electric circuits, Duffin (1965) shows that, on a purely 

topological basis, any network can be decomposed into series-parallel sub-networks and 

Wheatstone sub-networks.  Milchtaich (2005) provides a similar proof for more general 

networks. 
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The approach taken here to identifying and analyzing Wheatstone sub-networks borrows 

heavily from the ideas of graph theory and network analysis, and is therefore more in line 

with the topological decompositions suggested by Duffin and Milchtaich than the explicit 

physical models underlying the diakoptics of Kron and Happ. 

 

Newman (2003) discusses how network theory has evolved from primarily a study of the 

social sciences and social networks to include physical networks (such as power grids) 

and information networks (such as the World Wide Web).  The shift away from social 

networks, which have a relatively small number of nodes and edges, towards much larger 

physical and information networks has forced graph theorists and network theorists to 

develop a suite of analytic tools with which to study graphs.  Beyond tens of nodes or 

even a few thousand nodes, the human eye cannot pick out vital associations or patterns 

in real-life networks.  Among the most important of these new network-theoretic tools for 

studying Wheatstone sub-networks are a number of metrics to capture many of the most 

important properties of graphs or networks. 

 

Some preliminaries are necessary before defining any specific metrics.  A graph or a 

network G(NB,NL) is defined as a set of nodes NB and a set of edges NL connecting the 

nodes.  While complex networks often assume the existence of hyper-edges connecting 

more than two nodes (Newman 2003), an edge in this analysis will be assumed to connect 

only two nodes.  A path is a sequence of nodes {i1, i2,…,j}, all of which are connected by 

edges; in many circumstances, paths will be denoted only by their endpoints i and j. 
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It is often convenient to represent the topology of a network using structures known as 

the adjacency matrices or incidence matrices (the former term will be used here, although 

in computer science applications the latter appears to be more common).  The first 

structure is the node-node adjacency matrix.  Notational conventions vary, but the node-

node adjacency matrix will be referred to here as N.  The node-node adjacency matrix N 

is an (NB × NB) square matrix with nij equal to one if nodes (or buses) i and j are 

connected by a single edge, and equal to zero otherwise.  A graph or network is said to be 

undirected if N is symmetric; that is, if nij = nji.  AC power networks are best described as 

undirected networks, although they could also be described by a set of two undirected 

node-node adjacency matrices.  The first would be a lower-triangular matrix describing 

allowable flow from node i to node j, and the second would be an upper-triangular matrix 

describing allowable flow from node j to node i.  DC power networks, or networks 

equipped with flow-control devices such as phase-angle regulators or voltage regulators, 

could be described as directed networks.  The current U.S. high-voltage transmission grid 

represents a mix of AC and DC interconnections, with very few flow-control devices.  

Thus, representing the transmission system as an undirected network is a reasonable 

approximation of the current system. 

 

The second structure, similar to the first, is the node-edge (or node-line, in the context of 

power systems) adjacency matrix.  Denoted as A, the node-edge adjacency matrix is an 

(NB × NL) matrix with ali = +1 and alj = -1, signifying that edge l connects nodes i and j.  

The sign of the entries in the A matrix indicates an assumed direction of flow throughout 
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the network (that is, from node i to node j).  The principle of superposition says that 

either sign convention is appropriate, as long as it is consistent. 

 

The node-node and node-edge adjacency matrices are identical in structure to the 

susceptance matrix B and the matrix H = A’BdiagA used in the steady-state Wheatstone 

analysis in Chapter 3.  N can be obtained from B by dividing all nonzero entries of B by 

themselves, and setting all diagonal entries of N equal to zero.  N and A are assumed to 

have the following properties: 

 

1. ∑ =∀
i

ijaj .0,   This is just an application of Kirchoff’s Law; it says that every 

link in the system connects exactly two nodes. 

 

2. There are no columns of A containing all zeros.  In other words, there are no 

loops in the system. 

 

3. There are no rows or columns of N containing all zeros.  In other words, there are 

no atomistic nodes or sub-systems in the network; each node is connected to at 

least one other node. 

 

4. rank(A) = NL – 1.  This is a consequence of Euler’s formula, which says that 

(nodes) – (edges) + (loops) = 1. 
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5. N and A are related by the formula N = AA’ – 2I, where I is the (NB × NB) 

identity matrix. 

 

In addition, Newman (2003) mentions without proof that Nk contains the number of paths 

of length k beginning at node i and ending at node j (thus, Nk is symmetric for k > 1).  We 

will refer to Nk as the k-th order adjacency matrix.  Of particular importance will be the 

matrix N2, which shows the combinations of nodes that are connected by a path of length 

2, and the diagonal entries of N3, which show the number of triangles in a directed 

network; multiplying the diagonal entries of N3 by a factor of 1/2 gives the number of 

triangles in an undirected network. 

 

Several network metrics will be useful in decomposing systems to find embedded 

Wheatstone sub-networks. 

 

Definition 5.1: The degree of node i, denoted di, is the number of edges connected to 

node i. 

 

Definition 5.2: The distance of a path between nodes i and j is the number of edges 

associated with the path. 

 

Note that the definition of distance used here is purely topological.  In many situations, 

such as the small-world networks described by Watts and Strogatz (1998), this definition 

of distance is difficult to apply to electric power systems (a better definition would be the 
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electrical distance between two nodes, represented by the equivalent resistance between 

the two nodes).  For the Wheatstone-identification algorithm presented here, the 

canonical definition of distance will be adequate. 

 

Definition 5.3: The geodesic path between nodes i and j is the minimum-distance path 

between nodes i and j. 

 

The geodesic path need not be unique; in many circumstances there will be multiple 

geodesic paths connecting any two nodes.  Newman (2003) also defines a network-wide 

geodesic path metric as the harmonic mean of all geodesic path lengths.  The network 

search algorithm will only require knowing whether the geodesic path between any two 

nodes i and j is equal to one, two, or three.  This is easily verified directly using the 

node-node adjacency matrix raised to the appropriate power. 

 

Definition 5.4: The local clustering metric for node i, denoted Ki, is given by the ratio of 

the number of triangles connected to vertex i to the number of triples centered on vertex i. 

 

This definition of clustering is due to Watts and Strogatz (1998).  Nodes with only one 

connecting edge are given a clustering value of zero for Ki.  An equivalent definition, 

given by Newman (2003) is: 

 

)1(
|}{|
−ii

i

dd
e

 for directed networks, and 
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)1(
|}{|2

−ii

i

dd
e

 for undirected networks.   

 

In these definitions, |{ei}| is the number of nodes connected to the ith node that are also 

connected to each other.  Since di(di – 1) is the number of possible interconnections 

between nodes connected to node i, the clustering coefficient measures the proportion of 

possible interconnections among neighbors of node i that actually exist. 

 

Definition 5.5: The network clustering metric is given by ∑
≠≠

=
}0|{}0|{

1

iKi
i

i

K
Ki

K .  

Values of Ki equal to zero are ignored in the computation; thus, the denominator and the 

limit of summation are both determined by the number of nodes having more than one 

connecting edge. 

 

This network clustering metric is also due to Watts and Strogatz (1998).  An alternative 

clustering metric has been proposed by Barrat and Weigt (2000), which measures the 

ratio of triangles in the network to paths of length 3 in the network, multiplied by a factor 

of three to account for each triangle being represented as a part of three triples 

(Newman 2003). 

 

Clustering metrics, however they are defined, describe the connectedness of the network 

relative to a completely connected network, with every node connected to every other 

node.  Therefore, the clustering metric lies between zero and one, with zero representing 

a collection of atomistic nodes and with one representing a completely connected 
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network.  The clustering metric takes on the same range of values whether the Watts-

Strogatz metric or the Barrat-Weigt metric is used. 

 

The clustering metric is not necessarily related to the network geodesic path metric.  Real 

power systems tend to have small clustering metrics but large network geodesic path 

metrics.  This represents the fact that power systems tend to comprise several reasonably 

small clusters of nodes connected by a small number of edges.  Figure 5.1 shows the 

clustering metrics and geodesic path metrics for several IEEE test networks plus values 

for the New York Power Pool, as reported by Newman (2003) and Watts and 

Strogatz (1998).  For this data set, the relationship between network size (as defined by 

the number of nodes) and the clustering metric is described reasonably well by both a 

cubic equation and a logarithmic equation.  The cubic regression line is given by: 

 

(Clustering metric) = 1.25 – 0.35 × NB + 0.02 × NB2 + 2×10-4 × NB3, 

 

with an R2 value of 0.87. The logarithmic regression line is given by: 

 

(Clustering metric) = 0.9 – 0.43×ln(NB), 

 

with an R2 value of 0.81. 
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Figure 5.1.  Clustering metrics for several IEEE test networks and the New York Power 
Pool (Newman 2003). 
 

Figure 5.2 shows a purely topological representation of the Wheatstone network.  

Definitions 5.1 through 5.5 will assist in establishing the following key results concerning 

the structure of the Wheatstone network. 

 

Result 5.1:  The network geodesic path metric for the Wheatstone network is two.  The 

cardinality of this geodesic path metric is also two. 
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Figure 5.2. Topological representation of the Wheatstone network, which has NB = four 
nodes and NL = five edges.  Nodes A and B are referred to as the endpoints of the 
network. 
 

Proof of Result 5.1:  The result can easily be seen by examining the Wheatstone network 

in Figure 5.2.  The geodesic paths are {A,C,B} and {A,D,B}, which traverse the 

boundary of the Wheatstone network. 

 

Result 5.2: The Wheatstone network has a clustering metric of K = 5/6, where K is 

defined using the formulae in Definitions 5.4 and 5.5.  Further, the clustering metric of 

the Wheatstone network is unique among four-node networks where the 

minimum-distance geodesic path (of all pairs of nodes) is two. 

 

Proof of Result 5.2: A network where the minimum-distance geodesic path is greater than 

one represents a network with no atomistic nodes.  Without loss of generality, the family 

of four-node networks meeting this qualification is shown in Figure 5.3. 
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Figure 5.3. A family of four-node networks. 
 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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The first part of the proof is established by calculating the clustering metric of the 

Wheatstone network in Figure 5.3(f), using Definitions 5.4 and 5.5: 

 

6
51
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3
21
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1
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⎞

⎜
⎝
⎛ +++=wheatstoneK . 

 

The remainder of the proof calculates the clustering metric for the other networks in 

Figure 5.3. 

 

First, note that Figures 5.3(a) through 5.3(c) have no triangles, and thus have a clustering 

metric of zero.  Also, the completely connected network in Figure 5.3(g) has a clustering 

metric of one. 

 

The clustering metric of the network in Figure 5.3(d) is: 

 

( )
4
3111

4
1

)(3.5 =++=dK . 

 

The clustering metric of the network in Figure 5.3(e) is: 
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The clustering metric of the network in Figure 5.3(h) is: 
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Note that there is a Wheatstone network embedded in Figure 5.3(h).  However, the link 

paralleling the Wheatstone sub-network reduces the minimum-distance geodesic path to 

one. 

 

5.2 An Algorithm for Detecting Embedded Wheatstone Networks 

The graph-theoretic development in Section 5.1 has provided the following 

characteristics of Wheatstone topologies, which distinguishes Wheatstones from other 

network sub-structures: 

 

1. For the Wheatstone, NB = 4 and NL = 5; 

2. The Wheatstone network has two distinct triangles; 

3. 
6
5

=wheatstoneK ; 

4. The network minimum-distance path between “endpoints” of the Wheatstone 

network (defined as nodes A and B in figure 5.2) is two; 

5. The network maximum-distance path between endpoints of the Wheatstone 

network is three; 

6. Each node in the Wheatstone network has degree greater than one. 
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One goal of the Wheatstone detection algorithm is to disqualify certain nodes, paths, or 

pairs of nodes from possibly being part of a Wheatstone sub-network.  The matrices A, 

N2 and N3 will be particularly useful for this purpose.  The six Wheatstone properties just 

listed give us the following exclusion principles: 

 

1. Any node having degree one cannot be part of a Wheatstone sub-network.  This 

can be verified using the node-line adjacency matrix A.  If the ith row of A has at 

most one non-zero entry, then the degree of node i is equal to one.  This property 

can also be verified using N.  If the ith row or column of N sums to exactly one, 

then node i has degree one. 

2. For any pair of nodes i and j, if there is no path of length two or three connecting i 

and j, then that pair of nodes cannot be part of a Wheatstone network.  This 

property can be verified by looking at the i, jth entry of N2 and N3. 

3. If there are no triangles attached to the ith node, then that node cannot be part of a 

Wheatstone network.  The diagonal entries of N3 can verify this property. 

 

Nodes that are connected simply in series or parallel within larger Wheatstone networks, 

as in Figure 5.4, would result in violations of the Wheatstone criteria.  The algorithm 

would thus return a “false negative” for these types of sub-networks, failing to identify an 

embedded Wheatstone sub-network.  Simple series and parallel connections will need to 

be compressed into single edges or nodes in order to avoid false negatives.  Note that the 

algorithm will create equivalent series-parallel nodes and edges only in a topological 

sense.  Once the Wheatstone networks in the larger system have been identified, the 
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electrical topology of the entire system will be preserved in order to analyze the 

Wheatstones. 

 

 

 

 

 

 

 

Figure 5.4. Wheatstone networks with embedded series or parallel connections.  The 
Wheatstone detection algorithm needs to suppress these in order to avoid the “false 
negative” result of failing to identify an embedded Wheatstone. 
 

The Wheatstone detection algorithm proceeds as follows: 

 

Step 1: Calculate the node-node adjacency matrices N, N2 and N3 for the network, as well 

as the node-edge adjacency matrix A. 

 

Step 2: Compress all simple series and parallel connections into single equivalent nodes 

or edges.  Simple parallel connections can be detected easily using the A matrix; two 

edges are parallel if their corresponding columns in the A matrix are equal.  Two edges 

connected in series can be detected by noting that the node connecting them has degree 

two and is not connected to any triangles (Duffin 1965).  The degree of each node can be 

calculated using the A matrix, while the number of triangles connected to each node can 

(b)(a) (c)(b)(a) (c)
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be read from the diagonal entries of N3.  More than one iteration of this step may be 

required. 

 

Step 3: Define T as the set of nodes that are part of at least one triangle. 

 

Step 4:  Define D as the set of nodes that have degree greater than one. 

 

Step 5:  Define R1 as the set of all pairs of nodes that have geodesic path length equal to 

two.  Define 2R  as the set of all pairs of nodes that have geodesic path length equal to 

two and also have two geodesic paths.  Thus, 12 RR ⊂ .  Note the strategy behind the 

definitions of R1 and R2; the aim is to determine whether a given pair of nodes might 

represent the endpoints of an embedded Wheatstone sub-network (as in Figure 5.2). 

Define R3 as the set of all pairs of nodes connected by exactly two paths of length three. 

 

Step 6:  Define 32 RRDTWS ∩∩∩= .  Some care is required in defining the 

intersection of these sets, since T and D contain a list of nodes, whereas R2 and R3 contain 

a list of pairs of nodes.   If Ω is a set of single elements, and Ψ is a set of pairs of 

elements, then we will say that Ψ∩Ω∈},{ ji ψψ if and only if Ω∈iψ and Ω∈jψ , for 

all Ψ∈ji ψψ , .   

 

WS represents pairs of nodes that meet the necessary conditions for being part of a 

Wheatstone network; Steps 7 and 8 will determine whether the nodes in WS also meet the 

sufficiency conditions. 
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Step 7:  For all pairs of nodes {(i,j)} in WS, construct the node-node adjacency matrix for 

the subgraph consisting of i, j, and all nodes that are neighbors of both i and j (that is, 

those nodes which have a geodesic path distance of one from both i and j).  Ignore any 

direct links between i and j. 

 

Step 8:  Calculate the clustering coefficient for all the subgraphs generated in Step 7.  

Those for which K = 5/6 represent Wheatstone sub-networks. 

 

The workings of each step in the Wheatstone detection algorithm will be illustrated with 

a simple example. 

 

5.3 Illustrating the Wheatstone Detection Algorithm 

The thirteen-bus network shown in Figure 5.5 is used to illustrate how the algorithm 

identifies Wheatstone sub-networks.  The network is based on the IEEE fourteen-bus test 

case, but has been altered by removing all of the synchronous condensers and winding 

transformers from the system, which reduces the size to thirteen buses and alters the 

network topology. 
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Figure 5.5. Topological representation of the thirteen-bus test network used to illustrate 
the Wheatstone detection algorithm.  The network is based on the IEEE fourteen-bus 
network, but the synchronous condensers and winding transformers have been removed. 
 

The first step in the algorithm is to calculate the node-line adjacency matrix A, as shown 

in panel (a) of Figure 5.6.  Examining Figure 5.6(a), we see that nodes 6, 8, 9, and 10 are 

all connected in series; thus, for topological purposes, we can compress this group into a 

single line connecting nodes 6 and 8.  Similarly, nodes 4 and 8 have a simple 

series-parallel connection; thus, we can also eliminate bus 7.  This reduces the network 

down to ten nodes and fifteen lines.  The node-line adjacency matrix A* for the reduced 

network is shown in panel (b) of Figure 5.6. 
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Figure 5.6. The node-line adjacency matrix for the 13-bus test network.  Panel (a) shows 
the node-line adjacency matrix of the full 13-bus networks.  Panel (b) shows the 
equivalent node-line adjacency matrix following the series-parallel reduction. 
 

The node-node adjacency matrices N, N2 and N3 for the reduced network are calculated 

next; these are shown in Figures 5.7 through 5.9. 

 

 

1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1

A =

1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1

(a)

(b)

A* =

1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1

A =

1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1

(a)

(b)

A* =
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Figure 5.7. The node-node adjacency matrix for the reduced-form 13-bus test network. 
 

 

 

 

 

 

 
 
Figure 5.8. The second-order node-node adjacency matrix for the reduced-form 13-bus 
test network. 
 

 

 

 

 

 

 

Figure 5.9. The third-order node-node adjacency matrix for the reduced-form 13-bus test 
network. 
 

0 1 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 1 0

N =

0 1 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 1 0

N =

N2 =

2 1 1 2 1 0 0 0 0 0
1 4 1 2 2 0 1 0 0 0
1 1 2 1 2 0 1 0 0 0
2 2 1 4 1 1 0 1 0 0
1 2 2 1 3 0 1 0 0 0
0 0 0 1 0 4 1 2 2 1
0 1 1 0 1 1 3 1 2 1
0 0 0 1 0 2 1 3 1 2
0 0 0 0 0 2 2 1 3 1
0 0 0 0 0 1 1 2 1 2

N2 =

2 1 1 2 1 0 0 0 0 0
1 4 1 2 2 0 1 0 0 0
1 1 2 1 2 0 1 0 0 0
2 2 1 4 1 1 0 1 0 0
1 2 2 1 3 0 1 0 0 0
0 0 0 1 0 4 1 2 2 1
0 1 1 0 1 1 3 1 2 1
0 0 0 1 0 2 1 3 1 2
0 0 0 0 0 2 2 1 3 1
0 0 0 0 0 1 1 2 1 2

N3 =

2 6 3 3 5 0 2 0 0 0
6 6 6 8 7 1 2 1 0 0
3 6 2 6 3 1 1 1 0 0
3 8 6 4 8 1 6 1 2 1
5 7 3 8 4 1 1 1 0 0
0 1 1 1 1 6 7 7 7 6
2 2 1 6 1 7 2 6 3 3
0 1 1 1 1 7 6 4 7 3
0 0 0 2 0 7 3 7 4 5
0 0 0 1 0 6 3 3 5 2

N3 =

2 6 3 3 5 0 2 0 0 0
6 6 6 8 7 1 2 1 0 0
3 6 2 6 3 1 1 1 0 0
3 8 6 4 8 1 6 1 2 1
5 7 3 8 4 1 1 1 0 0
0 1 1 1 1 6 7 7 7 6
2 2 1 6 1 7 2 6 3 3
0 1 1 1 1 7 6 4 7 3
0 0 0 2 0 7 3 7 4 5
0 0 0 1 0 6 3 3 5 2
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The number of triangles associated with each node is given by the diagonals of N3 

multiplied by a factor of 0.5.  It will be useful to define a matrix )(
2
1 NT diag= , whose 

ith diagonal entry shows the number of distinct triangles connected to the ith node in the 

network.  All off-diagonal entries of T are equal to zero.  The T matrix for the reduced 

network is shown in Figure 5.10. 

 

 

 

 

 

Figure 5.10. The diagonal entries of the T matrix show the number of triangles connected 
to each node. 
 

Figures 5.6 through 5.10 amount to performing steps 1 and 2 of the Wheatstone detection 

algorithm.  The topology of the reduced-form network at this point is shown in 

Figure 5.11.  Spotting the Wheatstones in the reduced network with the naked eye is 

easy; visual inspection will provide a check that the algorithm is performing as expected. 

 

Step 3 requires that we define the set T of all nodes in the network that are connected to 

at least one triangle.  For the reduced-form network in Figure 5.11, T happens to include 

all the nodes in the network: 

 

T = {1, 2, 3, 4, 5, 6, 8, 11, 12, 13}. 

 

T =

1
3

1
2

2
3

1
2

2
1

T =

1
3

1
2

2
3

1
2

2
1
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Figure 5.11. The reduced-form thirteen-bus network, after creating equivalent series-
parallel connections in the system. 
 

In step 4 we find the set of all nodes with degree greater than one.  Recall that the degree 

of a node is equal to the number of connected neighbors – that is, the number of nodes to 

which each node is directly connected.  The degree of each node can be found in two 

different ways.  The first method uses the node-line adjacency matrix; the degree of each 

node is equal to the sum of the absolute values of the entries in the corresponding row of 

the node-line incidence matrix.  The second method uses the node-node adjacency 

matrix.  The degree of a given node is equal to the sum of the corresponding row or 

column in the node-node adjacency matrix.  Thus, we have: 

 

Method 1: ,||∑=
j

iji ad  or 

Bus 1

Bus 2

Bus 3

Bus 5

Bus 4

Bus 6

Bus 13

Bus 12
Bus 11

Bus 8

Bus 1

Bus 2

Bus 3

Bus 5

Bus 4

Bus 6

Bus 13

Bus 12
Bus 11

Bus 8
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Method 2: .∑∑ ==
j

ji
j

iji NNd  

 

Figure 5.12 illustrates the calculation using method 2; the figure shows the reduced 

network node-node adjacency matrix plus an extra column summing the entries in each 

row. 

 

 

 

 

 

 

Figure 5.12. The degree of all ten nodes in the reduced-form network. 
 

 

From Figure 5.12, we see that every node in the reduced network has degree greater than 

one.  Thus, the set D contains every node in the network (note also that D is equal to the 

set T of all nodes connected to at least one distinct triangle): 

 

D = {1, 2, 3, 4, 5, 6, 8, 11, 12, 13}. 

 

Step 5 requires that we determine the membership of three sets, labeled R1, R2, and R3.  

The set R1 is made up of all pairs of nodes with geodesic path length equal to two.  R2 is 

made up of the subset of R1 consisting of all pairs of nodes whose geodesic path length is 

N =

Degree
0 1 0 0 1 0 0 0 0 0 2
1 0 1 1 1 0 0 0 0 0 4
0 1 0 1 0 0 0 0 0 0 2
0 1 1 0 1 0 1 0 0 0 4
1 1 0 1 0 0 0 0 0 0 3
0 0 0 0 0 0 1 1 1 1 4
0 0 0 1 0 1 0 1 0 0 3
0 0 0 0 0 1 1 0 1 0 3
0 0 0 0 0 1 0 1 0 1 3
0 0 0 0 0 1 0 0 1 0 2

N =

Degree
0 1 0 0 1 0 0 0 0 0 2
1 0 1 1 1 0 0 0 0 0 4
0 1 0 1 0 0 0 0 0 0 2
0 1 1 0 1 0 1 0 0 0 4
1 1 0 1 0 0 0 0 0 0 3
0 0 0 0 0 0 1 1 1 1 4
0 0 0 1 0 1 0 1 0 0 3
0 0 0 0 0 1 1 0 1 0 3
0 0 0 0 0 1 0 1 0 1 3
0 0 0 0 0 1 0 0 1 0 2
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equal to two, and for which the cardinality of the geodesic path is also two (that is, the 

pairs of nodes for which there are two geodesic paths).  R3 is the set of all pairs of nodes 

that are separated by two paths of length three.  This set is not a subset of either R1 or R2, 

but is grouped with R1 and R2 since its members can be determined in parallel with R1 

and R2. 

 

The set R1 for the reduced network can be determined using the node-node matrices N 

and N2.  The matrix N shows those pairs of nodes that have a geodesic path of one (that 

is, nodes that are connected neighbors).  Thus, if the (i,j)th entry of N is equal to one, 

nodes i and j have a geodesic path of one.  If the (i,j)th entry of N is equal to zero, nodes i 

and j have geodesic path of length greater than one. 

 

For those pairs of nodes with geodesic path length greater than one, corresponding to 

entries in N that are equal to zero, we can use N2 to check for a geodesic path equal to 

two.  Since N2 shows the number of paths of length two in the network, if the (i,j)th entry 

of N2 is non-zero, and the corresponding entry of N is zero, then nodes i and j have 

geodesic path length of two. 

 

In fact, we can construct an indicator matrix from N and N2, whose entries will tell us 

which pairs of nodes have geodesic path length equal to two.  To construct this matrix, 

which we will call Ng2, we first construct a matrix N1N −=~ , where 1 is an (NB by NB) 

matrix of ones.  Thus, if the (i,j)th entry of N is equal to one (corresponding to a geodesic 

path of length one between nodes i and j), then the corresponding entry of N~ is zero.  
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Similarly, if the (i,j)th entry of N is equal to zero, the corresponding entry of N~ is equal 

to one.  To calculate Ng2, we simply multiply the (i,j)th entry of N~  by the corresponding 

entry of N2.  Entries of Ng2 can be equal to zero if the corresponding entry of N~ is equal 

to zero or if the corresponding entry of N2 is equal to zero (or both).  Nonzero off-

diagonal entries of Ng2 correspond to pairs of nodes whose geodesic path is equal to two.  

Thus, we have proven the following result necessary in constructing the set R1. 

 

Result 5.3:  Let N and N2 be the first-order and second-order node-node adjacency 

matrices of a network, and let N1N −=~ .  The pairs of nodes in the network with a 

geodesic path of length two correspond to the off-diagonal nonzero entries of Ng2, where 

the (i,j)th entry of Ng2 is given by ijijijg NNN ~
,2 = . 

 

 

 

 

 

 
Figure 5.13. The off-diagonal entries of the matrix Ng2 show the pairs of nodes with 
geodesic path length equal to two. 
 

Figure 5.13 shows the matrix Ng2 for the reduced network.  Reading off the nonzero 

off-diagonal entries yields the set R1: 

 

R1 = {{1,3}, {1,4}, {2,8}, {3,5}, {3,8}, {4,6}, {4,11}, {5,8}, {8,12}, {8,13}, {11,13}}. 

Ng2 =

2 0 1 2 0 0 0 0 0 0
0 4 0 0 0 0 1 0 0 0
1 0 2 0 2 0 1 0 0 0
2 0 0 4 0 1 0 1 0 0
0 0 2 0 3 0 1 0 0 0
0 0 0 1 0 4 0 0 0 0
0 1 1 0 1 0 3 0 2 1
0 0 0 1 0 0 0 3 0 2
0 0 0 0 0 0 2 0 3 0
0 0 0 0 0 0 1 2 0 2

Ng2 =

2 0 1 2 0 0 0 0 0 0
0 4 0 0 0 0 1 0 0 0
1 0 2 0 2 0 1 0 0 0
2 0 0 4 0 1 0 1 0 0
0 0 2 0 3 0 1 0 0 0
0 0 0 1 0 4 0 0 0 0
0 1 1 0 1 0 3 0 2 1
0 0 0 1 0 0 0 3 0 2
0 0 0 0 0 0 2 0 3 0
0 0 0 0 0 0 1 2 0 2



133 

Since N2 contains all paths of length two between pairs of nodes in the network, and 

since Ng2 indicates which pairs of nodes have a geodesic path length equal to two, those 

entries of Ng2 equal to two indicate which pairs of nodes have exactly two geodesic paths.  

These pairs of nodes form the set R2.  Figure 5.13 allows us to identify the set R2: 

 

R2 = {{1,4}, {3,5}, {8,12}, {11,13}}. 

 

To complete step 5 of the Wheatstone detection algorithm, we must find the set R3.  Since 

we are looking for pairs of nodes that are separated by at least two paths of length three, 

we need only look at the entries of N3.  For a reasonably meshed network, R3 will be 

quite large; for the reduced network shown in Figure 5.11, we get: 

 

R3 = {{1,2}, {1,3}, {1,4}, {1,5}, {1,8}, {2,3}, {2,4}, {2,5}, {2,8}, {3,4}, {3,5}, {4,5}, 

{4,8}, {4,12}, {6,8}, {6,11}, {6,12}, {6,13}, {8,11}, {8,12}, {8,13}, {11,12}, {11,13}, 

{12,13}}. 

 

The set 32 RR ∩  consists of pairs of nodes that might represent the endpoints of a 

Wheatstone sub-network (these correspond to nodes A and B in Figure 5.2), and in this 

case, 232 RRR =∩  since 32 RR ⊂ .  Thus, from Figure 5.13, we see that there are at most 

four Wheatstone sub-networks in the reduced network shown in Figure 5.11. 

 

Step 6 of the Wheatstone detection algorithm requires that we calculate the set WS, 

defined as the intersection of T, D, R2, and R3.  To handle calculating the intersection of 
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two sets, the first of which contains a list of nodes, and the second of which contains a set 

of pairs of nodes, we will require that both members of each pair of nodes in the second 

set also individually be members of the first set.  Since both T and D contain all the nodes 

in the reduced network, and 232 RRR =∩ , we see that WS = R2.   

 

In step 7 of the Wheatstone detection algorithm, we construct the sub-graphs consisting 

of pairs of nodes {i,j} in the set WS and all nodes connected to both i and j with degree 

one.  Step 8 verifies that these are indeed Wheatstone sub-networks by calculating the 

clustering coefficient of each sub-graph.  Since there are four pairs of nodes in the set 

WS, we must construct four distinct sub-graphs. 

 

The set of nodes connected to both i and j with degree one can be found by scanning the 

ith and jth column (or row) of the node-node adjacency matrix N, looking for common 

elements whose entry is equal to one: 

 

{nodes connected to i and j with degree one} = NBkNkNk jkik ,...,1},1|{}1|{ ==∩= . 

 

The node-node adjacency matrices for the four candidate Wheatstone sub-networks of the 

reduced network shown in Figure 5.11 are shown in Figure 5.14.  Using the clustering 

metric given in Definition 5.5, we see that K = 5/6 for all four candidate Wheatstone sub-

networks in Figure 5.14.  Thus, all four are actual Wheatstone sub-networks. 
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Figure 5.14. The node-node adjacency matrices for the four candidate Wheatstone sub-
networks of the ten-bus reduced network. 
 

The algorithm presented here for finding embedded Wheatstone sub-networks has a lot of 

steps. However, exploiting the graph-theoretic properties of the macro-level network and 

the Wheatstone network reduces the combinatorial nature of the search problem.  For 

those steps that require a global network search (such as step 5, where finding the set R2 

requires searching through the entire Ng2 matrix), the number of operations required is the 

same order of magnitude as the dimensionality of the network.1 

                                                 
1 Actually, the number of operations required is only half of the dimensionality, since N is symmetric about 
the principal diagonal. 

WS1 =

1 2 4 5
1 0 1 0 1
2 1 0 1 1
4 0 1 0 1
5 1 1 1 0

WS2 =

WS3 =

WS4 =

2 3 4 5
2 0 1 1 1
3 1 0 1 0
4 1 1 0 1
5 1 0 1 0

6 8 11 12
6 0 1 1 1
8 1 0 1 0
11 1 1 0 1
12 1 0 1 0

6 11 12 13
6 0 1 1 1
11 1 0 1 0
12 1 1 0 1
13 1 0 1 0

WS1 =

1 2 4 5
1 0 1 0 1
2 1 0 1 1
4 0 1 0 1
5 1 1 1 0

WS1 =

1 2 4 5
1 0 1 0 1
2 1 0 1 1
4 0 1 0 1
5 1 1 1 0

WS2 =

WS3 =

WS4 =

2 3 4 5
2 0 1 1 1
3 1 0 1 0
4 1 1 0 1
5 1 0 1 0

6 8 11 12
6 0 1 1 1
8 1 0 1 0
11 1 1 0 1
12 1 0 1 0

6 11 12 13
6 0 1 1 1
11 1 0 1 0
12 1 1 0 1
13 1 0 1 0
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5.4 An Equivalencing Method for Steady-State Analysis of Embedded Wheatstone 

Sub-Networks  

Chapter 3 derived the most relevant steady-state properties of the standalone Wheatstone 

test network.  Wheatstones embedded in larger networks can be analyzed much the same 

way, but the effects of the external network must also be taken into account.  Further, the 

series-parallel reductions that are made in the Wheatstone search algorithm are perfectly 

acceptable from a graph-theoretic standpoint, in which the electrical network is reduced 

to a set of nodes and edges.  In real electric power systems, calculating series-parallel 

equivalent buses and branches must be done carefully. 

 

This section outlines two common equivalencing tools for the steady-state analysis of 

power networks.  The first tool can be used to create equivalent single nodes and lines 

from series-parallel network structures.  The second tool, known as the Ward equivalent, 

is useful for creating a reduced-form model of the network external to the Wheatstone 

network.  This equivalent is modeled as a constant real power injection or withdrawal at 

the boundary of the Wheatstone sub-network. 

 

These equivalencing methods are often useful for near-real-time system monitoring of 

certain portions of the network, since they do not require running power flows on the full 

system model.  The methods are not perfect.  The Ward equivalent in particular has two 

well-known drawbacks.  The first is that while it replicates real power flows reasonably 

well (Lo et. al. 1993), it is less accurate in reproducing the full-network reactive flows.  
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The second is that it assumes that the external network is in a static steady state.  Thus, 

injections, withdrawals, line impedances, and so forth do not deviate from their constant 

steady-state values.  Thus, the equivalencing methods are most useful for examining the 

effects of small changes in the network. 

 

The series-parallel equivalencing method will be discussed first, followed by the Ward 

equivalent.  An example using the 13-bus network in Figure 5.5 appears as Section 5.5. 

 

Ohm’s Law states that for resistors Ra and Rb  in parallel, an equivalent resistance can be 

calculated using the formula 
baab RRR

eq

111
+= .    Thus, the reciprocals of resistances are 

additive in parallel. 

 

Resistances in series are simply additive: Rab = Ra + Rb.  In power systems applications, 

on the other hand, nodes are often buses, whose structures are more complex than simple 

resistors in a circuit.  Imagine two transmission lines connected in series by a bus 

containing only a load, as shown in the left-hand panel of Figure 5.15.  In this case we are 

only concerned with the point where the transmission lines meet, and not with the other 

ends of the two lines.  In calculating the equivalent series resistance for these two lines, 

we cannot simply add the resistances of the individual lines, as that would neglect the bus 

resistance in line C. 
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Figure 5.15. Delta-star equivalencies must be used to calculate series-parallel 
equivalencies in power networks. 
 

Series connections in buses are actually so-called Wye connections, as shown in the 

left-hand side of Figure 5.15 and the right-hand panels of Figure 5.16.  An equivalence 

relation exists between the Wye connection and the triangular Delta connection (see the 

right-hand side of Figure 5.15 and the left-hand panels of Figure 5.16).  For any given 

Delta network, it is always possible to construct terminal connections in the Wye 

configuration such that the two networks are electrically equivalent (and vice versa).  In 

other words, if we have a set of three resistors arranged in a Delta configuration, through 

examining the terminals alone (voltages and currents) we can figure out the resistances 

necessary to construct an equivalent Wye network. 
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Figure 5.16. Various representations of Delta and Wye networks. 
 

The equations to convert a Delta network into its equivalent Wye network are: 

 

.)1.5(

)1.5(

)1.5(

BCACAB

ACBC
C

BCACAB

BCAB
B

BCACAB

ACAB
A

XXX
XX

Xc

XXX
XX

Xb

XXX
XX

Xa

++
=

++
=

++
=

 

 

The equations to convert a Wye network into its equivalent Delta network are: 
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)2.5(

)2.5(
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X
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The following algorithm will create equivalent parallel and series connections.  Consider 

a network with NB nodes and NL edges.  Suppose that we wanted to consider a reduced 

network with lines connected in series such that k of the NB nodes would be removed 

from the system.  The following algorithm will take the original (NB × NB) admittance 

matrix Y and will yield an equivalent reduced-form (NB – k × NB – k) admittance matrix 

Yred.2 

 

To modify the admittance matrix, we begin with the current-voltage relation I = YV.  We 

partition I into an (NB – k)-dimensional vector I-k (containing the NB – k nodes not being 

eliminated from the network) and a k-dimensional vector of zeroes: 

 

⎥
⎦

⎤
⎢
⎣

⎡
→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
I

I k
1

)3.5(

ni

i
M . 

 

                                                 
2 The applications here will focus on the DC power flow model, which uses only the reactive portion B of 
the admittance matrix.  However, the series-parallel reduction equations presented here will work whether 
the full admittance matrix is used, or just the susceptance matrix. 
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We similarly partition the voltage vector into an (NB – k)-dimensional vector V-k 

(containing the NB – k nodes not being eliminated from the network) and a k-dimensional 

vector of zeroes.  This implies the following partitioning of the admittance matrix: 

 

.)4.5(
k

k-

2221

1211k-
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
V
V

YY
YY

0
I

 

 

The dimensionality of the partitioned admittance matrix is that Y11 is (NB – k × NB – k), 

Y12 is (NB – k × k), Y21 is (k × NB – k), and Y22 is (k × k). 

 

After the partitioning, we have the following system of equations: 

 

(5.5a) I-k = Y11V-k + Y12Vk  (NB – k equations) 

 

(5.5b) 0 = Y21V-k + Y22Vk   (k equations) 

 

From equation (5.5b), we get Vk = -Y22
-1Y21V-k.  Plugging this into equation (5.5a) yields 

 

(5.6) I-k = Y11V-k - Y12(Y22
-1Y21V-k) 

     = (Y11 - Y12Y22
-1Y21)V-k 

      = YredV-k 

 

where Yred = (Y11 - Y12Y22
-1Y21). 
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The final output of the system decomposition algorithm is essentially a list of all of the 

subnetworks that have the Wheatstone structure, and those that have a series-parallel 

structure.  Sub-networks of interest can then be analyzed in turn to determine either if the 

existing configuration amounts to a constraint on the network (the congestion 

management function) or whether proposed transmission additions are likely to be 

beneficial or detrimental to the network (the planning function).  Since the planning time 

scale is often months or years in advance, fast calculations are probably not valued as 

highly as during real-time operations.  Planners have enough time to run full power flows 

to support their system studies. 

 

System operators, on the other hand, are not normally afforded the luxury of time.  One 

fast technique which has been shown to work well for calculating equivalent real power 

flows is the Ward equivalent.  The principal advantage of the Ward equivalent over other 

methods is that it is largely a function of the topology of the network and does not require 

a base-case analysis of the power system (Lo et. al. 1993).  The idea behind the Ward 

equivalent is that it divides the power system into three parts.  The internal system 

represents the portion of the network to be studied in detail (for our purposes, such an 

internal system might be a Wheatstone network detected by the decomposition 

algorithm).  The equivalent external system represents everything outside of the internal 

system.  Finally, the Ward equivalencing method also considers the boundary nodes 

where the internal system meets the external system. 
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The primary tool in the Ward equivalent method is the system admittance matrix Y (or, in 

the case of the DC power flow, the system susceptance matrix B), which is partitioned 

according to the number of nodes in each of the internal, external, and boundary 

subsystems.  If there are e nodes in the external system, i nodes in the internal system, 

and b nodes on the boundary, then we define the following partitions of the Y matrix:3 

 

YEE = the (e × e) sub-matrix of admittances in the external system; 

YBE = the (b × e) sub-matrix of admittances between the boundary nodes and the external 

system; 

YBI = the (b × i) sub-matrix of admittances between the boundary nodes and the internal 

nodes; 

YII = the (i × i) sub-matrix of admittances in the internal system. 

 

The full system admittance matrix is thus partitioned as follows: 

 

(5.7) Ysystem = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

IIIB

BI
I
BB

E
BBBE

EBEE

YY0
YYYY
0YY

. 

 

Note that T
EBBE YY =  and T

IBBI YY = .  The submatrices E
BBY  and I

BBY  contain the sum of 

admittances between the boundary buses and the external and internal buses, 

respectively.  The part of the Ysystem matrix describing the external system can be 

divorced from the part representing the internal system, as: 
                                                 
3 Note that .NBbie =++  
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(5.8) YE = ⎥
⎦

⎤
⎢
⎣

⎡
E
BBBE

EBEE

YY
YY

. 

 

Through repeated application of Ohm’s Law for the external, internal, and boundary 

systems, the external equivalent admittance matrix is (Monticelli et. al. 1979): 

 

(5.9) Yeq = E
BBY  - YBEYEE

-1YEB. 

 

Particularly in the cases considered here, the number of external buses will far exceed the 

number of boundary buses, so the dimensionality of Yeq should be quite small.  The 

equivalent admittance matrix can then be used to calculate equivalent real and reactive 

power injections on the boundary of the internal system using the normal load flow 

equations. 

 

5.5 An Example Using the Thirteen-Bus Network 

This section demonstrates the equivalencing method developed in Section 5.4 using the 

13-bus network shown in Figure 5.5.  From Section 5.3, we know that the equivalent 

reduced network has ten buses; buses 7, 9, and 10 are eliminated in series.  Thus, the 

reduced susceptance matrix Bred is a (10 × 10) matrix of equivalent susceptances.  The 

example presented here will focus on the four-bus Wheatstone network consisting of 

buses 6, 11, 12, and 13. 
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The partitioned system susceptance matrix (denoted Bpart) is shown in Figure 5.17.  The 

system submatrices B11, B12, and B22 can be easily seen in Figure 5.17. 

 

 

 

 

 

 

 

Figure 5.17. The partitioned susceptance matrix for the thirteen-bus network. 
 

The inverse of B22 is given by: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−

27.035.023.0
35.032.023.0
23.023.026.0

1
22B , 

 

and thus the reduced-form system susceptance matrix is given by: 

 

 

 

 

 

 

Bred =                                                                                               .     

0.46 -0.82 -1.20 0.97 0.22 1.45 0.66 -1.47 -0.94 -0.49
-0.82 1.47 2.15 -1.73 -0.40 -2.59 -1.18 2.63 1.68 0.87
-1.20 2.15 3.14 -2.53 -0.59 -3.78 -1.73 3.84 2.46 1.27
0.97 -1.73 -2.53 2.04 0.47 3.05 1.39 -3.09 -1.98 -1.02
0.22 -0.40 -0.59 0.47 0.11 0.71 0.32 -0.72 -0.46 -0.24
1.45 -2.59 -3.78 3.05 0.71 9.55 4.37 -1.17 -6.21 -11.30
0.66 -1.18 -1.73 1.39 0.32 4.37 2.00 -0.54 -2.84 -5.17
-1.47 2.63 3.84 -3.09 -0.72 -1.17 -0.54 5.28 0.76 -3.49
-0.94 1.68 2.46 -1.98 -0.46 -6.21 -2.84 0.76 4.04 7.35
-0.49 0.87 1.27 -1.02 -0.24 -11.30 -5.17 -3.49 7.35 18.00

Bpart =

-1.76 0.07 -3.76 -0.09 4.53 0.22 0.10 -0.83 -0.14 0.50 1.85 -0.55 -0.14
0.07 -3.27 4.81 0.15 0.04 -0.39 -0.18 1.48 0.26 -0.89 -3.31 0.99 0.25
-3.76 4.81 2.66 0.23 -1.31 -0.58 -0.26 2.16 0.37 -1.30 -4.82 1.44 0.36
-0.09 0.15 0.23 -2.37 -0.04 0.46 0.21 -1.74 -0.30 1.05 3.89 -1.16 -0.29
4.53 0.04 -1.31 -0.04 -3.70 0.11 0.05 -0.40 -0.07 0.24 0.90 -0.27 -0.07
0.22 -0.39 -0.58 0.46 0.11 -7.34 -0.54 -3.65 0.77 5.01 2.23 2.96 0.74
0.10 -0.18 -0.26 0.21 0.05 -0.54 -3.25 2.03 0.35 -1.23 1.02 1.35 0.34
-0.83 1.48 2.16 -1.74 -0.40 -3.65 2.03 1.05 2.37 -0.45 -8.36 9.13 -2.80
-0.14 0.26 0.37 -0.30 -0.07 0.77 0.35 2.37 -1.50 1.74 -1.45 -1.92 -0.48
0.50 -0.89 -1.30 1.05 0.24 5.01 -1.23 -0.45 1.74 1.11 5.05 -12.52 1.69
1.85 -3.31 -4.82 3.89 0.90 2.23 1.02 -8.36 -1.45 5.05 9.97 -5.57 -1.40
-0.55 0.99 1.44 -1.16 -0.27 2.96 1.35 9.13 -1.92 -12.52 -5.57 -4.51 10.64
-0.14 0.25 0.36 -0.29 -0.07 0.74 0.34 -2.80 -0.48 1.69 -1.40 10.64 -8.84

B11

B12 B22

Bpart =

-1.76 0.07 -3.76 -0.09 4.53 0.22 0.10 -0.83 -0.14 0.50 1.85 -0.55 -0.14
0.07 -3.27 4.81 0.15 0.04 -0.39 -0.18 1.48 0.26 -0.89 -3.31 0.99 0.25
-3.76 4.81 2.66 0.23 -1.31 -0.58 -0.26 2.16 0.37 -1.30 -4.82 1.44 0.36
-0.09 0.15 0.23 -2.37 -0.04 0.46 0.21 -1.74 -0.30 1.05 3.89 -1.16 -0.29
4.53 0.04 -1.31 -0.04 -3.70 0.11 0.05 -0.40 -0.07 0.24 0.90 -0.27 -0.07
0.22 -0.39 -0.58 0.46 0.11 -7.34 -0.54 -3.65 0.77 5.01 2.23 2.96 0.74
0.10 -0.18 -0.26 0.21 0.05 -0.54 -3.25 2.03 0.35 -1.23 1.02 1.35 0.34
-0.83 1.48 2.16 -1.74 -0.40 -3.65 2.03 1.05 2.37 -0.45 -8.36 9.13 -2.80
-0.14 0.26 0.37 -0.30 -0.07 0.77 0.35 2.37 -1.50 1.74 -1.45 -1.92 -0.48
0.50 -0.89 -1.30 1.05 0.24 5.01 -1.23 -0.45 1.74 1.11 5.05 -12.52 1.69
1.85 -3.31 -4.82 3.89 0.90 2.23 1.02 -8.36 -1.45 5.05 9.97 -5.57 -1.40
-0.55 0.99 1.44 -1.16 -0.27 2.96 1.35 9.13 -1.92 -12.52 -5.57 -4.51 10.64
-0.14 0.25 0.36 -0.29 -0.07 0.74 0.34 -2.80 -0.48 1.69 -1.40 10.64 -8.84

B11

B12 B22
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We are now ready to move on to calculating the Ward equivalent for the Wheatstone 

network at buses 6, 11, 12, and 13.  The internal buses for the Ward calculation are buses 

12 and 13 (not all four buses of the Wheatstone network, since the Ward equivalent 

technique makes a distinction between the internal and boundary buses).  Referencing 

Figure 5.5, the boundary buses are buses 6 and 11.  The external buses consist of the 

remainder of the network.  Thus, the Ward matrices are: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎢
⎢

⎣

⎡

−−
−−
−−

−−−−
−−−−

−−

=

⎥
⎦

⎤
⎢
⎣

⎡
−−−−

−−
=

⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=

⎥
⎦

⎤
⎢
⎣

⎡
=

232.039.173.118.166.0
32.011.047.059.04.022.0
39.147.004.253.273.197.0
73.159.053.214.315.22.1
18.14.073.115.247.182.0

66.022.097.02.182.046.0

54.072.009.384.363.247.1
37.471.005.378.359.245.1

49.376.0
3.1121.6

1835.7
35.704.4

EE

BE

BI

II

B

B

B

B

. 

 

The Ward equivalent external susceptance matrix is given by: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

98.553.0
04.261.13

,eqEB . 
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Lo et. al. (1993) acknowledge that the elements of Beq may be large in magnitude; they 

suggest that industry practice is to ignore any equivalent susceptances larger than, say, 

three per-unit.  For the purposes of this example, we will take the equivalent susceptances 

as given and proceed to calculate equivalent injections/withdrawals at the boundary 

nodes. 

 

Thus, the Ward equivalent susceptance matrix for the Wheatstone subnetwork is 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−−−
−−

=

4835.749.376.0
35.704.43.1121.6
49.33.1198.553.0

76.021.604.261.13

,eqIB . 

 

The information in the equivalent susceptance matrix can be combined with the 

topological information from the Wheatstone network in order to characterize the 

injections or withdrawals at the boundary buses, as well as the flows through the network.  

Figure 5.18 shows the Wheatstone sub-network without the additional information from 

the equivalent external system and Figure 5.19 shows the Wheatstone following the 

equivalencing procedure. 
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Figure 5.18. The original form of a Wheatstone sub-network embedded in the 
thirteen-bus network. 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.19. The equivalent Wheatstone sub-network. 
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In Figure 5.18, we see that every node of the Wheatstone network represents a load bus; 

there is no generation native to this Wheatstone sub-network.  In the IEEE fourteen-bus 

network on which the thirteen-bus network is based, all generation is located at buses 1, 2 

and 8.  Power flows through the network from other parts of the network into the 

Wheatstone.  Unsurprisingly, the direction of flow is towards bus 13. 

 

Figure 5.19 shows the effect of creating an equivalent external network with boundary 

buses 6 and 11.  The equivalent network behaves as if buses 6 and 11 were generators, 

producing 28 MW and 19 MW of real power, respectively.  Note that the direction of 

flows has not changed with the creation of the equivalent network. 

 

5.6 Summary 

Chapter 3 demonstrated that the presence of a Wheatstone sub-network in a larger power 

system may cause some unexpected effects, such as congestion that is not relieved with 

incremental upgrades.  The pricing signals in Wheatstone sub-networks may also be 

misleading.  While this behavior is easy to analyze in the context of a standalone 

Wheatstone test system, it may be harder to pin down in a large meshed network.  Being 

able to find embedded Wheatstone structures is valuable in both the operations and 

planning functions of grid management. 

 

This chapter developed a graph-theoretic network search tool to find Wheatstone 

sub-networks in larger systems. The search tool is heuristic in the sense that it does not 

perform a complete combinatorial scan of all possible four-node sub-networks.  For even 
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modestly-sized systems, the combinatorial problem is too large.  Instead the search 

algorithm exploits the unique graph-theoretic structure of the Wheatstone network.  The 

tool was illustrated on a modified version of the IEEE fourteen-bus network; this network 

was chosen in order to provide a sufficiently interesting example where the outcome 

could also be seen though a simple visual scan of the network.  In Chapter 6, we will 

apply the tool to the IEEE 118-bus network. 
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Chapter 6: The Tradeoff Between Congestion Cost and 

Reliability in Meshed Networks 

 

When a Wheatstone bridge is built, bisecting a parallel network, the immediate effect is 

to congest the network unless the rated capacities of the transmission lines in the 

Wheatstone are very large relative to the expected flow across the network.  From a 

congestion-management perspective, Wheatstone networks seem to be a losing 

proposition.  However, as discussed in Chapter 3, under some circumstances the 

Wheatstone bridge may provide a reliability benefit.  Consider the Wheatstone network 

shown in Figure 6.1, which is similar to the networks described in Chapters 3 and 4, 

except that lines S24 and S34 have a capacity limit of 100 MW as opposed to 55 MW.  

Without the Wheatstone bridge, an outage on either line S24 or S34 will restrict the power 

transfer to 55 MW between buses 1 and 4.  Thus, for a load of 100 MW at bus 4, the 

expensive generator at bus 4 must generate 45 MW in order to avoid shedding any load.  

This increases the cost of operating the network according to the differences in marginal 

costs of the two generators.  If the Wheatstone bridge is installed in the network, the 

power transfer between buses 1 and 4 in event of an outage across line S24 or S34, is 100 

MW, and the load can continue to be served with the inexpensive generator at bus 1. 

 

During normal system operations, the Wheatstone bridge imposes a cost on the system in 

the form of congestion.  In the case of a contingency on line S24 or S34 the Wheatstone 

bridge offers a reliability benefit to the system.  Specifically, the Wheatstone bridge 

serves to satisfy the N – 1 reliability criterion with respect to transmission lines.  The 
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loss-of-load probability also falls accordingly.  Increased reliability is earned at the cost 

of increased congestion.  The only exception to this tradeoff occurs at very low levels of 

demand – less than 55 MW in the case of the Wheatstone network in Figure 6.1.  Thus, 

the value of the Wheatstone bridge is the difference between the reliability benefit that it 

offers to the system over some period of time and the congestion costs it imposes on the 

system. 

 

Figure 6.1. The four-bus Wheatstone test network with the stability limits of lines S34 and 
S24 increased to 100 MW. 
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interest” status.1  The Energy Policy Act gives FERC the authority to intervene and speed 

up the siting process for these projects.  Transmission investments conferring primarily 

economic benefits (that is, those not designated as being in the national interest) are, 

under restructuring, expected to go forward on their own merits.  Funding for economic 

transmission projects is expected to come from either merchant transmission companies 

operating within larger systems (Hogan 1992, Bushnell and Stoft 1996) or from a group 

of interested beneficiaries (the participant funding approach favored by Hébert 2004). 

 

Joskow (2005b) has suggested that the separation of economic-based transmission 

investments from reliability-based investments amounts to a meaningless dichotomy.  

The failure of the merchant model to gain popularity implies that transmission assets will 

be constructed primarily by vertically-integrated utilities recovering costs in a regulated 

framework.  This has certainly been the experience in the United States (Hirst 2004). 

 

The dichotomy discussed by Joskow is more than meaningless; as Figure 6.1 shows, in 

many cases it is incorrect.  Reliability often comes at the expense of additional 

congestion in the network.  In meshed networks such as power networks, economics and 

reliability are not unrelated; they actually represent a natural tradeoff faced by system 

operators and planners in systems with loop flows.  Sparser networks are less congestible 

(in the sense that the Wheatstone network is congestible) but may not meet reliability 

criteria.  Increased interconnection can offer redundancy in the network, but the network 

will also likely be subject to Braess’s Paradox.   

 
                                                 
1 Energy Policy Act of 2005 at ¶1221. 
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6.1 A Framework for Cost-Benefit Analysis of Wheatstone Networks  

Setting aside the issue of generator contingencies, the extent of the tradeoff is a function 

of the level of demand and the probability of an outage on the lines downstream of the 

Wheatstone bridge.  Conditional on an outage on either line S24 or S34, let TW be the 

feasible transfer capacity between buses 1 and 4 and let T0 be the feasible transfer 

capacity between buses 1 and 4 without the Wheatstone bridge.2  Define U to be the 

event of an outage on line S24 or S34.  U is assumed to be a Bernoulli random variable that 

is equal to one (the case of an outage) with probability u, and equal to zero (no outage) 

with probability 1 – u.  The level of demand at bus 4, PL4, is assumed to be constant or 

perfectly predictable.  The analysis will be extended to include stochastic demand in 

Section 6.5. 

 

The congestion cost imposed on the system during normal operations is measured by the 

difference in total cost of serving a given demand profile *
LP  with the Wheatstone bridge 

in the network, and the total cost of serving an identical demand profile without the 

Wheatstone bridge.  With the Wheatstone bridge, suppose that the generation profile of 

the network is },...,{ **
1 GnG PP  and that the generation profile without the Wheatstone 

network is },...,{ ''
1 GnG PP .  The congestion cost associated with the Wheatstone can be 

written as: 
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2 “Feasible transfer capacity” means the total amount of power that can be transferred from bus 1 to bus 4 
while respecting all network constraints. 
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In the case of the Wheatstone network in Figure 6.1, we have 0≥CC , but in theory this 

need not necessarily hold in more general networks.   

 

Quantifying the reliability benefit of the Wheatstone network involves comparing the 

amount of unserved energy in a network equipped with a Wheatstone bridge to the 

amount of unserved energy in a network without the Wheatstone bridge: 

 

⎩
⎨
⎧

=
=−

=
0,0

1,
)2.6( 0

U
UTT

UE W . 

 

Note that UE measures only the decrease in unserved energy associated with the 

Wheatstone bridge.  In the case of the Wheatstone network shown in Figure 6.1, we have 

0≥UE , but this need not necessarily be the case.  Assuming that the customer value of 

electricity is described by a continuous, differentiable, and non-negative marginal value 

function v, the cost of an amount of unserved energy 0TTW −  is: 
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⎜
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00
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If there is no outage on the line, then UE = 0 and thus CUE = 0. Also, if TW = T0 (that is, 

the possible transfer across the network is not affected by line outages or the presence of 

the Wheatstone bridge), then the cost of unserved energy is also zero.  Assuming that the 

outage probability is independent of the level of demand, system reliability can be 

measured using the expected cost of unserved energy: 
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The (expected) net benefit of the Wheatstone bridge in the presence of nonstochastic 

demand is thus NB = ECUE – CC. 

 

6.2 Application to the Four-Bus Wheatstone Test Network 

Applying the cost-benefit calculus of equations (6.1) through (6.4) to the four-bus 

Wheatstone network in Figure 6.1 is straightforward.  Assuming that the generator at bus 

4 has sufficient capacity, the cost difference between the two generators in the network 

can be used as a measure of the cost of unserved energy.3  The congestion cost at time t, 

CCt, and the reliability benefit at time t, RBt, are given by: 

 

 

Since the reliability benefit is equal to zero unless an outage occurs, and since the 

congestion cost is nonstochastic, the expected net benefit of the Wheatstone bridge at 

time t is given by tt CCuuRB )1( −− . 

 

                                                 
3 The implicit assumption is that the value of reliability to the load at bus 4 can be given by the negative of 
the generation cost at bus 4. 
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Equations (6.5) and (6.6) provide some insight as to how the net benefit function is 

expected to behave.  For sufficiently low levels of demand, the congestion cost will be 

zero since the rated megawatt limit of the lines in the network is large relative to demand.  

Similarly, the reliability benefit of the Wheatstone will also be zero if demand is low 

relative to the amount of capacity in the network.  In this case, even if a line goes out and 

the network does not have a Wheatstone bridge to redirect flows, outages will not occur 

in the downstream portion of the Wheatstone (bus 4 in the case of Figure 6.1). 

 

As loading across the Wheatstone network increases, the meshed nature of the network 

implies that some lines will become congested.  For these higher levels of demand, the 

Wheatstone will also provide a reliability benefit, acting to re-route flows throughout the 

network in the case of an outage on one of the boundary links.  Thus, for a given outage 

probability, the net benefit of the Wheatstone should either monotonically increase or 

decrease (depending on which of the congestion cost or reliability benefit is greater in 

magnitude), or it might decrease over a range of demand and increase over a different 

range of demand. 

 

The independence of congestion and reliability can be examined by looking at the 

congestion cost and the reliability benefit functions over different ranges of demand.  If 

one function is constant while the other is not, then the two can be viewed as independent 

over that range of demand. 
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Under the DC power flow assumptions, flows on the lines in the Wheatstone network can 

be written as: 

 

HθF =)7.6( , 

 

where H = A’BdiagA.  Net bus injections in the DC power flow model are given by: 

 

BθP =)8.6( . 

 

Thus, θ = B-1P.  Combining (6.7) and (6.8) yields: 

 

PHBF 1)9.6( −= . 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Flows in the four-bus Wheatstone test network as a function of the demand at 
bus 4. 
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In equation 6.9, the sensitivity ∂F/∂P (the network distribution matrix) is a constant 

function of the network parameters.  Thus, a unit increase in net injections at any bus will 

change the flows through the network by an amount independent of the level of the bus 

injections.  This linear relationship between the load at bus 4 and the line flows in the 

Wheatstone network is shown in Figure 6.2.  As demand increases, the flows increase 

linearly until line S12 hits its limit of 55 MW.  The network constraint on line S12 

effectively constrains the remaining lines in the system. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. The cost of congestion in the four-bus Wheatstone test network.  The 
generator at bus 4 is assumed to have a constant marginal cost of $50. 
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discussion in Chapter 3).  The congestion cost associated with the Wheatstone bridge will 

be zero at all levels of demand below TW.  For levels of demand larger than TW, the 

congestion cost will rise according to equation (6.5).  Figure 6.3 shows the congestion 

cost in the Wheatstone network, assuming that the generator at bus 4 has a constant 

marginal cost of $50/MWh. 

 

Without the Wheatstone bridge, an outage on line S24 or S34 limits the transfer capability 

across the network to 55 MW; this is the network’s value for T0.  With the Wheatstone 

bridge, 100 MW could be transferred across the network in the event of an outage.  If the 

generator at bus 1 is assumed to have a constant marginal cost, the expected reliability 

benefit of the Wheatstone bridge (equation 6.6) is equal to: 

 

( )[ ].},0max{)()10.6( 014 TPMCMCuRBE L −×−×=  

 

Thus, the expected net benefit of the Wheatstone bridge in Figure 6.1 is given by: 

 

( )[ ] ( ).},0max{},0max{
)()()11.6(

4014 WLL TPMCTPMCMCu
CCRBENBE

−×−−×−×=
−=

 

 

Equation (6.11) is displayed graphically in Figure 6.4 for the network shown in 

Figure 6.1.  Demand is assumed to be between 0.1 MW and 100 MW, and the outage 

probability is assumed to be between 1 × 10-6 and 1 × 10-3.  The marginal costs of the 
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generators are assumed to be constant and are set at MC1 = $10/MWh and MC4 = 

$50/MWh. 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Expected net benefit of the Wheatstone bridge in the four-bus test network. 
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A useful behavioral distinction in this regard can be made between Wheatstone 

sub-networks on the boundary of larger networks and Wheatstone sub-networks in the 

interior of a larger network.  Boundary Wheatstones have fewer connections with the 

external network and should behave more like the standalone Wheatstone network shown 

in Figure 6.1.  It may even be possible to determine the behavior of a boundary 

Wheatstone through visual examination alone.  The behavior of interior Wheatstones, on 

the other hand, may be less clear, particularly if there is net generation or load at all four 

buses. 

 

A conceptual illustration of the difference between boundary and interior Wheatstone 

networks is provided in Figure 6.5.  Panel (a) shows a Wheatstone network on the 

boundary of some (unspecified) larger network, with only buses 1 and 2 connected to the 

larger network, while panel (b) shows a Wheatstone in the middle of a larger network. 

 

In the Wheatstone test network of Figure 6.1, congestion in the network is a function of 

the load at bus 4 and the network susceptance matrix, as shown in Chapter 3.  The effect 

of an outage on line S34 can be dampened or eliminated by the Wheatstone bridge; the 

bridge allows an extra 45 MW of power to be delivered to the load at bus 4 (relative to 

the amount of power that could be delivered without the bridge).  The reliability benefit is 

easily bounded by the capacity of the bridge, the capacity of lines S12 and S24, and the 

capacity of the generators. 
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Now consider the Wheatstone sub-network shown in Figure 6.5(a).  Whether congestion 

exists in the network cannot be determined simply by comparing the demand at bus 4 to 

the network topology and the generation at bus 1.  Since bus 3 is also connected to the 

remainder of the network, the external behavior influences the condition of the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Boundary versus Internal Wheatstone sub-networks.  Panel (a) shows a 
boundary Wheatstone, and panel (b) shows an interior Wheatstone. 
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Wheatstone.  If the interchange between the Wheatstone and the rest of the network at 

bus 3 is minimal, then the Wheatstone will likely be congested if demand at bus 4 is high 

enough.  If the external network draws a large amount of power out of the Wheatstone 

through bus 3, or injects a large amount of power through bus 3, congestion in the 

Wheatstone sub-network will fall or rise accordingly.  The reliability benefit of the 

Wheatstone bridge also depends on the amount of interchange between the Wheatstone 

and the remainder of the network.  If a bottleneck exists coming into the Wheatstone sub-

network at bus 3, then very little power is likely to be transferred through the Wheatstone 

from the rest of the network in case of a line outage.  On the other hand, to the extent that 

the path connecting to the Wheatstone sub-network via bus 3 is unconstrained, this will 

reduce the reliability benefit attributable to the Wheatstone bridge. 

 

If the Wheatstone is connected to the larger network at all four points, as in Figure 6.5(b), 

the analysis is similar to Figure 6.5(a) but there are more factors to consider.  Assuming 

that the direction of flow through the Wheatstone is towards bus 4, the congestion cost 

associated with the Wheatstone is highly dependent on the behavior of the external 

network near bus 4.  Particularly if generation is plentiful and inexpensive downstream of 

bus 4, then the Wheatstone bridge may not have any associated congestion cost at all.  

Similarly, the Wheatstone bridge may not contribute any real reliability benefit if other 

network resources exist to serve the load in the event of a transmission-line contingency 

within the Wheatstone sub-network.  Whether embedded Wheatstone sub-networks 

behave similarly to the four-bus test network is thus an empirical question. 
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Even for Wheatstone networks embedded in larger systems, the congestion effect of the 

Wheatstone bridge is not independent from its reliability effect.  That is, contrary to 

implicit and explicit assumptions underlying the market-based transmission investment 

model, embedded Wheatstone bridges cannot be considered solely economic or reliability 

investments.  Four Wheatstone sub-networks from the IEEE 118-bus networks are used 

to illustrate that the basic behavior seen in the test network of Figure 6.1 applies more 

generally to embedded Wheatstone structures. 

 

 

 

 
Figure 6.6. Four Wheatstone sub-networks of the IEEE 118-bus test network. 
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The four Wheatstone sub-networks to be considered are indicated in Figure 6.6, which 

also shows the topology of the IEEE 118-bus test network.4  The networks are labeled 

A, B, C, and D.  The system topologies for the four networks and illustrative base case 

power flows are shown in the one-line diagrams of Figures 6.7 through 6.10.  Arrows on 

the branches of Figures 6.7 through 6.10 indicate the direction of power flow; arrows at 

the buses in Figures 6.7 through 6.10 indicate loads, not necessarily connections with the 

larger network.  Network A is located in the western portion of the 118-bus network and 

is based on a modified version of the four-node sub-network consisting of buses 27, 28, 

31, and 32.  It has been modified by connecting buses 31 and 32.  Network B is located in 

the far northwestern corner of the 118-bus network.  Although network B is topologically 

more of a boundary Wheatstone sub-network than an interior Wheatstone sub-network, 

the flow of power through the network is towards the center (away from the northwest 

corner), as can be seen in Figure 6.8.  Network C is located on the southeastern boundary 

of the 118-bus network; although it has two connections to the rest of the network, one of 

them is simply a tie-point with no generation or load.5    Thus, this network should 

behave more like to a boundary Wheatstone sub-network, as described above.  Network 

D is located in the middle of the 118-bus network, just northeast of network B.  Three of 

the four nodes of the Wheatstone sub-network interchange with the remainder of the 

system, so this network will most likely behave as an interior Wheatstone.  

 

                                                 
4 Data for the test network were downloaded from the IEEE Power Systems Test Case Archive at 
http://www.ee.washington.edu/research/pstca/.  The network parameters are shown in Appendix A. 
5 The network specifications indicate that synchronous condensers are located at more than one of these 
nodes.  The synchronous condensers were removed from the system prior to analysis.  Since this analysis 
uses only the DC power flow model, the synchronous condensers do not have any effect on the network 
behavior. 
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Figure 6.7. One-line diagram of Wheatstone A. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. One-line diagram of Wheatstone B. 
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Figure 6.9. One-line diagram of Wheatstone C. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. One-line diagram of Wheatstone D. 
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For each of the four Wheatstone sub-networks, four sets of DC optimal power flows were 

run on the IEEE 118-bus network for a level of demand at the “downstream” node of the 

Wheatstone varying between 0 and 500 MW.  The first two DC power flows were run on 

the network including the Wheatstone bridge, with and without a contingency on one of 

the Wheatstone boundary links.  The remaining two DC power flows were run on the 

network without the Wheatstone bridge, with and without a contingency on one of the 

Wheatstone boundary links. The downstream node for each network was chosen based on 

the results of the base-case power flows, as shown in Figures 6.7 through 6.10.  For 

network A, bus 27 was defined as the downstream bus (see Figure 6.7).  For network B, 

bus 19 was defined as the downstream bus (see Figure 6.8).  For network C, bus 90 was 

defined as the downstream bus (see Figure 6.9).  For network D, bus 77 was defined as 

the downstream bus (see Figure 6.10).   

 

In each of the four Wheatstone sub-networks within the IEEE 118-bus system, an outage 

was simulated on the line analogous to link S24 in the Wheatstone test network of Figure 

6.1.  In network A, an outage was simulated on link S32,27.  In network B, an outage was 

simulated on link S15,19.  In network C, an outage was simulated on link S91,90.  In network 

D, an outage was simulated on link S69,77.   

 

For each level of demand in each Wheatstone sub-network, the associated congestion 

cost is measured using equation (6.1).  Thus, the congestion cost is defined to be the 

difference in total system cost to serve identical demand profiles in a system with the 

Wheatstone bridge and without the Wheatstone bridge. 
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The reliability benefit of the Wheatstone bridge is measured using equations (6.2) 

through (6.4).  The marginal value of consuming power is assumed to be constant and 

identical for all three networks.  This constant marginal value is called the value of lost 

load (VOLL), and is set at $1,000/MWh.  Using a constant VOLL yields a particularly 

simple form for the cost of unserved energy: 

 

( )0)'3.6( TVOLLTVOLLUCUE W ×−××= , 

 

where, from Section 6.1, TW  represents the transfer capability across the Wheatstone 

network with the bridge, and T0 represents the transfer capability without the Wheatstone 

bridge, conditional on an outage in one of the boundary links. 

 

Combining equations (6.1) and (6.3’), the expected net benefit of the Wheatstone bridge 

is given by: 
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The analysis considers a range of outage probabilities between 10-7 and 10-1, so the 

)1( u− term in equation (6.12) is never large.6 

 

Calculating the net benefit function in equation (6.12) requires running four sets of 

optimal power flows on the IEEE 118-bus network for each of the four Wheatstone 

sub-networks under consideration (amounting to a total of sixteen power flows).  The DC 

optimal power flow model is used throughout this analysis.  The four power-flow cases 

are: 

 

Case I: The “base case” set of DC optimal power flows, where the sub-network has the 

Wheatstone bridge, and there is no assumed contingency on any of the transmission lines. 

 

Case II: Same as Case I, but the DC optimal power flows are run on the sub-network 

without the Wheatstone bridge. 

 

Case III: This case assumes an outage on one of the boundary links in the Wheatstone 

sub-network, but assumes the sub-network has a Wheatstone bridge. 

 

Case IV: An outage is assumed on one of the links, and there is no Wheatstone bridge in 

the sub-network. 

 

                                                 
6 Larger outage probabilities were examined but are not included here.   Once the outage probability 
becomes much larger than 10% (u = 0.1), at larger levels of demand, both the congestion cost and 
reliability benefit explode.  This is an interesting result in and of itself, but it obscures the interesting 
behavior of the net benefit function at lower levels of demand. 
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Thus, the results from Case I and Case II will figure most heavily in the calculation of the 

congestion cost associated with the Wheatstone bridge, while the results from Case III 

and Case IV will be most influential in calculating the reliability benefit flowing from the 

Wheatstone bridge. 

 

Analysis of Wheatstone A 

The first Wheatstone sub-network to be discussed here is located in the far western 

portion of the IEEE 118-bus network, south of Wheatstone sub-network B.  Although 

three of the four buses are connected to the external network, the connections are largely 

in series with other nodes, which then connect to the meshed portions of the larger 

network (see Figure 6.6).  The base-case optimal power flow on the sub-network, shown 

in Figure 6.7, indicates that the direction of flow through the Wheatstone is towards bus 

27, which is designated as the downstream bus for the purposes of this analysis. 

 

The first step in the analysis is to examine flows throughout the sub-network for each of 

the four power-flow cases.  These flows are shown in Figures 6.11 through 6.15; demand 

at bus 27 is assumed to range between 0 and 500 MW.  Each of Figures 6.11 through 

6.15 shows the flows on one line in the Wheatstone sub-network for each of the four 

power flow cases.  Thus, Figure 6.11 shows the flow on line S31,32, Figure 6.12 shows the 

flow on line S21,28, Figure 6.13 shows the flow on line S32,27, Figure 6.14 shows the flow 

on line S28,27, and Figure 6.15 shows the flow on the Wheatstone bridge.  Note that the 

Wheatstone bridge is included in the network only for power-flow cases I and III.  This 

analysis examines an outage on line S32,27; this line is only included in the network for 
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power flow cases I and II.  This explains why Figures 6.13 and 6.15 contain data from 

only two power-flow cases, while the remainder of the figures contain data from all four. 

 

 

 

 

 

 

 

 

 

Figure 6.11. Flows on line S31,32 of Wheatstone A, as a function of the load at bus 27. 
 

 

 

 

 

 

 

 

 

 

Figure 6.12. Flows on line S31,28 of Wheatstone A, as a function of the load at bus 27. 
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Figure 6.13. Flows on line S32,27 of Wheatstone A, as a function of the load at bus 27. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. Flows on line S28,27 of Wheatstone A, as a function of load at bus 27. 
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Figure 6.15. Flows on the bridge of Wheatstone A, as a function of load at bus 27. 
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in flows across the Wheatstone bridge; the bridge is likely being fed by a generator from 

the external network. 

 

 

 

 

 

 

 

 

 

 

Figure 6.16. Expected net benefit of the bridge in Wheatstone A as a function of the 
outage probability on line S32,27. 
 

Figures 6.16 and 6.17 show two different cross-sectional views of the net benefit 

accruing to the network from the Wheatstone bridge.  In Figure 6.16, the probability of an 

outage on line S32,27 is allowed to vary, while the load at bus 27 is held constant.  Figure 

6.16 shows this relationship for several different values of the load at bus 27; these 

represent contour lines (in the demand dimension) of the three-dimensional net benefit 

function in Figure 6.20.  For Wheatstone A, Figures 6.16 and 6.17 only show the net 

benefit function for levels of demand up to 300 MW.  For this particular Wheatstone, 

demand levels above 300 MW resulted in load shedding, whether the sub-network had a 

Wheatstone bridge or not. 
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Figure 6.17. Expected net benefit of the bridge in Wheatstone A as a function of the level 
of demand at bus 27. 
 

 

In Figure 6.17, the level of demand at bus 27 is allowed to vary, while the probability of 

an outage on line S32,27 is held constant.  Each of the lines in Figure 6.17 represents a 

different outage-probability contour of the net benefit function in Figure 6.20. 

 

To the extent that the behavior in the standalone Wheatstone network of Figure 6.1 exists 

in Wheatstone sub-networks of larger systems, the net benefit of the Wheatstone bridge 

should be an increasing function of the outage probability, holding demand constant.  

Figure 6.16 shows that Wheatstone A does indeed exhibit this behavior.  At lower levels 

of demand, the net benefit is negative and invariant to the probability of an outage, 

indicating that the congestion cost is the dominant factor in the net benefit calculation.  

At higher levels of demand (200 MW and higher), the possibility of blackouts exists, and 
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the Wheatstone bridge can mitigate this risk.  Based on Figure 6.16, the level of demand 

must be very high (around 300 MW), and the outage probability must also be reasonably 

high in order for the Wheatstone bridge to have a positive net benefit to the system. 

 

 

 

 

 

 

 

 

 

 

Figure 6.18. Expected congestion cost associated with the bridge in Wheatstone A. 
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even a Wheatstone bridge is sufficient to prevent blackouts. 
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Figure 6.19. Expected reliability benefit associated with the bridge in Wheaststone A. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.20. Expected net benefit associated with the bridge in Wheatstone A. 
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The congestion cost and reliability benefit functions (allowing both the demand at bus 27 

and the probability of an outage on line S32,27 to vary) are shown in Figures 6.18 and 6.19.  

The total net benefit function is shown in Figure 6.20.  In Wheatstone A, congestion and 

reliability are only independent for low levels of demand (less than 100 MW).  For this 

range of demand, the Wheatstone imposes a congestion cost (as shown in Figure 6.18) 

while the reliability benefit is zero (as shown in Figure 6.19).  Only at higher levels of 

demand does the net benefit function (Figure 6.20) indicate the tradeoff between the 

congestion cost imposed by the Wheatstone bridge and its reliability benefit.  

 

Analysis of Wheatstone B 

Wheatstone B is located in the northwest corner of the IEEE 118-bus network, as shown 

in Figure 6.6.  Although it is near the edge of the network, three of the four buses that 

comprise the Wheatstone are connected to the larger network.  Based on the power flow 

shown in Figure 6.8, the direction of flow is out of the Wheatstone towards the center of 

the network.  This reflects the presence of a large generating unit located just outside the 

Wheatstone, closer to the “upstream” end of the network (bus 12). 

 

Figures 6.21 through 6.25 plot flows on each of the lines in Wheatstone B for each of the 

four power-flow cases.  Demand at bus 19 is assumed to run between 0 and 500 MW.  

Figure 6.21 shows the flow on line S12,15, Figure 6.22 shows the flow on line S12,17, Figure 

6.23 shows the flow on line S15,19, Figure 6.24 shows the flow on line S17,19, and Figure 

6.25 shows the flow on the Wheatstone bridge.  Note that the Wheatstone bridge is 
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included in the network only for power-flow cases I and III, while line S15,19 is included 

in the network only for power-flow cases I and II. 

 

 

 

 

 

 

 

 

 

 

Figure 6.21. Flows on line S12,15 of Wheatstone B as a function of load at bus 19. 
 

 

 

 

 

 

 

 

 

 

Figure 6.22. Flows on line S12,17 of Wheatstone B, as a function of load at bus 19. 
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Figure 6.23. Flows on line S15,19 of Wheatstone B, as a function of load at bus 19. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.24. Flows on line S17,19 of Wheatstone B, as a function of load at bus 19. 
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Figure 6.25. Flows on the bridge of Wheatstone B, as a function of load at bus 19. 
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Figure 6.26 plots the net benefit of the bridge in Wheatstone B against various values of 

the outage probability.  This cross-section shows how the net benefit of the Wheatstone is 

influenced by the expected reliability benefit.  The amount of capacity in the Wheatstone 

implies that there is virtually no reliability benefit until demand at bus 19 is close to 

500 MW.  At a demand of 400 MW, the net benefit function is nearly flat and 

independent of the outage level, reflecting small amounts of congestion in the network 

(likely influenced by supply and demand conditions in the external network).  At demand 

levels of 490 and 500 MW, outages in the boundary links will result in blackouts at bus 

19 (and possibly other portions of the network), and the expected reliability benefit 

increases accordingly. 

 

 

 

 

 

 

 

 

 

 

Figure 6.26. Expected net benefit of the bridge in Wheatstone B, as a function of the 
outage probability on line S15,19. 
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The other cross-section of the net benefit function, which shows the net benefit as a 

function of the level of demand, is displayed in Figure 6.27.  Up until a demand level of 

nearly 490 MW, the net benefit is influenced entirely by the monotonically-increasing 

congestion cost.  With smaller outage probabilities, such as 10-7 and 10-5, the reliability 

benefit does not outweigh the congestion cost for large levels of demand, and the net 

benefit of the Wheatstone is negative.  Only at higher outage probabilities, such as 10-3 

and 10-1, does the reliability benefit increase enough in expectation to counter the 

congestion cost and yield a positive net benefit of the Wheatstone. 

 

 

 

 

 

 

 

 

 

Figure 6.27. Expected net benefit of the bridge in Wheatstone B, as a function of the level 
of demand at bus 19. 
 

Figures 6.28 through 6.30 show the congestion cost, reliability benefit, and net benefit 

functions for Wheatstone B, allowing both the outage probability and the level of demand 

at the downstream node (bus 19) to vary.  Note that the demand scales in Figures 6.28 

through 6.30 are more expansive than in Figures 6.27 (in Figure 6.27 demand runs from 
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400 MW to 500 MW, and in Figures 6.28 through 6.30 demand runs from 0 MW to 

500 MW).  Figure 6.27 has a different scale so that the contribution of the congestion cost 

to total system benefit can be seen more clearly.  Figure 6.30 provides a higher-level 

view of the net benefit.  Throughout much of the demand profile, the net benefit of the 

Wheatstone bridge is essentially zero, since (as shown in Figures 6.26 and 6.27) no 

significant congestion cost or reliability exists in the network over this range of demand.  

For levels of demand where congestion and the risk of blackouts become significant 

(higher than around 475 MW in this example), Figure 6.30 clearly shows that a tradeoff 

between congestion cost and reliability benefit exists in Wheatstone B.  For a given 

(high) level of demand, the net benefit function is negative and large in magnitude for a 

small outage probability, and positive and large in magnitude for a larger outage 

probability. 

 

 

 

 

 

 

 

 

 

 
Figure 6.28. Expected congestion cost associated with the bridge in Wheatstone B. 
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Figure 6.29. Expected reliability benefit associated with the bridge in Wheatstone B. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.30. Expected net benefit associated with the bridge in Wheatstone B. 
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Analysis of Wheatstone C 

The third Wheatstone sub-network considered here is located in the southeastern portion 

of the IEEE 118-bus network, as shown in Figure 6.6.  This Wheatstone has two of its 

four component buses connected to the external network.  From the base-case power flow 

(shown in Figure 6.9), power flows from the external network through the Wheatstone 

network towards bus 90.  Thus, bus 90 is designated as the downstream node for this sub-

network.   

 

Figures 6.31 through 6.35 show the sensitivity in the flows on each of the lines in 

Wheatstone C to the level of demand at the downstream bus, for each of the four 

power-flow cases.  Demand at bus 90 is assumed to run between 0 and 500 MW.  Figure 

6.31 shows the flow on line S92,91, Figure 6.32 shows the flow on line S92,89, Figure 6.33 

shows the flow on line S91,90, Figure 6.34 shows the flow on line S89,90, and Figure 6.35 

shows the flow on the Wheatstone bridge.  The Wheatstone bridge is included in the 

network only for cases I and III, while line S91,90 is included in the network only for cases 

I and II. 

 

Analysis of the network flows shows that Wheatstone C behaves very closely to the 

four-bus test network described in Section 6.3.  For all lines in the network, flows rise 

monotonically with the level of demand at the downstream node.  Flows on lines S92,89 

and lines S89,90 are highest for Case IV, in which an outage occurs on line S91,90 and there 

is no Wheatstone bridge in the network (Figures 6.32 and 6.34).  Note that flows along 

line S92,89 level off at a lower level of demand in Case IV than in Case III, where a 
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Wheatstone bridge exists to redirect flows after an outage on line S91,90.  Furthermore, 

line S89,90 never hits its loading limit in Case III.  This suggests that the Wheatstone sub-

network will provide a reliability benefit in this network.  After an outage on line S91,90, 

the network can transfer more power to bus 90 with the Wheatstone bridge than without 

the Wheatstone bridge. 

 

Figure 6.32 also indicates that during normal operations, Wheatstone C will become 

congested for sufficiently high levels of demand.  Figures 6.32 and 6.33 show that flows 

on lines S92,89 and S91,90 level off at a lower level of demand with the Wheatstone bridge 

in place during normal operations than without the Wheatstone bridge. 

 

 

 

 

 

 

 

 

 

 

Figure 6.31. Flows on line S92,91 of Wheatstone C, as a function of load at bus 90. 
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Figure 6.32. Flows on line S92,89 of Wheatstone C, as a function of load at bus 90. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.33. Flows on line S91,90 of Wheatstone C, as a function of load at bus 90. 
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Figure 6.34. Flows on line S89,90 of Wheatstone C, as a function of load at bus 90. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.35. Flows on the bridge of Wheatstone C, as a function of load at bus 90. 
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Figure 6.36 plots the net benefit of the Wheatstone bridge as a function of the outage 

probability for various levels of demand.  There are many similarities to the behavior of 

Wheatstone B, in that the net benefit is essentially zero for lower levels of demand, and is 

insensitive to the outage probability (this can be seen in Figure 6.37 as well).  At higher 

levels of demand, the net benefit is strictly increasing in the outage probability.  The 

contour lines for demand equal to 300 MW and demand equal to 500 MW reflect some 

redispatch that occurs in the vicinity of Wheatstone C, as a response to changes in the 

level of demand and topology of Wheatstone C. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.36. Expected net benefit of the bridge in Wheatstone C, as a function of the 
outage probability on line S91,90. 
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Figure 6.37. Expected net benefit of the bridge in Wheatstone C, as a function of the level 
of demand at bus 90. 
 

Figure 6.37 plots the net benefit of the Wheatstone bridge as a function of the level of 

demand at bus 90, for several different values of the outage probability.  This highlights 

the congestion-cost component of the net benefit calculation.  As with Wheatstone B, for 

lower levels of demand (up until about 150 MW of demand at bus 90) there is no 

congestion in the network.  A small amount of congestion exists from 150 MW of 

demand up to around 350 MW of demand.  At levels of demand higher than 350 MW, an 

outage on line S91,90 will cause blackouts and the net benefit becomes sensitive to the 

outage probability.  The net benefit of the Wheatstone bridge is not consistently positive 

until the outage probability exceeds 10-5.  The behavior of the net benefit function over 

this higher demand range reflects the influence of other generators in the network being 
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redispatched as conditions change at bus 90 (and in the event of outages).  This behavior, 

also common to Wheatstone D, is discussed below. 

 

 

 

 

 

 

 

 

 

 

Figure 6.38. Expected congestion cost associated with the bridge in Wheatstone C. 
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dominates the reliability benefit) and positive at higher outage probabilities (the 

reliability benefit overshadows the congestion cost). 

 

 

 

 

 

 

 

 

 

Figure 6.39. Expected reliability benefit associated with the bridge in Wheatstone C. 
 

 

 

 

 

 

 

 

 

 

Figure 6.40. Expected net benefit associated with the bridge in Wheatstone C. 
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Analysis of Wheatstone D 

The final Wheatstone sub-network discussed here is located in the middle of the IEEE 

118-bus network, just northwest of Wheatstone C.  Topologically, Wheatstone D appears 

to be more of an interior Wheatstone than the other three sub-networks, as it is located 

near some of the system’s larger and less expensive generating units located at buses 80 

and 65.  The congestion and reliability properties of this sub-network should be different 

than the other three Wheatstone sub-networks.  The base-case power flow run on this 

Wheatstone sub-network (shown in Figure 6.10) indicates that bus 77 should be 

considered the downstream bus; power flows from the external network through the 

Wheatstone towards bus 77. 

 

Figures 6.41 through 6.45 show the sensitivity in the flows on each of the lines in 

Wheatstone C to the level of demand at the downstream bus, for each of the four 

power-flow cases.  Demand at bus 77 is assumed to run between 0 and 500 MW.  Figure 

6.41 shows the flow on line S70,69, Figure 6.42 shows the flow on line S70,75, Figure 6.43 

shows the flow on line S69,77, Figure 6.44 shows the flow on line S75,77, and Figure 6.45 

shows the flow on the Wheatstone bridge.  The Wheatstone bridge is included in the 

network only for cases I and III, while line S69,77 is included in the network only for cases 

I and II. 
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Figure 6.41. Flows on line S70,69 of Wheatstone D, as a function of load at bus 77. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.42. Flows on line S70,75 of Wheatstone D, as a function of load at bus 77. 
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Figure 6.43. Flows on line S69,77 of Wheatstone D, as a function of load at bus 77. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.44. Flows on line S75,77 of Wheatstone D, as a function of load at bus 77. 
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Figure 6.45. Flows on the bridge of Wheatstone D, as a function of load at bus 77. 
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contours for 300 MW of demand and 500 MW of demand do not cross).  This unexpected 

behavior turns out to largely be a function of Wheatstone D’s proximity to several large 

and inexpensive generating stations with direct connections to bus 77. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.46. Expected net benefit of the bridge in Wheatstone D, as a function of the 
outage probability on line S69,77. 
 

The other cross-section of the net benefit of the Wheatstone configuration in sub-network 

D, which shows how the congestion cost affects the net benefit calculation, is shown in 

Figure 6.47 for several levels of the outage probability on line S69,77.  For a given level of 

demand, the net benefit of the Wheatstone bridge rises with the outage probability, just as 

in Figure 6.46.  The influence of the external network on the cost of congestion in the 

Wheatstone sub-network can be plainly seen in Figure 6.47.  A priori, the congestion cost 

should rise monotonically with demand, for a given outage probability, as shown in 
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Figure 6.1.  Figure 6.47, however, shows the congestion cost rising and falling in a roller-

coaster pattern. 

 

 

 

 

 

 

 

 

 

 

Figure 6.47. Expected net benefit of the bridge in Wheatstone D, as a function of the level 
of demand at bus 77. 
 

The same roller-coaster pattern of the net benefit function can be seen in Figure 6.50, 

which shows the total net benefit function as both demand at bus 77 and the outage 

probability vary.  The congestion cost and reliability benefit functions are shown in 

Figures 6.48 and 6.49.  Note that the congestion cost is negative over large ranges of 

demand (as shown in Figure 6.48), meaning that the bridge in Wheatstone D actually 

reduces congestion rather than causing congestion as in the first three Wheatstone 

sub-networks and the four-bus Wheatstone test system.  The reliability benefit curve in 

Figure 6.49 is similar to the other three Wheatstone sub-networks, rising in both the 

demand dimension and the outage probability dimension.  The shape of the total net 
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benefit function is nearly identical to the shape of the congestion cost curve in Figure 

6.48.  We conclude from Figures 6.48 through 6.50 that congestion and reliability are not 

independent in Wheatstone D, but neither do they represent tradeoffs.  In this case, 

congestion and reliability are complementary.  The Wheatstone bridge could be justified 

for reliability reasons, but (over a large range of demand) congestion would decrease as 

well. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.48. Expected congestion cost associated with the bridge in Wheatstone D. 
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Figure 6.49. Expected reliability benefit associated with the bridge in Wheatstone D. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.50. Expected net benefit associated with the bridge in Wheatstone D. 
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For a given level of the outage probability, the net benefit of the Wheatstone bridge 

should be an increasing function of the level of demand.  Wheatstones A and C both 

behave this way, but the relationship is somewhat less clear for Wheatstone B and is 

virtually nonexistent for Wheatstone D.  In one sense, this cleanly separates boundary 

Wheatstones from interior Wheatstones.  Wheatstone sub-networks A and C are located 

topologically further away from the center of the 118-bus network.  More importantly, 

Wheatstones A and C have fewer connections to the external network.  Thus, the external 

network has less influence over the behavior of Wheatstones A and C than over the 

behavior of Wheatstones B and D. 

 

The most significant portion of the external network in explaining the behavior of 

Wheatstones D is the location of large and inexpensive generation in close proximity.  

Generators at buses 80 and 65 are directly connected to Wheatstone sub-network D; the 

generator at bus 80 is directly connected to the downstream load bus of Wheatstone D.  

These generators thus have a high amount of influence over the congestion cost and 

expected reliability benefit associated with the Wheatstone network. 

 

The generator located at bus 69 is assumed (in the IEEE network specifications) to have a 

capacity limit of 805 MW and a marginal cost of $0.20/MWh.  The generator at bus 65 

has a capacity limit of 491 MW and a marginal cost of $0.25/MWh.  The behavior of 

Wheatstone D is also influenced by an expensive generator at bus 87, which has a 

marginal cost of $7.14/MWh.  This generator is located to the south of Wheatstone D, but 

is directly connected to the downstream load at bus 77. 
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Figure 6.51 illustrates how these generators impact the congestion cost associated with 

Wheatstone D.  The figure shows the change in output of the generators at buses 69, 65, 

and 87 after the Wheatstone bridge is removed, but with no line outages.  Thus, Figure 

6.51 shows the difference between case II generation (no Wheatstone bridge) and case I 

generation (including the Wheatstone bridge).  Once the Wheatstone bridge is removed, 

the increased flow of inexpensive power through the network allows some power from 

the generator at bus 87 to be displaced until demand at bus 77 reaches about 225 MW.   

At the same level of demand, the generator at bus 69 increases production to 

accommodate increased demand at bus 77.  The generator at bus 80 is not shown in 

Figure 6.51 since its output level does not change when the Wheatstone bridge is 

removed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.51. Change in output of the generators at buses 65, 69, and 87 as a result of the 
bridge being removed from Wheatstone D. 

-50

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500

Demand at node 77 (MW)

C
ha

ng
e 

in
 G

en
er

at
or

 O
ut

pu
t (

M
W

) Gen – bus 65

Gen – bus 69

Gen – bus 87

-50

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450 500

Demand at node 77 (MW)

C
ha

ng
e 

in
 G

en
er

at
or

 O
ut

pu
t (

M
W

) Gen – bus 65

Gen – bus 69

Gen – bus 87



206 

Figure 6.51 suggests that the change in output of the generator at bus 65 is the primary 

factor in the odd shape of the Wheatstone net benefit function for sub-network D, shown 

in Figure 6.50.  The influence of this particular generator can be illustrated by artificially 

inflating its marginal cost to $2/MWh.  All four power-flow cases were then re-run on 

this modified version of the 118-bus network.  The total net benefit function is shown in 

Figure 6.52.  After increasing the marginal cost of the generator at bus 65 to the point 

where it no longer changes dispatch in response to changes in demand at bus 77, the 

Wheatstone net benefit function looks much like the net benefit functions from 

Wheatstones A or C. 

 

 

 

 

 

 

 

 

 

 

Figure 6.52. Expected net benefit associated with the bridge in Wheatstone D, after the 
marginal cost of generation has been increased at bus 65. 
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6.5. The Net Benefit of Wheatstone Sub-Networks When Demand Throughout the 

Network is Stochastic 

The analysis in Section 6.4 showed that embedded Wheatstone sub-networks display 

many of the same behaviors as the standalone Wheatstone test network shown in 

Figure 6.1, despite the influence of the rest of the network.  Over some range of demand, 

there is enough transmission capacity in the Wheatstone sub-network that flows through 

the network are not affected by either the presence of the Wheatstone bridge or by an 

outage in one of the boundary links.  Over other ranges of demand, the Wheatstone 

bridge may cause congestion in the network, but it also tends to provide a reliability 

benefit. 

 

In Section 6.4, the only variation in network demand was represented by the desired 

power transfer across each Wheatstone sub-network to the downstream demand node.  

Generators responded to the change in desired transfer level, sometimes by redispatching 

so as to compensate for additional congestion in the network (as in Wheatstone D, 

discussed in Section 6.4).  In real networks, loads are continuously changing at all 

locations.  In systems with a large amount of demand response, congestion in Wheatstone 

networks, or the possibility of transmission-line outages, could be offset by the willing 

curtailment of consumption in certain locations.  In this sense, demand response can be 

viewed as a substitute for investment in new transmission lines or even in flow-control 

devices.  The value of this demand response to the network can be bounded by the net 

benefit calculations in Section 6.4. 
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Another possibility is that loads at different locations may simply vary independently of 

one another.  This introduces another possible system effect that could either mitigate or 

exacerbate the congestion costs imposed on the network by the Wheatstone bridge.  For 

example, consider Wheatstone C, shown in Figure 6.9.  Bus 90 is the downstream node, 

in that variation in demand at bus 90 represents variation in demand to move power in a 

given direction through the Wheatstone sub-network.  As shown in Figure 6.38, for a 

certain range of demand at bus 90, an increase in demand at bus 90 is associated with an 

increase in network congestion costs.  Figure 6.38 holds demand at buses 89 and 92 

constant.  If demand at those buses is variable, then for some levels of demand, buses 89 

and 92 may cause counterflows in the network that balance out the congestion.  For some 

other range of demand, buses 89 and 92 may increase congestion in the network.  

Whether the variability of demand at buses 89 and 92 acts to increase or decrease 

congestion is a function of the level of demand at these buses and the generation 

dispatch; it is not necessarily a function of the level of correlation between buses 89, 92, 

and 90.1 

 

Variation in demand at buses outside the Wheatstone sub-network may also affect flows 

through the Wheatstone sub-network and thus the net benefit of the Wheatstone bridge.  

The basic analysis is the same as in Section 6.1, but demand at each node is assumed to 

follow some stochastic process, and thus the total demand in the network is also 

stochastic.  (Note the difference between this framework and the analysis in Section 6.4, 

                                                 
1 Ultimately, variation in demand at buses 89 and 92 amounts to a change in the desired level of electric 
power to be transferred through the Wheatstone sub-network.  Thus, there is little difference between 
considering demand variation at all four Wheatstone buses and considering demand variation solely at the 
downstream bus, as in Section 6.4. 
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which calculated the Wheatstone net benefit for a deterministic level of demand, which 

was systematically allowed to vary.)  Thus, the analysis of Section 6.4 amounts to a 

sensitivity analysis on the level of demand in the Wheatstone network and the probability 

of an outage on one of the Wheatstone boundary links. 

 

Demand at each node in the network is assumed to follow the diffusion process: 

 

NBidzPdP LiiLi ,...,1,)13.6( == σ , 

 

where dz is the increment of a Wiener process: 

 

dtdz tε=)14.6( , 

 

and thus E(dz) = 0 and Var(dz) = dt.  Equations (6.13) and (6.14) amount to assuming 

that demand follows a geometric Brownian motion with no drift (Dixit and 

Pindyck 1994).  Thus, changes in demand are lognormally distributed.  We will also 

assume that the standard deviation of demand is equal at all nodes, so we can rewrite 

equation (6.13) as: 

 

NBidzPdP LiLi ,...,1,)'13.6( == σ . 

 

The formulation in Section 6.4 featured only one stochastic element: the outage 

probability.  In this formulation, there are two stochastic elements: the outage probability 
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and the level of demand at each node (and thus, the total level of demand in the network).  

Stochastic demand also implies stochastic generator outputs and total system costs.  

Equations (6.1) through (6.4) must be modified accordingly. 

 

If any component of the nodal demand vector PL is random, then the vector itself is 

random, as is the total demand in the network ∑
=

=
NB

i
LiL PP

1
.  Assume that PL is a random 

variable with distribution function )( LPf .  Let )( LPK  be the system marginal cost 

function to serve the last PLi-th megawatt of demand at each node i.  Then the system 

total cost function can be written as: 

 

∫=
)(

0

)())(())(()15.6(
Lf

LLL dffKfTC
P

PPP . 

 

Using (6.15) and assuming that outages are independent of the level of demand, the 

expected net benefit of a Wheatstone bridge to the network, with stochastic demand and 

stochastic outages, can be written as: 
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where TC* represents the total cost with the Wheatstone bridge in the system, and TC’ 

represents the total cost without the Wheatstone bridge in the system.  For a given level 
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of demand in the system, the conditional expectation is identical to the expression given 

by equation (6.4). 

 

With a closed-form expression for ))(( LfTC P , we could also generate a closed-form 

expression for the expected Wheatstone net benefit in equation (6.16).  However, 

particularly when the number of binding constraints in the system changes with the level 

of demand and the network topology, there is no clean way to translate between the level 

of demand in the network and the (state-contingent) total network cost to serve that 

demand.  The total cost function must be determined empirically through simulations. 

 

As an example, we will look at the congestion cost and net benefit associated with 

Wheatstone C (Figure 6.9) in the IEEE 118-bus network when demand throughout the 

network is allowed to vary according to the process in equation (6.13’).  The simulations 

proceed as follows: 

 

1. For all nodes in the network, initialize demand at the level specified in the IEEE 

118-bus test case. 

2. Specify a standard deviation σ for the demand evolution process and a probability 

u of an outage on line S91,90. 

3. Generate 10,000 realizations of demand at each bus according to the process in 

equation (6.13’).  Also generate a 10,000 by 1 vector whose entries are equal to 1 

(with probability u) if there is an outage, and equal to zero (with probability 1 – u) 

if there is no outage.  Thus, outages are generated as a series along with demand. 
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4. For each realization of demand and line outage, run two sets of DC power flows 

on the 118-bus system.  The first set of power flows corresponds to the network 

with the Wheatstone bridge in sub-network C.  The second set corresponds to the 

network without the Wheatstone bridge in sub-network C.  Note that if there are 

line outages, the optimal level of demand served may not be the same as the 

specified level of demand at a given node (that is, there may be load-shedding). 

5. For each realization of demand, Step 4 yields values for the congestion cost (the 

difference in total cost with the Wheatstone bridge and without the Wheatstone 

bridge) and the amount of load shed (the difference between the amount of load 

actually served and the amount of load specified at each bus).  The expected net 

benefit, conditional on PL, can be calculated, as well as the expectation value in 

equation (6.16). 

6. Repeat Steps 1 through 5 for various values of σ and u.  The simulations 

performed here considered values of σ in the interval [0.1, 2] and considered 

values of u in the interval [10-7, 10-1]. 

 

The data output from Steps 1 through 5 can be used to construct a cumulative distribution 

function for the net benefit of the Wheatstone bridge.  These are shown in Figures 6.53 

and 6.54.  Figure 6.53 shows the CDF of the net benefit function for various levels of σ, 

assuming that u = 10-3 and VOLL = $1,000/MWh.  Figure 6.54 shows the CDF of the net 

benefit function for various levels of u, assuming σ = 1 and VOLL = $1,000/MWh. 
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Figure 6.53. CDF of the Wheatstone net benefit function for various values of σ.  The 
figure assumes that u = 10-3 and VOLL = $1,000/MWh. 
 
 

 

 

 

 

 

 

 

 

 

Figure 6.54.  CDF of the Wheatstone net benefit function for various values of u.  The 
figure assumes that σ = 1 and VOLL = $1,000/MWh. 
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The spreads in Figure 6.53 behave exactly as expected.  When the standard deviation is 

smaller (meaning that period-to-period changes in the load are smaller), the net benefit 

CDF clusters more tightly around the mean.  For larger values of the standard deviation, 

corresponding to larger swings in total system demand, the CDF of the Wheatstone net 

benefit will have longer tails.  This means that a demand profile with a higher standard 

deviation is more likely to see larger (in magnitude) values of the net benefit function 

relative to the mean.  It does not necessarily imply a correspondence between the 

variability in demand and the net benefit function.  Figure 6.53 is a good example of this; 

for σ = 0.5 and σ = 1, the expected net benefit is positive ($60,000 and $250,000, 

respectively). 

 

There should, however, be a reasonably good correspondence between the outage 

probability and the net benefit of the Wheatstone bridge.  Higher outage probabilities 

should be associated with larger net benefits.  Figure 6.54 demonstrates that this 

relationship holds for Wheatstone C in the 118-bus network.  Only when the outage 

probability exceeds 10-3 does the expected net benefit of the Wheatstone bridge become 

positive.  In Figure 6.54, the expected net benefit for u = 10-5 is approximately -$195,000, 

the expected net benefit for u = 10-3 is approximately -$66,000, and the net benefit for 

u = 10-1 is approximately $138,000. 

 

6.6. Summary and Conclusions 

Chapter 3 introduced the Wheatstone network and noted that while the presence of the 

Wheatstone bridge will cause congestion for a certain range of demands, the network 
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may also provide a reliability benefit in the event of an outage along one of the boundary 

links.  The analysis in Chapter 3 was limited to a standalone Wheatstone test network; the 

analysis in this chapter suggests that Wheatstone sub-networks embedded in larger 

networks will exhibit many of the same behaviors. 

 

This chapter has presented a framework for decomposing the congestion costs imposed 

on the system by the Wheatstone bridge and the reliability benefit conveyed on the 

system.  Using this framework to analyze four Wheatstone sub-networks embedded in the 

IEEE 118-bus network, we found that congestion and reliability represent tradeoffs for 

three of the four sub-networks.  In the remaining Wheatstone sub-network, congestion 

and reliability are complementary – increasing one leads to an increase in the other.  In 

no case could we say definitively that congestion and reliability were independent, except 

(for some sub-networks) at very low levels of demand.   

 

We conclude that the behavioral attributes of the four-bus standalone Wheatstone 

network are not universally generalizable to Wheatstone structures within larger systems, 

although the similarities to the standalone test network are sharpest for those Wheatstones 

located at or near the boundary of the larger network.  Wheatstone sub-networks located 

in the interior of larger networks are more likely to be influenced by variations in 

adjacent load and generation.  One implication for the planning process is that locating a 

Wheatstone in the middle of a meshed network and near large sources of inexpensive 

generation is unlikely to cause major congestion problems that would exist if the same 

Wheatstone were placed at the boundary of the network. 
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The key to analyzing embedded Wheatstone networks is recognizing the nature of the 

relationship between congestion and reliability.  As with any economic externality, the 

tradeoff needs to be defined over the relevant range of demand.  It is especially important 

to realize that the framework developed here has decomposed the congestion cost from 

the reliability benefit, but the two are not uniformly independent, as claimed by 

Hogan (2003) and Shanker (2003).  Current transmission policy endorsed by RTOs, 

FERC, and even the U.S. Congress errs in failing to realize these distinctions.  Current 

policy treats the transmission system as if individual lines could be divided into those that 

benefit the system through added redundancy, and those that harm the system by causing 

congestion.  Transmission lines are also treated as if their contribution to the system is 

independent of the state of the system.  The RTO and FERC rationale for market-based 

merchant transmission is largely based on this false congestion-reliability dichotomy. 
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Chapter 7: Reformulating the Transmission Investment 

Problem Under Electric Industry Restructuring 

 

Competitive markets for electric power generation began in earnest in 1992, following 

the Energy Policy Act of 1992, when Merrill Lynch became the first non-utility entity to 

be licensed by FERC to trade wholesale electric power at market-based rates (Lehr and 

van Vactor 1997).  Prior to the 1992 Energy Policy Act, markets for bulk power existed 

throughout the North American electric grid, but trading volumes were low, the number 

of participants was limited, and reliable information on prices and other market activity 

was scarce (van Vactor 2004).  Industry restructuring brought with it the rise of the 

centralized power exchange, first in the form of California’s Power Exchange and the 

PJM centralized spot market.  Whether these new trading institutions are good or bad has 

been the subject of extensive debate (Lave, Apt, and Blumsack 2004), but their rise was 

associated with a surge in generation investment (Joskow 2005a). 

 

Practically all of this investment was in natural-gas generation, sized to be either 

base-load or mid-merit plants.  Recent supply/demand imbalance in the natural gas 

market has pushed up the price of fuel for these plants, rendering them uncompetitive 

with coal and nuclear power.  The new gas plants have moved near the top of the dispatch 

stack, where they are used as peakers, if at all.  Many of the original builders of these 

merchant plants have since gone bankrupt, with the generation capacity sold at fire-sale 
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prices to vertically-integrated utilities or larger and more diversified merchant generating 

firms. 

 

Transmission should not be subject to the same sorts of issues as generation.  Wires are 

more homogenous than power plants, and investments in transmission infrastructure 

consist almost entirely of capital costs, with low variable operations cost.  However, the 

merchant generation sector that (albeit briefly) flourished with the onset of electric-

industry restructuring has not been duplicated in the transmission sector, contrary to the 

hopes and policy goals of FERC and the RTOs.  Not a single merchant transmission line 

has been built in North America.1 

 

With respect to transmission, the industry is stuck.  Following the August 2003 blackout, 

bolstering the North American transmission infrastructure has become a major policy 

goal.  Some significant projects are in the works, such as American Electric Power’s 

proposed 765-kV Interstate line (AEP 2006), but they are relatively few in number and 

still face major hurdles, including funding, siting, and permitting.  The siting problem 

will continue to be a major challenge, as discussed by Vajjhalla and Fischbeck (2006); 

our focus here is on the funding issue.  The primary analytic and policy failure in the 

transmission arena has been a failure to properly define the transmission investment 

problem under restructuring.  Restructuring has treated the transmission infrastructure as 

                                                 
1 By merchant transmission, we mean a transmission-only company building transmission infrastructure in 
exchange for some market-based compensation.  Joskow (2005b) notes that a transmission-only company 
was hired to build new infrastructure in Long Island, but the Long Island Power Authority paid the 
company through what amounted to a fixed-price contract, with the costs passed on to ratepayers.  At the 
same time, Krellenstein (2004) discusses how a merchant transmission project from upstate New York to 
New York City, which likely would have been profitable even with market-based compensation, collapsed 
due to the unwillingness of investors to lend money for the project. 
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if it were, for all practical purposes, identical to the generation infrastructure, able to 

respond to the same sets of locational market signals.   

 

This approach to the transmission system is very intuitive, given the role that 

transmission plays in facilitating competition among generators (Lave, Apt, and 

Blumsack 2004).  This thesis has demonstrated some of the pitfalls of this approach, and 

has shown that many of its underlying assumptions do not hold.  In this concluding 

chapter, we will summarize the major policy issues raised by this thesis, and will discuss 

several alternative frameworks for transmission investment in the restructured era. 

 

7.1. Four Lessons for Transmission Policy in the Restructured North American 

Electric Power Industry 

Chapters 2 through 6 have offered a number of insights on transmission planning, policy, 

and pricing.  Chapter 2 largely summarized the existing literature on market-based 

transmission investment, Chapters 3 through 6 represent the contributions of this thesis.  

This section will outline some lessons for transmission policy suggested by this thesis. 

 

Lesson 1: The compensation mechanism in the market-based merchant-transmission 

model is neither workable nor economically efficient. 

Bushnell and Stoft, in their 1996 and 1997 papers, demonstrate that under a certain set of 

economic assumptions, point-to-point financial transmission rights will yield patterns of 

investment that are both profitable and socially beneficial.  While acknowledging that the 
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economic assumptions may be restrictive, Hogan (2003) defends the contract-network 

approach to encouraging investment as workable, if not optimal.2 

 

The discussion in Chapters 2 and 4, as well as in Joskow and Tirole (2005a) suggests that 

neither of these claims is correct.  Chapter 4 demonstrated that even if all of the economic 

assumptions underlying the arguments of Bushnell and Stoft were true, the investment 

efficiency of FTRs still depends on the network topology.  By constructing a line that 

forms a Wheatstone network topology, an investor may be able to constrain flows 

through the grid, and profit from doing so.  Profits from the line and an associated set of 

feasible FTRs would be positive, whether the investor was a merchant or a utility.  The 

difference is that utility decision problem would need to incorporate the effects on the 

other generators and loads in the system, whereas the merchant decision problem would 

not. 

 

The fault in Hogan’s workability claim for transmission investment compensated with 

contracts based on nodal prices (whether FTRs or flowgate rights) lies in the difference 

between congestion rent and congestion cost, as discussed in Chapter 2.  Compensation 

mechanisms based on nodal prices or the shadow price of transmission congestion 

amount to transferring congestion rent to the investor from the rest of the consumers and 

generators in the network.  Transmission upgrades also result in a decrease in congestion 

cost (which otherwise represent a deadweight loss to the system).  This benefit accrues 

                                                 
2 Hogan does not precisely define “workable,” but he conveys the sentiment that the contract network is a 
(knowingly) sub-optimal, but has better welfare properties than regulated cost-plus transmission planning.  
Even if all of the Bushnell-Stoft economic assumptions hold, there is no guarantee that the resulting 
transmission investment will be optimal in the sense of solving the problem in equations (1.1) or (1.2). 
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not to the investor, but to other generators and consumers in the system.  Depending on 

the magnitude of the decrease in congestion cost (i.e., the magnitude of the free-rider 

problem), some socially beneficial transmission investments may not get built under this 

market system.  Hogan (2003) claims that this should not be a problem, but concerns over 

compensating fixed-cost infrastructure investments with market-based prices date back to 

Hotelling (1938). 

 

Lesson 2: Eliminating congestion is more complex than simply upgrading the most 

congested line. 

Current models for pricing and investing in transmission capacity labor under an implicit 

assumption that eliminating congestion along a transmission line through upgrades or the 

construction of new capacity will have the effect of improving the flow of electricity 

through the network.  In small series-parallel or even triangular networks, this may be 

true.  However, the assumption does not necessarily hold in meshed power networks. 

 

Analysis of the Wheatstone network in Chapter 3 suggests that increasing the capacity of 

a congested transmission line may have no effect, or at least a non-beneficial effect, on 

network flows.  Sometimes multiple lines may need to be upgraded in order for the 

system to see any benefit.  A related problem is that while congestion on transmission 

lines is largely a function of stability limits, loop flows in the system are a function of the 

system’s electrical topology (the resistance or the susceptance).  While the stability limit 

may be (first-order) independent of the resistance, congestion in the network is a function 

of both. 
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The nodal pricing system currently used in restructured electric power markets 

encourages incorrect analogies with other transportation networks, and perpetuates the 

notion that energy flows can always be improved by increasing the installed capacity of a 

given line.  Nodal prices are stated in units of currency per MWh, because megawatt-

hours represent the usable energy valued and purchased by consumers.  Thus, the 

determining factor in the nodal price calculation is the cost of getting megawatt-hours to 

a given location in the system.   Market-based transmission investment mechanisms 

reward investors for creating megawatts of transmission capacity, which should (but may 

not, as we have seen) mean more megawatt-hours able to be delivered to end-use 

customers.  Just as important, but not currently compensated in any way, are the electrical 

properties of transmission lines.  Gribik et. al. (2005) have suggested augmenting the 

flowgate-rights model to include admittance-based payments for new transmission lines, 

but their formulation is problematic since they suggest that admittance payments would 

merely amount to transfers from holders of megawatt-based flowgate rights.  Thus, in the 

Gribik et. al. formulation, the electrical properties of transmission lines neither create nor 

destroy wealth in the network.  The analysis of Wheatstone networks in Chapters 3 and 4 

show that the electrical topology of the network can directly affect aggregate welfare. 

 

Lesson 2 also speaks to the transmission planning process.  Utility transmission planners 

recognize that this process amounts to a very difficult combinatorial optimization 

problem, one that (for a system of any appreciable size) is prohibitively costly to solve 

completely.  Increasing reliability or decreasing congestion in the system is therefore a 
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matter of strategically choosing where to upgrade the system, and what types of upgrades 

to pursue. 

 

Markets, on the other hand, respond to price signals.  The straw-man argument against 

market-based transmission planning and investment says that investors will receive 

congestion prices as signals, and will act on those.  The line with the highest congestion 

price will get upgraded first, then the line with the second-highest congestion price, and 

so forth.  The analysis of Wheatstone snetworks in Chapters 3, 4, and 6 shows that 

following such an investment strategy will lead to a waste of resources.  If the 

“congestion” prices actually reflected all of the relevant externalities associated with AC 

power flow and reliability constraints, then market-based transmission planning would 

deserve further consideration. 

 

A more sophisticated critique of transmission planning under restructuring is based on the 

Wheatstone analyses in Chapters 3 and 6.  The critique offered here says that congestion 

signals have failed in that they do not identify the relevant states of nature (specifically, 

the level of demand and the probability of contingencies) for optimal decision-making.  

Looking to the cost-benefit analysis of Wheatstone sub-networks in Chapter 6, in many 

cases the optimal investment strategy is state-contingent; it depends on the demand to 

transfer power across the Wheatstone sub-network and on the stochastic electrical 

topology in several portions of the network.3  Over one range of possible levels of 

demand, construction of a Wheatstone bridge (for example) would seem to be a poor 

                                                 
3 Joskow and Tirole (2005b) offer a similar criticism of FTRs as a mechanism to compensate transmission 
investment. 
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investment, since it will congest the network.  Over another range of possible levels of 

demand, the Wheatstone bridge may provide a reliability benefit (despite causing 

additional congestion) and thus would make a wise investment.  For a given level of 

demand, over one range of contingency probabilities, the Wheatstone bridge may have a 

positive net benefit (the reliability benefit outweighs the congestion cost), and over a 

different range of contingency probabilities the Wheatstone bridge may have a negative 

net benefit (the opposite result – that the congestion cost swamps the reliability benefit). 

 

Because congestion prices are inherently state-contingent, they tell planners little more 

than which lines are congested for a given state of the system.  They do not give planners 

any guidance regarding how the congestion should be handled.  Flows through the 

network might improve if some transmission lines were removed or had flow-control 

devices (FACTS or relays) placed at various strategic positions throughout the network.  

For example, Chapter 3 suggests that flows through the Wheatstone network might 

improve if the bridge were removed from the system.  Doing so, however, would rob the 

system of the reliability benefit arising from the bridge.  An optimal transmission plan for 

the Wheatstone network would look at the net benefit (expected congestion cost versus 

reliability benefit, as discussed in Chapter 6) of the Wheatstone bridge versus the cost 

and performance of relays or FACTS devices placed at the end-nodes of the bridge. 

 

Congestion prices are useful in certain circumstances; in particular, they can be effective 

tools for deciding whether transmission or generation investments should be undertaken 

to relieve a given system constraint.  The insight from Chapters 3 and 6 is that the use of 
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congestion prices should be supplemented by a healthy dose of system awareness.  Since 

the congestion prices in Wheatstone sub-networks must be interpreted with care, planners 

must know where in the larger network these structures exist.  The value of the 

Wheatstone detection algorithm presented in Chapter 5 is to give planners in 

market-based systems awareness of places in the network congestion where prices can 

give good planning recommendations and of places where the network topology might 

yield more useful information than prices. 

 

Lesson 3: Reliability and congestion are not independent. 

Underlying any institutional structure for market-based transmission pricing and planning 

is the assumption that a clear distinction exists between lines (existing or proposed) that 

convey primarily economic benefits to the system in the form of congestion relief, and 

lines that benefit the system primarily through increased redundancy and reliability.  The 

actual degree to which reliability and congestion are separable has been the topic of much 

debate but little serious analysis (Hogan 2003, Shanker 2003).  The contribution of 

Chapter 6 is to provide a quantitative analysis of the relationship between congestion and 

reliability using a reasonably-sized test network. 

 

The debate over the reliability versus congestion aspect of individual transmission lines 

has sometimes been clouded by imprecise language.  Shanker (2003) and Roark (2006), 

both proponents of market-based transmission investment solutions, insist that the 

reliability property of a transmission line is separable from the economic property.  The 

two attributes are separable, in the sense that we can write down equations for each that 
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do not depend on the other.  Equations (6.1) and (6.4) from Chapter 6 do just that.  But 

the two quantities are seldom independent.  For a subset of a meshed transmission 

network it is rarely the case that the congestion cost varies with the level of demand or 

with outages in the network, while the reliability benefit is constant at zero.  The reverse 

also holds; the reliability benefit rarely varies with the state of the network while the 

congestion cost is constant at zero.   

 

An additional problem in the debate is the failure to identify the relevant state of the 

network.  The analysis in Chapter 6 on Wheatstone sub-networks of the IEEE 118-bus 

system suggest that for some combinations of demand and outage probabilities (such as 

when both are very low), there may be congestion in the network without an associated 

reliability benefit.  Over this range of system states, reliability and congestion are 

independent.  For a different range of demand and outage probabilities, sharp tradeoffs 

exist between congestion cost and reliability benefits. 

 

Lesson 4: Needed transmission infrastructure will not be built (without the aid of 

political will) unless the transmission planning, investment, and compensation problem is 

viewed as a systems problem. 

Prior to restructuring, utility transmission planners built their systems with reliability 

criteria in mind.  Economics or congestion played a minor role (if any) in determining 

which investments were made and which were not (Joskow 2005b).  The 

transmission-planning problems in equations (1.1) and (1.2) have explicit reliability and 
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other system constraints, but the objective is to find the minimum transmission 

investment cost which supports the reliability constraints. 

 

Under restructuring, planners are asked to consider both economic and reliability criteria 

in choosing among transmission investments (although as Joskow 2005b points out, RTO 

transmission planners have given substantially more weight to reliability criteria than 

economic criteria).  If a sharp distinction cannot be made between the congestion and 

reliability attributes of the transmission network on a line-by-line basis, then the entire 

basis for market-based transmission planning and investment falls apart.  Thus, Lesson 4 

is in some sense the culmination of Lessons 1 through 3.  The purest form of market-

based transmission investment, in which merchant transmission companies respond to 

nodal price signals, and investments are rewarded with FTRs, will not yield optimal 

transmission plans because nodal prices do not incorporate all relevant externalities, 

including system reliability.  In some circumstances, it may not even yield feasible 

transmission plans since the total effect of a new line on the network (positive or 

negative) is more than simply the sum of the congestion rents throughout the network. 

 

Diluted forms of market-based transmission, such as participant funding, are meaningless 

unless the line between congestion and reliability can be clearly drawn.  Merchant 

transmission contracts signed on the basis of reduced congestion costs for infrastructure 

that also has significant reliability benefits will result in free-riding and transfers of 

wealth from investors to those who benefit most from the added system reliability. 
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Transmission planning, investment, and compensation must consider the systems effects 

of changes in the grid infrastructure.  This means that investors must be compensated on 

the basis of new transmission lines to the entire system, not just the change in the total 

congestion charges levied on market participants or the archaic reliability criteria used by 

utility and RTO planners. 

 

7.2. Reformulating the Transmission Investment Problem 

Both Hirst (2004) and the ISO/RTO Council (2005) report that despite a 

sometimes-ambiguous regulatory responsibility for transmission planning, RTO areas 

have been more active and more efficient at getting projects built than areas still under 

the traditional regulated-utility regime.  However, Joskow (2005b) notes that many new 

investments have been socialized into the rate base, thus placing the risk on ratepayers 

rather than investors.  One of the primary motivations for the merchant model has thus 

been undermined.   

 

The real advantage of an RTO (or a similar institution with a wide geographic footprint, 

such as a power pool) in encouraging investment may be its ability to form coalitions of 

stakeholders while incurring reasonably small transactions costs.  In particular, RTOs 

may be effective in facilitating a flavor of merchant transmission known as “participant 

funding” (Hébert 2004), in which multiple investor-stakeholders share the cost of new 

upgrades according to the degree to which they would benefit from the new 

infrastructure. 
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In regions managed by RTOs, participant funding (should it take hold) will still suffer 

from the problem of possible free-riding identified by Bushnell and Stoft (1996, 1997), as 

investors will likely earn returns either through congestion contracts or other 

appropriation of congestion rents.  This does not necessarily have to be the case; instead 

of relying on price differences along network paths (which can provide incentives for 

harmful modifications to the grid, as illustrated in Chapter 3), compensation for merchant 

investments could be made on a marginal-value basis.  Projects providing net benefits to 

the system as a whole would earn positive returns, while those detrimental to the system 

would not.  Such a value-based compensation scheme would require performing some 

systems analysis of the type suggested in Chapter 6. 

 

A variant of this method is currently used to assess transmission upgrades in the 

California ISO territory (Awad et. al. 2004).  Line upgrades can be proposed by the 

California Energy Commission or the California ISO itself; those that appear to have the 

primary benefit of relieving congestion (rather than, for example, increasing system 

reliability) are subject to a social cost-benefit analysis before being put out to bid and 

allowed in the rate base.  Participant funding was also used with some success in 

Argentina in the 1990s (Littlechild and Skerk 2004a, 2004b).  The Argentinian 

transmission built under this compensation regime was in the form of high-voltage lines 

connecting portions of the system with little existing interconnection capacity.  The 

discussion in Chapters 3 and 6 of this thesis suggests that these types of interconnections 

represent the limit of what market-based transmission can accomplish.  Even so, similar 
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merchant transmission projects in the North American grid have been cancelled due to 

unwillingness of the investment community to offer funding. 

 

The original merchant transmission model has failed miserably.  RTOs currently 

operating under FERC-approved tariffs should amend those tariffs to reflect the 

unfortunate fact that the transmission problem is not one of market design or 

competitiveness.  They should stop trying to offer investors FTRs in exchange for 

merchant AC transmission investment.4  RTOs starting up or with tariffs pending before 

FERC should think of new mechanisms to ensure that desired transmission investments 

are actually built. 

 

In the context of the restructured electric power industry, the transmission problem is one 

of risk management rather than markets or competition.  The transmission infrastructure 

acts as a vehicle to manage uncertainty in peak demand, as well as in network topology.  

In this way, the transmission problem under restructuring should not be all that different 

from transmission planning in regions that still have traditionally-organized regulated 

utilities.  Institutional differences between restructured and non-restructured regions 

suggest four alternatives to a system of market-based signals to encourage investment, 

compensate investment, or both. 

 

                                                 
4 Joskow (2004b) has described the merchant transmission model as “dead,” and as one that is not taken 
seriously by any industry players.  However, at least one RTO continues to believe (at least on paper) that 
merchant transmission investment can be attracted by offering FTRs or other forms of congestion rent in 
exchange (New York ISO 2005). 
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The first alternative, as discussed in Chapter 2, is to simply treat transmission as a 

regulated business (in much the same way that utility distribution remains a regulated 

business) and to socialize the cost of all transmission lines through either direct ratepayer 

charges or market-participant transmission access charges.  This would ultimately place 

all the risk associated with new transmission investment on the ratepayer.  Even with 

transmission access charges, load-serving entities would likely pass these on to 

ratepayers, especially in the absence of thriving retail electricity markets.   

 

This alternative represents the mechanism under which all transmission investment in 

restructured areas has taken place.  Pending investments also appear likely to be funded 

this way.  Section 1221 of the Energy Policy Act of 2005 allows the U.S. Department of 

Energy and FERC to designate “national interest transmission corridors,” for which the 

permitting and siting process may be expedited by FERC. 

 

A second alternative would be to have the RTO own, as well as operate, the transmission 

system.  Planning and investment would then proceed as with a vertically-integrated 

utility, but on a regional scale.  RTOs are already supposed to perform regional 

transmission planning, but who has the responsibility to build new transmission is still 

shrouded in ambiguity, as is the method of payment.  Ownership of the transmission lines 

would remove some of this ambiguity.  Placing responsibility for investment in the hands 

of the RTO would require the RTO to collect money for some sort of transmission fund.  

Congestion payments could be used for this purpose, but this would require disrupting the 

current system of using congestion payments to reimburse holders of FTRs.  To the 
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extent that FTRs represent property rights, holders of long-term FTRs would need to be 

appropriately compensated. 

 

Eliminating FTRs (as they currently exist) is also problematic in that it would remove one 

mechanism by which spot-market participants could hedge locational price risk.  Prior to 

the establishment of organized spot markets, locational risk in electricity markets was 

referred to as “basis risk” (van Vactor 2004) because it was perceived as unhedgeable.  

The right combination of FTRs and contracts for differences, however, can create a 

perfect hedge in electricity markets with nodal pricing (Bushnell and Stoft 1996). 

 

The third alternative is essentially the two-part tariff proposed by Apt and Lave (2003), 

which consists of LMP plus a megawatt-mile charge.  In this scenario, the RTO does not 

necessarily own the lines, but performs regional transmission planning and collects 

money for transmission upgrades.  The appeal of the megawatt-mile approach is the 

incentives that it provides to the RTO.  Since the RTO must immediately redistribute 

congestion revenue in the form of FTR payments, they are revenue-neutral with respect 

to congestion.  With the megawatt-mile approach, the RTO could still disburse FTR 

payments based on congestion revenue, but the megawatt-mile charge would encourage 

the RTO to be more aggressive about regional transmission planning.  Upgrades or 

infrastructure that improve the flow of energy through the network would increase 

revenue for the RTO.  If revenue-neutrality for the RTO with respect to megawatt-mile 

payments was an important policy goal, then the RTO could transfer these payments to 
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transmission owners (and the incentive to upgrade the transmission system in beneficial 

ways would thus also transfer to the transmission owners).   

 

The primary criticism of the megawatt-mile approach is that it relies too much on the 

“contract path” fallacy that was pervasive prior to restructuring (Hogan 1992, 2003).  

Scheduling based on contract paths requires that the counterparties to bilateral energy 

trades name a specific set of links (forming a path from source to sink) over which they 

believe that the power will travel.5  Very often, these bear little resemblance to the actual 

physical flow of power; the megawatt-mile charge would need to be structured to remove 

the incentive of grid participants to pay based on the shortest physical distance between 

source and sink (which may be different than the shortest electrical distance, which is a 

better basis of payment). 

 

The first three reformulations of the transmission investment problem succumb to the 

criticism that they still leave essentially one entity (the utility or RTO) in charge of 

transmission planning.  One of the appealing features of the merchant model is that it 

engages multiple entities in the planning process.  A merchant may discover a beneficial 

line that the utility or RTO did not.  But, as the thesis has discussed in Chapters 2 and 6, 

the current merchant model is faulty in its LMP-based compensation structure.  It also 

provides incentives to modify the grid in harmful ways (see Chapter 4). 

 

A fourth alternative would thus simply reformulate the merchant transmission problem, 

fixing the compensation mechanism.  The current mechanism is faulty because it 
                                                 
5 This is essentially the same criticism that Hogan (2000) levels against the flowgate model. 
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encourages free-riding in the system (see Figure 2.2 in Chapter 2), which may prevent 

some socially-beneficial transmission from being built. 

 

Hotelling (1938) considered the case of optimal compensation for a large piece of 

infrastructure whose costs consist primarily of fixed costs, such as a bridge.  He 

concluded that marginal-use pricing, such as tolls, represents an inefficient compensation 

mechanism because it imposes a deadweight loss on society, as fewer drivers will choose 

to use the bridge in the presence of a toll.  Since these assets are lumpy in the sense that 

the marginal cost depends on the amount of spare capacity, Hotelling argues that an 

average cost mechanism is superior in the presence of high fixed costs. 

 

The argument is nearly identical for investment in transmission lines, as shown in 

Figure 2.2.  A better compensation mechanism for non-utility transmission would be to 

calculate the value of the line to the system, as demonstrated in Chapter 6, and to use that 

to define the revenue stream to the investor.  During periods in which the line relieves 

congestion in the system or provided a reliability benefit, the investor would receive a 

positive payment from the grid.6  During periods in which the line caused congestion, the 

investor would receive a negative payment; that is, the investor would be forced to pay 

the grid operator based on the cost imposed by the line.7  These costs and benefits can 

easily be calculated ex-post using the framework presented in Chapter 6. 

 

                                                 
6 The grid is assumed to encompass the generators and load-serving entities operating within a pre-defined 
control area. 
7 The grid operator, in turn, could transfer the money to individual grid participants, or keep the money for 
an infrastructure upgrade fund. 
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To the extent that the RTO was risk-averse, it might prefer to sign a fixed-price contract 

for non-utility transmission based on the expected net benefit of the line to the system, 

rather than compensating the investor using what amounts to a series of spot contracts.  

The RTO might also be willing to pay a premium for this contract, which would amount 

to the average-cost pricing methodology suggested by Hotelling (1938).  A risk-neutral 

RTO would be indifferent between a series of spot contracts and a long-term contract 

with a fixed price equal to the expected net benefit of the new line. 

 

7.3. Who Can Bear the Risk at the Lowest Cost? 

Once the transmission investment problem is correctly formulated as a problem in 

risk-management, the optimal policy is the one that places the burden of the risk on the 

entity (or entities) who can manage the risk at the lowest cost.  This insight is due to 

Coase (1960), and was originally developed in the study of transactions costs and 

externalities.  Coase argued that if transaction costs were not minimized while 

internalizing externalities, deadweight losses would result.  The argument is similar for 

the case of bearing risk.  If two parties can mange risk equally effectively, but one can do 

it at half the cost of the other, choosing the higher-cost risk manager is a waste of 

society’s resources (that is, it does not simply transfer money from the rest of society to 

the expensive risk manager).  This is essentially the same reason that transmission 

congestion imposes a social cost and does not just transfer money to the holders of 

congestion rights. 
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In restructured electric power systems, the transmission risk-management problem boils 

down to placing three entities in charge of investment: the utility, the RTO, and the 

merchant sector.  If the merchant sector can bear the risk at a lower cost than the utility or 

RTO sector, then policy efforts should focus on redefining the institutions and market 

mechanisms to support non-utility transmission, such as the value-based merchant 

transmission proposal discussed at the end of Section 7.2.  If the RTO can bear the risk at 

a lower cost, then policymakers should think more seriously about transferring ownership 

of transmission lines to the RTO and giving FERC more regulatory authority over 

transmission. 

 

 

 

 

 

 

 

Table 7.1. Share prices and bond ratings for various firms in the electric power industry.  
Sources: Joskow (2005a) and Standard and Poor’s. 
 

Joskow (2005a) has emphasized the terrible financial shape of the merchant generation 

sector of the industry, and Krellenstein (2004) has argued that there have been spillovers 

to the transmission sector.  Table 7.1 shows the stock performance and bond ratings for 

integrated utility firms and merchants in 2001 and 2005.  Merchant electricity investment 

is viewed as inherently more risky than integrated utility investment (public or private) 

May 2001 Peak
Company Share Price Share Price Credit Rating
AES 48.50 16.50 B+
AEP 50.40 34.19 BBB
Calpine 54.70 2.39 B-
Duke 46.10 27.89 BBB
El Paso 64.90 18.91 B-
Mirant 45.40 0.31 N/A
Reliant 33.80 10.91 B+
Southern Cos. 23.54 31.95 A-
Williams 41.00 16.55 B+

April 15, 2005
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due to perceived uncertainty over how merchant investment will be compensated.  The 

uncertainty stems from two sources, but both are a construct of the RTO’s institutional 

structure.  The first is simple variability in the RTO spot market and the lack of 

transparent forward-market substitutes.  The second is uncertainty over future RTO rules 

and regulations, and the intolerant attitude that RTOs have taken towards high spot 

energy prices.8 

 

The uncertainty surrounding the revenue stream for a merchant player in the electricity 

industry would not pose such a problem if the merchant player had diversified or 

guaranteed sources of revenue to act as an insurance policy.  But the nature of the 

merchant sector is that it does not have this type of collateral; its projects should succeed 

or fail on their own merits, and investors (not ratepayers or taxpayers) will reap the 

reward or pay the cost.  Krellenstein’s (2004) view is that merchant investments thus 

amount to “project financing,” meaning that investors are essentially taking a bet on a 

specific project (a generating unit or transmission line).  This is distinguished from 

“system financing,” where borrowers can use existing assets or revenue (such as 

ratepayers) as security.  Investments that fall under project financing normally face 

higher interest rates and the associated debt is classified as sub-investment grade. 

 

Thus, the merchant sector as currently structured is not the lowest-cost solution to the 

transmission problem.  The merchant sector has two strikes against it: the incentive 

structure in rewarding merchant transmission with contracts based on nodal prices does 

                                                 
8 Joskow and Tirole (2005b) have also criticized the RTOs for not allowing prices to spike during periods 
of peak demand.  
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not promote the socially optimal level of transmission investment, and to the extent that it 

does promote investment, society will pay more for a merchant line than a utility line.   

 

Blumsack, Apt, and Lave (2006) have noted that the merchant sector is not alone; the 

vertically-integrated utility sector has not fared uniformly well under restructuring.  Prior 

to restructuring, most debt from investor-owned utilities was seen as reasonably risk-free 

and was thus given a median rating of “A” by the major credit agencies.  Since 

restructuring, this median rating has dropped to “BBB” amid uncertainties over the future 

path and scope of restructuring.  Public power, much of which is not bound by FERC’s 

restructuring efforts, maintains its “A” debt rating. 

 

The relevant question for designing a new transmission policy is whether a reformulation 

of non-utility transmission can handle both the incentive problem and the risk problem.  

Compensation of merchant transmission assets on a value-added basis (this is the fourth 

alternative discussed in Section 7.2) would certainly take care of the incentive problem.  

The transmission investor would collect not only the congestion rent along the new or 

upgraded line, but would also have a right to the reduced congestion cost.  Thus, the 

investment decision would be subject to the right set of incentives. 

 

Value-added transmission payments can reduce the risk associated with the merchant 

sector only to the extent that the variation in the net benefit of a line to the system is 

smaller than the congestion rent.  Thus, non-utility transmission compensation will have 

to be structured as long-term contracts.  Krellenstein (2004) has noted that potential 
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investors in merchant transmission projects prefer deals to be structured as long-term 

contracts and not as a sequence of spot contracts with an expected value equivalent to the 

average value in the long-term contract.  Price certainty is valued at a premium; that is, an 

investor in a merchant project will need to be paid to enter into a contract that does not 

have (for example) take-or-pay provisions.  This indicates that investors are risk-averse 

with respect to merchant investment, and perhaps even risk-neutral with respect to 

investments that qualify as system financing. 

 

If investors are risk-averse towards merchant investments, but less risk-averse or 

risk-neutral towards an equivalent investment by a non-merchant party, then even if the 

compensation mechanism reflects the value of the line to the system (and not just the 

change in congestion prices), merchant transmission cannot represent the least-cost 

solution to the transmission problem.  Whether the utility or RTO is the lowest-cost 

institution is still an open question.  RTOs have established themselves as not-for-profit 

entities that do not take a physical position in the markets they run.  It is not clear how the 

investment community would view a shift in RTO structure.   

 

In any case, this does not mean the total death of the merchant sector.  As mentioned 

above, merchants may be able to identify beneficial projects that RTOs or utilities cannot.  

Even if most projects are undertaken by utilities or even RTOs, there is no good reason to 

exclude merchant investment from RTO tariffs.  The analysis in this thesis has suggested 

ways in which merchant transmission might effectively be integrated into the RTO 

planning and investment process.  First, new lines should be subjected to the type of 
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cost-benefit test detailed in Chapter 6 and the topological awareness of the grid discussed 

in Chapters 3 and 5.  RTOs and regulators alike should realize that transmission lines 

may impose congestion costs on the system and convey reliability benefits.  This cost-

benefit test needs to be defined over the relevant range of demand, since the net benefit of 

a given line is not independent of the state of the system.  Second, compensation for 

merchant projects needs to reflect these net benefits. 
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Appendix A: Network Data for the IEEE 118-bus System 

 

This appendix contains the network data for the IEEE 118-bus test network used in the 

Wheatstone analysis of Chapter 6.  The data was downloaded from the IEEE power 

systems test case archive at www.ee.washington.edu/research/pstca/.  The data is given in 

a format consistent with Matpower, a free set of Matlab files for power system simulation 

and analysis, available at http://www.pserc.cornell.edu/matpower/. 

 

A1. Bus and Demand Data 

Bus and demand data for the 118-bus test network is given in Table A1.  The variables 

and units used in the column headings of Table A1 are: 

 

PL: Real power demand, in [MW] 

QL: Reactive power demand, in [MVar] 

V: Bus voltage magnitude, in per-unit for a voltage base of 100 kV 

θ: Bus voltage angle, in degrees 

Vmax: Maximum bus voltage magnitude, in per-unit for a voltage base of 100 kV 

Vmin: Maximum bus voltage magnitude, in per-unit for a voltage base of 100 kV 
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Table A1: Bus data for the IEEE 118-bus network 

Bus PL QL V θ Vmax Vmin
1 51 27 0.955 10.983 1.06 0.94
2 20 9 0.97139 11.523 1.06 0.94
3 39 10 0.96769 11.866 1.06 0.94
4 39 12 0.998 15.583 1.06 0.94
5 0 0 1.00198 16.028 1.06 0.94
6 52 22 0.99 13.302 1.06 0.94
7 19 2 0.98933 12.857 1.06 0.94
8 28 0 1.015 21.049 1.06 0.94
9 0 0 1.04292 28.303 1.06 0.94

10 0 0 1.05 35.884 1.06 0.94
11 70 23 0.98509 13.016 1.06 0.94
12 47 10 0.99 12.499 1.06 0.94
13 34 16 0.9683 11.641 1.06 0.94
14 14 1 0.98359 11.783 1.06 0.94
15 90 30 0.97 11.489 1.06 0.94
16 25 10 0.98391 12.198 1.06 0.94
17 11 3 0.99513 14.006 1.06 0.94
18 60 34 0.973 11.793 1.06 0.94
19 45 25 0.963 11.314 1.06 0.94
20 18 3 0.95776 12.192 1.06 0.94
21 14 8 0.95841 13.779 1.06 0.94
22 10 5 0.96954 16.332 1.06 0.94
23 7 3 0.99972 21.249 1.06 0.94
24 13 0 0.992 21.118 1.06 0.94
25 0 0 1.05 28.184 1.06 0.94
26 0 0 1.015 29.965 1.06 0.94
27 71 13 0.968 15.613 1.06 0.94
28 17 7 0.96157 13.889 1.06 0.94
29 24 4 0.96322 12.897 1.06 0.94
30 0 0 0.98553 19.04 1.06 0.94
31 43 27 0.967 13.014 1.06 0.94
32 59 23 0.964 15.054 1.06 0.94
33 23 9 0.97161 10.864 1.06 0.94
34 59 26 0.986 11.505 1.06 0.94
35 33 9 0.9807 11.08 1.06 0.94
36 31 17 0.98 11.085 1.06 0.94
37 0 0 0.99208 11.969 1.06 0.94
38 0 0 0.96204 17.106 1.06 0.94
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Table A1 (continued) 

Bus PL QL V θ Vmax Vmin
39 27 11 0.97049 8.598 1.06 0.94
40 66 23 0.97 7.525 1.06 0.94
41 37 10 0.96683 7.079 1.06 0.94
42 96 23 0.985 8.674 1.06 0.94
43 18 7 0.97858 11.459 1.06 0.94
44 16 8 0.98505 13.945 1.06 0.94
45 53 22 0.98667 15.776 1.06 0.94
46 28 10 1.005 18.582 1.06 0.94
47 34 0 1.01705 20.805 1.06 0.94
48 20 11 1.02063 20.025 1.06 0.94
49 87 30 1.025 21.028 1.06 0.94
50 17 4 1.00108 18.989 1.06 0.94
51 17 8 0.96688 16.37 1.06 0.94
52 18 5 0.95682 15.417 1.06 0.94
53 23 11 0.94598 14.442 1.06 0.94
54 113 32 0.955 15.353 1.06 0.94
55 63 22 0.952 15.063 1.06 0.94
56 84 18 0.954 15.25 1.06 0.94
57 12 3 0.97058 16.455 1.06 0.94
58 12 3 0.95904 15.598 1.06 0.94
59 277 113 0.985 19.452 1.06 0.94
60 78 3 0.99316 23.234 1.06 0.94
61 0 0 0.995 24.125 1.06 0.94
62 77 14 0.998 23.509 1.06 0.94
63 0 0 0.96874 22.831 1.06 0.94
64 0 0 0.98374 24.597 1.06 0.94
65 0 0 1.005 27.722 1.06 0.94
66 39 18 1.05 27.563 1.06 0.94
67 28 7 1.01968 24.923 1.06 0.94
68 0 0 1.00325 27.601 1.06 0.94
69 0 0 1.035 30 1.06 0.94
70 66 20 0.984 22.62 1.06 0.94
71 0 0 0.98684 22.209 1.06 0.94
72 12 0 0.98 21.112 1.06 0.94
73 6 0 0.991 21.998 1.06 0.94
74 68 27 0.958 21.671 1.06 0.94
75 47 11 0.96733 22.933 1.06 0.94
76 68 36 0.943 21.803 1.06 0.94
77 61 28 1.006 26.757 1.06 0.94
78 71 26 1.00342 26.453 1.06 0.94
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Table A1 (continued) 

Bus PL QL V θ Vmax Vmin
79 39 32 1.00922 26.752 1.06 0.94
80 130 26 1.04 28.998 1.06 0.94
81 0 0 0.99681 28.149 1.06 0.94
82 54 27 0.98881 27.276 1.06 0.94
83 20 10 0.98457 28.465 1.06 0.94
84 11 7 0.97977 30.997 1.06 0.94
85 24 15 0.985 32.55 1.06 0.94
86 21 10 0.98669 31.181 1.06 0.94
87 0 0 1.015 31.44 1.06 0.94
88 48 10 0.98746 35.68 1.06 0.94
89 0 0 1.005 39.734 1.06 0.94
90 440 42 0.985 33.331 1.06 0.94
91 10 0 0.98 33.352 1.06 0.94
92 65 10 0.993 33.841 1.06 0.94
93 12 7 0.98737 30.837 1.06 0.94
94 30 16 0.99081 28.687 1.06 0.94
95 42 31 0.98111 27.716 1.06 0.94
96 38 15 0.9928 27.549 1.06 0.94
97 15 9 1.01143 27.923 1.06 0.94
98 34 8 1.02351 27.446 1.06 0.94
99 42 0 1.01 27.085 1.06 0.94

100 37 18 1.017 28.081 1.06 0.94
101 22 15 0.99276 29.649 1.06 0.94
102 5 3 0.99159 32.341 1.06 0.94
103 23 16 1.001 24.48 1.06 0.94
104 38 25 0.971 21.742 1.06 0.94
105 31 26 0.965 20.634 1.06 0.94
106 43 16 0.96114 20.379 1.06 0.94
107 50 12 0.952 17.576 1.06 0.94
108 2 1 0.96621 19.434 1.06 0.94
109 8 3 0.96703 18.982 1.06 0.94
110 39 30 0.973 18.135 1.06 0.94
111 0 0 0.98 19.78 1.06 0.94
112 68 13 0.975 15.036 1.06 0.94
113 6 0 0.993 14.004 1.06 0.94
114 8 3 0.96068 14.727 1.06 0.94
115 22 7 0.96053 14.72 1.06 0.94
116 184 0 1.005 27.166 1.06 0.94
117 20 8 0.97382 10.958 1.06 0.94
118 33 15 0.94944 21.945 1.06 0.94



253 

A2. Generator Data 

Generator data for the IEEE 118-bus test network is shown in Table A2.  The variables 

and units used in the column headings of Table A2 are: 

PG: Real power output, in [MW] 

QG: Reactive power output, in [MVar] 

QG,max: Maximum reactive power output, in [MVar] 

QG,min: Minimum reactive power output, in [MVar] 

V: Voltage magnitude setpoint, in per-unit for a base voltage of 100 kV. 

PG,max: Maximum real power output, in [MW] 

PG,min: Minimum real power output, in [MW] 

Table A2: Generator data for the IEEE 118-bus network 

 
 
 
 

Bus PG QG QG,max QG,min V PG,max PG,min

10 450 -51.04 200 -147 1.05 550 0
12 85 91.27 120 -35 0.99 185 0
25 220 49.72 140 -47 1.05 320 0
26 314 9.89 1000 -1000 1.015 414 0
31 7 31.57 300 -300 0.967 107 0
46 19 -5.25 100 -100 1.005 119 0
49 204 115.63 210 -85 1.025 304 0
54 48 3.9 300 -300 0.955 148 0
59 155 76.83 180 -60 0.985 255 0
61 160 -40.39 300 -100 0.995 260 0
65 391 80.76 200 -67 1.005 491 0
66 392 -1.95 200 -67 1.05 492 0
69 513.48 -82.39 300 -300 1.035 805.2 0
80 477 104.9 280 -165 1.04 577 0
87 4 11.02 1000 -100 1.015 104 0
92 607 0.49 9 -3 0.99 100 0

100 252 108.87 155 -50 1.017 352 0
103 40 41.69 40 -15 1.01 140 0
111 36 -1.84 1000 -100 0.98 136 0
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A3. Branch Data 

Branch data for the IEEE 118-bus test network are shown in Table A3.  The variables and 

units used in the column headings of Table A3 are: 

From: Identifies the bus number of one end of the branch 

To: Identifies the bus number of the other end of the branch 

R: Resistance, in per-unit for a base voltage of 100 kV 

X: Reactance, in per-unit for a base voltage of 100 kV 

B: Line charging susceptance, in per-unit for a base voltage of 100 kV 

RateA: Long-term or stability limit of the line, in [MVA] 

RateB: Short-term limit of the line, in [MVA] 

RateC: Emergency limit of the line, in [MVA] 

Users of this data should note that the susceptances used in the DC power flows in this 

thesis were calculated directly from the line reactances X, according to the formula: 

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

≠−

= ∑
≠=

.00

1

1

)1(
,0

ij

jii ij

ij

ij

X

ji
X

ji
X

BA  

 

 

 

 

 

 



255 

Table A3: Branch data for the IEEE 118-bus network 

 

From To R X B RateA RateB RateC
1 2 0.0303 0.0999 0.0254 220 230 250
1 3 0.0129 0.0424 0.01082 220 230 250
2 12 0.0187 0.0616 0.01572 220 230 250
3 5 0.0241 0.108 0.0284 220 230 250
3 12 0.0484 0.16 0.0406 220 230 250
4 5 0.00176 0.00798 0.0021 440 460 500
4 11 0.0209 0.0688 0.01748 220 230 250
5 6 0.0119 0.054 0.01426 220 230 250
5 11 0.0203 0.0682 0.01738 220 230 250
6 7 0.00459 0.0208 0.0055 220 230 250
7 12 0.00862 0.034 0.00874 220 230 250
8 9 0.00244 0.0305 1.162 1100 1150 1250
8 5 0 0.0267 0 880 920 1000
8 30 0.00431 0.0504 0.514 220 230 250
9 10 0.00258 0.0322 1.23 1100 1150 1250

11 12 0.00595 0.0196 0.00502 220 230 250
11 13 0.02225 0.0731 0.01876 220 230 250
12 15 0.0215 0.0707 0.01816 220 230 250
12 17 0.0212 0.0834 0.0214 220 230 250
12 117 0.0329 0.14 0.0358 220 230 250
13 15 0.0744 0.2444 0.06268 220 230 250
14 15 0.0595 0.195 0.0502 220 230 250
15 17 0.0132 0.0437 0.0444 440 460 500
15 19 0.012 0.0394 0.0101 220 230 250
15 33 0.038 0.1244 0.03194 220 230 250
16 17 0.0454 0.1801 0.0466 220 230 250
17 19 0.0123 0.0505 0.01298 220 230 250
17 31 0.0474 0.1563 0.0399 220 230 250
17 113 0.00913 0.0301 0.00768 220 230 250
18 19 0.01119 0.0493 0.01142 220 230 250
19 20 0.0252 0.117 0.0298 220 230 250
19 34 0.0752 0.247 0.0632 220 230 250
20 21 0.0183 0.0849 0.0216 220 230 250
21 22 0.0209 0.097 0.0246 220 230 250
22 23 0.0342 0.159 0.0404 220 230 250
23 24 0.0135 0.0492 0.0498 220 230 250
23 25 0.0156 0.08 0.0864 440 460 500
23 32 0.0317 0.1153 0.1173 220 230 250
24 70 0.00221 0.4115 0.10198 220 230 250
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Table A3 (continued) 

 

From To R X B RateA RateB RateC
24 72 0.0488 0.196 0.0488 220 230 250
25 27 0.0318 0.163 0.1764 440 460 500
26 25 0 0.0382 0 220 230 250
26 30 0.00799 0.086 0.908 660 690 750
27 28 0.01913 0.0855 0.0216 220 230 250
27 32 0.0229 0.0755 0.01926 220 230 250
27 115 0.0164 0.0741 0.01972 220 230 250
28 31 0.0237 0.0943 0.0238 220 230 250
29 31 0.0108 0.0331 0.0083 220 230 250
30 17 0 0.0388 0 660 690 750
30 38 0.00464 0.054 0.422 220 230 250
31 32 0.0298 0.0985 0.0251 220 230 250
32 113 0.0615 0.203 0.0518 220 230 250
32 114 0.0135 0.0612 0.01628 220 230 250
33 37 0.0415 0.142 0.0366 220 230 250
34 36 0.00871 0.0268 0.00568 220 230 250
34 37 0.00256 0.0094 0.00984 440 460 500
34 43 0.0413 0.1681 0.04226 220 230 250
35 36 0.00224 0.0102 0.00268 220 230 250
35 37 0.011 0.0497 0.01318 220 230 250
37 39 0.0321 0.106 0.027 220 230 250
37 40 0.0593 0.168 0.042 220 230 250
38 37 0 0.0375 0 660 690 750
38 65 0.00901 0.0986 1.046 440 460 500
39 40 0.0184 0.0605 0.01552 220 230 250
40 41 0.0145 0.0487 0.01222 220 230 250
40 42 0.0555 0.183 0.0466 220 230 250
41 42 0.041 0.135 0.0344 220 230 250
42 49 0.0715 0.323 0.086 220 230 250
42 49 0.0715 0.323 0.086 220 230 250
43 44 0.0608 0.2454 0.06068 220 230 250
44 45 0.0224 0.0901 0.0224 220 230 250
45 46 0.04 0.1356 0.0332 220 230 250
45 49 0.0684 0.186 0.0444 220 230 250
46 47 0.038 0.127 0.0316 220 230 250
46 48 0.0601 0.189 0.0472 220 230 250
47 49 0.0191 0.0625 0.01604 220 230 250
47 69 0.0844 0.2778 0.07092 220 230 250
48 49 0.0179 0.0505 0.01258 220 230 250
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Table A3 (continued) 

 

From To R X B RateA RateB RateC
49 50 0.0267 0.0752 0.01874 220 230 250
49 51 0.0486 0.137 0.0342 220 230 250
49 54 0.073 0.289 0.0738 220 230 250
49 54 0.0869 0.291 0.073 220 230 250
49 66 0.018 0.0919 0.0248 440 460 500
49 66 0.018 0.0919 0.0248 440 460 500
49 69 0.0985 0.324 0.0828 220 230 250
50 57 0.0474 0.134 0.0332 220 230 250
51 52 0.0203 0.0588 0.01396 220 230 250
51 58 0.0255 0.0719 0.01788 220 230 250
52 53 0.0405 0.1635 0.04058 220 230 250
53 54 0.0263 0.122 0.031 220 230 250
54 55 0.0169 0.0707 0.0202 220 230 250
54 56 0.00275 0.00955 0.00732 220 230 250
54 59 0.0503 0.2293 0.0598 220 230 250
55 56 0.00488 0.0151 0.00374 220 230 250
55 59 0.04739 0.2158 0.05646 220 230 250
56 57 0.0343 0.0966 0.0242 220 230 250
56 58 0.0343 0.0966 0.0242 220 230 250
56 59 0.0825 0.251 0.0569 220 230 250
56 59 0.0803 0.239 0.0536 220 230 250
59 60 0.0317 0.145 0.0376 220 230 250
59 61 0.0328 0.15 0.0388 220 230 250
60 61 0.00264 0.0135 0.01456 440 460 500
60 62 0.0123 0.0561 0.01468 220 230 250
61 62 0.00824 0.0376 0.0098 220 230 250
62 66 0.0482 0.218 0.0578 220 230 250
62 67 0.0258 0.117 0.031 220 230 250
63 59 0 0.0386 0 440 460 500
63 64 0.00172 0.02 0.216 440 460 500
64 61 0 0.0268 0 220 230 250
64 65 0.00269 0.0302 0.38 440 460 500
65 66 0 0.037 0 220 230 250
65 68 0.00138 0.016 0.638 220 230 250
66 67 0.0224 0.1015 0.02682 220 230 250
68 69 0 0.037 0 440 460 500
68 81 0.00175 0.0202 0.808 220 230 250
68 116 0.00034 0.00405 0.164 440 460 500
69 70 0.03 0.127 0.122 440 460 500
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Table A3 (continued) 

 

From To R X B RateA RateB RateC
69 75 0.0405 0.122 0.124 440 460 500
69 77 0.0309 0.101 0.1038 220 230 250
70 71 0.00882 0.0355 0.00878 220 230 250
70 74 0.0401 0.1323 0.03368 220 230 250
70 75 0.0428 0.141 0.036 220 230 250
71 72 0.0446 0.18 0.04444 220 230 250
71 73 0.00866 0.0454 0.01178 220 230 250
74 75 0.0123 0.0406 0.01034 220 230 250
75 77 0.0601 0.1999 0.04978 220 230 250
75 118 0.0145 0.0481 0.01198 220 230 250
76 77 0.0444 0.148 0.0368 220 230 250
76 118 0.0164 0.0544 0.01356 220 230 250
77 78 0.00376 0.0124 0.01264 220 230 250
77 80 0.017 0.0485 0.0472 440 460 500
77 80 0.0294 0.105 0.0228 220 230 250
77 82 0.0298 0.0853 0.08174 220 230 250
78 79 0.00546 0.0244 0.00648 220 230 250
79 80 0.0156 0.0704 0.0187 220 230 250
80 96 0.0356 0.182 0.0494 220 230 250
80 97 0.0183 0.0934 0.0254 220 230 250
80 98 0.0238 0.108 0.0286 220 230 250
80 99 0.0454 0.206 0.0546 220 230 250
81 80 0 0.037 0 220 230 250
82 83 0.0112 0.03665 0.03796 220 230 250
82 96 0.0162 0.053 0.0544 220 230 250
83 84 0.0625 0.132 0.0258 220 230 250
83 85 0.043 0.148 0.0348 220 230 250
84 85 0.0302 0.0641 0.01234 220 230 250
85 86 0.035 0.123 0.0276 220 230 250
85 88 0.02 0.102 0.0276 220 230 250
85 89 0.0239 0.173 0.047 220 230 250
86 87 0.02828 0.2074 0.0445 220 230 250
88 89 0.0139 0.0712 0.01934 440 460 500
89 90 0.0518 0.032 0.032 660 230 250
89 91 0.0099 0.032 0.065 220 220 220
89 92 0.0099 0.0505 0.065 220 690 750
90 91 0.0254 0.0505 0.065 660 230 250
91 92 0.0387 0.1272 0.032 220 230 250
92 93 0.0258 0.032 0.0218 220 230 250
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Table A3 (continued) 

 

 

 

 

 

 

From To R X B RateA RateB RateC
92 94 0.0481 0.158 0.0406 220 230 250
92 100 0.0648 0.295 0.0472 220 230 250
92 102 0.0123 0.0559 0.01464 220 230 250
93 94 0.0223 0.0732 0.01876 220 230 250
94 95 0.0132 0.0434 0.0111 220 230 250
94 96 0.0269 0.0869 0.023 220 230 250
94 100 0.0178 0.058 0.0604 220 230 250
95 96 0.0171 0.0547 0.01474 220 230 250
96 97 0.0173 0.0885 0.024 220 230 250
98 100 0.0397 0.179 0.0476 220 230 250
99 100 0.018 0.0813 0.0216 220 230 250

100 101 0.0277 0.1262 0.0328 220 230 250
100 103 0.016 0.0525 0.0536 440 460 500
100 104 0.0451 0.204 0.0541 220 230 250
100 106 0.0605 0.229 0.062 220 230 250
101 102 0.0246 0.112 0.0294 220 230 250
103 104 0.0466 0.1584 0.0407 220 230 250
103 105 0.0535 0.1625 0.0408 220 230 250
103 110 0.03906 0.1813 0.0461 220 230 250
104 105 0.00994 0.0378 0.00986 220 230 250
105 106 0.014 0.0547 0.01434 220 230 250
105 107 0.053 0.183 0.0472 220 230 250
105 108 0.0261 0.0703 0.01844 220 230 250
106 107 0.053 0.183 0.0472 220 230 250
108 109 0.0105 0.0288 0.0076 220 230 250
109 110 0.0278 0.0762 0.0202 220 230 250
110 111 0.022 0.0755 0.02 220 230 250
110 112 0.0247 0.064 0.062 220 230 250
114 115 0.0023 0.0104 0.00276 220 230 250
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A4. Generator Marginal Cost Data 

Generator marginal costs for the IEEE 118-bus test network are shown in Table A4.  The 

linearized DC power flow used in Chapter 6 of this thesis assumes a constant marginal 

cost of generation.  For simplicity, I assumed that there was no intercept term to the cost 

curve. 

Table A4: Generator marginal costs in the IEEE 118-bus network 

 

 

Generator bus
Marginal Cost 

($/MWh)
10 0.217
12 1.052
25 0.434
26 0.308
31 5.882
46 3.448
49 0.467
54 1.724
59 0.606
61 0.588
65 0.2493
66 0.2487
69 0.1897
80 0.205
87 7.142
92 10

100 0.381
103 2
111 2.173
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Appendix B: Matlab Code for the Wheatstone Network Search 

Algorithm 

 

This appendix contains Matlab code to execute the Wheatstone search algorithm 

described in Chapter 5.  The code has only been tested on Matlab version 7 for Windows; 

there are no guarantees that it will work on previous or even future versions of Matlab. 

 

The code takes advantage of built-in functions of Matpower and Matgraph.  Matpower is 

a set of m-files for power system simulation and analysis, available free of charge at 

http://www.pserc.cornell.edu/matpower/.  Matgraph is a freely-available toolbox for 

working with undirected graphs; it can be downloaded from 

http://www.ams.jhu.edu/~ers/matgraph.  Full functionality of both Matpower and 

Matgraph also requires Matlab’s Optimization Toolbox. 

 
%Wheatstone search algorithm -- Seth Blumsack, April 2006 
%Make sure that you have Matpower and Matgraph directories added to 
%your matlab path.  This algorithm will find embedded Wheatstones on a 
%series-parallel reduced network 
  
graph_init 
  
%Step 1: Define the graph 
%Load the branch data from a Matpower-formatted file 
  
CaseData=fnUpdateCaseData('case13_red'); %Be sure to specify the case 
here 
elist=CaseData.branch(:,1:2); 
g=graph; 
add(g,elist); 
  
%Step 2: Calculate the incidence matrices and matrix of geodesic paths 
N=double(matrix(g)); 
N2=N^2; 
N3=N^3; 
triangles=0.5*diag(N3); 
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geodesic=dist(g); 
  
%Step 3: Define T as the set of nodes that are part of at least one 
%triangle 
T=find(triangles); 
  
%Step 4: Define D as the set of nodes that have degree greater than one 
degree=deg(g)'; 
D=find(degree > 1)'; 
  
%Step 5: Define R2 as the set of all pairs of nodes that have geodesic 
path 
%length equal to two with path cardinality equal to two. 
  
[u1,v1]=find(tril(geodesic)==2); 
R1=[u1 v1]; 
  
[u2,v2]=find(tril(N2)==2); 
R1_2=[u2 v2]; 
  
R2=intersect(R1,R1_2,'rows'); 
  
%Step 6: Define R3 as the set of all pairs of nodes connected by at 
least 
%two paths of length three 
  
[u3,v3]=find(tril(N3)>=2); 
R3=[u3 v3]; 
  
%Step 7: Define WS = R2 <intersect> R3 as the set of candidate 
Wheatstone 
%endpoints 
  
WS = intersect(R2,R3,'rows'); 
  
%Step 8: For each pair of nodes in WS, find the set of neighbors shared 
by 
%each node in the pair 
  
WS_neighbor=zeros(size(WS,1),2); 
  
for i=1:size(WS,1) 
    
WS_neighbor(i,:)=intersect(neighbors(g,WS(i,1)),neighbors(g,WS(i,2))); 
end 
  
WS_candidate=[WS WS_neighbor]; %Constructs the candidate four-node 
Wheatstone networks 
  
%Step 9: Calculate the clustering coefficient for all candidate 
Wheatstone 
%networks in WS_candidate 
  
WS_cluster=zeros(size(WS_candidate,1),1); 
WS_N=zeros(4); 
c_avg=0; 
N_k_morethanone=0; 
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for i=1:length(WS_cluster) 
        for j=1:4 
            for k=1:4 
           WS_N(j,k)=N(WS_candidate(i,j),WS_candidate(i,k)); 
            end 
        end 
         
WS_N3=(WS_N)^3;         
WS_triangles=0.5*diag(WS_N3); 
m=sum(WS_N,2); 
  
for j=1:4 
    if m(j)>1  
        c_avg=c_avg+2*WS_triangles(j)/(m(j)*(m(j)-1));  
        N_k_morethanone=N_k_morethanone+1;  
    end  
end 
  
c_avg=c_avg/N_k_morethanone; 
WS_cluster(i)=c_avg; 
         
         
end 
  
%Step 10: The entries in WS_cluster equal to 5/6 represent Wheatstone 
%sub-networks. 
  
%First, we need to define the clustering coefficient for the Wheatstone 
  
%Define the Wheatstone node-node adjacency matrix 
  
WS_key_N = [0 1 1 0; 1 0 1 1; 1 1 0 1; 0 1 1 0]; 
  
%Calculate the clustering metric 
WS_key_c_avg=0; 
WS_key_N_k_morethanone=0; 
  
WS_key_N3=(WS_key_N)^3;         
WS_key_triangles=0.5*diag(WS_key_N3); 
m=sum(WS_key_N,2); 
  
for j=1:4 
    if m(j)>1  
        c_avg=c_avg+2*WS_key_triangles(j)/(m(j)*(m(j)-1));  
        WS_key_N_k_morethanone=WS_key_N_k_morethanone+1;  
    end  
end 
  
WS_key_c=WS_key_c_avg/WS_key_N_k_morethanone; 
  
  
% Compare the candidate Wheatstone clustering metrics to the key 
WS_candidate_cluster=[WS_cluster WS_candidate]; 
  
WS_find=find(WS_candidate_cluster(:,1) == WS_key_c); 
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