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This dissertation is motivated by the belief that it is possible for regulators to 

attenuate some of the uncertainties that surround the operation of electricity markets, and 

therefore understanding the sources, implications and costs of these uncertainties can help 

shape policies in the field. At least in some cases, the quantification of the effects of 

uncertainty can serve as an incentive for industry participants and regulators to make a 

common front against unnecessary costs.  

Options theory and the method of risk-neutral valuation provide a framework to 

quantify the value of hedging against uncertainty. By incorporating options theory –

widely used in the financial world- this thesis contributes a framework to quantify the 

risks and value accordingly the instruments or strategies that provide hedging.  Having an 

idea of what the fair cost of hedging is, we will have better tools to identify inefficiencies 

and opportunities for regulation improvement.  

This dissertation looks at three cases of uncertainty in the electricity industry, 

related to generation, transmission and ancillary services, and proposes a method to 

quantify the cost of this uncertainty and use this value to inform policy making. In the 

three cases, there is a strategy or contract that can be seen as a hedging instrument and 

valued as such.     In the ambit of electricity transmission, Financial Transmission Rights 

(FTRs) can be seen as hedging instruments that provide protection against highly volatile 

transmission congestion costs.  An FTR is essentially a contract that allows (or obligates) 

the holder to get the monetary difference between the marginal price of electricity at the 

point where it is withdrawn to the marginal price electricity at its source.  In the ambit of 

electricity generation, the investment in environmental-control-devices or cleaner 

generation technologies can be seen as protection against the risk of not being able to 

comply with potential stringent air-emission regulations.  In the ambit of ancillary 

services, the provision of reliability-support resources can be seen as reduction of the risk 

of not being able to deal with contingencies that treat the instantaneous balance between 

supply and demand. 
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Introduction 

Few would disagree that these are very interesting times for the electricity 

industry. The emerging complex situations in the restructured industry pose tremendous 

challenges to regulators and market participants. In the past (beginning in 1907), Investor 

owned utilities (IOUs), which provided the majority of electricity in the US, were subject 

to price-regulations by regulatory commissions(Dahl 2004).  At the time, government 

intervention was justified by the agreement among economists that electric utilities were 

natural monopolies and regulation was needed to avoid social losses.    

In 1944, “rate-of-return” regulation was established, allowing utilities to set their 

prices at a level equal to the costs plus an additional return to attract capital from 

investors. The electric companies (publicly or privately owned) were vertically integrated 

monopolies responsible for all the components of the power system, owning the power 

generating plants, and the transmission and distribution lines. This vertical integration 

and the cooperation among different utilities allowed the industry to keep operations 

under control and their customers satisfied.    

For better or worse, industry participants during these periods did not harbor 

many concerns about financial risk. However, with the growing demand for electricity 

and the successes of deregulation in other industries (such as telecommunications and 

airlines) stakeholders began to think that the electricity industry could be restructured and 

function as a competitive market with minimal regulation. Since 1996, more than 24 

states have enacted legislation or passed a regulatory order to start the process of 

restructuring(DOE/EIA 2003) and today six Independent System Operators coordinate 
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wholesale electricity markets that account for more than half of the transmission lines and 

generation resources of the U.S.    However in some states the plans for full restructuring 

have been indefinitely delayed or suspended and the success of deregulation is a highly 

debated topic, both in the industry and academia (Van Doren and Taylor 2004) (Lave, 

Apt et al. 2004). It seems that the promises of deregulation have not been realized; 

electricity prices are not lower (Apt 2005), and decision making in the industry has 

become harder. 

1 Dissertation Motivation 

In the competitive electricity markets, members of today’s electricity industry 

face financial risks that either did not exist or were not so evident in the former days of 

vertically integrated utilities. Thus, industry participants are permanently confronted with 

the challenge of making decisions in a highly uncertain environment. These uncertainties 

affect all elements of the industry and make the already difficult investment and 

operating decisions even harder. Some of the sources of uncertainty are common to other 

industries such as uncertainty on future prices of raw materials (fuels) or uncertainty on 

the pace of technological advance, but the extent of the challenge they pose is 

exacerbated by physical attributes of power systems that make the industry unique. 

Because electricity cannot be stored, there is a need for real-time balancing of 

instantaneous demand and supply that makes the operation of the components of a power 

system; generation, transmission, and ancillary services, complex.    

Electricity generators must constantly decide how to upgrade and expand their 

generating capacity, under the uncertainty of fuel prices, technological change, and 
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regulatory framework that targets the negative externalities of their operation. Without 

rate-of-return regulation, generators face serious financial risks. 

Uncertainty in generation costs is only part of the problem; in competitive 

markets, participants also face uncertainty on the ability and costs of transmitting 

electricity in a grid subject to losses and capacity constraints. Finally, in a system 

composed by different for-profit competitive agents, the task of ensuring the provision of 

ancillary services is more challenging than what it was when all parts cooperated towards 

the goal of reliability. 

Keeping other variables constant, more uncertainty means higher costs of 

supplying electricity to the final consumers.  More uncertainty increases the chances of 

inadequate decisions and makes industry participants pursue risk-reduction strategies that 

are never cost free. By identifying hedging strategies and quantifying their costs, we 

might learn something new about the industry and about how to shape policy to better 

pursue the goals of supplying affordable electricity, lowering as much as possible its 

negative externalities, and keeping the industry in good shape to face the challenges of 

years to come.  

Different hedging strategies apply in different contexts, some come in the form of 

investments and others in the form of contracts, but they always come at a cost that will 

be, sooner or later, passed on to consumers. In this dissertation we study three cases of 

risk-reduction actions that arise in the context of major decisions that industry 

participants are forced to make   1) Handling of transmission congestion costs, 2) 

Complying with air-emissions regulations, 3) Provisioning real-time balance between 

electricity supply and demand.  These three cases are important pieces of the whole 
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puzzle of major concerns in this industry; 1) how to keep the size and capacity of the 

“arteries” of the power-system current with the growing electricity demand (transmission 

investment – congestion management), 2) how to do less harm to the environment (air-

emissions reductions), and 3) how to keep the lights on (reliability). 

2 Dissertation Method and Scope 

This dissertation is motivated by the belief that it is possible for regulators to 

attenuate some of the uncertainties that surround the operation of electricity markets, and 

therefore understanding the sources, implications, and costs of these uncertainties can 

help shape policies in the field. At least in some cases, the quantification of the effects of 

uncertainty can serve as an incentive for industry participants and regulators to make a 

common front against unnecessary costs.  

Options theory and the method of risk-neutral valuation provide a framework to 

quantify the value of hedging against uncertainty. By incorporating options theory this 

thesis contributes a framework to quantify the risks and value accordingly the instruments 

or strategies that provide hedging in the electricity industry. Having an idea of what the 

fair cost of hedging is, we will have better tools to identify inefficiencies and 

opportunities for regulation improvement.  

3 Dissertation Outline 

This dissertation looks at three cases of uncertainty in the electricity industry, 

related to generation, transmission, and ancillary services, and proposes a method to 

quantify the cost of this uncertainty and use this value to inform policy making. In the 

three cases, there is a strategy or contract that can be seen as a hedging instrument and 

valued as such. In the ambit of electricity transmission, Financial Transmission Rights 
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(FTRs) can be seen as hedging instruments that provide protection against highly volatile 

transmission congestion costs. An FTR is essentially a contract that allows (or obligates) 

the holder to get the monetary difference between the marginal price of electricity at the 

point where it is withdrawn to the marginal price electricity at its source. In the ambit of 

electricity generation, the investment in environmental-control-devices or cleaner 

generation technologies can be seen as protection against the risk of not being able to 

comply with potential stringent air-emission regulations. In the ambit of ancillary 

services, the provision of reliability-support resources can be seen as reduction of the risk 

of not being able to deal with contingencies that threaten the instantaneous balance 

between supply and demand. 

This document is organized in three parts. Part I, constituted by Chapter 1 

introduces options theory and extends its application to price contracts that allow risk 

reduction outside the financial setting. The theory of options in its present form cannot be 

applied meaningfully to certain instruments in the electricity industry, so we propose an 

extension that allows the valuation of derivatives even when the stochastic process of the 

underlying variable is not known. We state that a derivative can be priced if the 

probability density function of its value at the relevant time (the exercise time) is known, 

and present a method to do so.  

Part II studies Financial Transmission Rights as hedging instruments and looks in 

detail at the PJM market. We present evidence that in the auction of annual FTRs in PJM 

for 2003-2004, clearing prices included a “risk-premium” that “hedgers” paid to reduce 

the risk of highly volatile congestion charges, and “insurers” charged for bearing this 

risk, confirming the idea that hedging comes always at a cost, and posing the questions of 
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1) how to find the value of the hedging instruments and 2) how efficient is the PJM 

market where these are traded.  Using results of Chapter 1, in this part we present, and 

apply a method to find the “fair value” of the premium of the FTR based on the 

probability distribution function of the corresponding Congestion Charges. The 

comparison between the value predicted by the formula and the prices observed in the 

auction allows us to state that there are inefficiencies in this market. 

Chapter 2 reviews the alternatives for managing transmission congestion in 

deregulated electricity markets and describes the characteristics of Financial 

Transmission Rights in the U.S., their motivation, their possible advantages and 

disadvantages. It summarizes the few studies that have attempted a diagnosis of the 

efficiency of markets of FTRs, and presents a simple comparison between FTR prices 

and payoffs in PJM as motivation for a more detailed analysis of this market.  

Chapter 3 reviews the results of the auction of annual FTRs in the PJM market for 

the year 2003-2004, analyzing the effect that different variables had on the value of the 

premium paid/received for FTRs. It shows that several institutions that are not 

participants in the electricity market profited from trading FTRs, motivating the question 

of whether or not the quantity of money that “leaks” from the system is commensurate to 

the value of the hedging FTRs provide. This Chapter provides evidence that in PJM the 

lack of competition among insurers and the competition among hedgers increases the 

premium received by the former ones and paid by the others. It also shows that the higher 

the number of transactions for the same Point-to-point combination, the higher the 

premium paid by hedgers and received by insurers.  
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Chapter 4 applies the method presented in Chapter 1, to find the fair value of an 

FTR, and proposes a strategy to deal with the obstacle of having limited information 

about the uncertainty the FTR is supposed to hedge against. 

Part III presents two other cases in which a quantification of the uncertainty 

according to the method proposed in Chapter 1 can inform related policy making. 

Chapter 5 looks at the problem that fossil-fuel fired electricity generators face, when 

making decisions on how to comply with air-emissions regulations. It argues that under 

certain regulatory contexts, installing an Air Emissions Control Device (ECD) can be 

seen as equivalent to buying and option to purchase emission’s permits, and demonstrates 

that regulatory uncertainty lowers the value of this option and makes the installation of 

these ECD less likely. The examples presented are for ECDs that reduce the emissions of 

nitrogen oxides and sulfur dioxides.   

Chapter 6 shows how methods of Chapter 1 can also be used to value those 

services that support real-time reliability in a power system.  It presents a method to 

determine the value of having flexible generators to react to load fluctuations in the PJM 

region. This value is directly derived from the characterization of the uncertainty on the 

load due to the volatility of electricity demand, and can be used to redefine the arbitrary 

operating standards that have been used in the industry since the old days of vertically 

integrated utilities. 
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Chapter 1: The Fair Value of Risk-Reduction 

1 Introduction 

Options theory and the method of risk-neutral valuation provide a framework to 

quantify the value of hedging against uncertainty.  Options and insurance contracts are 

closely related. A financial option can be seen as an insurance contract to hedge against 

uncertainty in a stock price.  Similarly insurance contracts can be assimilated to option 

transactions. For example, insuring one’s belongings is equivalent to buying a put 

option.1 The insurance gives the holder the right to “sell” her belongings to the insurer at 

a specified price.   

Several investment opportunities in today’s electricity industry provide insurance 

against the possibility of high losses in the future. As we will see later, there are many 

contracts or investments that can be regarded as an option and priced as such.  In this 

dissertation we present 3 cases: buying an FTR (Chapters 2-4), installing an 

environmental control device (Chapter 5), and scheduling operational resources for 

operational reliability (Chapter 6).   We believe that the theory of risk-neutral valuation 

of options can be used to find the “fair” value of the premiums that should be paid for the 

reduction of risk that these “insurance” mechanisms provide. 

In this chapter we propose a general method to find the fair value of instruments 

that reduce the uncertainty on a future cost. In Section 2, we introduce options theory and 

provide its historical context in the field of finance.  Section 3 broadens the same concept 

                                                 
1 A put option gives the right to sell one unit of the underlying asset at a fixed price.   
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to value a hedging instrument, or to find the fair value of the premium that should be paid 

in a contract that allows the holder to hedge against volatility in future costs.   

2 Options Theory in Finance 

How to value options has been a question asked for more than 40 years in the 

financial world.  In the early sixties several authors2 worked on the theory of warrants 

valuation.  However, these early formulae were incomplete because each of them 

involved one or more arbitrary parameters. Samuelson (1965)(Samuelson 1965) first 

presented a formula to valuate warrants that depended upon arbitrary parameters –the 

expected return and the discount rate- related to the risk aversion of the traders, and did 

not allow buyers and sellers to agree on the price of the option.   

In 1973(Black and Scholes 1973), Black and Scholes derived a theoretical 

valuation formula for options on a traded underlying stock.  Their approach consisted of 

creating a hedged position with a portfolio of long and short positions in the option and 

the underlying stock, and applying the principle that the expected return of a hedged 

position must be equal to the return on a riskless asset. By applying the boundary 

conditions of the European Call Option3, Black-Scholes solved the differential equation 

for the value of this option and obtained the famous Black and Scholes formula.  A very 

important characteristic of this formula is that it does not depend on any assumption 

about the risk preferences of the investors.   

                                                 
2 Black and Scholes cite Sprenkle (1961), Ayres (1963), Boness (1964), Samuelson (1965), Baumol, 
Malkiel, Quandt (1966) and Chen (1970) 
3 A European Call Option is a financial derivative that gives to the holder the option (but not the 
obligation) to buy one share of a trading asset, at a price X, at time T. 

 10



Cox and Ross (1976)(Cox and Ross 1976) showed that Samuelson’s formula was 

equivalent to the Black-Scholes formula if both parameters; expected return and discount 

rate, reflected the same degree of risk aversion.  The value of the derivative would be the 

same if both expected return and discount rate reflected a high level of risk aversion, or if 

both reflected a low level of risk aversion and it would be the same if both parameters 

reflected risk neutrality.  This observation let them to propose the risk neutral valuation 

method, which treats financial assets as having an expected return equal to the risk-free 

rate and discounting them to the risk-free rate as if all investors were risk-neutral.   

The method of risk neutral valuation is useful not only to price any derivative 

contingent on the price of an underlying traded asset, but it is also useful to price any 

derivative contingent on an underlying random variable that follows a continuous-time 

stochastic process.  The most remarkable characteristic of this method is that this variable 

does not need to be the price of any traded security or related at all to financial markets 

(See Chapter 13: “General Approach to Pricing Derivatives” Hull 1997(Hull 1997)).  

Moreover, the general method of risk neutral valuation, as a sub product of the pricing of 

the derivative, gives the price of the risk associated with the underlying variable. This 

finding is independent of the nature of the derivative. Further, because of these properties 

of risk neutral valuation, it is possible to define artificial derivatives to set up a theoretical 

portfolio with certain desirable properties from which we can derive the price of risk of 

the underlying variable. 

In this section, we present a general method to value the reduction of the risk 

associated to a random variable such as a future cost.  This method does not make any 

assumption about the stochastic behavior of the variable.  We first review the 
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assumptions about stock prices, the Black-Scholes formula and the method of risk-neutral 

valuation to price derivatives of a non-dividend paying stock. We then review the 

approach of Bouchaud and Sornette (1994)(Bouchaud and Sornette 1994) to generalize 

and expand the Black and Scholes formula. Their results provide insight to valuing a 

contract that provides risk reduction without assuming any particular distribution for the 

underlying source of uncertainty. 

2.1 Assumptions about stock prices for options valuation 

An important assumption about stock prices is that they follow a stochastic 

process of geometric-Brownian motion or:  

       EQ.1. SdzSdtdS σμ +=

 where μ is the drift (or variable trend) parameter, σ is the volatility parameter, 

and is a Wiener process, that is dtdz ε=dz ε with being a draw from a standard normal 

distribution, so the expected value of equals zero and its variance equals . (See 

Chapter 10 of Hull (1997), and Chapter 15 of Karlin and Taylor (1981)(Karlin and Taylor 

1981)).    

dz dt

The assumption that stock prices follow a diffusion process implies that stock 

prices exhibit the strong Markov property, which means that in predicting future prices 

the information about prices in the past is irrelevant and all that counts is the present 

price.  This assumption is consistent with the assumption that stock markets are efficient 

(so that the weak-form of markets efficiency holds- see for example(Brealey and Myers 

1996)) so the present price of a stock contains all available information that can be 

extracted from observing and analyzing past prices.   
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A second implication of the assumption that stock prices follow geometric-

Brownian motion is that the distribution of the prices at a time T in the future is 

lognormal, or that  
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−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+ tTtTS σσμφ ,

2
ln

2

TSln ~      EQ.2 

(where )σμφ ,  denotes a normal distribution with meanμ  and standard deviation σ  , and 

is the price at current time .  This means that the expected value of at time  is t TS S

)( tT
T SeS −= μ , which is the future value of , assuming thatS μ  is the expected rate of 

return of the stock.  

2.2 Black and Scholes formula to price a derivative 

In order to derive a formula to value an option as a function of the stock price, the 

Black and Scholes approach creates a hedged position entailing a long position in the 

stock and a short position in the option.  The value of such portfolio does not depend on 

the price of the stock, because any change in the position on the stock is offset by the 

changes in the position on the option.  If the position in the option is adjusted 

continuously, the risk in the hedged position becomes zero and the return on the option is 

now known with certainty.  If the return is certain, then it must be equal to the risk-free 

rate; otherwise the opportunity of making sure profits would exist.  

If the position in the option is not adjusted continuously, then the risk in the 

“hedged position” is not zero, although it is small. Furthermore, this risk can be 

diversified away because there is no “market risk’ in the hedged position.  By equating 

the change in the “hedged position” to the value of setting up that position, multiplied by 

 13



the risk-free rate, Black and Scholes derive a differential equation for the value of the 

option.  The only formula that satisfies that equation, subject to the boundary condition of 

the European call-option, is: 

       EQ.3.  ),,,( rTXScall

which is in fact the valuation formula for the European call-option. 

2.3 The method of Risk Neutral Valuation 

The method of risk neutral valuation states that the value of the derivative is equal 

to its risk-neutral expected payoff, discounted at the risk-free rate.  The risk neutral 

expected payoff is the expected value of the payoff assuming the drift in the process 

followed by the price of S is equal to the risk-free rate. In other words,  

RN
tTr PayoffDerivativeeiceDerivative )(Pr −−=  ,    EQ.4. 

RNwhere represents the risk-neutral  expectation of the payoff of the derivative at time 

T. 

In pricing a derivative like a European call-option with exercise price X and 

exercise time T, we know that its payoff is either 0 or the amount the price of the stock at 

time T exceeds the exercise price of the option.  That is, the method of risk-neutral 

valuation states that  

RNT
tTr XSMaxerTXScall ],0[),,,( )( −= −−

,   EQ.5. 

where  represents the value of the call-option at current time t. ),,,( rTXScall
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Ignoring the discounting factor, we can write the right hand side of EQ.5 as:   

( ) TTS
X

TRNT dSSfXSXSMax
T

)(],0[ ∫
∞

−=−     EQ.6. 

where represents the probability density function (p.d.f) of the stock price at time 

T, assuming its drift is equal to the risk-free rate.   The assumption that S

)( TS Sf
T

t follows a 

geometric-Brownian motion with a drift equal to the risk neutral rate implies that 

is equal to the p.d.f of a lognormal distribution with parameters )( TS Sf
T
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2.4 The role of the risk-free rate 

The risk-neutral valuation implies calculating a risk-neutral expectation 
RN

  of 

the derivative payoff, by replacing the drift μ  by r, in our assumption about the diffusion 

process followed by  and in the parameters of the lognormal distribution assumed for 

.  However, we would obtain the same result if we allowed the drift of the diffusion 

process of   take any value and then discounted the expected value of the payoff of the 

derivative at an equivalent rate, and adjusted the exercise price properly. In other words, 

we have that  

tS

TS

TS

),,,,(),,,,( )( σσ kTXeScallrTXScall tTrk −−=    EQ.7 

for any value of .  (The change of the value of the interest rate from r to k not only 

affects the discounting in the formula but also the drift assumed to derive the pdf of .) 

k

TS
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The way the Black and Sholes formula prices risk reduction is made evident by 

observing the pricing of a call option.  Suppose for example we are interested in pricing a 

call-option on a stock whose exercise price is the risk-neutral expected value of , or 

.  Applying the Black and Sholes formula (EQ.3), we find that there is a 

relationship between the value of the option as a proportion of  and the volatility –or 

risk—, which only depends on the exercise time T .   

TS

SeX tTr )( −=

S

The next plot shows the relationship between the value of the call option,  and 

the volatility of , that holds for any value of  and 

c

tS S r  when the exercise price of the 

option is its expected risk neutral value. 

 

 
[r(T-t)]Figure 1:  Call-option value when X = e S
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The value of depends on T  because the uncertainty on the value of  is 

increased by 

TSScall /

T ; in fact, the standard deviation of  ln  is tT −σTS .   

The following plot shows that there is a universal relationship between the price 

of the call-option (as a proportion of S), and the cumulative uncertainty ( tT −σ ), that 

holds for any value of ,S  and T . r

 

Figure 2: Call-option value when X = e[r(T-t)]S 

 

2.5 Options prices when the derivative does not follow a lognormal distribution: 

What happens if the process followed by  is not as the one shown in EQ.1, and 

therefore the pdf of  is not lognormal?  If we know (or can estimate) the parameters of 

tS

TS
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the diffusion process followed by , we can still follow the Black and Scholes approach, 

to find a differential equation for the value of a derivative on ,  whose solution (if it 

can be found analytically) after applying the boundary conditions of the option, will be 

the value of the option itself. Alternatively, we can attempt an approach that does not 

require the use of Ito’s calculus, and that always leads to a solution of the value of the 

option. 

tS

TS

Bouchaud and Sornette (1994) generalize the analysis of Black and Scholes to 

price a financial call option )0,,,( =rTXScall when the stock price does not follow a 

geometric-Brownian stochastic process. Their approach analyzes the transaction of the 

option by applying two principles:1) the fair value of the option is such that the expected 

value of the change of the option seller’s wealth WΔ tT −in the time ( ) is zero and 2) the 

optimal investment strategy of the option’s seller is such that the variance -or risk- of the 

change of wealth 42WΔ  is minimized.   The first condition implies that there are no 

arbitrage opportunities and the second condition is stated after noticing that it is not 

possible to find the optimal investment strategy from an algorithm of profits 

maximization. 

In this case, the total variation of the seller’s wealth is the sum of three sources: 1) 

the quantity paid by the options buyer, 2) the potential value of the loss 

that would incur if the buyer exercises the option, and 3) the net gain or loss from 

holding

),,,( rTXScall

shares of the stock at time , that is: ),( τφ S ),( Tt∈τ

                                                 
4 Note:  All references to the seller refer to the options seller, not the stock seller.   
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[ ] ( ) τ
τ

τφ d
d
dSSXSTXScallW

T

t
T ∫+−−=Δ ,0,max),,(  EQ.8 

0=
τd

dS
τd

dS are independent for different timesτ , and ifIf the local derivatives , 

the expectation of the third term in the EQ.8 becomes 0),( =
τ

τφ
d
dSS .  By applying the 

“no arbitrage” condition ,  Bouchaud and Sornette arrive at the risk-neutral 

valuation equation for the value of the option  presented in EQ.5, with       

r = 0.  Their derivation clearly shows that the risk-neutral valuation equation holds 

without any specific assumptions about the form of the pdf of . 

0=ΔW

),,,( rTXScall

TS

Because the risk-neutral valuation equation does not include any term on ),( τφ S , 

it cannot be used to make any statement about the optimal investment strategy of the 

option’s seller.  Instead, the optimal strategy must be found as one that minimizes the 

variance of  .  Bouchaud and Sornette show that this variance becomes zero 

whenever  follows a geometric motion stochastic process, a Brownian stochastic 

process, and a “quasi-Gaussian” process (

WΔ

S

( ) ( )τη
τ

Sg
d
dS

=  where g is any function and 

( )τη  is a Gaussian noise).  However, it does not become zero in general.  They 

emphasize that nevertheless the strategy that minimizes the risk is optimal, and that in 

those cases where it is not possible to find a “risk-free” strategy for the option’s seller, 

the price of the option must be adjusted. 

Although the approach of Bouchaud and Sornette generalizes the Black and 

Scholes result for a wide set of stochastic processes, it still requires 1) the stochastic 
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process of the underlying source of uncertainty to be known, and 2) a calculation of an 

optimal investment strategy to adjust the option price by the residual risk.  We state that 

even when the stochastic process of the underlying variable is not known, a derivative 

can be priced if the pdf of its value at the relevant time (the exercise time) is known.  In 

the next section, we propose a method to do so, which does not assume any specific pdf 

for the value of the variable at time T. 

3 A Proposed Method to value instruments that provide risk-reduction  

The result of Bouchaud and Sornette shows that even when the underlying source 

of uncertainty does not follow a Brownian or geometric-Brownian process, it is still 

possible to use the fundamental equation of risk neutral valuation to find (at least part of) 

the value of a derivative.  They propose that when there is a risk-free investment strategy 

that involves the derivative, its value can be found just by applying the no-arbitrage 

condition (the condition that the expected value of losses or gains for both buyer and 

seller must be zero).  Instead, when no such strategy exists, the seller of the derivative 

should add to her price the risk that still faces after using the optimal investment 

strategy.5

We propose a similar approach to value a contract (or an investment) that sets a 

limit on the losses of a party that faces an uncertain future payment that is highly volatile.   

Our approach relies on the method of risk-neutral valuation and Bouchaud’s and 

Sornette’s results, but it makes an “adjustment” for risk in a different way. Our 

“adjustment” comes up naturally in the application to the first case study of the 

dissertation,  FTRs, and works well for the second and third case studies of operational 

                                                 
5 Recall that the options buyer is hedged because the minimum payoff of the option is zero. 
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reliability and investment in emissions-control technologies, respectively.  As will be 

explained in more detail later, we determine the value of the risk-reducer-instrument (e.g. 

an FTR) by assuming that the buyer is willing to pay at the present the expected price 

(mean) of the future cost plus a premium equal to the expected value of the gains.  The 

value of the premium is regarded as the value paid for an insurance policy against the 

uncertainty in the future cost, and in particular against the possibility of the future cost 

exceeding its expected value.  

For the premium to be zero, the expected value of the potential losses of the buyer 

of the contract (when the cost does not exceed its expected value), should be equal to the 

potential losses of the seller of the contract (when the cost does exceed its expected 

value).   The premium cannot be zero, because one of the parties (the seller) is facing a 

risk that the other one (the buyer) does not face.  The buyer’s losses are limited by the 

price paid for the contract while the losses of the seller are not limited.  This is why the 

buyer pays a premium over and above the expected value of the cost she wants to hedge 

against. The value of such premium is determined through the method of risk-neutral 

valuation as it is described in this section. 

Before quantifying the value of the premium, however, the risk neutral valuation 

must be made more precise.  As shown in earlier sections, the risk-neutral method states 

that the price of a derivative is given by 
RN

tTr PayoffDerivativeeiceDerivative )(Pr −−= . 

This method implies calculating the risk-neutral expectation 
RN

  of the payoff.  But 

what does 
RN

 mean outside the assumption of an underlying following geometric 

Brownian motion process?   

 21



τd
dSIn Bouchaud’s and Sornette’s example, both the interest rate r and “the bias” are 

assumed to be zero.  This is consistent with the condition of the risk-neutral valuation 

method, which states that the drift of S (implied by the pdf used for the risk-neutral 

valuation) and the discount rate r be the same. That means that just as it applies to the 

geometric-Brownian stochastic process, the risk neutral expectation requires choosing a 

“risk-neutral” stochastic process for  such as the expected value of its instantaneous 

changes and the discount rate are the same.  

S

We state that rather than referring to the stochastic process followed by , we 

refer to the value of the variable at the time of interest  as risk-neutral expectation. 

This means that the pdf of  is adjusted in such a way that the same volatility is 

preserved, and its expected value is such that 

tS

TS

TS

RN
 is consistent with the current 

(today’s) price .  In other words, the pdf of  must be chosen so that the relationship TSS

RNT
tTr SeS )( −−=  holds. 

3.1 Estimating the value of a premium: 

A financial instrument that reduces the risk associated with a future volatile cost 

C must be sold at a price P  that exceeds the expected value of C  by some premium.  

The “fair value” of this premium, H, is the risk neutral value of the option of paying the 

fixed price P  rather than the expected value of the volatile cost C.  In other words, the 

premium is:  

( ) CPPCH −=,         EQ.9 
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If we can find another equation that relates the value of the premium H, the expected 

value of the cost C and the fair price of the financial instrument P , we can use it 

together with EQ.9 to find a solution for both P and H. 

To find such equation we first state all we know about H: 

First we know that  is a linearly homogeneous function ( PCH , )

)( ) ( PCHPCH ,, λλλ =       EQ.10 

 For example, if we double both the value of C  and the price P , then, the value of the 

option is multiplied by two). Euler’s theorem ( )PCH ,6 implies that  has the general form:  

( ) ( ) ( )
C

PCHC
P

PCHPPCH
∂

∂
+

∂
∂

=
,,,       EQ.11 

( )PCH ,For a given , the largerC , the larger the value of P , i.e. the value of 

paying the fixed price 
C
H
∂
∂ instead of being exposed to the volatility of C . Hence P  is 

positive. With a similar reasoning, 
P
H
∂
∂  should be negative, as for a given , the larger 

the price 

C

( )PCH , paid, the smaller the value  of the transaction. P

We assume that the buyers of the contract want to hedge against the possibilities 

of  being much higher than its expected valueC C , by paying H . The premium paid 

has to be such that these buyers end up in a risk-neutral position.  This means the value of 

                                                 

∑
=

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=
n

i i
in x

fxxxxf
1

21 ),..,(6 If the function is positively homogeneous of degree 1, then RRf n →:  
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H has to be equal to the expected value of the money the buyer will save with the hedging 

instruments (in other words, the insurance policy).  The hedge holder (the buyer) will be 

“saving money” whenever C exceeds the value paid for the hedge: 

],0[),( )( PCMaxePCH tTr −= −−      EQ.12 

If we know the real pdf of C , ) , we can use EQ.9 and EQ.12 to solve for the 

value of P: 

(cfc

),( PCHCP +=                  EQ.13a  

],0[)( PCMaxeCP tTr −+= −−                EQ.13b 

dccfPcedcccfP c
P

tTr
c )()()( )( ∫∫

∞
−−

∞

∞−

−+=                 EQ.13c 

The last expression can be solved numerically for P, for any pdf  )(cfc

3.2 The value of the premium when C is normally distributed 

As an example and useful result of the formula presented above, this section 

derives the value of the premium when the cost is normally distributed.  Let 

( )σ,CPnormal denote the price that should be paid for an instrument that gives to the 

holder the right to collect C  one year from now, withC  being normally distributed with 

mean C  and standard deviationσ . Assuming r = 0 (t = 0, and T = 1), EQ.13c can be 

rewritten as: 
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( ) 0)(
2
1 22 2 =−−+ −−

∞

∫ PdcePcC Cc

P

σ

σπ
    EQ.14 

It can also be shown that  

( ) ( )σσ ,, CkPkCkP normalnormal = ,      EQ.15 

CThat is, the price increases in the same proportion as the changes in and σ . This 

allows us to express the price that should be paid for the contract as a proportion of the 

expected value of C, as a function of C’s coefficient of variation. By replacing Ck 1=   

in previous equation we get: 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

C
P

C
CP

normal
normal σσ

,1
,

.     EQ.16 

Solving the previous equation numerically for P, we find that the relationship between the 

price that should be paid for the instrument as a proportion of the expected value of C, 

and the coefficient of variation of C is linear, as the following graph shows: 
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Figure 3. P/<C> as a function of σ/<C> 

 

In this example we have, 

( )
CC

CPnormal σσ 2760.01
,

+≅      EQ.17a 

or  

( ) σσ 2760.0, +≅ CCPnormal .     EQ.17b 

Replacing P in EQ.13a., we get that the fair value for the premium is 

σ2760.0=H .  
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It is important to note that C represents a cost, and our method carries the 

assumption that C  is positive.  Describing C with a normal distribution implies that in 

theory C can take any value.  If the expected value of C is positive, it makes sense for the 

agent facing this future cost to hedge against the possibility of C exceeding its expected 

value.  The possibility of C taking a negative value should not worry this agent because it 

only means that C can represent an asset rather than a liability. 

3.3 The value of the premium when C is log-normally distributed 

Similarly, we can find the fair value of the premium when C follows a lognormal 

distribution with mean C  and standard deviation σ . Assuming r = 0 (t = 0, and T = 1), 

EQ.13c can be rewritten as: 

( )
0

2
)(

22 2)ln(

=−−+ ∫
∞ −−

Pdc
c

ePcC
P

c

βπ

βα

,     EQ.18 
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⎞
⎜
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⎝

⎛
+=

2

2 1ln
C
σβwhere  and  are the parameters of the 

lognormal distribution followed by C. 

Because the second term on the left hand of the equation represents the value of a 

call option on a stock C with exercise price P, we can replace it with the expression 

provided by Black and Scholes for a European call option  given by  EQ.3  

with 

),,,( TrXScall

CS = , PX = , , and the volatility parameter (or diffusion coefficient) 

= 

0=r 1=T

β .  
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As in the case of C following a normal distribution, when C follows a lognormal 

distribution, the price P that should be paid for the instrument meets the condition: 

( ) ( )σσ ,, loglog CkPkCkP normalnormal =    EQ.19 

C
P normallogThis allows us to find the value of as a function of the coefficient of 

variation C
σ , as shown in the graph below: 
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Figure 4: P/<C> as a function of σ/<C> 
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4 Conclusions 

This chapter establishes the framework for extending the Black and Scholes and 

Bouchand and Sornette models beyond their original assumptions.   The resulting 

formula we derive allows for detailed evaluations of the three cases that make up the 

remainder of this dissertation. 
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Part Two: Financial Transmission Rights 

As described in the introduction to this dissertation, industry participants in 

competitive U.S. electricity markets, now face a variety of new financial risks that either 

did not exist before or were less evident in the former days of vertically integrated 

utilities. One example of these risks is the risk associated with highly volatile 

transmission congestion costs. 

A financial instrument known as a Financial Transmission Right (FTR), has been 

introduced in several electricity markets in the U.S with the intention -among other 

things- of providing market participants with a mechanism to hedge against volatility in 

transmission congestion costs. The Federal Energy Regulatory Commission (FERC) in its 

Standard Market Design (SMD)1 proposal suggested an FTR system should be 

implemented in all U.S. power markets.   

Although a good number of papers on the theory of FTRs have been published in 

response to this FERC proposal, there have been no comprehensive analyses of the recent 

experience with FTR markets in the U.S.  The analyses in this section of the dissertation 

move in the direction of better understanding FTRs in practice. 

The need to hedge against volatile transmission congestion is a consequence of 

the operating characteristics of restructured markets. The cost of hedging is an extra cost 

of deregulation that previously did not exist in regulated settings with vertically 

integrated utilities, with collective generation, transmission, and distribution assets. With 

the decoupling of generation and transmission ownership, uncertainty surrounding the 

                                                 
1 Notice of Proposed Rulemaking of August 2002:“Remedying Undue Discrimination Through Open Access Transmission Service 

and Standard Electricity Market Design” (67 Fed. Reg. 55,452) 
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access to transmission capacity has increased, resulting in the need for hedging 

instruments such as FTRs. 

The growing demand for FTRs in this new market structure raises the following 

questions: How well do FTR systems operate? How high are the costs of hedging with 

FTRs? and How useful could these markets be as incentives for investment in 

transmission? All three questions need to be asked and answered to take the electricity 

sector through a successful path in the years to come.  

This work is a first-step toward answering these questions based on careful 

analysis of the PJM FTR market in 2003-2004. The goals of this second part of the 

dissertation are threefold: 1) to study the results of the FTR annual auction in PJM, 2) to 

draw some insights about the efficiency of these markets and 3) to identify actions that 

could be taken to improve the way transmission resources are currently managed. 

  In Chapter 2 we review some of the ideas that support the existence of FTRs and 

describe markets for FTRs in the U.S. In Chapter 3, we look at the results of the auction 

of annual FTRs in PJM for the year 2003-2004 paying special attention to obligation 

FTRs. In Chapter 4, we apply results of Chapter 1 to derive a fair value of the premium of 

the FTR and examine how this fair value compares to real prices. 

Two recent empirical studies on the NY ISO reveal that the prices paid for FTRs 

are on average significantly larger than the average congestion costs they cover.  The 

authors of these studies have raised the question of whether this finding is a result of 

market inefficiencies or perhaps strong risk aversion.  The following chapters present a 

detailed examination of PJM auction results and show, in support of the NY ISO studies, 

that hedgers in this market also pay a premium for FTRs. 
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Chapter 2: FTRs and Transmission Management in 

Competitive Electricity Markets 

1 The transmission system 

A conditio sine qua non for the success of a restructured electricity market is the 

operation of the transmission system in a way that guarantees open and non-

discriminatory access for all market participants and at the same time provides the 

conditions for the improvement and expansion of the grid. 

Long before the seminal FERC orders 888 and 889 of 1996, the question of how 

to make the transmission system an ally in the struggle to create truly competitive 

markets, has challenged the minds of industry members, academics, and regulators 

(Joskow and Schmalensee, 1983). 

FERC Order 888 opened wholesale power sales to competition and required 

public utilities owning, controlling, or operating transmission lines to file non-

discriminatory open access tariffs that offer others the same transmission service they 

provide themselves (FERC, 1996a). FERC Order 889 created the Open Access Same-

time Information System (OASIS), to prevent transmission owners or their affiliates from 

taking advantage of their position over the other competitors in the market, by 1) making 

them separate their wholesale electricity operations from their transmission functions and 

2) making them obtain information about their transmission system in the same way their 

competitors do, via OASIS on the internet (FERC, 1996b). 

In the U.S. regions where utilities are organized around an Independent System 

Operator (ISO), the structure and operating rules of the markets for electricity, 
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transmission and ancillary services are very similar.  They all include a Locational 

Marginal Pricing (LMP) system at which electricity is priced at each node.  In these 

markets, the (ISO) is in charge (among other tasks) of coordinating the spot market; 

collecting supply offers and demand bids from all generators and loads, and finding the 

optimal production schedule for each supplier.  This optimal scheduling allows the 

calculation of the cost of providing the next MW at that particular node; this value is 

called the LMP and is used to price the sales that occur through the spot market.  

Due to the limited power flow capability of transmission lines sometimes it is not 

possible to supply the electricity demanded with the cheapest generators and the ISO has 

to schedule more expensive generating units.  The extra cost of scheduling an out-of-

merit-order generator to supply electricity is the source of the transmission congestion 

cost (CC).  If there were no transmission losses, nor transmission congestion, the LMP at 

every node of the electricity grid would be equal.   With transmission congestion it is 

often the case that prices at the nodes of electricity withdrawal are higher -on average- 

than the prices at the nodes of electricity injection.   

This difference in LMP is used to assign a monetary value to the cost of 

transmission congestion.  The Congestion Cost between two nodes A and B ( ) is 

given by the difference between LMP at nodes A and B, or 

BACC −

ABBA LMPLMPCC −=− .  

These CCs are collected by the ISO that pays generators and charges Load Serving 

Entities (LSE) the LMP at their nodes.  The money of CC is then allocated to the owners 

of the transmission lines, according to rules that are specific to the different market 

designs implemented by different regions in the U.S. 
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2 Types of Transmission Rights 

In a system where all market participants have access to the grid to transport bulk 

electric power; a set of rules to govern transmission use becomes necessary.  Electricity 

flow is governed by Kirchhoff’s laws, and transmission from one point to another cannot 

be described in terms of a specific path on a network. As a result it is impossible to price 

the “transportation” of electricity as is done in other industries, and the task of designing 

rules suited to the complex operation of power systems that are also able to support 

competitive electricity trading poses a tremendous challenge.  

Since before the deregulation process, there have been proposals of sets of rules to 

guide the allocation process of limited transmission capacity among market participants 

in need of that transmission for their power trade operations.  A common element among 

proposals is the concept of “capacity reservation” or “capacity rights” that would affect 

the operation and financial position of capacity holders, depending on whether these 

“rights” were defined as 1) physical or financial, 2) point-to-point or “flow gate”, and 3) 

obligation or option rights. Not all combinations of these three-tiers of rights exist in 

practice.  

In the real system the definition of physical rights proved to be unworkable. Early 

recognition that for the sake of competition participation in the wholesale electricity 

market should not be tied to the holding of transmission rights, lead industry regulators to 

favor financial rights over physical rights. 

The second-tier choice between flow-gate and point-to-point rights is not as easy 

as the choice between physical or financial rights, because both flow-gate and point-to-

point have individual advantages and disadvantages.  A flow-gate has the more 
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straightforward definition of the two in theory. For any given set of power injection and 

power withdrawal operations it is possible to compute the total flows across each line of 

the transmission network.  If the capacity of each transmission line is known, it is also 

possible to identify those lines that will become binding constraints in an optimal 

schedule to meet electricity demand at minimum cost.  The rights to use the capacity on 

these key lines or “Flow gates” can be sold as “Flow-gate rights” to those that need to 

ship electricity on the network. ISOs can identify the flow gates and sell them in an 

auction. Then after energy transactions take place and participants pay and receive LMPs, 

they get the money they are entitled for each flow-gate right they own. 

It has been hypothesized that flow-gate rights have several advantages over the 

point-to-point, or point-to-hub rights (Oren, 2000), because 1) there are only a few flow-

gates or constraints, and therefore the trade of these rights could be more liquid, 2) the 

capacity limits at the flow-gates are known and fixed and therefore flow-gate rights can 

be defined independently of the pattern of power flows, and, 3) it is possible to 

decompose power transactions into flows over the flow-gates using known and fixed 

distribution factors (Chao et al., 2000).   

But all the theoretical advantages of flow-gates are overwhelmed by the 

difficulties that have been observed in practice.  In his paper “Flow gates rights and 

wrongs” Hogan (2000) exposes several difficulties that can arise while implementing a 

flow-based rights system. The first obstacle is that the identification of the binding 

transmission constraints is not easy; and also, even if constraints can be identified in 

advance, their number can be much higher than anticipated.  In tests carried out in PJM in 

2000 it was found that at a single point in time there could be more than 150 binding 
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constraints; and therefore, a market participant would have to buy an equal number of 

flow-gate rights to secure a single point-to-point transaction.  Also, the capacity limits of 

the flow-gates are not as “fixed” as it was suggested by proposals of the system.  

Capacity of the lines can change with the event of contingencies in the system, and the 

known and fixed thermal-limit can become meaningless.   

In contrast, it has been argued that point-to-point rights are easier to use in 

practice, and they provide an exact hedge. A transmission user is only required to buy 

one point-to-point FTR for any given amount of capacity, and as long as the points of 

injection and extraction hold, this single FTR provides a precise hedge. More 

specifically, point-to-point FTRs are defined for a given pair of withdrawal and injection 

points (sink and source nodes), and for a specific period of time.  The holder of the FTR 

has the “right” to collect (and the duty to pay) the difference in LMP between the sink 

and the source during the period the FTR is defined for.  For example one FTR in PJM 

between points A and B, for the peak hours during the month of October 2004 gives the 

holder the right to collect the difference in the Day Ahead LMP of nodes A and B for 

each of the 375 peak hours of October.2  This sum of the differences in LMPs is called 

“congestion rents” of the FTR.  . 

Where represents the i-th on-peak hour in October 2004.   
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If a market participant schedules a transaction that consists for example of 

injecting 100 MW at point A and withdrawing  100 MW at point B during every on peak 

hour of October then 100  will provide her an exact hedge against congestion october
BAFTR ,

                                                 
2In PJM on peak hours are hours ending 8:00-23:00 during weekdays (excluding FERC holidays). 
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charges.       The price this market participant pays for the 100  in the auction 

will be the entire amount she pays in congestion charges for the mentioned transaction.   

october
BAFTR ,

As a result point-to-point rights bring two important benefits to the electricity 

market; 1) they provide a hedging mechanism for power traders and for load-serving 

entities against volatility in spot electricity prices and 2) they can serve to structure a 

mechanism to stimulate investments needed to maintain a reliable transmission system. 

These factors have led to the adoption of point-to-point rights over flow-gates. Thus, after 

ruling out physical rights and financial-flow based rights for the reasons outlined above, 

the only viable transmission-rights system remaining is a “point-to-point financial 

transmission rights” system, proposed by Hogan and implemented in the U.S. markets of 

PJM, ISO New England, NY ISO and Midwest ISO in recent years as described above.3

The third and final tier of transmission rights is the choice between obligations 

and options rights. In some markets (like PJM) FTRs are sold either as obligations or as 

options. However, options rights are more complex to implement, and as a result are less 

widely used. Given these complexities in the evolution of FTR markets, the sections to 

follow focus exclusively on financial, point-to-point, and obligations-rights FTRs which 

make up the large majority of FTR markets currently in use. 

Taken as a whole, FTRs represent both a right and a liability.  Holders of FTRs 

have the right to receive the difference in LMP from the ISO when it is positive, but have 

also the obligation to pay the ISO when this difference is negative.  In the majority of the 

cases, an FTR that produces negative rents is also sold at a negative price.  This can be 

                                                 
3 These are called Financial Transmission Rights(FTR)  in PJM, ISO NE and MISO, and called Transmission  Congestion 

Contracts (TCC) in NY ISO. 
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interpreted as if market participants who schedule transactions that create counter flow on 

congested lines were paid in advance for this service a quantity equal to the price of the 

FTR.  An FTR sold at a negative price can also indicate that a speculator is bearing the 

risk on future transmission congestions in the counter flow.  

The following sections discuss the motivation for using FTRs for hedging and 

transmission investment, the implementation of FTRs within the institutional contexts of 

different regional ISOs, and finally the outcomes of FTRs auctions in NY ISO and PJM. 

2.1 Hedging with FTRs 

Transmission congestion costs represent an important percentage of the overall 

electricity cost. The large uncertainty implied in this costs creates a need for 

hedging(Hogan 1992), and is the primary motivation for implementing FTR markets. For 

those market participants whose FTR holdings match their electricity schedules, FTRs 

provide an exact hedge against the volatility in congestion costs, even when they pay a 

positive price for an FTR and collect negative rents.  Even in this case, holders end up 

paying for congestion only up to the price of the FTR, since the negative rents are offset 

by the extra money they get from having a higher LMP at the injection point than at the 

withdrawal point. Therefore the fact that FTRs have the potential to provide a perfect 

hedge is undisputed, although the question of how high the price for hedging is remains 

open.  Also, a market participant can fully hedge against the effect of transmission 

congestion on its power transactions only if FTRs are sold for the corresponding pair 

source-sink, in the same MW quantity as its planned transactions.   
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2.2 FTRs and market based transmission investment 

 A second, more subtle, reason for the use of FTRs is to motivate 

transmission investment, To support competition in electric markets it is not sufficient to 

have a fair system allowing all possible suppliers to use the available capacity of the 

transmission system in equal conditions.  It is also necessary to have a grid with sufficient 

capacity, so transmission constraints do not give market power to any generator.  And 

having enough transmission capacity is not important only to support competition, but 

also to add some flexibility to the operation of grid to be able to react at times of 

contingencies.   

 There is no disagreement about the fact that the transmission system needs 

to be upgraded.  In the past decade transmission capacity in the U.S. has decreased 

relative to aggregate demand, and there is a long list of much needed projects that have 

not yet been constructed (Hirst, 2000).    

The question of how to create the right conditions to upgrade the grid (to reduce 

transmission congestion, and increase reliability) inevitably leads to the confrontation 

between two different approaches.  On one side there are those who argue that the 

externalities of a transmission network (and reliability) and the lumpiness of transmission 

investment, make it necessary for regulators to intervene, identify projects that are 

needed, and mandate their construction and funding structure.  There are others opposed 

to this idea who argue that a well-structured market can respond to grid-level 

transmission needs and the government should only intervene in the case of proven 

market failure. 

 40



Advocates of relying on market-driven investment have proposed to compensate 

investors with the allocation of financial transmission rights that will allow them to 

collect transmission congestion charges. Joskow and Tirole (2004) have shown that when 

the attributes of wholesale power markets and transmission networks are considered, 

reliance in the merchant-investment model can lead to significant inefficiencies. 

Because Financial Transmission Rights are only valuable in the case of 

transmission congestion, the idea of using FTRs as the “payment” to those who invest 

their money to reduce transmission congestion deserves further mention.  In his paper 

Market-based transmission investments and competitive electricity markets, Hogan 

(1999) describes how a system in which an ISO coordinates an electricity spot market 

through a bid-based security-constrained economic dispatch provides the necessary 

structure to support efficient market-based transmission investments in which FTRs are 

the compensation for investors. As to the question of whether post-investment FTRs will 

really compensate the transmission-investment, Hogan argues that although investments 

might be lumpy, they do not necessarily have a large impact on nodal prices. In his words 

“if transmission investments can be made in small increments relative to the size of the 

market as a whole, they should have a minimal effect on market prices... Prices after the 

modular expansion would not be materially different than before, even though there 

would be and increase in capacity and throughput.”  For those cases in which an upgrade 

of the transmission system would impact the nodal prices in such a way that the FTRs 

would be worthless, Hogan mentions the possibility of allowing investors to withhold 

some of the transmission capacity for a period of time so that collected nodal price 

differences become high enough to make the investment profitable.  The problem with 
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this approach is that it might increase the chances of having situations of pivotal4 

oligopoly in which electricity prices would reach the cap (Blumsack et al, 2002. 

Perekhodtsev, 2004) 

To lessen the impact of market incentives for inefficient investments (that might 

reduce transfer capacity and increase congestion), Hogan explains that allocation of FTRs 

to investors should not render the FTRs allocated previously infeasible.5  

 

2.3 The Stated purpose of FTRs and transmission investment 

     Currently, the stated purpose of FTR markets in different regions does not 

mention transmission investment, and refers to FTRs as a means to allow transmission 

customers to hedge against congestion charges.  However in all markets, those who pay 

for the costs of the transmission network receive compensation directly linked to the 

market of FTRs.  For the New England ISO, for example, Schedule 15 of the NEPOOL 

Tariff states: "An entity who pays for new transmission upgrades which increase transfer 

capability on the NEPOOL Transmission System, making it possible for the System 

Operator to award additional FTRs in the FTR Auction, shall be awarded ARRs."6   

Nevertheless the debate about whether or not FTRs are useful as incentives for 

efficient market-based transmission investments is still open.   

Hogan argues that when evaluating the tradeoff between an imperfect market 

system and imperfect regulation, the market seems more favorable, and states that 

                                                 
4 A pivotal supplier is one who by withholding some capacity can create overall electricity supply to be less than demand. The 

concept can apply to a group of suppliers acting together. 
5 This is called the “Feasibility Rule.” 
6 http://www.iso-ne.com/support/faq/ftr/index.html 
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mandated investment could only come after a test of market failure is applied.  His 

suggestion is that regulators should draw the line between the investments that should be 

market-driven and those that should be mandated valuing the corresponding FTRs. 

2.4 FTRs and the role of the ISO 

In new deregulated markets, ISOs exist to fill the immediate need for coordination 

of the use of the transmission network, and the embedded need of coordination of the 

wholesale electricity market.  ISOs are non-for-profit and are expected to act neutrally 

and independently of the particular interests of the market participants, procuring 

reliability of the power system for the well-being of the customers in the regions they 

operate.  In the markets where Financial Transmission Rights are in place, the ISO is in 

charge of allocating FTRs, honoring grandfathered rights (Midwest ISO) or through an 

auction (PJM, ISONE, NYISO). 

The FTR allocation process is guided by the “revenue adequacy” principle, which 

states that the revenue obtained by the ISO from charging loads and paying generators at 

their nodal prices, is enough to pay the FTR holders the congestion charges they are 

entitled to.  For this reason, FTRs are allocated in a quantity that is consistent with the 

network constraints after running a “Simultaneous Feasibility Test” (SFT) which 

guarantees that the ISO will collect enough congestion rents to pay FTR holders.  The 

SFT is performed using the same algorithms used to obtain the security-constrained 

economic dispatch, and consists of verifying that all the power injections and power 

withdrawals implied by the FTRs are feasible. 
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2.5 When ISO revenue is not enough to pay Congestion Rents to FTR holders 

 In those ISOs in which FTRs are auctioned, all the money collected in the 

auction goes to the transmission owners and/or those who pay the costs of the 

transmission network. Since all the money collected in the auction is distributed, the 

money needed to pay the congestion rents to FTR holders, comes from the revenue the 

ISO obtains from paying generators a lower nodal price than what the loads pay.   

It is always possible for the capacity traded at different nodes to be different from 

the capacity of the FTRs held by market participants. When the capacity traded in the 

wholesale electricity market is higher than the capacity of FTRs, the ISO will have a 

surplus that can be used to cover any past deficit of the FTRs system or redistributed 

among transmission users.  When the revenue the ISO obtains for differences in nodal 

prices is lower than the congestion rents FTR holders are entitled to receive, the ISO has 

to distribute the revenue proportionally.  At PJM for example the payout ratio in year 

2002 was 95% and in the year 2003 was 96% (PJM, 2004). 

In order to reduce a congestion-rents deficit an ISO might be motivated to be 

conservative in the estimation of the capacity of the grid and on the amount of MW that 

can be sold on FTRs. An ISO trying to minimize a congestion-rents shortage could try to 

allocate or sell fewer FTRs than those determined by the feasibility test, or equivalently, 

run the feasibility test imposing more stringent constraints on the lines’ capacities.  An 

action like this would 1) decrease the possibilities of hedging for transmission users and 

2) increase the cost of the hedging.    
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3 FTR markets in the U.S. 

Three regions, PJM, NE and NY, have implemented auctions of point-to-point 

FTRs in recent years. FTRs in these markets are defined for given pairs of nodes 

(designated as a source and sink or point of injection and point of withdrawal). In these 

regions FTRs are settled in the day-ahead market, and consistent with the definition of 

financial rights, they have no influence on the physical use of the network.  In these 

markets FTRs can also be traded in a secondary market, but the ISO deals only with the 

primary holder.  Bids for obligation FTRs can be positive or negative and so can be the 

corresponding congestion rents. 

The periodicity of the auctions, the number of rounds, and the time the FTRs are 

valid for, varies across the different markets.  Also, since the economic dispatch that 

determines the LMP includes thermal losses in some markets and not in others, the 

meaning of the FTRs differs across markets. For example, in PJM losses are not included, 

while in NY ISO they are. 

3.1 Midwest ISO 

The Midwest ISO provides an example of a different type of active FTR market. 

In Midwest ISO FTRs are allocated to Firm Transmission Service customers annually 

and monthly, proportionally to the transmission capacity they have reserved.  FTRs can 

belong to one of eight different classes: off-peak and on-peak hours for each of the four 

seasons. Those who have been allocated FTRs might offer them for sale in the annual 

auction or in the monthly auction.  The ISO also offers for sale in the auction any residual 
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FTR capability that might be left after the allocation.  MISO expects to introduce FTR 

options in the market in 2006.7   

3.2 Auction of Transmission Cost Contracts (TCCs) in NYISO 

The FTR market in the NY ISO includes the auction of Transmission Cost 

Contracts (TCCs) –another name for FTRs-. The holders of historical entitlements to firm 

transmission capacity are allocated TCCs for the same paths, quantities and terms so their 

economic position is unaffected.  TCCs corresponding to the remaining transmission 

capability of the network are allocated to transmission owners.  All holders of TCCs can 

offer them for sale in the auctions organized by the ISO. Long term TCCs for six months, 

one year, two year and five years are auctioned in several rounds. Monthly TCCs are sold 

in monthly auctions.  

The clearing price of TCCs in each auction is equal to the difference in the nodal 

prices between the sink and the source.  Clearing prices of TCCs can be positive or 

negative depending upon the expected direction of transmission congestion.  If the 

clearing price is negative, the buyer is paid by the ISO to accept the TCC.  The number of 

TCCs in NYISO is approximately 120,000.  

3.3 Auction of FTRs in ISONE 

The New England ISO opened a market for FTRs in March 2003, which currently 

includes one-round, closed auctions for one-month, three-month, and six-month 

obligation-FTRs, and a secondary market.  In this market FTRs are defined from any 

location to any location including node, external node, zone and hub.   

                                                 
7http://www.pjm.com/markets/downloads/20050630-item-4B-pjm-and-miso-ftrs.pdf  
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3.4 Auction of FTRs in PJM  

The first FTR auction in PJM took place in May 1999. Since then, the volume of 

FTR purchases has continually risen (PJM, 2004).  PJM has a four-round annual auction 

and a single-round monthly auction. The entire capacity of the system is offered in the 

annual auction, and only the leftover capacity is offered in the monthly auctions.  Each 

auction offers FTRs in the forms of both obligations and options.  PJM also facilitates 

bilateral trading of FTRs in a secondary market.8

Rather than assigning FTRs directly to transmission customers that pay for the 

embedded cost of the transmission grid, PJM assigns them the rights to the auction 

revenues collected for the sale of the specific FTRs.  Auction Revenue Rights (ARR) are 

characterized in the same way that FTRs are, specifying a source, a sink and a capacity 

(number of MW). Market participants can present their requirements for ARRs that sink 

in the nodes where they serve load for an amount up to the quantity of the load served. 

ARRs are allocated before the annual FTR auction, but can be redistributed as LSE gain 

or lose load during the year. 

The holder of each ARR is entitled to collect the price of the corresponding FTR 

that clears in the annual FTR auction.  Like FTRs, ARRs can represent a liability.  

An ARR/FTR system “removes all the biases that have existed in the original 

PJM FTR allocation system, and has all the advantages of a pure FTR system as “any 

party receiving an allocation to a specific point-to-point ARR that they deem desirable 

has the absolute ability to convert that ARR to an FTR with the same points of injection 

and withdrawal.” (Shankar, 2003)  

                                                 
8 http://www.pjm.com/markets/ftr/downloads/ftr-annual-allocation-course.pdf 
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There are four rounds for the annual auction. In each round: 

• Participants present their bid for buying FTRs. Each bid specifies source, sink 

and MW. After the first round, participants who have bought FTRs in 

previous rounds can make offer bids for their FTRs. 

• The ISO performs a feasibility test and clears prices for FTRs in a way that 

maximizes the value of the FTRs. The feasibility test is a DC power-flow 

analysis (with a single contingency criterion) that ensures that all the flows 

implied by the FTRs are feasible. 

• The ARR holders receive the money collected in the transaction.  ARR 

holders may have to pay or receive money depending on the target allocation. 

Each ARR is associated with an FTR.  (It specifies a source, a sink and MW). 

• ARR holders can convert their ARRs into 24-hour FTR obligations for the 

same path via a “self-scheduling” process in the annual auction.  In this case, 

market participants act as price-takers.  Capacity of FTRs is up to ARR 

capacity. 

• During every day of the period the FTR is defined for, the FTR target 

allocation is calculated as the difference in the day-ahead LMP of the sink 

minus the day-ahead LMP of the source multiplied by the MW of the FTR. 

• The congestion charges collected by the ISO are used to pay the FTR holders 

their target allocations.  If funds are sufficient, then all target allocations are 

covered and the excess rents are used to cover previous deficits if any or 
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distributed to the ARR holders.  If funds are insufficient, then FTR holders 

receive rents prorated to their target allocation.  

4 Efficiency of FTR markets in the U.S. 

Since FTRs are currently the paradigm to manage transmission congestion, and 

proposals indicate that they may play a more important role in the future U.S. electricity 

markets, it is worth asking the question: How well do Point-to-Point FTR markets 

perform and what can we learn from the recent experience in the markets that have 

implemented this system? Also, since the proposal of treating “Incremental Financial 

Transmission Rights” as the right incentive to encourage market-driven transmission 

tacitly assumes that it is possible to value the future Congestion Rents associated with an 

FTR in an objective and accurate way, it might be important to learn more about the 

value of FTRs in those markets where these are auctioned, to have a better 

characterization of their efficiency. . 

In the following section, we describe two studies that look at the results of the 

monthly auctions of FTRs (TCCs) in NY ISO, and a preliminary analysis of the PJM 

market.  The three analyses imply that there is a significant discrepancy between the 

prices paid for the FTRs and the corresponding Congestion Rents that could imply 

market inefficiencies. 

4.1 FTR markets in NYISO  

There are only two empirical studies that examine the recent performance of FTR 

market. Using the data of all rounds of six-month TCC auctions in NY ISO for years 

2000-2001, Siddiqui et al. (2003) conducted an empirical comparison between what the 
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purchasers of FTRs paid for congestion per MW with what purchasers would have paid 

had they paid the congestion costs directly instead of purchasing FTRs. Although most 

participants guessed correctly the direction of transmission congestion, they paid too 

much for the FTRs.  On average, the congestion costs are approximately half of the price 

paid for the FTRs. In other words, those who were hedging against the uncertainty of the 

congestions costs were paying a hefty premium.  The value of the premium is higher for 

the most expensive FTRs.  For less expensive TCCs intended to hedge against small 

congestion costs, the clearing price was close to the congestion rents collected.  For 

expensive FTRs (higher than $1/MWh or $4380/MW) intended to collect high congestion 

costs, the clearing price was in general much higher than the congestion rents received. 

For twelve of the fourteen rounds analyzed, the authors found that the discrepancy 

between the clearing price of the TCC and the congestion rents is much higher for TCCs 

among nodes in geographically distant locations.  

The authors state that in the absence of historical data, a rational expectation is 

that TCC clearing prices are unbiased estimators of resulting congestion rents.  For each 

round studied they estimate the simple linear regression line and test the hypothesis that 

the parameters are significantly different than zero. Finally, the authors suggest that the 

TCC auctions are highly inefficient because market participants are unable to discover 

forward LMP.  They argue that the illiquidity of this market, in which few market 

participants bid for TCC for the same path, makes it difficult to discover the price of 

these rights.  They leave as an open question whether the results observed are due to the 

novelty of the market and the inexperience of the participants or are evidence of risk 

aversion. 
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In the second study, Adamson and Englander (2005) evaluated a database of one-

month FTRs traded in 50 selected monthly auctions from November 1998 to April 2003,  

and concluded that “pricing in the NYISO TCC auction continues to be inefficient.”  

 

4.2 FTRs market in PJM  

We made the same comparison of FTR prices vs Congestion Rents for the PJM 

market using data publicly available.9 We analyzed the Annual FTR Auction for the 

period June 1st 2003 to May 31st 2004 in which there were approximately 15,000 FTR 

transactions.10  

Figure 1 shows data for 12,123 “Buy” transactions.11  Each point represents one 

transaction. The x-axis represents the Market Clearing Price of the FTR (FTR MCP is the 

price paid for the buyer of the FTR), and the y axis represents the rents received 

(Congestion Rents) which are equal to the differences in LMP in the Day Ahead Spot 

Electricity Market.  The units of both x and y are given in MW and cover the hours 

specified in the contract; on-peak hours, off-peak hours, or 24 hours.  The Ordinary Least 

Squared Error  line is included as a way to summarize the relationship between the prices 

paid for buyers of FTRs and the Congestion Rents received. 

                                                 
9 PJM web site www.pjm.com contains data of the FTR annual and monthly auctions, and data of the Day-Ahead hourly LMPs to 

compute congestion costs or “rents”.  
10 There are 3030+ nodes in PJM for which the Day Ahead LMP is reported.   683 nodes served as sources and/or sinks for FTRs 

traded in the Annual Auction 2003-2004.  For 16 out of 683 there was not data on the LMP, so we couldn’t find the congestion rents 
for 337 FTRs out of the 14,966 traded.   

11 After the first round of the auction market participants can offer for sale the FTRs acquired in previous rounds.  Such 
transactions would be reported as “Sale” transactions.  We exclude “sale” transactions and focus only in those in which market 
participants are buying FTRs from the ISO. 
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The majority of the points fell in the top-right and bottom-left quadrants so most 

of the market participants correctly forecasted the direction of the congestion and 

obtained rents with the same sign as the price paid for the FTR. 

For most of the FTRs with prices higher than $20,000, the price paid was higher 

than the congestion rents received.  Had buyers received in congestion rents exactly the 

money they paid in the FTR auction, then all points would fall in the red line (45 degree 

line).  If the deviation from the y=x line were in both directions, then the Least-Squares 

(LS) line12, (that is the line that comes as close as it can to all data points) would be close 

to y=x.  The graph shows the same phenomenon reported in the two studies previously 

mentioned: on average market participants pay more for FTRs than what they would have 

paid for congestion charges.  The LS line for FTRs with positive market price has an 

intercept close to the origin and a slope of 0.74 which means that on average market 

participants paid a premium of about 26% of the FTR price.   

On the other hand, those market participants who bought FTRs with a negative 

price were paid up front a monetary quantity that ended up being higher than the money 

they would have been paid for the counter flow if they did not buy any FTR. The slope of 

the LS line for FTRs with negative market price is 0.70, but the intercept is greater than 

0, which means that on average participants buying FTRs at a negative price were paid a 

premium of less than 30% of the FTR price. 

Of those market participants who are hedging against volatile transmission costs, 

we can expect willingness to pay a positive premium.  They are paying to be certain of 
                                                 

12 We use the least squares method here as a way to summarize the relationship between the price paid for FTRs and the 
Congestions Rents received (or paid) for such FTR for each transaction.  At this stage we can not use the estimates of the intercept and 
slope of the LS line for statistical inference, because the assumptions of the Simple Linear Regression model are not met. Different 
observations are not independent because FTRs for the same combination of POI and POW will have equal congestions rents. For 
more on Regression analysis see for example Chapter 11: Simple Linear Regression and Correlation, in Milton and Arnold (1995). 
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their congestion costs, instead of waiting for the realization of actual congestion costs that 

can be very volatile.  

For those market participants buying FTRs at a negative price it is exactly the 

opposite situation.  They are being paid (in the FTR auction) a fixed amount and then 

reimbursing actual congestion costs later.  In effect they are acting as insurers who 

receive a fixed amount for their exposure to an uncertain potential liability.  If these 

buyers are pairing their FTRs with balanced schedules of electricity transactions, we can 

interpret the premium they are collecting as the compensation for selling in advance their 

right to collect a highly volatile compensation.  When their energy transactions generate a 

counter flow on a congested line (therefore alleviating congestion) they receive revenue 

for this service.  When they buy an FTR at a negative price it is as if they were agreeing 

to provide their service for a fixed quantity, instead of charging whatever the real price of 

the congestion cost determines. 

The causes of the asymmetry between the value of the premiums that FTR buyers 

pay when they are hedging against congestion charges, and the premium they receive 

when they are providing the hedging become clear after the analyses of Chapter 3.  
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Figure 1:  Plot showing the prices paid for FTRs against the corresponding value of the 
congestion costs they “covered” for 12,123 “Buy” transactions in the 2003-2004 Annual 
Auction in PJM.  The slope of the LS line for FTRs with positive price is 0.74.  The slope 
of the LS line for FTRs with negative price is 0.7. 

 

Because those market participants who self-scheduled their ARRs were price-

takers in the auction it is likely that they paid a premium higher than the average.  PJM 

does not reveal the information about which FTRs were self-scheduled, but it is known 

that all self-scheduled FTRs are for 24 hours.  If we plot again the price of the FTRs vs 

the corresponding congestion rents, excluding those for 24 hours, and fit again an LS line 

we observe that the slope indicates even a higher premium for the FTRs sold at a positive 

price, and almost the same premium observed in Fig.1 for those FTRs sold at a negative 
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price.  This shows that even if we exclude the FTRs that were traded by price takers, on 

average, market participants paid/received a premium. 

 
Figure 2: Plot showing the prices paid for FTRs against the corresponding value of the 
congestion costs they “covered” for 7,516 FTRs “buy” transactions in the 2003-2004 
Annual Auction in PJM for “on-peak” and “off-peak” hours.  The slope of the LS line for 
FTRs with positive price is 0.64.  The slope of the LS line for FTRs with negative price is 
0.71. 

 

5 Conclusions 

Taken as a whole, this chapter describes the role and importance of FTRs as 

hedging instruments in the electricity industry, and the necessity to characterize the 

efficiency of the markets in which these instruments are traded.  The example of PJM 

provides evidence that FTR hedgers currently pay a premium to reduce uncertainty about 

volatile congestion rents and motivates the use of the options theory methodology 
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developed in Chapter 1, to assess how much of the value paid is just a fair compensation 

for the reduction of uncertainty and how much is due to inefficiencies of the market. This 

example is explored further in the next two chapters.  
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Chapter 3: Auction of Annual FTRs in PJM (2003-2004) 

 
1 Introduction  

This analysis explores the results of the auction of Annual FTRs conducted by 

PJM for the period 2003-2004.  The data about the transactions that took place in the 

auction, and the data about historic Locational Marginal Prices (LMP) are analyzed to 

obtain information about different attributes of the FTR system.  The analysis looks at the 

data from different perspectives, in order to understand the nature of the market and the 

processes of hedging and speculation that take place there, and to determine the impact of 

different attributes of the FTRs in the difference between selling price and corresponding 

congestion rents. 

This chapter is organized in the following way.  Section 2 looks at the data of the 

auction, by FTR traded.  Section 3 looks at the Congestion Rents of the FTRs traded. 

Section 4 looks at the relationship between prices paid for the FTRs and congestion rents 

received.  Section 5 analyzes the effect of the rounds in the prices of the FTRs traded, and 

Section 6 looks at the results of the auction for each of the 54 participants. 

Section 7 analyzes the results for BuyObligation FTRs.  The analysis is made 

grouping the FTRs by “paths”1 covered.  Each “path” is analyzed in detail to dig deeper 

into the characteristics of the hedging and speculation that occur in this market. 

 

                                                 
1 Throughout, the term “path” refers to a pair of nodes, one of which is a Point of Injection (POI) or source of 

electricity and the other  a Point of Withdrawal (POW) or sink of electricity. 
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2 Analysis of the Auction Data 

In this section we analyze the data of the annual auction in PJM for 2003 -04.  

2.1 Description of Auction Data 

In the auction of annual FTRs in PJM for 2003-2004 a total of 14,966 transactions 

took place in four rounds:   

− 3,928 transactions in Round 1 

− 3,342 transactions in Round 2 

− 3,822 transactions in Round 3 

− 3,874 transactions in Round 4 

A total of 683 nodes served as sources or sinks for the transacted FTRs.  (In the 

annual auction, the only nodes that can serve as sources or sinks for the FTRs are the 

generation buses, hubs, zones or interfaces. In contrast, in the monthly auctions, where 

the residual capacity is offered, any node can serve as a source or sink).2  14,629 

transactions we analyzed. The other 337 transactions were not included because they 

lacked the necessary LMP data to calculate their revenue.  The records of the auction, 

kept by PJM and available to the public, contain the following information for each 

transaction:  

1) The node source of the FTR. 

2) The node sink of the FTR. 

3) The period for the FTR will be valid for (on-peak, off-peak, or 24 hours). 

                                                 
2 FTR Market Frequently Asked Questions. Updated February 1, 2005. www.pjm.com 
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4) The number of MWs. 

5) The market participant involved in the transaction. 

6) The type of hedge provided by the FTR, that is, if the FTR is an obligation or an 

option. 

7) Whether the market participant is buying or selling the FTR. 

8) The price of the obligation. Negative prices mean that the buying market 

participant gets money from the ISO.  This price is specified for all the transactions, 

including those for FTR options. 

9) The price of the option (It is specified for all the “paths” that were sold as options 

and for some of the “paths” that were sold as obligations). 

2.2 Type of transaction and type of hedge: 

The majority of the transactions in the annual auction (83%) were of the type 

“buy – obligation”, while “buy-options” represented 9%. After the first round, some 

participants sold back the obligations and options they had acquired in the first round; 

these are labeled as “Sell” operations and account for 8% of the total of transactions. 

(7.5% are “sell-obligations” and 0.5% are “sell-options”). 

The average size of the FTRs traded as options was significantly higher than the 

average size of the FTRs traded as obligations.  Consequently, although the number of 

“Buy-Obligations” is about 9 times higher than the number of “Buy-Options, the 

capacities covered by obligations is only a little more than 3 times bigger than the 

capacity covered by options. (Obligations for 24hours covered 30 times the capacity 

covered by options for 24hours, obligations for peak hours covered 2.5 times the capacity 
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covered by options for on-peak hours and, obligations for off-peak hours covered twice 

the capacity covered by off-peak options).  The FTRs sold for “on-peak”3 hours account 

for most of the capacity covered by obligations and options.    

 Num 
FTRs 

MW 
24H 

FTRs 

MW 
On 

Peak 

MW 
Off 

Peak 

Min 
Size 
(MW) 

Max 
Size 
(MW) 

Ave 
Size 
(MW) 

Median 
Size 

St.Dev 
Size 

BuyObl 12,123 21,547 28,446 20,618 0.1 400 5.825 2 14.005 
BuyOpt 1,304 678 11,540 9,066 0.3 444 16.322 5 36.936 
SellObl 1,133 304 2011 1740 0.1 26.4 3.579 2 3.428 
SellOpt 69 0 532 407 1.3 37 13.601 10.2 8.701 

Table 1. Capacity covered by FTRs 
 

2.3 Prices 

In this section we analyzed the FTRs according to their trading price.  

2.3.1 Comparison of Prices per Type of FTR 

In order to compare the prices paid in the auction for different FTR types, it is 

necessary to calculate the number of MWh covered by each particular class of FTR. 

Between June 1st 2003 and May 31st 2004 there were 8,784 hours: 4,096 were peak hours 

and 4,688 were off-peak hours.  Table 2 shows the price per MWh for each type of FTR.   

We also disaggregated each type of FTR by the sign of the price paid.  We can 

observe that the obligations sold at a positive price account for most of the capacity 

traded.  For obligations for on-peak and off-peak hours, the absolute value of the price 

paid is higher for those sold at a negative price than for those sold at a positive price. 

                                                 
3 In PJM “peak-hours” are all hours ending 8 to 23, for week days -excluding FERC holidays-. “Peak hours are from 
7:00 AM to 11:00 PM (the hour ending 0800 to the hour ending 2300). Off-peak hours are from midnight to 7:00 AM 
(the hour ending 0100 to the hour ending 0700) and 11:00 PM to midnight (the hour ending 2400) Mondays through 
Fridays; also, all day Saturdays and Sundays (the hour ending 0100 to the hour ending 2400) and North American 
Electric Reliability Council holidays.” http://www.nymex.com/jsp/markets/JM_desc.jsp 
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Whether or not this is consistent with the characteristics of the congestion rents (CRs) 

received by the FTR holders is investigated in section 4. 

The average price was calculated taking the price of each transaction as one 

observation.  The average weighted price was calculated weighting each transaction price 

by the number of MWs covered.  The differences between the two averages indicates the 

impact that single transactions for a large number of MW have on the price. 

 

  
Num Hours 
Covered NumFTRs NumMW 

MinPrice 
($/MWh) 

MaxPrice 
($/MWh) 

AvePrice 
($/Mwh)* 

AveWPrice 
($/MWh) 

BuyObl24PosPri          8,784           4,190        19,996                -              6.29            1.96             1.48 

BuyObl24NegPri          8,784              407          1,528 
  

(5.67)                -   
   

(0.54)           (0.91) 

BuyOblOnPosPri          4,096           1,701        18,375            0.00            9.84            1.38             1.77 

BuyOblOnNegPri          4,096           2,531          9,993 
  

(12.69) 
  

(0.00) 
   

(2.51)           (2.24) 

BuyOblOffPosPri          4,688           1,808        15,035            0.00            5.56            0.77             0.67 

BuyOblOffNegPri          4,688           1,442          5,521 
  

(5.03) 
  

(0.00) 
   

(1.06)           (0.94) 

SelObl24PosPri          8,784              103             297            0.00            4.58            1.05             1.42 

SelObl24NegPri          8,784                  7                 7 
  

(1.01) 
  

(0.40) 
   

(0.85)           (0.90) 

SelOblOnPosPri          4,096              250          1,273            0.00            7.53            0.83             0.64 

SelOblOnNegPri          4,096              221             736 
  

(5.26) 
  

(0.00) 
   

(1.00)           (0.75) 

SelOblOffPosPri          4,688              367          1,241            0.00            5.59            0.93             0.58 

SelOblOffNegPri          4,688              176             482 
  

(4.41) 
  

(0.00) 
   

(0.72)           (0.66) 

BuyOpt24          8,784                43             678            0.67            4.29            2.84             2.58 

BuyOptOn          4,096              457        11,540                -              8.13            0.80             0.70 

BuyOptOff          4,688              804          9,066                -              3.06            0.57             0.20 

SelOpt24   8784                 -                  -     -   -   -    - 

SelOptOn          4,096                36             532            0.04            1.38            0.39             0.34 

SelOptOff          4,688                33             407            0.05            0.96            0.36             0.25 

 
Table 2. Prices of FTRs 

 

It can be observed that the highest average price reached in the auction occurred 

for the FTR options for 24 hours ($2.6/MWH), while the lowest occurred for the options 

for off-peak hours. 
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None of the participants who bought options for 24 hours resold them in the 

auction.  The average price paid for FTR options for on-peak hours (0.70 $/MWh) is 

lower than the average price paid for FTR obligations for the same period (1.77 $/MWh).  

If both options and obligations were covering the same paths, we would expect the price 

of the options to be higher, however it is very likely that they are covering different paths, 

since the trade of options makes sense when there is uncertainty on the direction of 

transmission congestion, and the trade of obligations makes more sense when there is 

uncertainty on the cost of congestion.  Later we will analyze in detail the characteristics 

of the congestion along the paths covered by FTR obligations. 

As a point of reference we can compare the average price of the FTRs with the 

price of electricity generation, which for a coal-fired power plant is around 

4.5cents/KWh.   For example, the average price of an option for 24 hours (the type of 

transaction with a highest average price) is about 0.25cents/kwh, which is equivalent to 

5.7% of the electricity generation price of a coal-fired power plant.   

2.3.2 FTRs traded at price zero 

There were also a few FTRs traded at a price zero, as the following table shows: 

 
Num 
FTRs NumMW MinSize(MW) MaxSize(MW) AveSize(MW) MedianSize Stdev Size 

BuyObl 44 162.9 0.1 20 3.70 1.7 4.76 
BuyObl24 Price = 0 10 23.5 0.1 20 2.35 0.3 6.21 

BuyOblOnPrice=0 15 78.3 1.4 15 5.22 2 4.92 

BuyOblOffPrice=0 19 61.1 1 15 3.22 2 3.59 

SelObl 9 19.7 0.8 10 2.19 1 2.96 

SelObl24Price=0 0 - - - - - - 
SelOblOnPrice=0 1 1.9 - - - - - 

SelOblOffPrice=0 8 17.8 0.8 10 2.23 0.95 3.16 

BuyOpt 6 1976 100 444 329.33 444 177.64 
BuyOpt24Price=0 0 - - - - - - 
BuyOptOnPrice=0 3 988 100 444 329.33 444 198.61 
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BuyOptOffPrice=0 3 988 100 444 329.33 444 198.61 

SelOpt 0 - - - - - - 
SelOpt24Price=0 0 - - - - - - 
SelOptOnPrice=0 0 - - - - - - 

SelOptOffPrice=0 0 - - - - - - 
Table 3. FTRs traded at price=0 

 
One case, that of options sold at a zero price, is particularly worth noting.  

Because we expect the rents received by the holder can never be negative, its price is 

expected to always be greater than zero unless the probability of having positive CRs 

were zero.  Looking at the hourly CRs for the paths covered by these options sold at a 

zero price, we find that in fact they were zero for every single hour of the year.  

3 Congestion rents: 

3.1 Definition of Congestion Rents 

The congestion rents received by the holders of annual FTR obligations are the 

differences in the day-ahead Locational Marginal Prices at the nodes, for example the 

CRs for an FTR for 24hrs for point A to point B is given by:   

, where is the locational marginal price at 

point B, at the i-th hour of the year that goes from June 1
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st 2003 to May 31st 2004.   

The CRs for FTR options are settled on a monthly basis. For example the CRs for 

an FTR option for 24 hours from point A to point B are given by: 

 where j is the number of hours in the i-th 

month.  PJM makes public the day-ahead LMPs for each node of the network.  Using 

these data it is possible to calculate the Congestion Rents of the FTRs traded in the 

auction. 
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3.2 Hourly congestion rents: 

Although only annual CRs or the sum of monthly CRs have an effect in the return 

of FTR holders, the analysis of hourly congestion rents provides important information 

about the behavior of CRs.  This section looks at hourly congestion rents for those paths 

covered by the FTRs traded in the auction. 

3.2.1 Sign of hourly congestion rents 

The sign of hourly congestion rents for most of the paths covered by the different 

FTRs oscillated significantly.  Even the most congested paths had hours in which CRs 

were non positive.  For example, those paths for which market participants bought FTR 

obligations had positive CRs at most 87% of the time.   On average, for “buy-obligation” 

FTRs, CRs were zero 24% of the time, and positive 42% of the time.  For FTR options, 

the percentage of the time with zero CRs is 30%.    

If we look at the FTRs classified by period of the day covered, we see that on-

peak hours have the lowest proportion of time with zero CRs, and off-peak hours have 

the highest.   Also, as expected, those FTRs sold at a positive price have a higher 

proportion of hours with positive CRs than the ones sold at a negative price.   

 

 NumFTRs 
Min Prop 
Hrs CR>0 

Max 
Prop Hrs 
CR>0 

Ave Prop 
Hrs CR>0 

Min Prop 
Hrs 
CR=0 

Max Prop 
Hrs 
CR=0 

Ave Prop 
Hrs CR=0 

BuyObl* 12123 0.00 0.87 0.42 0.06 1.00 0.24 
BuyObl24PosPri 4190 0.04 0.76 0.52 0.17 0.86 0.24 
BuyObl24NegPri 407 0.04 0.54 0.36 0.20 0.54 0.25 
BuyOblOnPosPri 1701 0.02 0.87 0.51 0.07 0.98 0.18 
BuyOblOnNegPri 2531 0.00 0.71 0.32 0.06 1.00 0.14 
BuyOblOffPosPri 1808 0.04 0.67 0.39 0.25 0.87 0.37 

BuyOblOffNegPri 1442 0.00 0.58 0.29 0.25 1.00 0.35 

SelObl* 1133 0.00 0.81 0.40 0.07 1.00 0.28 
SelObl24PosPri 103 0.26 0.73 0.52 0.18 0.38 0.24 
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SelObl24NegPri 7 0.40 0.51 0.42 0.20 0.21 0.20 

SelOblOnPosPri 250 0.05 0.81 0.47 0.07 0.93 0.21 
SelOblOnNegPri 221 0.08 0.64 0.37 0.09 0.78 0.15 
SelOblOffPosPri 367 0.04 0.67 0.39 0.26 0.86 0.36 

SelOblOffNegPri 176 0.04 0.57 0.27 0.26 0.72 0.34 

BuyOpt* 1304 0.00 0.85 0.31 0.09 1.00 0.30 

BuyOpt24 43 0.47 0.75 0.58 0.21 0.23 0.22 
BuyOptOn 457 0.00 0.85 0.32 0.09 1.00 0.19 

BuyOptOff 804 0.00 0.67 0.29 0.26 1.00 0.37 

SelOpt 69 0.08 0.57 0.26 0.10 0.75 0.33 
SelOpt24 0 NaN NaN NaN NaN NaN NaN 
SelOptOn 36 0.11 0.52 0.29 0.10 0.68 0.23 

SelOptOff 33 0.08 0.57 0.23 0.29 0.75 0.44 
Table 4. Sign of Hourly congestion rents. (Includes those FTRs traded at price zero) 
 

3.2.2 Variability of Hourly Congestion Rents: 

The magnitude of the hourly CRs also varies significantly.  Table 5 presents 

different measures of the variability of hourly CRs for each category of FTRs.  For the 

FTR obligations, the range and standard deviation of hourly CRs is the highest for the 

FTRs for on-peak hours that were sold at a negative price.  For the FTR options the 

standard deviation of hourly CRs is on average higher for those FTRs that cover on-peak 

hours, but the average range is higher for those FTRs for 24 hours. 

In general, the distributions of congestion rents seem to be highly leptokurtic and 

skewed in the direction of the sign of the selling price of the FTR.    The paths covered by 

obligations for off-peak hours that were sold at a positive price exhibit on average the 

highest kurtosis and the highest positive skewness.  The paths covered by FTRs for off-

peak hours sold at a negative price, have the second highest average kurtosis and the most 

negative skewness. 

If for each path we analyze the series of positive congestion rents, separated from 

the series of negative congestion rents, we see that the resulting distributions have still 
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very long tails.  The distribution of positive hourly congestion rents is positively skewed 

and the distribution of negative hourly congestion rents is negatively skewed. 

 
Num 
FTRs 

Min 
Range 
Hr CR 

Max 
Range 
Hr CR 

Ave 
Range 
HrCR 

Min 
Stdev 
HrCR 

Max 
Stdev 
HrCR 

Ave 
Stdev 
HrCR 

Stdev-
Stded 
HrCR 

Ave 
Kurtosis 
HrCR 

Ave. 
Skewness 
HrCR 

BuyObl* 12123 0.00 536.78 75.13 0.00 19.63 4.33 2.52 71.66 1.65 
BuyObl24PosPri 4190 3.65 287.64 70.16 0.10 16.71 4.06 1.93 41.94 2.92 
BuyObl24NegPri 407 5.41 197.35 76.95 0.29 8.42 3.09 1.42 63.68 -1.37 
BuyOblOnPosPri 1701 0.16 536.78 78.08 0.01 19.63 4.47 2.58 69.04 3.58 
BuyOblOnNegPri 2531 0.00 398.30 94.33 0.00 19.47 5.77 2.85 49.56 -1.86 
BuyOblOffPosPri 1808 0.57 223.93 60.83 0.04 16.82 3.57 2.53 144.84 5.80 

BuyOblOffNegPri 1442 0.12 214.61 71.00 0.00 18.39 3.83 2.46 94.66 -2.90 

SelObl* 1133 0.00 360.99 79.44 0.00 17.32 4.38 2.76 77.96 1.55 

SelObl24PosPri 103 23.00 193.61 59.47 1.05 6.93 2.71 1.29 61.16 3.08 
SelObl24NegPri 7 76.16 149.20 86.67 3.54 3.81 3.58 0.10 39.11 -1.72 
SelOblOnPosPri 250 0.16 360.99 87.28 0.01 17.32 4.96 3.12 83.06 3.53 
SelOblOnNegPri 221 6.88 314.70 102.54 0.26 13.36 5.53 2.49 62.19 -1.52 
SelOblOffPosPri 367 5.32 208.69 71.55 0.22 16.82 4.23 2.94 82.82 3.33 

SelOblOffNegPri 176 2.71 193.48 71.06 0.09 9.74 3.68 1.82 65.36 -2.48 

BuyOpt 1304 0.00 482.58 59.08 0.00 20.99 3.28 2.43 57.49 0.22 
BuyOpt24 43 47.57 92.85 73.14 1.55 5.64 3.86 0.87 28.13 3.30 
BuyOptOn 457 0.00 482.58 70.89 0.00 20.99 3.66 2.93 54.84 -0.65 

BuyOptOff 804 0.00 201.78 51.61 0.00 17.48 3.03 2.13 60.56 0.56 

SelOpt 69 8.74 482.58 76.63 0.70 20.59 3.43 2.79 72.05 -0.09 
SelOpt24 0 - - - - - - - - - 
SelOptOn 36 10.17 482.58 86.91 0.70 20.59 3.92 3.52 67.66 -0.88 

SelOptOff 33 8.74 201.78 65.41 1.03 8.55 2.90 1.55 76.84 0.78 
Table 5. Hourly Rents (includes those FTRs traded at price zero) 
 

3.3 Total Congestion Rents Received By FTR holders 

In total, the amount of money paid by market participants who bought obligation 

FTRs exceeded the amount they received in CRs by $4.8 million.   The money paid for 

options exceeded the money received in CRs by  $1.7 million.  
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Total Paid 
in Auction 
by Market 
Participant 

Total 
Received 
in CRs by 
market 
participant 
(FTR 
holder) 

Paid - 
Received 

Paid-
Received 
as % of 
Paid 

BuyObl* 5.32E+07 4.84E+07 4.77E+06   

BuyObl24PosPri 7.22E+07 5.67E+07 1.55E+07 21% 

BuyObl24NegPri -1.94E+06 
-

8.76E+05 
-

1.07E+06 55% 

BuyOblOnPosPri 9.62E+06 8.28E+06 1.34E+06 14% 

BuyOblOnNegPri -2.61E+07 
-

1.76E+07 
-

8.46E+06 32% 

BuyOblOffPosPri 6.50E+06 6.79E+06 
-

2.98E+05 -5% 

BuyOblOffNegPri -7.14E+06 
-

4.87E+06 
-

2.28E+06 32% 

SelObl* 1.84E+06 2.06E+06 
-

2.19E+05 -12% 

SelObl24PosPri 9.46E+05 7.72E+05 1.74E+05 18% 

SelObl24NegPri -5.21E+04 
-

2.08E+04 
-

3.13E+04 60% 

SelOblOnPosPri 8.46E+05 8.53E+05 
-

7.03E+03 -1% 

SelOblOnNegPri -9.02E+05 
-

5.91E+05 
-

3.12E+05 35% 

SelOblOffPosPri 1.60E+06 1.46E+06 1.34E+05 8% 

SelOblOffNegPri -5.95E+05 
-

4.18E+05 
-

1.77E+05 30% 

BuyOpt* 4.74E+06 3.00E+06 1.75E+06 37% 

BuyOpt24 1.07E+06 6.01E+05 4.70E+05 44% 

BuyOptOn 1.51E+06 9.99E+05 5.07E+05 34% 

BuyOptOff 2.17E+06 1.40E+06 7.69E+05 36% 

SelOpt 1.12E+05 7.54E+04 3.70E+04 33% 

SelOpt24 - - - - 

SelOptOn 5.70E+04 3.34E+04 2.36E+04 41% 

SelOptOff 5.54E+04 4.20E+04 1.34E+04 24% 
Table 6. Total CRs received by FTR holders (includes those FTRs traded at price zero) 
 

 

4 Relationship between prices paid and CRs received 

4.1 Correlation between prices and CRs 

Although the CRs received by market participants differed from the prices they 

paid for FTRs, the average linear correlation between prices and CRs is higher than 0.8 
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for all subsets of FTR obligations traded, and for all the options bought by market 

participants, as the following table shows.   

 NumFTRs NumMW AveCorrCoef 

BuyObl 12123 70611 0.98218 
BuyObl24PosPri 4190 19996 0.97992 
BuyObl24NegPri 407 1527.8 0.82125 
BuyOblOnPosPri 1701 18375 0.93818 
BuyOblOnNegPri 2531 9992.8 0.95668 
BuyOblOffPosPri 1808 15035 0.91153 

BuyOblOffNegPri 1442 5521.2 0.88492 

SelObl 1133 4055 0.9242 

SelObl24PosPri 103 297.3 0.93002 
SelObl24NegPri 7 6.6 0.95774 
SelOblOnPosPri 250 1273.4 0.85782 
SelOblOnNegPri 221 736 0.89635 
SelOblOffPosPri 367 1240.5 0.8912 

SelOblOffNegPri 176 481.5 0.90985 

BuyOpt 1304 21284 0.96443 
BuyOpt24 43 678.3 0.96565 
BuyOptOn 457 11540 0.97911 

BuyOptOff 804 9065.8 0.9111 

SelOpt 69 938.5 0.60341 
SelOpt24 0 - - 
SelOptOn 36 531.6 0.57271 

SelOptOff 33 406.9 0.6443 
Table 7. Correlation between prices and CRs 
 

4.2 Premium paid by market participants 

In this analysis, we define a premium as the difference between the price paid for 

the FTR and the rents received.  A positive premium means that a market participant paid 

more for the FTR than what she received in rents.  The following table shows descriptive 

statistics for the premium paid.  The values for the obligations bought at a negative price 

have to be interpreted with care.  A positive premium for an obligation bought at a 

negative price means that CRs were more negative that the price paid for the FTR.  In this 

case, the holder of the FTR is paying a premium.  Results show that in general holders of 
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FTRs that are sold at a negative price pay less than what they receive or in other words, 

are paid a premium.  Under our conceptual framework, these buyers of obligations at a 

negative price, are the ones bearing the risk of volatile congestion charges, and therefore 

are not hedgers but insurers or speculators.  In exchange for bearing the risk they receive 

a premium. 

 

Num 
FTRs 
Prem>0 

Num 
FTRs 
Prem<0 

Num 
FTRs 
Prem=0 

Num 
MW 
Prem>0 

Num 
MW 
Prem<0 

MW for 
Prem=0 

Min 
Prem 

Max 
Prem 

Ave 
Pos 
Prem 

Ave W 
Pos 
Prem 

Ave 
Neg 
Prem 

Ave W 
Neg 
Prem 

BuyObl 5772 6344 7 38769 31830 12 -33056 16957 3568 2854 -2495 -2015 
BuyObl24PosPri 3491 699 0 16043 3953 0 -19767 16957 4772 3947 -1636 -1680 
BuyObl24NegPri 79 328 0 222 1306 0 -33056 4351 1327 1361 -3573 -4378 
BuyOblOnPosPri 877 824 0 12037 6338 0 -16938 11864 2783 3066 -1332 -1185 
BuyOblOnNegPri 273 2258 0 1038 8955 0 -17227 15474 1347 1211 -3911 -3528 
BuyOblOffPosPri 797 1011 0 8603 6433 0 -12159 6648 953 959 -1046 -761 

BuyOblOffNegPri 243 1199 0 801 4720 0 -15654 12841 956 746 -2093 -1623 

SelObl 489 638 6 1818 2231 6 -12865 12203 1684 1475 -1634 -1322 
SelObl24PosPri 73 30 0 245 53 0 -3098 12203 3117 3743 -1771 -1973 
SelObl24NegPri 0 7 0 0 7 0 -5738 -3887 - - -4469 -4169 
SelOblOnPosPri 127 123 0 703 570 0 -12865 9724 1643 1436 -1753 -1030 
SelOblOnNegPri 39 182 0 152 584 0 -11747 2370 930 1063 -1913 -1851 
SelOblOffPosPri 220 147 0 637 604 0 -9550 7947 1443 802 -1249 -929 

SelOblOffNegPri 30 146 0 82 400 0 -9419 2495 1121 1022 -1442 -1465 

BuyOpt 970 328 6 13966 5342 1976 -3249 16431 1941 1639 -417 -402 

BuyOpt24 43 0 0 678 0 0 3329 16431 10936 10522 - - 
BuyOptOn 275 179 3 6754 3798 988 -3249 11700 2101 1848 -398 -369 

BuyOptOff 652 149 3 6535 1543 988 -1768 5348 1280 501 -440 -483 

SelOpt 47 22 0 546 393 0 -1131 5268 1005 807 -464 -460 
SelOpt24 - - - - - - - - - - - - 
SelOptOn 24 12 0 314 218 0 -761 5268 1161 969 -351 -401 

SelOptOff 23 10 0 233 174 0 -1131 4522 843 589 -599 -533 
Table 8. Premium paid by market participants  

 

In general the results of the table are consistent with the idea that buyers of 

obligations at a positive price, pay a premium, while buyers of obligations at a negative 

price, are paid a premium.  
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There are exemptions. For example, most of the transactions in which obligations 

for off-peak hours were sold, resulted in a negative premium for its holders.  Nevertheless 

when we sum the MW of the FTRs that rendered a negative premium these are less than 

the ones of the FTRs that resulted in a positive premium. 

4.3 Ordinary Least Squares Analysis: Price vs Congestion Rents 

One way to observe the correlation between prices and CRs, and account for the 

magnitude of the premium paid is by plotting the prices paid, against the CRs received, as 

it was presented in Chapter 2.  We can construct these plots by taking each transaction as 

one point, disregarding the number of MWs included in the transaction, or taking each 

MW sold as one point in the graph. We will call the first approach “per transaction” and 

the second one “per MW”. 

4.3.1 Analysis Per-transaction: 

Table 9 shows the parameters of a regression analysis for CR as a linear function 

of the price paid for each transaction (CR=Bo+B1*Price).  The coefficient of 

determination is higher than 0.67 for all the FTR obligations that participants bought.  For 

the obligations that were sold by market participants, the coefficients of determination are 

also high, but the results need to be regarded with care, since in some cases there were 

just a few transactions, like the obligations for 24 hours sold at a negative price, for 

which there were only 7 transactions. 

For the options sold by market participants a linear equation does not seem 

appropriate to express the relation between price and congestion rents. 
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Type of FTR Bo  B1  R2 
BuyObl 765 0.7360 0.9647 

BuyObl24PosPri 1026 0.7255 0.9602 
BuyObl24NegPri 668 0.5907 0.6745 
BuyOblOnPosPri 931 0.6958 0.8802 
BuyOblOnNegPri 535 0.7272 0.9152 
BuyOblOffPosPri 455 0.9193 0.8309 

BuyOblOffNegPri 237 0.7292 0.7831 
SelObl 514 0.8028 0.8541 

SelObl24PosPri 1181 0.6871 0.8649 
SelObl24NegPri* 6066 1.2148 0.9173 
SelOblOnPosPri -166 1.0573 0.7359 
SelOblOnNegPri 358 0.7420 0.8034 
SelOblOffPosPri 552 0.7896 0.7942 

SelOblOffNegPri 267 0.7815 0.8278 

BuyOpt 74 0.6115 0.9301 
BuyOpt24 -3866 0.7162 0.9325 
BuyOptOn 154 0.6169 0.9587 

BuyOptOff -209 0.7223 0.8301 

SelOpt 376 0.4398 0.3641 
SelOpt24 - -  
SelOptOn 321 0.3825 0.3280 

SelOptOff 434 0.4996 0.4151 
Table 9. OLS parameters (there were only 7 transactions in which participants sold obligations for 
24hours at a positive price) 

 

The following graphs plot prices versus CRs, for each category of FTR 

transaction.  (Each point represents one FTR transaction).  The ordinary least squares 

regression equations are presented next to the title of each graph, and the regression lines 

are plotted.  The equation on the right has been obtained forcing the intercept to go to 

zero.  Details on the outliers are presented below each table.   

Some market participants presented bids for the same path and class, in the same 

round.  Because the clearing price is the same, it looks as if exactly the same transaction 

had taken place twice. See for example outliers of on-peak hour FTRs, price > 0 

(participant 5), outlier for off-peak FTRs, price < 0 (participant 15 and participant 1).  
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Figure 1. Price Vs CR - Buy obligation 24 hours. Price >0 
 
 

Participant Price CRs Price-CRs Source Sink MW Round 
36 $34,690 $54,456 -$19,766 84 555 5 4 
36 $34,690 $54,456 -$19,766 84 555 4.4 4 

Table 10. Outliers OLS line for Buy Obligation s 24 hours price >0  
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Figure 2. Price Vs  CR - Buy Obligation 24 hours. Price <0  
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Participant Price CRs Price-CRs Source Sink MW Round 
17 -$35,480 -$2,424 -$33,056 25 395 0.3 1 
17 -$35,480 -$2,424 -$33,056 26 395 0.3 1 
17 -$18,826 -$2,424 -$16,402 25 395 0.3 4 
17 -$18,826 -$2,424 -$16,402 26 395 0.3 4 

Table 11. Outliers OLS line for Buy Obligations 24 hours price <0  
 
 

Buy Obligation On-peak hours. Price>0y = 0.6958x + 930.93
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Figure 3. Price Vs CR - Buy Obligation On-peak hours. Price>0  
 

 
 

Table 12 shows the outliers that are above the OLS line, from left to right:  
 
 

Participant Price CRs Price-CRs Source Sink MW Round 
8 $11,830 $24,923 -$13,093 395 73 10 3 
8 $12,264 $24,923 -$12,659 395 73 10 2 

14 $12,841 $29,702 -$16,861 146 555 1 1 
5 $13,577 $30,515 -$16,938 241 555 2.4 1 
5 $13,577 $30,515 -$16,938 241 555 3.1 1 
5 $13,577 $30,515 -$16,938 241 555 4.8 1 
8 $14,605 $26,980 -$12,375 341 73 7.2 3 

14 $16,609 $31,256 -$14,647 354 555 1 1 
8 $16,838 $29,702 -$12,864 146 73 4.9 2 
8 $20,920 $31,788 -$10,868 127 73 1.1 4 
8 $21,760 $31,981 -$10,221 129 73 7 4 

Table 12. Outliers OLS line for Buy Obligations on-peak hours price>0   
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Figure 4. Price Vs CR - Buy Obligation On-peak hours. Price <0 

 

Table 13 shows the outliers down the OLS line.  These participants lost money as 

they had CRs more negative than the buying price of the FTR. 

Participant Price CRs Price-CRs Source Sink MW Round 
1 -$37,467 -$52,940 $15,473 73 207 1.5 1 

13 -$12,641 -$26,331 $13,690 555 449 5 3 
13 -$9,830 -$21,867 $12,037 555 44 5 3 

Table 13. Outliers line for Buy Obligations on-peak hours price<0  
 

There were also outliers above the OLS line.  The profits/MW for these market 

participants were significantly above the average for this type of transaction. 

Participant PriceOb TotalCR Price-CRs Source Sink MW Round 
1 -$9,053 $5,809 -$14,862 24 158 1.4 1 
1 -$9,053 $5,809 -$14,862 24 158 1.4 1 

18 -$9,053 $5,727 -$14,780 26 157 5 1 
1 -$5,412 $7,089 -$12,502 24 194 1.4 1 
1 -$5,412 $7,089 -$12,502 24 194 1.4 1 
6 -$350 $5,809 -$6,159 24 158 2 2 
6 -$350 $5,727 -$6,077 26 157 2 2 

Table 14.  Outliers OLS line for Buy Obligations on-peak hours price<0. Participants with profits 
above the average. 
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Figure 5. Price Vs CR -  Buy Obligation Off-peak hours. Price>0 

 

Table 15 presents the outliers above the OLS line. 

Participant PriceOb TotalCR Price-CRs Source Sink MW Round 
5 $7,583 $19,742 -$12,159 241 555 5.6 1 
5 $7,583 $19,742 -$12,159 241 555 2.8 1 
5 $7,583 $19,742 -$12,159 241 555 5.6 1 
2 $9,612 $19,742 -$10,130 241 555 0.9 3 
5 $9,612 $19,742 -$10,130 241 555 1 3 
5 $9,638 $19,742 -$10,104 241 555 5 2 
4 $9,991 $19,872 -$9,881 245 555 4 4 
8 $8,705 $18,462 -$9,757 1 73 5 3 

14 $6,729 $16,389 -$9,660 354 555 1 1 
4 $9,163 $18,462 -$9,299 1 555 4 4 
8 $11,800 $21,017 -$9,217 129 73 1.3 4 
8 $7,807 $16,800 -$8,993 341 73 3.3 2 
8 $7,807 $16,800 -$8,993 341 73 4.6 3 
8 $5,678 $14,379 -$8,701 395 73 5 3 
8 $5,857 $14,379 -$8,522 395 73 5 2 
8 $5,918 $14,379 -$8,461 395 73 7 4 

13 $2,504 $9,022 -$6,518 274 527 5 1 
Table 15. Outliers OLS line for Buy Obligations off-peak hours price>0.  

 77



Buy Obligation Off-peak. Price<0 y = 0.7053x
R2 = 0.7814

y = 0.7291x + 237.16
R2 = 0.7831

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

-25000 -20000 -15000 -10000 -5000 0

Price ($/MW)

CR
 ($

/M
W

)

 
Figure 6. Price Vs CR -  Buy Obligation Off-peak. Price<0 

 

Table 16 presents the outliers below the OLS line.   

Participant PriceOb TotalCR Price-CRs Source Sink MW Round 
1 -$17,469 -$30,311 $12,842 73 207 1 1 

13 -$7,970 -$17,987 $10,017 555 449 5 3 
13 -$6,178 -$14,361 $8,183 555 44 5 3 
1 -$6,801 -$13,483 $6,682 4 436 1.7 1 

15 -$3,975 -$9,861 $5,886 132 436 0.2 1 
15 -$3,975 -$9,860 $5,885 326 436 1.2 1 
15 -$3,975 -$9,860 $5,885 327 436 1.2 1 
15 -$3,981 -$9,840 $5,859 131 436 1.2 1 
15 -$3,981 -$9,840 $5,859 133 436 1.2 1 
15 -$3,981 -$9,840 $5,859 134 436 1.2 1 

Table 16. Outliers OLS line for Buy Obligations off-peak hours price<0.  

 

There were also outliers above the OLS line.  The profit per MW made by these 

market participants was significantly higher than the average for these trades. 
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Participant PriceOb TotalCR Prem Source Sink MW Round 
1 -$19,391 -$3,737 -$15,654 24 31 1.7 1 
1 -$19,391 -$3,737 -$15,654 24 31 1.7 1 
1 -$13,119 $1,544 -$14,663 24 194 1.7 1 
1 -$13,119 $1,544 -$14,663 24 194 1.7 1 
1 -$14,790 -$305 -$14,485 24 158 1.7 1 
1 -$14,790 -$305 -$14,485 24 158 1.7 1 
1 -$14,773 -$1,158 -$13,615 24 18 1.7 1 
1 -$14,773 -$1,158 -$13,615 24 18 1.7 1 

Table 17. Outliers OLS line for Buy Obligations off-peak hours price<0.  
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Figure 7. Price Vs CR -  Buy Option 24 hours 

 

 79
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Figure 8. Price Vs CR -  Buy Option On-peak hours 

 
 
 
 
 
 
 
 

Sell Obligation 24 hour. Price>0 y = 0.7726x
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Figure 9. Price Vs CR -  Sell Obligation 24 hour. Price>0 
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Figure 10. Price Vs CR -  Sell Obligation 24 hour. Price<0 
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Figure 11. Price Vs CR -  Sell Obligation On-peak hours. Price>0 
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Figure 12. Price Vs CR -  Sell Obligation On-peak hours. Price<0 
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Figure 13. Price Vs CR -  Sell Obligation Off-peak hours. Price>0 
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Figure 14. Price Vs CR -  Sell Obligation Off-peak hours. Price<0 
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Figure 15. Price Vs CR -  Sell Option On-peak hour 
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Figure 16. Price Vs CR -  Sell Option Off-peak 
 

4.4 Congestion Rents and the price paid do not always have the same sign 

As seen in the previous graphs, it is generally the case that the FTR’s price and its 

associated CRs have the same sign.  (e.g. when a market participant buys an obligation at 

a positive price, gets paid later some money.  Similarly, when a market participant buys 

an obligation at a negative price, later has to pay CRs).  However, as the points in the 

northwest and southeast quadrants in the previous plots show, there are cases in which 

FTRs price and CRs have opposite signs.   This mismatch in signs of price and CRs 

favors the participants acting as speculators, but makes the FTR a very bad business for 

those who act like hedgers.  For participants who get paid to hold an FTR (speculators 

buying the FTR at a negative price), positive congestion rents mean that they are paid 

twice. For participants who pay to have an FTR (hedgers who pay to have an FTR), 

negative congestion rents mean that they pay twice for congestion. 
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The following table summarizes those cases in which CRs and prices had opposite 

signs.  For 262 transactions, market participants who paid for FTR obligations had to pay 

also for the CR when congestion occurred in the counter-flow of the FTR. In total, such 

market participants paid $312,860 more than what they would have paid in CRs if they 

did not trade any FTRs.   On the other side, those market participants who were paid to 

have an FTR obligation, had 612 transactions in which they also received CRs. In total 

these market participants obtained $1,863,500 for engaging in the FTR transactions. 

 

 
Congestion did not occur in the expected direction. CRs and Price paid  

had opposite signs 

 
FTRs for which market 

participants paid a premium. 

FTRs for which market participants 
received a premium. (Paid a 

negative premium) 

Type of FTR 
Num 
FTRs 

Num 
MW 

Total 
Premium 

Num 
FTRs 

Num 
MW 

Total 
Premium 

BuyObl 262 3002 312,860 612 2249 (1,863,500) 
BuyObl24PosPri 16 141 30,186 0 0 0  
BuyObl24NegPri 0 0 0 112 499 (418,500) 
BuyOblOnPosPri 151 1260 203,740 0 0 0  
BuyOblOnNegPri 0 0 0 293 1160 (926,700) 
BuyOblOffPosPri 95 1601 78,936 0 0 0  

BuyOblOffNegPri 0 0 0 207 590 (518,290) 

SelObl 54 273 85,318 89 370 (170,060) 
SelObl24PosPri 0 0 0 0 0 0  
SelObl24NegPri 0 0 0 1 0 (5,738) 
SelOblOnPosPri 19 159 41,634 0 0 0  
SelOblOnNegPri 0 0 0 50 255 (108,500) 
SelOblOffPosPri 35 114 43,684 0 0 0  

SelOblOffNegPri 0 0 0 38 115 (55,826) 
Table 18. FTRs for which congestion did not occur in the expected direction  

 

5 Analysis of the effect of the Rounds in the Auction Results 

The annual auction of FTRs is conducted in 4 different rounds.  At each round 

25% of the total capacity available is offered.  To see if the number of rounds in the 
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auction has an effect in the results, it is convenient to see how the different statistics vary 

at each stage of the auction. It is expected that keeping everything else equal, the more 

number of rounds in an auction, the higher the opportunities for price discovery (as 

bidders have chance to take feedback from the market and adjust their bids for 

subsequent rounds)(Ausubel, Crampton et al. 2004).   

 

5.1 Prices per round: 

The following graph shows the capacity traded (in MWh) per type of FTR in each 

round.  During the first round all transactions between the market participants and the 

ISOs are “buy” transactions, because the market participants do not have yet any FTRs 

that can be sold.  Once they acquire FTRs, these can be sold in subsequent rounds.  Most 

of the capacity is traded in the form of obligations for 24 hours.  A good portion of these 

transactions might represent “self scheduled” FTRs (as explained in section 3.4 of 

chapter 2). Since out of the cleared FTR buy bids, 25 percent were self-scheduled 

FTRs(PJM 2004), then about 73% of the buy-obligations for 24 hours might have been 

self-scheduled.   

The volume of obligations is pretty much stable along the four rounds, but the 

trading of options increases in the last two.  Participants sold back very little of the 

capacity acquired. Most of the capacity sold by market participants was traded in the last 

round.    

 86



Capacity traded per round

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

1 2 3 4

Round #

M
w

h
SelOptOff
SelOptOn
BuyOptOff
BuyOptOn
BuyOpt24
SelOblOffNegPri
SelOblOffPosPri
SelOblOnNegPri
SelOblOnPosPri
SelObl24NegPri
SelObl24PosPri
BuyOblOffNegPri
BuyOblOffPosPri
BuyOblOnNegPri
BuyOblOnPosPri
BuyObl24NegPri
BuyObl24PosPri

 

Figure 17. Capacity Traded per round  

 

Fig. 18 shows the average weighted price for different types of obligations 

purchased by market participants at each round.  The prices oscillate with no clear 

tendency, except for the obligations for on-peak hours sold at a positive price, for which 

the price decreased as the auction evolved.  The obligations for on-peak hours sold at a 

negative price saw a decrease in the last two rounds. 
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Figure 18. Evolution of FTR prices 

 

The following graph shows this correlation for each type of FTR at each round.   
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Figure 19.  Evolution of correlation between prices and CRs. 
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For almost all the obligations it looks like the more advanced the auction, the 

higher the correlation coefficient between the prices paid for the FTRs and the rents 

received by the FTR holders.  However at this stage we cannot say if the increase in the 

correlation is due to “price discovery” due to the interaction between the participants, or 

is perhaps due to the fact that those “paths” traded at the latest rounds were more 

predictable.  In Section 7, we run an analysis per “path” and find that the number of 

transactions in fact has an effect in the difference between the price paid/received for the 

FTR and the corresponding CRs. 

 

6 Market Participants 

6.1 Goal of analysis by market participant 

The goal of this section is to determine if results of the auction are consistent with 

the hypothesis that some market participants behave intentionally as speculators and 

charge a premium in the FTRs they trade, while others act as pure hedgers and pay to 

reduce their risk.  If those who pay the premium are precisely the entities that serve load, 

and those who charge the premium are entities whose main business is not the production 

or distribution of electricity; then it would be safe to say that the FTR system allows 

entities outside the value chain of electricity in PJM to take money away from the system. 

As it will be shown in the following sections, some market participants obtained 

substantial profits from their participation in the auction. The profits of these winners do 

not seem to be due to chance; the profits were made not only from buying FTRs at a 

negative price, but also from reselling FTRs previously acquired. 
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6.2 Summary of results by market participant 

6.2.1 Information about the business of market participants 

The 54 entities that participated in the FTR auction are listed in Table 19. Because 

it was not possible to find a unique source of information about the business core of each 

of the entities, or their economic activity in PJM market, a search of the institutional web 

pages was conducted, and the information summarized in the table is presented in the 

Appendix.  For a list in alphabetical order and information about each participant, please 

refer to the Appendix. 

Num Participant Participant Participant Long Name 

1 WPC Williams Power Company, Inc. 
2 CoralR Coral Power, L.L.C. (Retail) 
3 EMMT Edison Mission Marketing and Trading, Inc. 
4 CNCT Conectiv Energy Supply, Inc. 
5 DCELLC DC Energy LLC 
6 FPLEPM FPL Energy Power Marketing, Inc. 
7 PEPSRV Pepco Energy Services, Inc. 
8 CEPLLC Citadel Energy Products, LLC 
9 CPSI Constellation Power Source, Inc. 

10 BPBGS BP Energy Company (BGS) 
11 RESI Reliant Energy Services, Inc. 
12 RESR Reliant Energy Services, Inc. (Retail) 
13 PSERT PSEG Energy Resources and Trade LLC 
14 MPR Mirant Americas Energy Mktg. (Potomac River) 
15 WGCHZL Williams Generation Company-Hazelton 
16 AEVine Atlantic City Electric Company (Vineland) 
17 DTEBGS DTE Energy Trading, Inc. (BGS) 
18 SETC Sempra Energy Trading Corporation 
19 AETS Allegheny Energy Supply Company, L.L.C. 
20 EPLUS PPL EnergyPlus, L.L.C. 
21 DPL Delmarva Power & Light Company 
22 FESC FirstEnergy Solutions Corp. 
23 NRGNJ NRG New Jersey Energy Sales LLC 
24 SUSQEP Susquehanna Energy Products, LLC 
25 Morgan Morgan Stanley Capital Group, Inc. 
26 NEV Constellation NewEnergy, Inc. 
27 ODEC Old Dominion Electric Cooperative 
28 AECI Allegheny Electric Cooperative, Inc. 
29 BPGM BP Energy Company (Green Mountain) 
30 CITZNS Reliant Energy Services, Inc. (Citizens Electric) 
31 EXGNPT Exelon Generation Co., LLC (Power Team) 
32 MetEd Metropolitan Edison Company 
33 AHC Amerada Hess Corporation 
34 CPSDMB Constellation Energy Commodities Group (DPL MD Base) 
35 UGID UGI Development Company 
36 SELWM Select Energy, Inc. (Wholesale Marketing) 
37 RAMEP Ritchie Energy Products, L.L.C. 
38 PaElec Pennsylvania Electric Company 
39 CINSI Cinergy Services, Inc. 
40 JCPLFP Jersey Central Power & Light (FP Load) 
41 ConEdE ConEdison Energy, Inc. 
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42 ACNEgy ACN Energy, Inc. 
43 ECPDTE Energy Cooperative Association of PA 
44 EASTON Easton Utilities Commission 
45 CEDS Consolidated Edison Solutions, Inc. 
46 GALT Galt Power Inc. 
47 JARON J. Aron & Company 
48 TESI Tractebel Energy Services, Inc. 
49 AMPO American Municipal Power-Ohio, Inc. 
50 DTEET DTE Energy Trading, Inc. 
51 MLCS Merrill Lynch Capital Services, Inc. 
52 SES Sempra Energy Solutions 
53 QuarkP Quark Power, L.L.C. 

54 AEPAP 
an umbrella agreement for firm point-to-point service with Appalachian Power Co. with 
AmericanElectric Power Service Corp. as Agent (“AEPAP”) 

Table 19. Participants in the PJM’s FTR annual auction. “Num Participant” is the number that 
identifies market participants in this chapter, and is a number that only reflects the order in which 
each participant appeared in the reports of FTRs trades.   
 

PJM classifies market participants in 5 categories (Load Serving Entities (LSE), 

Marketers, Generators/Merchant Generators, Municipalities and End Users) but the 

information of the category to which each market participant belongs is not publicly 

available.  This information would be useful to infer the interests of each entity (hedging 

or speculation) and to analyze the results of the auction for each participant.  As an 

imperfect substitute for this information, we used the list of LSEs that signed the 

Reliability Assurance Agreement among LSEs in the PJM region to identify the entities 

that are LSEs (or entities whose parent company is an LSE). This information is 

displayed in the table of section 6.2.3. 

6.2.2 Classification of participants by type of transactions 

According to the transactions they were engaged in, we can classify participants 

in 5 different groups.  These groups can be conceptually interpreted as degrees of 

hedging/speculation, if we accept the hypotheses that 1) those participants that bought 

obligations (on-peak and off-peak) at a negative price, are speculators, trying to make a 

profit in exchange for the risk they bear. 2) Those participants that traded obligations for 
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24 hours (at positive and negative prices), most likely were participants self scheduling 

their ARRs.  

Table 20 summarizes the characteristics of the 5 categories of participants 

according to their transactions.  Participants in category A are the hedgers.  Those entities 

that not only bought obligations for 24h (perhaps self-scheduled), but also bought 

obligations for on-peak and off-peak hours and options.  These participants did not buy 

any obligation for on-peak or off peak hours at a negative price.  In contrast, participants 

in category E are speculators that bought obligations for on-peak and off-peak hours at a 

negative price. These participants bought also obligations at a positive price, but 8 of 

them made profits by selling later some obligations and options in the auction (see 

section 6.7).  These participants made money not only by buying obligations at a positive 

price, or by reselling, but also from the obligations they bought at a positive price. For 

example participants 14, 5 and 8, who traded the FTRs outliers in the OLS line for on-

peak and off-peak obligations sold at a positive price, belong to categories D and E. 

These participants perhaps did not have ARRs (and did not self-schedule any 24h 

obligation FTR).   

Category by 
type of 
transactions 

Total # of 
Participants 
of this type 

Bought 
Obligations 
24H 
price>0 

Bought 
Obligations 
for 24H 
price<0 

Bought 
Obligations 
On-Off 
price > 0,      
or               
Bought 
Options 

Bought 
Obligations 
On-Off 
price < 0 

Sold 
Obligations 

Sold 
Options 

Average 
profit per 
participant 

A 13 Yes 6 participants Yes No 6 participants No   (629,676) 

B 17 Yes 8 participants No No 4 participants No   (317,933) 

C 6 No No Yes No 1 participant No     (46,588) 

D 6 Yes 5 participants Yes Yes 3 participants 1 participant     (83,192) 

E 12 No No Yes Yes 8 participants 3 participants    639,555  
Table 20. Description of categories of market participants  
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6.2.3 Summary table of Results by Market Participant  

The following table summarizes the information about each market participant 

and its results in the auction of annual FTRs.  Participants are presented in descending 

order by profits with the first row corresponding to the participant that profited the most 

(see Section 6.5).   The first 2 columns show the number by which the market participant 

is referenced in this document and the abridged name.  Column 3 in the table indicates if 

the entity is included in the list of Load Serving Entities (LSEs) that signed the 

Reliability Assurance Agreement among LSEs in the PJM Region4 (the entities marked 

with “*” are not in the list, but a parent, affiliate of sister company is in the list).  Column 

4 shows the participant’s ranking by profits.  The participants in positions 1st to 15th 

made profits, while the other 39 had losses.  Column 5 shows the participants ranking by 

capacity traded. The 12 participants that traded most capacity are highlighted. See section 

6.3.  Column 7 shows the category of the participant according to the type of transactions 

made. See Section 6.4.  

#  
Participant Acr LSE? 

Ranking By 
Profits 

Ranking By 
MWh 

Traded 
Category by 
Transactions 

8 CEPLLC   1 1 E 
5 DCELLC   2 11 E 
2 CoralR   3 15 E 
1 WPC x * 4 13 E 
15 WGCHZL x* 5 23 E 
14 MPR   6 8 D 
18 SETC x 7 26 D 
44 EASTON   8 48 B 
50 DTEET x 9 33 E 
17 DTEBGS x 10 31 A 
24 SUSQEP   11 12 E 
43 ECPDTE   12 54 B 
42 ACNEgy x 13 51 B 
25 Morgan   14 4 E 
37 RAMEP   15 25 C 
53 QuarkP   16 45 C 
49 AMPO x 17 52 B 

                                                 
4 Reliability Assurance Agreement Among Load-Serving Entities In the PJM Region. K:\pjm\RAARevs\New RAA.doc 
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52 SES x 18 46 A 
28 AECI x 19 24 B 
54 AEPAP   20 39 A 
35 UGID x* 21 36 B 
51 MLCS   22 22 C 
46 GALT   23 53 A 
41 ConEdE x 24 34 E 
45 CEDS x 25 40 C 
6 FPLEPM   26 16 D 
48 TESI   27 42 A 
47 JARON   28 20 C 
13 PSERT x 29 9 D 
32 MetEd x 30 41 B 
21 DPL x 31 27 C 
39 CINSI   32 17 E 
3 EMMT x 33 6 E 
30 CITZNS x* 34 47 B 
38 PaElec x 35 29 B 
4 CNCT x 36 21 E 
34 CPSDMB x* 37 49 B 
26 NEV  x* 38 44 B 
16 AEVine x 39 43 A 
40 JCPLFP x 40 37 B 
31 EXGNPT x* 41 5 A 
29 BPGM x 42 50 B 
33 AHC X 43 28 D 
7 PEPSRV X 44 18 A 
27 ODEC X 45 14 A 
9 CPSI x* 46 3 D 
10 BPBGS   47 32 B 
19 AETS X 48 38 B 
23 NRGNJ X 49 30 B 
11 RESI X 50 19 A 
12 RESR X 51 35 B 
36 SELWM X 52 10 A 
20 EPLUS X 53 2 A 
22 FESC X 54 7 A 

Table 21. Summary of market participants 

 

6.3 Capacity traded per participant 

Five of the participants accounted for more than half the total MWh traded, and 

twelve participants accounted for more than 80%.   The following graph shows the 

transmission capacity traded in the different forms of FTRs, for each of the 12 most 

important participants by amount of capacity traded: 
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Capacity Traded Per Participant (12 participants that 
traded 80% of the total capacity)
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Figure 20. Twelve participants traded 80% of the total capacity traded 

 

6.4 Transactions per participant 

All but one participant traded obligations, only a quarter of the participants traded 

options. Table 22 presents a list of the participants involved in the trading of each type of 

FTR. 

Type of FTR 

Num 
Participants 

trading 
these FTRs 

Participants 

BuyObl 53   

BuyObl24PosPri 36 6,7,9,10,11,12,13,14,16,17,18,19,20,22,23,26,27,28,29,30,31,32,33,34,35,36,38,40,42,43,44,46,48,49,52,54 

BuyObl24NegPri 19 6,9,10,11,13,14,17,18,19,20,23,26,27,28,36,42,43,44,52 

BuyOblOnPosPri 34 1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,20,21,22,24,25,31,33,36,39,41,45,47,48,50,51,52,53,54 

BuyOblOnNegPri 18 1,2,3,4,5,6,8,9,13,14,15,18,24,25,33,39,41,50 

BuyOblOffPosPri 25 1,2,3,4,5,6,8,9,13,14,15,18,21,24,25,31,33,36,39,41,45,46,47,51,52 

BuyOblOffNegPri 14 1,2,3,5,6,8,9,13,14,15,18,24,33,50 

BuyOpt 14   

BuyOpt24 2 22,27 

BuyOptOn 13 3,4,8,9,14,18,22,24,25,31,37,39,47 

BuyOptOff 10 3,4,8,9,14,18,24,25,31,37 
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SelObl 22   

SelObl24PosPri 11 6,7,9,11,17,22,26,38,43,46,52 

SelObl24NegPri 2 6,28 

SelOblOnPosPri 13 1,2,3,4,5,6,8,9,11,14,15,21,24 

SelOblOnNegPri 8 1,2,5,6,8,9,14,15 

SelOblOffPosPri 12 1,2,3,4,5,6,8,9,14,21,24,46 

SelOblOffNegPri 9 1,2,3,5,6,8,9,14,15 

SelOpt 4   

SelOpt24 0   

SelOptOn 4 3,8,14,24 

SelOptOff 3 8,14,24 

Table 22. Transactions made by each market  

 

6.5 Participant’s Profits and Losses 

A total of 53 out of the 54 participants traded FTR obligations, and 14 traded 

options.    A total of 15 market participants made profits with the FTR trades.  Participant 

37 made profits trading only options.  Among the 38 participants that did not profit from 

the transactions, 4 lost more than $1 million and 12 lost more than $500,000.   

The next table shows the net economical position of all of those who bought FTR 

obligations, ordered by the amount of premium paid.  The profits made from trading 

obligations by the 14 “winners” sum to $9,891,808, while the total losses of the 39 

“loosers” sum to $14,877,655. Total profits (including profits or losses from options) by 

the 15 “winners” sum $9,118,223, while the total losses of the 39 “losers” sum 

$15,812,895. Summing all the profits and losses from the market participants, the net 

result is losses for $6,694,671.  If all the winners of the auction were speculators that did 

not pay any fixed costs of the transmission network, we could say that the $9 million in 

profits they made is money that leaked from the system and constitutes an extra cost for 

transmission customers.  However some of the winners cannot be labeled as 

“speculators”, because they are either assumed to be LSE’s (because are signatories of 
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the reliability assurance agreement) or because they are engaged in some hedging activity 

(and are not classified as type D or E, according to the analysis of the previous section).  

The aggregated profit of those participants that are not LSE’s and are either type E or D, 

is $7,315,051.  

The participant that profited the most from the auctions collected a premium of 

more than $4 million in obligations but lost $0.8 million on the options traded.  A total of 

4 participants managed to make a profit when buying options.   

Market 
Participant 

Profits 
From 
Trading 
Obligations* 

Profits 
From 
Trading 
Options* 

Total 
Profits* 

CEPLLC 8 4,058,859 -807,889 3,250,970 
DCELLC 5 2,207,030 0 2,207,030 
Coral 2 1,121,036 0 1,121,036 
WPC 1 815,930 0 815,930 
WGCHZL 15 697,888 0 697,888 
MPR 14 641,870 39,232 681,102 
SETC 18 95,968 1,249 97,217 
EASTON 44 55,853 0 55,853 
DTEET 50 48,720 0 48,720 
DTEBGS 17 44,102 0 44,102 
SUSQEP 24 46,750 -3,835 42,915 
ECPDTE 43 21,561 0 21,561 
ACNEgy 42 18,341 0 18,341 
Morgan 25 17,900 -5,902 11,998 
RAMEP 37 0 3,560 3,560 
QuarkP 53 -6,642 0 -6,642 
AMPO 49 -7,406 0 -7,406 
SES 52 -9,046 0 -9,046 
AECI 28 -10,345 0 -10,345 
AEPAP 54 -13,159 0 -13,159 
UGID 35 -19,347 0 -19,347 
MLCS 51 -26,590 0 -26,590 
GALT 46 -31,449 0 -31,449 
ConEdE 41 -39,681 0 -39,681 
CEDS 45 -46,560 0 -46,560 
FPLEPM 6 -64,050 0 -64,050 
TESI 48 -66,720 0 -66,720 
JARON 47 -57,400 -30,962 -88,362 
PSERT 13 -89,400 0 -89,400 
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MetEd 32 -109,400 0 -109,400 

DPL 21 -114,936 0 -114,936 
CINSI 39 -100,110 -21,064 -121,174 
EMMT 3 -155,969 5,415 -150,554 
CITZNS 30 -163,960 0 -163,960 
PaElec 38 -207,400 0 -207,400 
CNCT 4 -167,340 -43,077 -210,417 
CPSDMB 34 -212,030 0 -212,030 
NEV 26 -258,434 0 -258,434 
AEVine 16 -340,000 0 -340,000 
JCPLFP 40 -402,600 0 -402,600 
EXGNPT 31 -421,200 -6,057 -427,257 
BPGM 29 -440,000 0 -440,000 
AHC 33 -508,400 0 -508,400 
PEPSRV 7 -530,970 0 -530,970 
ODEC 27 -603,600 -7,132 -610,732 
CPSI 9 -607,258 -8,363 -615,621 
BPBGS 10 -801,200 0 -801,200 
AETS 19 -919,500 0 -919,500 
NRGNJ 23 -922,800 0 -922,800 
RESI 11 -961,993 0 -961,993 
RESR 12 -1,026,200 0 -1,026,200 
SELWM 36 -1,278,300 0 -1,278,300 
EPLUS 20 -1,606,200 0 -1,606,200 
FESC 22 -1,530,060 -824,000 -2,354,060 

Table 23. Participant’s profit an losses (includes all obligations traded – at a positive price, negative 
price and zero)  

 

The next table shows the profits (or losses) obtained by participants for each type 

of FTR traded at a price different than zero.  The six participants that profited the most 

from the auction made most of their profits by trading obligations for on-peak hours at a 

negative price.  This means that they behaved mostly as speculators and charged a 

premium for bearing the risk of an obligation with expected negative congestion rents. 

None of the five participants who profited the most traded any obligation for 24 hours.   

In contrast, most of the premium paid by those participants that lost money in the 

auction was paid for obligations for 24 hours.   Perhaps most of their purchases of 24h 

FTRs were “self-scheduled”, which means that they were the owners of the ARRs for 
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those paths, and got back from the ISO the money they paid in the auction.  Nevertheless, 

there was a significant amount of premium paid for the on-peak obligations and for 

options. 

 

 PROFITS FROM TRADING OBLIGATIONS 
PROFITS FROM TRADING 

OPTIONS 

Participant 
24H 

Price>0 
24H 

Price<0 
On 

Price>0 
On 

Price<0 
Off 

Price>0 
Off 

Price<0 24 On Off 

TOTAL 
PROFITS 
(Including 

Profits 
from 
FTRs 

traded at 
price 0) 

CEPLLC 8 0 0 147,403 3,247,280 165,970 497,510 0 -62,471 
-

745,548 3,250,970 

DCELLC 5 0 0 -148,060 
-

1,442,269 -42,360 -574,392 0 0 0 2,207,030 
Coral 2 0 0 -14,224 -961,141 -12,921 -132,618 0 0 0 1,121,036 
WPC 1 0 0 62,552 -682,550 -38,056 -149,386 0 0 0 815,930 
WGCHZL 15 0 0 60,498 -700,680 -22,173 -34,850 0 0 0 697,888 
MPR 14 -1,051 -141,470 -51,250 -253,667 -82,660 -111,316 0 -20,772 -18,453 681,102 
SETC 18 3,391 -28,633 -6,841 -49,265 -5,146 -4,113 0 -1,347 98 97,217 
EASTON 44 -24,536 -31,318 0 0 0 0 0 0 0 55,853 
DTEET 50 0 0 5,266 -48,010 0 -5,965 0 0 0 48,720 
DTEBGS 17 285,498 -337,828 5,171 0 0 0 0 0 0 44,102 
SUSQEP 24 0 0 -28,538 -5,992 -9,260 -2,944 0 -2,477 6,311 42,915 
ECPDTE 43 -664 -20,897 0 0 0 0 0 0 0 21,561 
ACNEgy 42 -3,403 -14,938 0 0 0 0 0 0 0 18,341 
Morgan 25 0 0 -11,079 -2,575 -4,247 0 0 1,772 4,130 11,998 
RAMEP 37 0 0 0 0 0 0 0 -4,036 477 3,560 
QuarkP 53 0 0 6,642 0 0 0 0 0 0 -6,642 
AMPO 49 7,406 0 0 0 0 0 0 0 0 -7,406 
SES 52 -2,476 -12,513 22,364 0 1,672 0 0 0 0 -9,046 
AECI 28 48,900 -38,553 0 0 0 0 0 0 0 -10,345 
AEPAP 54 7,893 0 5,266 0 0 0 0 0 0 -13,159 
UGID 35 19,347 0 0 0 0 0 0 0 0 -19,347 
MLCS 51 0 0 19,104 0 7,486 0 0 0 0 -26,590 
GALT 46 26,559 0 0 0 4,885 0 0 0 0 -31,449 
ConEdE 41 0 0 27,457 -1,674 13,896 0 0 0 0 -39,681 
CEDS 45 0 0 43,378 0 3,185 0 0 0 0 -46,560 
FPLEPM 6 642,130 -69,184 240,443 -188,707 -270,650 -293,076 0 0 0 -64,050 
TESI 48 36,920 0 29,785 0 0 0 0 0 0 -66,720 
JARON 47 0 0 54,040 0 3,365 0 0 30,962 0 -88,362 
PSERT 13 370,900 -28,429 -162,340 -15,225 -85,291 6,671 0 0 0 -89,400 
MetEd 32 109,400 0 0 0 0 0 0 0 0 -109,400 
DPL 21 0 0 80,817 0 34,119 0 0 0 0 -114,936 
CINSI 39 0 0 96,820 -3,076 6,377 0 0 21,064 0 -121,174 
EMMT 3 0 0 60,703 8,916 86,488 -1,756 0 -9,583 4,167 -150,554 
CITZNS 30 163,960 0 0 0 0 0 0 0 0 -163,960 
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PaElec 38 207,400 0 0 0 0 0 0 0 0 -207,400 

CNCT 4 0 0 224,421 -5,826 -51,200 0 0 35,319 7,759 -210,417 
CPSDMB 34 212,030 0 0 0 0 0 0 0 0 -212,030 
NEV 26 287,034 -31,624 0 0 0 0 0 0 0 -258,434 
AEVine 16 331,100 0 8,901 0 0 0 0 0 0 -340,000 
JCPLFP 40 402,600 0 0 0 0 0 0 0 0 -402,600 
EXGNPT 31 343,700 0 79,220 0 -1,754 0 0 5,920 136 -427,257 
BPGM 29 440,000 0 0 0 0 0 0 0 0 -440,000 
AHC 33 499,000 0 9,421 -2,440 1,806 691 0 0 0 -508,400 
PEPSRV 7 522,870 0 8,012 0 0 0 0 0 0 -530,970 
ODEC 27 602,000 1,600 0 0 0 0 7,132 0 0 -610,732 
CPSI 9 742,057 -26,267 555,356 -549,851 182,402 -299,435 0 2,630 5,733 -615,621 
BPBGS 10 816,600 -18,430 0 0 0 0 0 0 0 -801,200 
AETS 19 933,900 -17,453 0 0 0 0 0 0 0 -919,500 
NRGNJ 23 956,200 -36,550 0 0 0 0 0 0 0 -922,800 
RESI 11 868,624 -9,036 102,328 0 0 0 0 0 0 -961,993 

RESR 12 1,026,200 0 0 0 0 0 0 0 0 
-

1,026,200 

SELWM 36 1,218,700 -10,352 56,030 0 13,860 0 0 0 0 
-

1,278,300 

EPLUS 20 1,769,800 -163,953 1,420 0 0 0 0 0 0 
-

1,606,200 

FESC 22 1,472,560 0 54,366 0 0 0 463,110 360,900 0 
-

2,354,060 
Table 24. Profits and losses per transaction type  

 

 

6.6 Making money by reselling FTRs in the auction 

The trading of FTRs can generate money for the market participants in two ways: 

1) when the difference between the selling price of the FTR at the auction and the CRs is 

in the participant’s favor, and 2) when the market participant is able to resell the FTRs 

(obligations or options) acquired previously at a price that leaves a net profit.   Twenty 

participants made profits by selling obligations or options that they had acquired in 

previous rounds of the auction.  Three participants had losses from these sales.  Table 25 

shows the 25 participants that had profits or losses for reselling options and/or obligations 

in the auction.   
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It is important to point out that among the 11 participants that made more than 

$10,000 in profits from selling in the auction, 8 participants are of type E and 3 

participants are of type D (see type’s description in Section 6.2.2).  In contrast, the 3 

participants that had losses from selling are either of type A or type B.  This shows that 

the speculators made money not only but bearing the risk, but also by wisely buying and 

reselling in the auction.  In contrast, 3 of the hedgers lost money by reselling in the 

auction what they had bought previously.   

Participant 

Profits 
From 

Obligation 
Sales 

Profits 
From 

Option 
Sales 

Total 
Profits 
From 
Sales 

14 1,046,000 354,670 1,400,670 
5 981,170 0 981,170 
8 769,970 85,408 855,378 
1 485,950 0 485,950 
9 305,680 0 305,680 
6 284,620 0 284,620 

24 123,990 62,450 186,440 
2 108,330 0 108,330 
3 63,574 36,675 100,249 
4 42,133 0 42,133 

15 13,593 0 13,593 
11 4,885 0 4,885 
26 4,363 0 4,363 

7 2,730 0 2,730 
46 1,989 0 1,989 
21 1,399 0 1,399 
52 543 0 543 
17 294 0 294 
43 48 0 48 
28 -12,829 0 -12,829 
38 -42,993 0 -42,993 

22 

-

163,770 0 

-

163,770 

Table 25. Participant’s profits and losses from selling FTRs in the auction  
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7 Buy Obligation FTRs - Analyses of Paths.  

According to the auction rules any of the 667 nodes can serve as source or sink 

for an FTR, so there are (½)*667*666 = 222,111 pairs of nodes for which an FTR could 

be sold. In the auction analyzed there were only 3,767 pairs of nodes or “paths” for which 

there were FTR transactions. 

For only 166 paths out of the 3,767 paths, there were trades of FTRs that implied 

conflicting expectations about the direction of transmission congestion. For the rest of the 

3,601 paths, the prices of the FTRs traded show that different market participants had the 

same expectations about the direction of transmission congestion5.  

To visualize the paths and account for the direction of the expected congestion, 

this analysis treats the sinks of FTRs bought at a negative price as Points Of Injection 

(POI) and the sources of these FTRs are considered Points Of Withdrawal (POW), since 

in fact a trader of an FTRs at a negative price expects transmission congestion to occur in 

the direction sink to source.   

The following graphs show the paths for which there were “Buy Obligations” 

FTR’s traded.  Each point indicates that there was at least one FTR obligation bought by 

a market participant that implied expectations of transmission congestion in the direction 

POI to POW.  Since there were paths for which there were transactions that implied 

expectations of transmission congestion in both directions (there was expected congestion 

                                                 
5 A trade of an FTR at a positive price from A to B, implies that the buyer expects transmission in the direction A to B.  
Similarly, a trade of an FTR at a negative price from B to A, implies that the speculator expects transmission 
congestion in the direction A to B. However if for a given pair of nodes A and B, there are FTRs sold at a positive price 
for the path A to B, and there are also FTRs sold at a positive price for the path B to A, or FTRs sold at a negative price 
for the path A to B, then we state that there is disagreement about the direction of transmission congestion. 
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both from A to B and from B to A), the following graphs include 166 paths more, for a 

total of 3,933 paths. 

 

Figure 21. Paths for buying obligations 
 

From observing these graphs, some important nodes can be identified.  For 

example, it is evident that market participants forecasted congestion delivering power to 

node 400 from many other nodes of the grid, and therefore bought obligation FTRs with 

this node as Point of Withdrawal (that is as a sink of FTRs bought at a positive price or as 

a source for FTRs bought at a negative price). 

The following plots present those paths for which different classes of obligation 

FTRs were bought by market participants. 
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Figure 22. Paths for “24H Buy Obligations” 
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Figure 23. Paths for On-peak Buy Obligations 
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Figure 24. Paths for Off-peak Buy Obligations  
 

7.1 Analysis of paths for which there was no disagreement about expected 

direction of transmission congestion  

For 95.6% of the paths, there were no FTRs that implied disagreement in the 

expectation of the direction of transmission congestion.  The capacity traded for these 

paths represents 95.6% of the total capacity traded in “buy obligation” FTRs, and 94.6% 

of the “buy obligation” FTRs traded.   Most of the paths were traded either only by 

hedgers or only by speculators, and just 2% of the paths had transactions for both hedgers 

and speculators.  The trades for those paths that had only hedgers participating, accounted 

for almost 63% of the total capacity traded (4.024E+8 MWh), while those paths that 

involved only speculators had trades for 17% of the total capacity traded for “buy 
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obligation” FTRs . For those paths for which both hedgers and speculators purchased 

FTRs, the capacity traded by speculators was only 1.2%. 

Given the physical laws that govern power flow, the offer of a speculator to bear 

the risk on one path, might affect the price that a hedger pays for an FTR on another path. 

In this sense, hedgers and speculators “interact” even if they do not trade FTRs for 

exactly the same paths.  Because the whole grid is connected and the congestion on one 

line has effects on many others, a bet on the congestion for a particular point-to-point 

implicitly implies a bet on the congestion everywhere else in the grid. 

  Num 
Paths 

%Num 
Paths 

Total 
MWh % MWh Total 

FTRs % FTRs 

Paths with FTRs only Traded By Hedgers 1,634 43.4% 2.52E+08 62.7% 6,766 55.8% 

Paths with FTRs only Traded By 
Speculators 1,887 50.1% 6.87E+07 17.1% 3,821 31.5% 

5.90E+07 14.7% 645 5.3% Paths with FTRs traded by Hedgers and 
Speculators 80 2.1% 4.83E+06 1.2% 231 1.9% 

           
Total 3,601 95.6% 3.85E+08 95.6% 11,463 94.6% 

Table 26. Analysis of paths for which prices of Buy-Obligation FTR did not imply disagreement 
about the direction of transmission congestion 

 

7.2 Paths traded exclusively by hedgers: classes of FTRs 

Paths with 24 hour FTRs, represented only 12% of the total paths, but accounted 

for more than 30% of the total buy-obligation FTRs traded and more than 35% of the 

capacity. Most of the paths traded exclusively by hedgers had FTRs for off-peak hours. 
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Class Price Num 
Paths 

%Num 
Paths Class Total 

MWh 
% 

MWh 
Total 
FTRs 

% 
FTRs 

Only 24H > 0 349 9.3% 24 6.32E+07 15.7% 2540 21.0% 
Only On-

peak > 0 459 12.2% On 1.62E+07 4.0% 631 5.2% 
Only Off-

peak > 0 475 12.6% Off 1.73E+07 4.3% 760 6.3% 
                  

24 2.15E+07 5.3% 287 2.4% 24H and On 24 > 0 
On>0 53 1.4% On 2.54E+06 0.6% 68 0.6% 

24 2.47E+07 6.1% 511 4.2% 24 and Off 24 > 0 
Off>0 35 0.9% Off 1.07E+06 0.3% 57 0.5% 

On 2.49E+07 6.2% 527 4.3% On and Off On > 0 
Off>0 213 5.7% Off 2.45E+07 6.1% 526 4.3% 

24 3.38E+07 8.4% 531 4.4% 
On 1.22E+07 3.0% 177 1.5% 24, On and 

Off 
24 > 

0 
On > 

0 Off>0 50 1.3% Off 1.04E+07 2.6% 151 1.2% 
Table 27. Classes of FTRs for Paths traded exclusively by hedgers   

 

7.3 Paths traded exclusively by speculators: classes of FTRs 

Most of the paths traded exclusively by speculators had FTRs for on-peak hours 

(35% of the paths) and accounted for more than 8% of the total MWh capacity traded.  

Class Price Num 
Paths 

%Num 
Paths Class Total 

MWh 
% 

MWh 
Total 
FTRs 

% 
FTRs 

< 0 92 2.4% 24 8.67E+06 2.2% 232 1.9% 
Only 24 0 1 0.0% 24 1.76E+05 0.0% 1 0.0% 

< 0 1,013 26.9% On 1.92E+07 4.8% 1457 12.0% 
Only On 0 3 0.1% On 2.09E+05 0.1% 8 0.1% 

< 0 421 11.2% Off 9.03E+06 2.2% 672 5.5% 
Only Off 0 3 0.1% Off 3.66E+04 0.0% 5 0.0% 

            
24 7.07E+05 0.2% 10 0.1% 24H and On 

24<0 On<0 2 0.1% On 3.22E+05 0.1% 6 0.0% 
24 3.87E+04 0.0% 12 0.1% 24 and Off 

24<0 Off<0 3 0.1% Off 1.31E+05 0.0% 5 0.0% 
On 1.33E+07 3.3% 725 6.0% 

On<0 Off<0 340 9.0% Off 1.27E+07 3.2% 592 4.9% 
On 1.12E+05 0.0% 7 0.1% 

On and Off 

On=0 Off=0 3 0.1% Off 2.17E+05 0.1% 13 0.1% 
24 1.21E+06 0.3% 34 0.3% 
On 1.45E+06 0.4% 24 0.2% 24, On and 

Off 24<0 On<0 Off<0 6 0.2% Off 1.21E+06 0.3% 18 0.1% 
Table 28. Paths traded by speculators 
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7.4 Paths traded both by hedgers and speculators: classes of FTRs 

Most of the paths that were traded both by hedgers and speculators had FTRs for 

on-peak hours, as the following tables show. 

Class Price Num 
Paths 

%Num 
Paths Class Total 

MWh 
% 

MWh 
Total 
FTRs 

% 
FTRs 

24 4.67E+05 0.1% 8 0.1% 
Only 24H 24 > 0 and 24 < 0 1 0.0% 24 4.67E+05 0.1% 4 0.0% 

On 2.17E+05 0.1% 11 0.1% Only On-
peak On > 0 and On < 0 4 0.1% On 1.13E+05 0.0% 5 0.0% 

Off 3.47E+04 0.0% 2 0.0% Only Off-
peak Off > 0 and Off < 0 1 0.0% Off 9.38E+03 0.0% 1 0.0% 

Table 29. MWH and FTRs for paths traded by hedgers and speculators - Paths with FTRs for only 
one class 
 
 

Class Price Num 
Paths 

%Num 
Paths Class Total 

MWh 
% 

MWh 
Total 
FTRs 

% 
FTRs 

24 9.36E+06 2.3% 35 0.3% 
On<0 8 0.2% On 7.99E+04 0.0% 12 0.1% 

24 7.91E+04 0.0% 10 0.1% 
On 1.64E+04 0.0% 2 0.0% 

24 > 0 

On>0 & 
On<0 2 0.1% On 2.05E+04 0.0% 3 0.0% 

24 1.76E+05 0.0% 11 0.1% 24 < 0 
On>0 5 0.1% On 3.85E+05 0.1% 9 0.1% 

24 3.92E+06 1.0% 14 0.1% 
24 8.78E+04 0.0% 1 0.0% 

On>0 1 0.0% On 2.05E+05 0.1% 4 0.0% 
24 1.11E+05 0.0% 1 0.0% 
24 2.20E+05 0.1% 1 0.0% 

24H and On 

24 > 0 & 
24 < 0 

On<0 1 0.0% On 6.14E+03 0.0% 1 0.0% 
24 6.32E+04 0.0% 4 0.0% 24 > 0 

Off<0 1 0.0% Off 2.06E+04 0.0% 3 0.0% 
24 2.90E+04 0.0% 4 0.0% 

24 and Off 
24 < 0 

Off>0 1 0.0% Off 3.28E+04 0.0% 1 0.0% 
On 1.46E+05 0.0% 15 0.1% 

Off<0 7 0.2% Off 8.30E+04 0.0% 15 0.1% 
On 6.51E+04 0.0% 4 0.0% 
Off 2.77E+05 0.1% 7 0.1% 

On > 0 

Off>0 & 
Off<0 2 0.1% Off 7.03E+03 0.0% 4 0.0% 

On 2.95E+05 0.1% 24 0.2% 
Off>0 12 0.3% Off 6.50E+05 0.2% 24 0.2% 

On 1.02E+05 0.0% 15 0.1% 
Off 4.22E+04 0.0% 3 0.0% 

On < 0 

Off>0 & 
Off<0 2 0.1% Off 9.38E+04 0.0% 3 0.0% 

On 1.77E+05 0.0% 8 0.1% 
On 1.00E+05 0.0% 8 0.1% 

Off>0 4 0.1% Off 4.37E+05 0.1% 11 0.1% 

On and Off 

On > 0 & 
On < 0 

Off<0 9 0.2% On 1.84E+05 0.0% 18 0.1% 

 109



On 8.03E+05 0.2% 23 0.2% 
Off 3.39E+05 0.1% 15 0.1% 
On 1.31E+06 0.3% 23 0.2% 
On 3.73E+04 0.0% 4 0.0% 
Off 1.10E+06 0.3% 31 0.3% Off>0 & 

Off<0 3 0.1% Off 1.31E+05 0.0% 8 0.1% 
24 3.74E+06 0.9% 51 0.4% 
On 3.73E+05 0.1% 18 0.1% On < 

0 Off<0 5 0.1% Off 2.36E+05 0.1% 12 0.1% 
24 3.77E+06 0.9% 20 0.2% 
On 8.67E+06 2.2% 79 0.7% 
On 1.25E+05 0.0% 7 0.1% 

Off>0 3 0.1% Off 4.54E+06 1.1% 39 0.3% 
24 2.74E+06 0.7% 44 0.4% 
On 4.30E+06 1.1% 31 0.3% 
On 2.68E+05 0.1% 9 0.1% 
Off 4.70E+06 1.2% 35 0.3% 24 > 

0 

On > 
0 & < 

0 
Off>0 & 

<0 3 0.1% Off 3.47E+04 0.0% 3 0.0% 
24 1.24E+05 0.0% 1 0.0% 
On 8.19E+04 0.0% 3 0.0% 24 < 

0 
On > 

0 Off>0 1 0.0% Off 4.69E+04 0.0% 2 0.0% 
24 6.08E+06 1.5% 75 0.6% 
24 2.27E+05 0.1% 8 0.1% 
On 1.02E+06 0.3% 21 0.2% 
On 1.03E+05 0.0% 4 0.0% 

24, On and 
Off 

24 > 
0 & 
24 < 

0 

On > 
0 & 

On < 
0 Off<0 4 0.1% Off 1.18E+05 0.0% 4 0.0% 

Table 30. MWH and FTRs for paths traded by hedgers and speculators - Paths with FTRs for more 
than one class 
 

7.5 Competition for FTRs of the same path 

There were more trades for those paths that attracted the interest of hedgers than 

for those paths that attracted the interest of speculators.  Also, the number of FTRs traded 

by hedgers for the paths that were both traded by hedgers and speculators was more 

traded by hedgers than by speculators.  The next table shows both the average number of 

FTRs per path (Total number of FTRs / Number of Paths) and the weighted average of 

the average number of FTRs per path (Sum over all classes of: Average Number of FTRs 

per path * Number of paths. Divided by total number of paths). 

There were more market participants involved in trades for those paths traded 

only by hedgers, than for those paths traded only by speculators.  Also, for those paths 
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that were traded both by hedgers and speculators, there were more hedgers per path, than 

speculators. 

  Num 
Paths 

Average 
Num 
FTRs 

per path 

Weighted 
Average 

(Avg Num 
FTRs per 

path) 

Weighted 
Average 
(Avg Num 
Part per 
path) 

Paths with FTRs only Traded By Hedgers 1,634 4.14 3.54 1.52 

Paths with FTRs only Traded By 
Speculators 1,887 2.02 1.68 1.09 

8.06 5.92 1.74 Paths with FTRs traded by Hedgers and 
Speculators 80 2.89 2.08 1.24 

         
Total 3,601 3.18 2.61 1.30 

Table 31. Average number of buy Obligations FTRs and participants per path  
 

The following tables show in detail the average number of FTRs and market 

participants involved in FTR-trades for each path.  For those paths traded exclusively by 

hedgers, the highest average of number of participants was for those paths that had FTRs 

for 24 hours and off-peak hours. 

Class Price Num 
Paths 

Average 
NumFTRs 

Avg 
Num 

Part per 
path 

Only 24H > 0 349 7.28 2.38 
Only On-

peak > 0 459 1.37 1.04 
Only Off-

peak > 0 475 1.60 1.08 
              

5.42 2.02 24H and On 24 > 0 
On>0 53 1.28 1.00 

14.60 4.40 24 and Off 24 > 0 
Off>0 35 1.63 1.09 

2.47 1.13 On and Off On > 0 
Off>0 213 2.47 1.13 

10.62 3.12 
3.54 1.46 24, On and 

Off 
24 > 

0 
On > 

0 Off>0 50 3.02 1.38 
Table 32. Average number of participants per path for those paths traded only by hedgers 
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For those paths traded exclusively by speculators, the highest average of number 

of participants was for those paths that had FTRs for on-peak and off-peak hours traded 

at zero price.6 In general, there was more competition for FTRs for 24 hours. 

Class Price Num 
Paths 

Average 
NumFTRs 

Avg 
Num 

Part per 
path 

< 0 92 2.52 1.16 
Only 24 0 1 1.00 1.00 

< 0 1,013 1.44 1.07 
Only On 0 3 2.67 1.33 

< 0 421 1.60 1.08 
Only Off 0 3 1.67 1.00 

        
5.00 1.50 24H and On 

24<0 On<0 2 3.00 1.50 
4.00 1.00 24 and Off 

24<0 Off<0 3 1.67 1.00 
2.13 1.16 

On<0 Off<0 340 1.74 1.11 
2.33 1.67 

On and Off 

On=0 Off=0 3 4.33 1.67 
5.67 1.50 
4.00 1.33 24, On and 

Off 24<0 On<0 Off<0 6 3.00 1.33 
Table 33. Average number of participants per path for those paths traded only by hedgers  

 

For those paths traded both by hedgers and speculators, the highest average of 

number of participants was for 24-hour FTRs at a positive price.   

Class Price Num 
Paths 

Average 
NumFTRs 

Avg 
Num 

Part per 
path 

8.00 1.00 
Only 24H 24 > 0 and 24 < 0 1 4.00 1.00 

2.75 1.25 Only On-
peak On > 0 and On < 0 4 1.25 1.00 

2.00 1.00 Only Off-
peak Off > 0 and Off < 0 1 1.00 1.00 

Table 34. Average number of participants for paths traded both by hedgers and speculators (Table 
continues below) 
 

                                                 
6 There were only 3 paths for which there were FTRs for on and off-peak hours traded at price = 0. 
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Class Price Num 
Paths 

Average 
NumFTRs 

Avg Num Part 
per path 

4.38 1.38 
On<0 8 1.50 1.00 

5.00 2.00 
1.00 1.00 

24 > 0 

On>0 & 
On<0 2 1.50 1.00 

2.20 1.00 24 < 0 
On>0 5 1.80 1.40 

14.00 2.00 
1.00 1.00 

On>0 1 4.00 1.00 
1.00 1.00 
1.00 1.00 

24H and On 

24 > 0 & 
24 < 0 

On<0 1 1.00 1.00 
4.00 1.00 24 > 0 

Off<0 1 3.00 2.00 
4.00 1.00 

24 and Off 
24 < 0 

Off>0 1 1.00 1.00 
2.14 1.14 

Off<0 7 2.14 1.14 
2.00 1.50 
3.50 1.00 

On > 0 

Off>0 & 
Off<0 2 2.00 1.00 

2.00 1.33 
Off>0 12 2.00 1.00 

7.50 2.00 
1.50 1.00 

On < 0 

Off>0 & 
Off<0 2 1.50 1.00 

2.00 1.25 
2.00 1.00 

Off>0 4 2.75 1.50 
2.00 1.00 
2.56 1.44 

Off<0 9 1.67 1.00 
7.67 2.00 
1.33 1.00 

10.33 2.00 

On and Off 

On > 0 & 
On < 0 

Off>0 & 
Off<0 3 2.67 1.00 

10.20 2.20 
3.60 1.80 On < 

0 Off<0 5 2.40 1.40 
6.67 3.00 

26.33 6.00 
2.33 1.67 

Off>0 3 13.00 3.00 
14.67 3.33 
10.33 4.33 

3.00 2.00 
11.67 3.33 24 > 

0 

On > 
0 & < 

0 
Off>0 & 

<0 3 1.00 1.00 
1.00 1.00 
3.00 2.00 

24, On and 
Off 

24 < 
0 

On > 
0 Off>0 1 2.00 1.00 
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18.75 1.75 
2.00 2.00 
5.25 1.00 
1.00 1.00 

24 > 
0 & 
24 < 

0 

On > 
0 & 

On < 
0 Off<0 4 1.00 1.00 

 

7.6 Prices and premiums 

The following graphs show summary statistics of the price paid/received per 

MWh.  Column 5 shows the Weighted Average Price (Weighted average price per path = 

Sum over all the FTRs of the path of (price*capacity)/sum off all capacity of the path.  

Weighted Average Price = Sum over all paths of weighted average price * capacity 

/sum(capacity))   

For those paths traded only by hedgers, the highest price was for FTRs for On-

peak hours, for those paths that had 24 hours and on-peak FTRs only. 

Class Price Num 
Paths Class WAvgPrice 

Min 
WAvgPrice 

Perc100 
Wavg 

EAvgPrice 
Wstd 

WAvgPrice 

Only 24H > 0 349 24 0.00 6.21 1.73 2.45 
Only On-

peak > 0 459 On 0.00 9.84 0.60 1.25 
Only Off-

peak > 0 475 Off 0.00 5.43 0.69 0.69 
                 

24 0.04 4.81 0.90 0.98 24H and On 24 > 0 
On>0 53 On 0.00 7.37 2.94 3.04 

24 0.05 5.96 1.36 1.26 24 and Off 24 > 0 
Off>0 35 Off 0.03 3.39 0.68 0.24 

On 0.03 7.62 0.91 0.98 On and Off On > 0 
Off>0 213 Off 0.01 2.90 0.46 0.21 

24 0.04 5.47 1.21 1.19 
On 0.06 8.34 1.34 3.18 24, On and 

Off 
24 > 

0 
On > 

0 Off>0 50 Off 0.02 2.97 0.40 0.33 
Table 35. Price statistics for paths traded only by hedgers  

 

The following tables show price statistics for those paths traded exclusively by 

speculators.  All the values shown here are in fact the quantity speculators received 
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upfront for holding the FTR. For those paths traded exclusively by speculators the highest 

Weighted Average of Weighted Average price was for those paths that had trades for the 

three classes of FTRs, but the highest Average of Weighted Average Price was for those 

paths that had only on-peak FTRs. 

Class Price Num 
Paths Class WAvgPrice 

Min 
WAvgPrice 

Max 
Wavg 

EAvgPrice 
Wstd 

WAvgPrice 

< 0 92 24 0.03 4.93 0.56 0.57 
Only 24 0 1 24 NaN NaN 0.00 0.00 

< 0 1,013 On 0.00 12.69 2.76 7.24 
Only On 0 3 On NaN NaN 0.00 0.00 

< 0 421 Off 0.00 4.54 1.06 1.29 
Only Off 0 3 Off NaN NaN 0.00 0.00 

           
24 0.07 0.42 0.42 0.00 24H and On 

24<0 On<0 2 On 0.13 1.33 1.20 0.14 
24 0.20 0.78 0.61 0.03 24 and Off 

24<0 Off<0 3 Off 0.02 0.52 0.27 0.02 
On 0.03 11.55 1.58 3.85 

On<0 Off<0 340 Off 0.00 4.77 0.77 0.84 
On NaN NaN 0.00 0.00 

On and Off 

On=0 Off=0 3 Off NaN NaN 0.00 0.00 
24 0.41 5.51 4.76 2.79 
On 0.68 7.57 6.55 5.65 24, On and 

Off 24<0 On<0 Off<0 6 Off 0.19 3.72 3.03 1.70 
Table 36. Price statistics for paths traded only by speculators   
 

 

For those paths that were traded by both hedgers and speculators it is interesting 

to contrast the price paid by the hedgers with the price received by the speculators. There 

were just a few paths (40) that had the same class of FTRs sold to both hedgers and 

speculators.  For most of the paths (25) that had trades by hedger and speculators for the 

same class of FTR, the price paid by hedgers was lower than the (weighted average 

weighted) price received by speculators.   
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Class Price Num 
Paths Class WAvgPrice 

Min 
WAvgPrice 

Max 
Wavg 

EAvgPrice 
Wstd 

WAvgPrice 

24 0.91 0.91 0.91 0.00 
Only 24H 24 > 0 and 24 < 0 1 24 0.87 0.87 0.87 0.00 

On 0.07 1.00 0.60 0.11 Only On-
peak On > 0 and On < 0 4 On 0.07 1.08 0.19 0.07 

Off 0.37 0.37 0.37 0.00 Only Off-
peak Off > 0 and Off < 0 1 Off 0.37 0.37 0.37 0.00 

Table 37. Price statistics for paths traded both by hedgers and speculators. Paths traded for only one 
class.  
 

Class Price Num 
Paths Class WAvgPrice 

Min 
WAvgPrice 

Max 
Wavg 

EAvgPrice 
Wstd 

WAvgPrice 

24 0.23 4.05 1.09 0.72 
On<0 8 On 0.77 6.27 3.00 4.14 

24 0.28 2.19 0.47 0.33 
On 0.61 3.34 1.97 1.88 

24 > 0 

On>0 & 
On<0 2 On 0.61 3.12 2.11 1.52 

24 0.16 0.61 0.30 0.02 24 < 0 
On>0 5 On 0.14 0.86 0.43 0.05 

24 3.51 3.51 3.51 0.00 
24 3.08 3.08 3.08 0.00 

On>0 1 On 5.16 5.16 5.16 0.00 
24 0.53 0.53 0.53 0.00 
24 0.58 0.58 0.58 0.00 

24H and On 

24 > 0 & 
24 < 0 

On<0 1 On 0.83 0.83 0.83 0.00 
24 0.79 0.79 0.79 0.00 24 > 0 

Off<0 1 Off 0.58 0.58 0.58 0.00 
24 0.61 0.61 0.61 0.00 

24 and Off 
24 < 0 

Off>0 1 Off 0.10 0.10 0.10 0.00 
On 0.10 1.84 1.03 0.31 

Off<0 7 Off 0.40 2.99 1.16 0.91 
On 0.21 0.93 0.75 0.09 
Off 0.22 0.68 0.61 0.03 

On > 0 

Off>0 & 
Off<0 2 Off 0.53 1.05 0.74 0.06 

On 0.08 4.92 2.08 1.88 
Off>0 12 Off 0.29 2.60 1.22 0.42 

On 2.44 6.95 3.66 4.00 
Off 1.23 3.08 2.46 0.76 

On < 0 

Off>0 & 
Off<0 2 Off 1.63 3.18 2.25 0.58 

On 0.55 2.86 0.76 0.29 
On 0.68 3.02 2.55 0.76 

Off>0 4 Off 0.25 1.22 0.69 0.18 
On 0.18 6.25 1.62 1.72 
On 0.60 4.92 1.11 1.71 

Off<0 9 Off 0.02 2.39 0.60 0.26 
On 0.15 5.94 5.84 0.55 
On 0.69 5.75 3.61 4.89 
Off 0.32 1.95 1.80 0.21 

On and Off 

On > 0 & 
On < 0 

Off>0 & 
Off<0 3 Off 0.68 1.98 0.86 0.17 

24, On and 24 > On < Off<0 5 24 0.56 4.17 0.93 0.12 
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On 1.42 6.42 2.24 1.26 0 

Off 0.17 2.29 0.57 0.22 
24 0.05 4.66 3.25 2.85 
On 0.08 6.96 5.07 7.75 
On 0.13 6.92 6.36 3.02 

Off>0 3 Off 0.04 2.68 1.88 1.00 
24 1.61 3.77 2.64 0.93 
On 2.39 5.72 4.94 0.75 
On 2.51 5.76 5.62 0.26 
Off 0.92 2.06 1.43 0.12 

0 

On > 
0 & < 

0 
Off>0 & 

<0 3 Off 0.97 1.96 1.54 0.14 
24 0.17 0.17 0.17 0.00 
On 0.23 0.23 0.23 0.00 24 < 

0 
On > 

0 Off>0 1 Off 0.16 0.16 0.16 0.00 
24 1.33 1.59 1.48 0.02 
24 1.27 1.58 1.45 0.02 
On 1.54 2.31 2.01 0.05 
On 1.98 2.33 2.15 0.03 

Off 

24 > 
0 & 
24 < 

0 

On > 
0 & 

On < 
0 Off<0 4 Off 0.85 0.98 0.91 0.00 

Table 38. Price statistics for paths traded both by hedgers and speculators. Paths traded for more 
than one class.  
 

7.7 Premium Paid  

The following tables show summary statistics of premiums paid per path, for 

different categories of paths organized by class of FTRs traded and type of market 

participants.  There were many paths traded by hedgers for only one class, for which the 

premium paid was negative (so these hedgers on average paid less for the FTR than what 

they received), and the total premium paid by hedgers for those paths sold exclusively for 

on-peak and off-peak hours was negative. However these “profits” made by hedgers were 

more than offset for the high premium they paid for those paths traded only for 24 hours. 

For those paths traded for more than one class the total premium paid for FTRs was 

positive except for FTRs for off-peak hours. 
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Class Price Num 
Paths Class 

Total 
Premium 

paid 

Num 
Paths 

with Pos 
Prem 

Average 
Pos 

Prem 

Num 
Paths 

with Neg 
Prem 

Average 
Neg Prem 

Num 
Paths 

with zero 
Prem 

Only 24H > 0 349 24 2.22E+07 246 5.52E+03 103 -1.55E+03 0 
Only On-

peak > 0 459 On -5.93E+05 192 2.03E+03 267 -1.49E+03 0 
Only Off-

peak > 0 475 Off -3.18E+05 192 9.90E+02 283 -1.19E+03 0 
  

 
24 6.00E+06 47 6.67E+03 6 -1.68E+03 0 24H and 

On 24 > 0 
On>0 53 On 1.58E+06 47 5.06E+03 6 -9.42E+02 0 

24 8.44E+06 30 3.98E+03 5 -2.07E+03 0 24 and Off 24 > 0 
Off>0 35 Off -2.98E+04 14 1.43E+03 21 -4.38E+02 0 

On 3.43E+06 87 2.15E+03 126 -1.31E+03 0 On and 
Off On > 0 

Off>0 213 Off 8.82E+05 78 5.95E+02 135 -9.51E+02 0 
24 3.44E+06 31 3.99E+03 19 -1.75E+03 0 
On 1.98E+06 31 3.16E+03 19 -9.89E+02 0 24, On 

and Off 
24 
> 0 

On 
> 0 Off>0 50 Off -3.32E+05 17 1.25E+03 33 -5.88E+02 0 

Table 39.  Premium statistics for paths traded by hedgers. Paths traded only one class. 
Table 40. Premium statistics for paths traded by hedgers. Paths traded for more than one class.  

For paths traded exclusively by speculators, the total premium paid was always 

negative (so speculators profited from the trades), but there were still a number of paths 

for which the average premium had positive sign. 

Class Price Num 
Paths Class 

Total 
Premium 

paid 

Num 
Paths with 
Pos Prem 

Average 
Pos 

Prem 

Num 
Paths with 
Neg Prem 

Average 
Neg Prem 

Num 
Paths with 
zero Prem 

< 0 92 24 -2.76E+06 21 1.14E+03 71 -3.83E+03 0 
Only 24 0 1 24 -2.00E+04 0 0.00E+00 1 -9.98E+02 0 

< 0 1,013 On -1.68E+07 123 1.44E+03 890 -4.23E+03 0 
Only On 0 3 On 2.56E+02 1 5.37E+02 1 -4.63E+02 1 

< 0 421 Off -2.86E+06 72 1.29E+03 349 -1.94E+03 0 
Only Off 0 3 Off 0.00E+00 0 0.00E+00 0 0.00E+00 3 

24 -3.90E+05 0 0.00E+00 2 -2.80E+03 0 24H and 
On 24<0 On<0 2 On -3.18E+05 0 0.00E+00 2 -2.58E+03 0 

24 -1.50E+04 0 0.00E+00 3 -2.87E+03 0 24 and 
Off 24<0 Off<0 3 Off -1.30E+04 0 0.00E+00 3 -6.35E+02 0 

On -7.46E+06 47 2.04E+03 293 -3.74E+03 0 
On<0 Off<0 340 Off -2.67E+06 90 1.02E+03 250 -1.71E+03 0 

On -1.62E+04 0 0.00E+00 3 -4.54E+02 0 
On and 

Off 

On=0 Off=0 3 Off -6.78E+04 0 0.00E+00 3 -1.26E+03 0 
24 -1.77E+06 0 0.00E+00 6 -5.85E+03 0 
On -3.14E+06 0 0.00E+00 6 -4.31E+03 0 24, On 

and Off 24<0 On<0 Off<0 6 Off -1.05E+06 0 0.00E+00 6 -1.56E+03 0 
Table 41. Premium statistics for paths traded by speculators. Paths traded for only one class 
Table 42. Premium statistics for paths traded by speculators. Paths traded for more than one class.   
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For those paths traded only for one class by both hedgers and speculators, total 

premium paid had the expected sign; positive for hedgers and negative for speculators. 

 

Class Price Num 
Paths Class 

Total 
Premium 

paid 

Num 
Paths 

with Pos 
Prem 

Average 
Pos 

Prem 

Num 
Paths 

with Neg 
Prem 

Average 
Neg Prem 

Num 
Paths 

with zero 
Prem 

24 1.60E+05 1 3.01E+03 0 0.00E+00 0 
Only 24H 24 > 0 and 24 < 0 1 24 -1.38E+05 0 0.00E+00 1 -2.59E+03 0 

On 2.43E+04 2 2.05E+03 2 -3.70E+02 0 Only On-
peak On > 0 and On < 0 4 On -2.04E+04 0 0.00E+00 4 -6.11E+02 0 

Off 3.23E+03 1 4.36E+02 0 0.00E+00 0 Only Off-
peak Off > 0 and Off < 0 1 Off -8.23E+02 0 0.00E+00 1 -4.11E+02 0 

Table 43. Premium statistics for paths traded by both hedgers and speculators. Paths traded for only 
one class 

 

For most of those paths traded for more than one class by both hedgers and 

speculators, total premium paid had the expected sign; positive for hedgers and negative 

for speculators. The only exceptions are premiums for the 13 paths highlighted in red in 

the table below. 

 

Class Price Num 
Paths Class 

Total 
Premium 

paid 

Num 
Paths 

with Pos 
Prem 

Average 
Pos 

Prem 

Num 
Paths 

with Neg 
Prem 

Average 
Neg Prem 

Num 
Paths 

with zero 
Prem 

24 2.77E+06 7 4.53E+03 1 -8.77E+02 0 
On<0 8 On -8.19E+04 0 0.00E+00 8 -3.80E+03 0 

24 1.43E+04 2 1.64E+03 0 0.00E+00 0 
On 5.64E+03 2 1.41E+03 0 0.00E+00 0 

24 > 0 

On>0 & 
On<0 2 On -4.49E+03 0 0.00E+00 2 -9.46E+02 0 

24 2.89E+04 5 1.16E+03 0 0.00E+00 0 24 < 0 
On>0 5 On -1.43E+05 0 0.00E+00 5 -1.53E+03 0 

24 5.27E+06 1 1.18E+04 0 0.00E+00 0 
24 -8.00E+04 0 0.00E+00 1 -8.00E+03 0 

On>0 1 On 4.91E+05 1 9.82E+03 0 0.00E+00 0 
24 3.19E+04 1 2.53E+03 0 0.00E+00 0 
24 -7.54E+04 0 0.00E+00 1 -3.02E+03 0 

24H and 
On 

24 > 0 
& 24 < 

0 

On<0 1 On -3.42E+03 0 0.00E+00 1 -2.28E+03 0 
24 5.46E+03 1 7.58E+02 0 0.00E+00 0 24 > 0 

Off<0 1 Off -3.62E+03 0 0.00E+00 1 -8.22E+02 0 
24 6.55E+02 1 1.98E+02 0 0.00E+00 0 

24 and Off 
24 < 0 

Off>0 1 Off -3.70E+03 0 0.00E+00 1 -5.29E+02 0 
On 1.13E+04 2 6.70E+02 5 -1.06E+03 0 On and Off On > 0 

Off<0 7 Off -4.07E+04 1 2.98E+02 6 -2.77E+03 0 
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On -7.41E+03 0 0.00E+00 2 -4.90E+02 0 
Off 4.29E+04 1 8.69E+02 1 -5.50E+01 0 Off>0 & 

Off<0 2 Off -2.84E+03 0 0.00E+00 2 -2.01E+03 0 
On -1.67E+05 1 6.62E+00 11 -2.93E+03 0 

Off>0 12 Off 5.68E+04 5 1.32E+03 7 -1.10E+03 0 
On -1.84E+05 0 0.00E+00 2 -7.60E+03 0 
Off 9.68E+03 2 8.63E+02 0 0.00E+00 0 

On < 0 

Off>0 & 
Off<0 2 Off -4.10E+04 0 0.00E+00 2 -2.03E+03 0 

On -3.53E+04 2 2.27E+03 2 -1.11E+03 0 
On -8.46E+04 1 6.26E+02 3 -1.80E+03 0 

Off>0 4 Off -2.06E+04 1 1.94E+02 3 -4.41E+02 0 
On 2.19E+04 5 4.11E+03 4 -1.02E+03 0 
On -3.99E+05 1 1.28E+03 8 -3.10E+03 0 

Off<0 9 Off -2.50E+04 2 1.21E+02 7 -1.86E+03 0 
On 2.81E+06 1 9.00E+03 2 -2.56E+03 0 
On -3.16E+04 1 4.58E+03 2 -4.96E+03 0 
Off 3.92E+05 2 1.35E+03 1 -2.17E+03 0 

On > 0 
& On < 

0 

Off>0 & 
Off<0 3 Off -6.34E+04 1 2.17E+03 2 -2.29E+03 0 

24 1.17E+06 5 4.05E+03 0 0.00E+00 0 
On -2.29E+05 0 0.00E+00 5 -3.61E+03 0 On 

< 0 Off<0 5 Off -4.22E+04 0 0.00E+00 5 -1.48E+03 0 
24 3.21E+06 3 5.09E+03 0 0.00E+00 0 
On 1.34E+07 3 4.11E+03 0 0.00E+00 0 
On -2.34E+05 0 0.00E+00 3 -4.29E+03 0 

Off>0 3 Off 1.57E+06 3 1.10E+03 0 0.00E+00 0 
24 2.05E+06 3 6.91E+03 0 0.00E+00 0 
On 5.97E+06 3 5.33E+03 0 0.00E+00 0 
On -4.71E+05 0 0.00E+00 3 -5.57E+03 0 
Off 1.49E+06 3 1.62E+03 0 0.00E+00 0 24 

> 0 

On 
> 0 
& < 
0 

Off>0 
& <0 3 Off -1.29E+04 0 0.00E+00 3 -1.69E+03 0 

24 6.13E+04 1 4.35E+03 0 0.00E+00 0 
On -5.16E+04 0 0.00E+00 1 -2.58E+03 0 24 

< 0 
On 
> 0 Off>0 1 Off -1.50E+04 0 0.00E+00 1 -1.50E+03 0 

24 1.98E+06 4 2.81E+03 0 0.00E+00 0 
24 -6.99E+04 0 0.00E+00 4 -2.69E+03 0 
On 5.41E+05 4 1.68E+03 0 0.00E+00 0 
On -6.56E+04 0 0.00E+00 4 -2.61E+03 0 

24, On and 
Off 

24 
> 0 
& 
24 
< 0 

On 
> 0 
& 

On 
< 0 Off<0 4 Off -1.25E+04 0 0.00E+00 4 -4.98E+02 0 

Table 44. Premium statistics for paths traded by both hedgers and speculators. Paths traded for 
more than one class. 
 

7.8 Effect of liquidity and competition on the FTRs premium  

In order to asses the effect that liquidity and competition in the FTRs market can 

have on the magnitude of the premium paid, we conduct a series of linear-regression 

analyses to elicit the relative value of the premium for each path (premium per MW 

divided by CRs per MW) as a function of the number of MWh traded, number of FTRs 
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traded and number of participants involved.  The number of transactions can be an 

indicator of how liquid the market of FTRs for a particular path is.  For those paths sold 

at a positive price, the amount of capacity sold and the number of participants involved is 

an indication of how much demand there is for a given path.  It is important to 

acknowledge that a much better indication of how much demand there is for a path, 

would be the number of total bids.  Cleared bids are only a portion of total bids (10% in 

PJM) and indicate not only how much demand there is for a path, but also how much 

capacity there is.  Nevertheless, with this caveat, we continue to regard number of FTRs, 

number of MWh traded, and number of participants involved as good indicators of 

market liquidity and competition.  

We hypothesize that the higher the competition among hedgers (higher number of 

participants and higher number of MWh sold), the higher the premium paid.  We also 

hypothesize that with higher liquidity (higher number of FTRs traded) there are more 

opportunities for “price discovery” and the lower the premium. In fact, a market 

participant can present several bids for the same FTR (same path, and same class), in the 

same round or in different rounds.  Keeping everything else constant, with a higher 

number of FTRs traded there are more opportunities for price discovery.  

The following table shows results of the regression analyses that explain the 

premium paid by hedgers, for those paths in which only hedgers participated and the 

average premium paid was positive, as a function of the number of FTRs, the Number of 

MWh traded, and the number of participants involved.  For those paths sold only for the 

class 24h, both the number of FTRs and the number of participants have coefficient 

estimates with the expected sign that are statistically significant (p-value < 0.05) and 
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marginally significant (p-value <0.1) respectively7. For the paths sold only for peak 

hours, the estimated coefficients for the 3 explanatory variables have the expected sign 

and are at least marginally significant.  For those paths sold only for off-peak hours only 

the coefficient for the number of MWh has statistical significance.  

NumFTRs NumMWh NumPart 
Trade 

Dependent 
variable 

Num 
Paths estimate p-value estimate p-value estimate p-value 

Only 
24h 

Prem 
24P/CRs 245 -0.02645 0.0172 

-5.82E-
08 0.6043 0.0803 0.0569 

Only 
On PremOnP/CRs 123 -1.4591 0.0003 4.11E-05 <.0001 2.2115 0.0951 
Only 
Off PremOffP/CRs 171 -0.3791 0.2356 1.00E-05 0.0033 0.2407 0.8086 

Table 45. Coefficient estimates for explanatory variables of the premium. Paths traded only by 
hedgers, for only one class, and where the premium paid was positive. Estimate of constant term is 
positive 

 

For those paths sold for both 24 and peak hours, the three variables are 

statistically significant to explain the premium for 24 hours, and two of the variables are 

statistically significant to explain the premium for peak hours.  In the other cases the 

coefficients are non significant.  

NumFTRs NumMWh NumPart 

Trade 
Dependent 

variable 
Num 
Paths estimate p-value estimate 

p-
value estimate p-value 

Prem 24P/CRs 47 -0.0355 0.0052 2.42E-07 <.0001 0.1169 0.0253 
24 & On PremOnP/CRs 47 -0.0523 0.0015 6.95E-08 0.0877 0.2366 0.0007 

Prem 24P/CRs 30 Not enough observations 
24 & Off PremOffP/CRs 13 Not enough observations 

PremOnP/CRs 76 -0.0459 0.1272 3.21E-07 0.1693 0.1522 0.4222 
On & Off PremOffP/CRs 76 0.0283 0.3307 -1.92E-07 0.4201 0.0059 0.9631 

Prem 24P/CRs 31 0.0117 0.3645 -3.70E-08 0.5723 -0.1022 0.061 
PremOnP/CRs 31 0.0057 0.656 -8.52E-08 0.1924 -0.0072 0.8911 

24,On&Off PremOffP/CRs 14 Not enough observations 
Table 46. Coefficient estimates for explanatory variables of the premium. Paths traded only by 
hedgers, for more than one class, and where the premium paid was positive. Independent variables 
are totals. Estimate term is positive  

 

                                                 
7 All coefficient estimates and p-values measure Type III effects, that is the effect of each independent variable after the 
effects of the other variables have been taken in to account. (Used Proc GLM SAS/STAT 8.2). 
Freund, R. J., R. C. Littell, et al. (1991). SAS System for linear Models. Cary, NC, SAS Institute Inc. 
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For the paths sold only to hedgers, we hypothesize that more competition (higher 

number of market participants, and higher number of MWh sold) would decrease the 

premium. We also hypothesize that a higher number of transactions (keeping the number 

of participants constant) implies that speculators have more opportunity to increase the 

premium, by making several bids for the same path and discovering how high the price 

can be.  

Table 47 shows the coefficient estimates and the p-values for the regression 

equations that explain the average premium paid by speculators (a negative quantity) for 

a given path, as a function of the number of FTRs, Number of MWh and Number of 

Participants.  The estimate of the intercept of the regression equation is negative in all 

cases.  We expect the estimate of Number of FTRs to be negative, so it makes the 

premium more negative (speculators are receiving more money), and the coefficients of 

Number of MWh and Number of participants to be positive, so the premium less negative 

(implying that speculators receive less money).  For those paths sold only to speculators 

for 24 h and where the average premium was negative (speculators on average guessed 

well the direction of transmission congestion), both number of FTRs and Number of 

participants have coefficient estimates that have the expected sign and are statistically 

significant. 

NumFTRs NumMWh NumPart 

Trade 
Dependent 

variable 
Num 
Paths estimate p-value estimate 

p-
value estimate p-value 

Only 
24h Prem 24N/CRs 53 -1.0976 <.0001 5.45E-07 0.7598 3.6769 0.0016 
Only 
On PremOnN/CRs 788 0.4126 0.4616 8.61E-06 0.5906 -0.6224 0.7463 
Only 
Off PremOffN/CRs 292 -0.3312 0.9227 1.02E-04 0.4191 -2.8549 0.7998 

Table 47. Coefficient estimates for explanatory variables of the premium. Paths traded only by 
speculators, for only one class, and where the premium paid was negative. Estimate of intercept is 
negative  
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For the paths that were sold only to speculators for on and off-peak hours, the 

total number of FTRs sold per paths is significant and has the expected sign in the 

regression equation explaining the premium for FTRs for on-peak and off-peak hours.  

The coefficient estimate for Number of Participants has the expected sign and is 

statistically significant for the regression equation that explains the premium for on-peak 

hours.  The coefficient estimate Number of MWh is significant and has the expected sign 

in the regression equation that explains the premium for FTRs sold for off-peak hours. 

For other categories of paths that were sold only to speculators for more than one 

class there are less than 30 paths and the regression analysis was not performed. 

NumFTRs NumMWh NumPart 
Trade 

Dependent 
variable 

Num 
Paths estimate p-value estimate p-value estimate p-value 

PremOnN/CRs 340 -0.2381 0.0085 
-6.34E-

07 0.3416 0.8577 0.0643 On & 
Off PremOffN/CRs 340 -0.278 0.0068 1.31E-06 0.0834 0.5874 0.2637 

Table 48. Coefficient estimates for explanatory variables of the premium.  Paths traded only by 
speculators, for On and Off-peak hours  
 

 

7.9 Relation between premium obtained and variability of the hourly CRs for 

each path. 

The objective of this analysis is to assess the impact that variability of hourly CRs 

for a given path have in the value of the premium paid for corresponding FTRs. The 

following table presents mean, standard deviation and percentiles of the summary 

statistics of hourly congestion rents for each path. Despite the fact that the 3,7678 paths 

analyzed have positive annual CRs, the table shows that at least 5% of the paths had 

hourly CRs averaging a negative value. The mean standard deviation of hourly CRs 

                                                 
8 For the 166 paths for which there were FTRs that implied conflicting expectations about the sign of annual CRs, we 
define the path in the direction in which annual CRs are positive. 

 124



among paths is 4.59, and the kurtosis is always positive.  The coefficient of variation is 

higher than 1 (in absolute value) for all paths. 

Percentiles 
 

Num 
Paths Mean 

Std 
Dev 99% 95% 90% 75% 50% 25% 10% 5% 1% 

Mean 3,767  
    
1.10  

      
1.27  

      
5.02  

      
3.84  

      
3.14  

    
1.56  

    
0.60  

    
0.22  

    
0.02  

    
(0.10) 

      
(0.44) 

Std Dev 3,767  
    
4.59  

      
2.52  

    
11.73  

      
8.96  

      
7.74  

    
6.15  

    
4.36  

    
2.78  

    
1.63  

     
1.01  

       
0.29  

Kurtosis 3,767  
  
96.64  

  
332.72  

  
814.63 

  
348.55 

  
189.03 

  
90.69 

  
31.98 

  
18.28  

  
10.96  

     
8.92  

       
6.28  

Average 
Deviation 3,767  

    
2.32  

      
1.59  

      
6.88  

      
5.22  

      
4.50  

    
3.28  

    
2.03  

    
1.08  

    
0.59  

     
0.28  

       
0.10  

Coefficient 
of 
Variation 3,767  

  
13.44  

  
317.93  

  
147.93 

    
38.12  

    
18.60  

    
9.30  

    
4.51  

    
2.62  

    
1.58  

  
(15.28) 

  
(150.45) 

Table 49. Summary of mean and variability statistics of hourly congestion rents for all paths for 
which there where Obligations FTRs traded. The number of hours analyzed for each path is 8784.  

 

7.9.1 Premium obtained and variability of the hourly CRs for each path. 

Is there a relationship between the premium paid or obtained and the variability of 

hourly CRs?  To investigate this question, we conducted a regression analysis that 

attempts to explain the value of the premium as a function of the variability of the hourly 

congestion rents, controlling for other factors that  we already know might affect the 

value of the premium, such as liquidity (Number of FTRs) and competition (Number of 

MWh and Number of participants).  To represent the variability of hourly CRs, we chose 

the Coefficient Of Variation. 

The next box summarizes the results of the regression analysis for those paths 

sold only for Hedgers for 24 hours, for which the premium was positive (245 paths).  As 

seen there, accounting for liquidity of the market and competition, the estimate of the 
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coefficient for the Coefficient of Variation of hourly CRs is positive and statistically 

significant.  This means that keeping liquidity and competition for a path constant, the 

ratio of the premium per MW to CRs paid by hedgers increases by 0.04 for each unit of 

increment in the Coefficient of Variation. 

Dependent Variable: Prem24P_CRs   Prem24P/CRs 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        4     30.39337992      7.59834498      31.13    <.0001 
       Error                      240     58.58264529      0.24409436 
       Corrected Total            244     88.97602521 
 
 
                    R-Square     Coeff Var      Root MSE    Prem24P_CRs Mean 
                   0.341591      102.8287      0.494059            0.480468 
 
                                                     Standard 
             Parameter               Estimate           Error    t Value    Pr > |t| 
 
             Intercept           0.3059198032      0.04960926       6.17      <.0001 
             NumFTRs             -.0218926501      0.00915033      -2.39      0.0175 
             NumMWh              -.0000000766      0.00000009      -0.82      0.4106 
             NumPart             0.0742147329      0.03481247       2.13      0.0340 
             CoeffVar_HouCRs     0.0414107271      0.00393718      10.52      <.0001 

 

Table 50. Results Multiple Regression Analysis for those paths sold only to hedgers, for 24 hours. 
Only paths with positive premium were included in the analysis.   
 
 

A similar analysis for those paths sold only to speculators for 24 hours show the 

same effect of the variability of hourly CRs on the value of the premium.  The premium 

received by speculators increases with the coefficient of variation of hourly CRs9.   It is 

important to note that for those paths traded only for 24h, the effect of the Coefficient of 

Variation on the premium received by speculators is more than 4 times the effect of the 

same variable on the premium paid by hedgers (abs(-0.1697) vs abs(0.0414)). 

                                                 
9 As before, increasing the premium received by speculators means making it more negative.  Therefore the coefficient 
estimate for the Coefficient Of Variation of hourly CRs is expected to be negative, as it is in fact. 
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Dependent Variable: Prem24N_CRs   Prem24N/CRs 

 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        4     329.2605851      82.3151463      23.55    <.0001 
       Error                       48     167.7621718       3.4950452 
       Corrected Total             52     497.0227570 
 
 
                    R-Square     Coeff Var      Root MSE    Prem24N_CRs Mean 
                    0.662466     -96.21732      1.869504           -1.943002 
 
                                                     Standard 
             Parameter               Estimate           Error    t Value    Pr > |t| 
 
             Intercept           -2.002430132      0.78170849      -2.56      0.0136 
             NumFTRs             -0.367128219      0.20057030      -1.83      0.0734 
             NumMWh               0.000000528      0.00000123       0.43      0.6707 
             NumPart              2.610466395      0.77949521       3.35      0.0016 
             CoeffVar_HouCRs     -0.169716635      0.02329810      -7.28      <.0001 

Table 51. Results Multiple Regression Analysis for those paths sold only to Speculators and only for 
24h. Only Paths with negative premium  

 

The effect of the coefficient of variation on the premium paid by hedgers, for 

those paths sold for both 24 hours and on-peak hours is positive and significant, so the 

higher the coefficient of variation, the higher the premium paid. 

 

Dependent Variable: Prem24P_CRs   Prem24P/CRs 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        4      5.59751879      1.39937970      59.11    <.0001 
       Error                       42      0.99439332      0.02367603 
       Corrected Total             46      6.59191211 
 
 
                    R-Square     Coeff Var      Root MSE    Prem24P_CRs Mean 
 
                    0.849149      32.01655      0.153870            0.480596 
 
                                                     Standard 
             Parameter               Estimate           Error    t Value    Pr > |t| 
 
             Intercept           0.1593371313      0.04153330       3.84      0.0004 
             NumFTRs             0.0060253142      0.00914509       0.66      0.5136 
             NumMWh              -.0000000742      0.00000004      -1.71      0.0943 
             NumPart             -.0566835130      0.03822750      -1.48      0.1456 
             CoeffVar_HouCRs     0.1175171873      0.01441594       8.15      <.0001 

Table 52. Results Multiple Regression Analysis for those paths sold only to hedgers, both for 24 and 
on-peak hours. Only Paths with positive premium were included in the analysis  
 

 

The effect of the coefficient of variation on the premium paid by hedgers, for 

those paths sold for both 24 hours and off-peak hours is negative and significant, so the 

higher the coefficient of variation the higher the premium received by speculators. 
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Dependent Variable: Prem24P_CRs   Prem24P/CRs 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                        4      2.24901510      0.56225378      11.33    <.0001 
       Error                       25      1.24092571      0.04963703 
       Corrected Total             29      3.48994081 
 
 
                    R-Square     Coeff Var      Root MSE    Prem24P_CRs Mean 
 
                    0.644428      61.81643      0.222794            0.360412 
 
 
                                                     Standard 
             Parameter               Estimate           Error    t Value    Pr > |t| 
 
             Intercept           -.1469364850      0.17375652      -0.85      0.4058 
             NumFTRs             0.0228357581      0.01550297       1.47      0.1532 
             NumMWh              0.0000000276      0.00000003       0.97      0.3419 
             NumPart             -.0789762038      0.05626472      -1.40      0.1727 
             CoeffVar_HouCRs     0.1706192738      0.02913114       5.86      <.0001 

Table 53. Results Multiple Regression Analysis for those paths sold only to hedgers, for both 24 
hours and Off-peak hours. Only paths with positive premium were included in the analysis.  
 
 

8 Conclusions 

As explained in Chapter 2, the stated objective of FTRs in regions like PJM, is to 

provide transmission users with an instrument that allows them to hedge against volatile 

congestion costs.  FTRs, by definition, provide a perfect hedge for LSE and generators, 

when their power transactions are for the same point-to-point and in the same MW 

quantity as the FTR, however, the level of hedging of a market participant depends on his 

ability to 1) anticipate which FTRs will be needed and 2) buy them in the market. Only 

73% of the ARRs requested were allocated in 2003 and only 20% of the capacity bid for 

FTR buy obligations in the annual auction cleared (PJM 2004), which means that the 

ability to hedge against transmission congestion charges cannot be taken for granted. 

If the ability to hedge cannot be taken for granted, a fair price for such hedge is 

not guaranteed either.  The market participants that will offer the hedge are for profit 

institutions with the intention of benefiting as much as possible from their trades. Many 

of them have experience as speculators in financial markets and claim to have an 
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advantage in the way they do quantitative analysis to profit from market opportunities. 

The two market participants that made the higher profits in the annual auction engaged in 

speculative activity and made money not only by bearing the risk of future transmission 

congestion buying obligations at a negative price, but also by reselling FTRs in different 

rounds of the option.  Both market participants state in their mission that they act as 

market makers, “exploit market opportunities” and “strike the balance between risk and 

return”. 10

The presence of pure speculators and their relative success are both good and bad 

news.  The market makers provide a service allowing others to fulfill their hedging needs 

and might help in the process of price discovery.  The bad news is that without proper 

competition, the profits of these speculators could become excessive and add a significant 

extra cost to risk-averse transmission customers. Moreover, the money paid for 

transmission congestion that goes to the pockets of speculators is money that leaves the 

system and will not contribute towards the goal of a better transmission grid.   

The approximately $7 millions that we attribute in this analysis as profits of the 

speculators (from the annual auctions) represent  about 8% of the $8811 million paid by 

those who bought obligation-FTRs at a positive price, and only 1.4% of the $499 reported 

congestion costs for PJM during 2003.  However this quantity is a source of concern if 

we consider that there is a tendency for congestion costs to increase (Transmission 

congestion costs in PJM increased 16% from 2002 to 2003) and with higher congestion 

charges there will be more reasons for transmission customers to demand FTRs and more 

opportunities for speculators to demand high compensations.   
                                                 
10 See information about market participants 8 and 5 in appendix. 
11 %88 million is the sum is the sum paid for Obligation-FTRs purchased at a positive price in table 6. 
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  FTRs reduce uncertainty about future transmission costs and in some cases make 

power trades possible that otherwise would not take place.  In this sense FTRs are a 

contributing factor of competition in the electricity market and their costs are justified if 

they are lower than the benefits they carry. Also, if the prices of FTRs truly reflect the 

risk on future transmission congestion, they provide valuable information that can be 

used by the ISO in the assessment of transmission capacity needs. 

There is no easy way to assess the benefits of the FTRs because we do not have 

information about the trades that would not have happened if they did not exist, or about 

the outcomes of the decisions that would be taken in the absence of the information that 

FTRs provide.  Consequently, to asses the goodness of FTRs, at this stage we can only 

try to assess if FTR markets are efficienty, by determining if the premium paid for FTRs 

corresponds to the implied risk they help to hedge against.   

With the analysis of this chapter is has become clear that the variability of CRs is 

highly correlated to the relative premium of the corresponding FTRs, but it is also clear 

that demand and supply have also a significant impact, as well as the level of 

opportunities for price discovery.  We have shown that the higher the demand for a hedge 

(e.g. competition among hedgers) the higher the price of an FTR, and similarly, the 

higher the supply of a hedge (e.g. competition among insurers), the lower the price of an 

FTR.  We have also shown that the higher the number of trades by hedgers, the lower the 

price they pay, but the higher the number of trades by speculators, the higher the price 

they get.   

Despite the high variability in hourly congestion rents, there is enough regularity 

during a year as to make the sign of the annual sum of congestion rents not that difficult 
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to forecast.  Market participants trying to hedge against congestion made a mistake about 

the sign of congestion in a just a few cases; representing 3.4% of the FTRs obligations 

purchased.  The transactions in which speculators had an extra profit (by getting positive 

CRs) represented about 14% of the FTR obligations purchased by them,  

The low chances of having an FTR obligation that renders CRs with an opposite 

sign of the purchasing price validate the concept of “obligations as hedging instruments”.  

When market participants are almost sure about the direction of congestion, but unsure 

about the size they will hedge with obligations.  The trade of options makes more sense 

for those “paths” for which the direction of transmission congestion is uncertain and 

market participants want to protect against the chances of CRs being negative.  We do not 

have yet a formula that relates the price of an FTR option with the variability of its 

potential CRs.   

The fact that speculators profited also from reselling FTRs, may indicate that it is 

not impossible to forecast not only the direction but also the size of transmission 

congestion with enough accuracy as to make almost sure profits. The scarce number of 

trades per path, and in particular the low competition between speculators makes likely a 

deviation of the premium paid for FTRs from a fair value that reflects the uncertainty 

involved.   
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Chapter 4: The fair value of an FTR 

 

1 Introduction 

In Chapter 3 we showed that prices paid for FTRs are, on average, significantly 

larger than the average congestion costs they cover.   

Our findings are similar to those found on empirical studies on NYISO market. 

Authors of such studies have raised the question of whether this finding is a result of 

market inefficiencies or perhaps strong risk aversion.   

Although there are many reasons to believe that there are inefficiencies in FTR 

markets (Deng et al, 2004), we argue that the premium is not completely due to this 

cause.  For market participants who need to back their electricity schedules, FTRs are a 

way to pay a fixed price for congestions instead of being exposed to volatile congestion 

costs, and in this way FTRs provide a risk reduction. Because hedging and risk reduction 

always come at a cost, the fact that FTRs are sold at a price that exceeds the expected 

congestion charges is not surprising. 

We state that the theory of rational options, in particular the concept of “risk 

neutrality”, can be used to find the fair price of the premium paid for FTRs.  In this 

Chapter we present a method of calculating this price. 

This application can be extended to other situations in which a fixed price is paid 

to avoid some uncertainty. 
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2 FTRs as hedging instruments: 

As explained in Chapter 2, FTRs represent both a right and a liability.  Holders of 

FTRs have the right to receive the difference in LMP from the ISO when it is positive, 

but they also have the obligation to pay the ISO when the difference is negative.  In the 

majority of the cases, an FTR that produces negative rents is also sold at a negative price.  

This can be interpreted as if market participants who schedule transactions that create 

counter flow on congested lines were paid in advance for this service a quantity equal to 

the price of the FTR.   

For those market participants whose FTR holdings match their energy schedules, 

FTRs provide an exact hedge against the volatility in congestion costs, even when they 

pay a positive price for an FTR and collect negative rents.  Even in this case, holders end 

up paying only the price of the FTR for congestion, since the negative rents are offset by 

the extra money they get from having a higher LMP at the injection point than at the 

withdrawal point. 

In our analysis of the results of the PJM Annual Auction of FTRs of Chapter 3, 

we showed that in general, buyers of FTRs at a positive price paid more for the FTR than 

what they received in CRs, and buyers of FTRs at a negative price were paid more in 

advance for the obligation than the CRs they had to pay. Furthermore, our analysis of 

Chapter 3, showed that if we combine some information about the identity of market 

participants and their observed behavior in the FTR auctions, we can clearly identify 

hedgers and speculators playing in the market.  
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The existence of hedgers and speculators using FTRs allows us to propose the 

idea that the prices of FTRs should naturally include a premium (that will be paid by 

hedgers and received by speculators). 

We argue that because FTR transactions provide risk reduction for one party the 

price of FTRs should not be the expected value of congestion costs.  If there were no risk 

reduction involved, one could view the FTR as a kind of future on congestion costs. The 

FTRs would converge toward the average value of the congestion costs between the two 

points.   However, FTRs do provide risk reduction and therefore their price will deviate 

from the expected value of congestion costs by a quantity that will depend on the 

magnitude of the risk reduced.  For those market participants who buy FTRs at a negative 

price, the premium will go to their pockets for agreeing to bear a volatile liability.  For 

those market participants who buy FTRs at a positive price, then the premium will be the 

price they pay in exchange for reducing the risk they face in their energy transactions. 

 The question we pose here is whether we can compute a fair value for the premium, 

FTR hedgers should pay.   

2.1 Options theory and the price of FTRs 

It turns out that even though FTRs are not options (we are referring in this 

Chapter to FTR-obligations only), the theory of risk neutral valuation of options can be 

used to calculate the fair value of the risk reduction provided by FTRs compared to the 

congestion costs.  

FTR obligations can be a liability if congestion rents turn out to be negative. 

However, most hedgers buy FTR obligations for those paths for which the direction of 
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transmission is almost certain, and buy FTR-options for those “paths” for which the 

direction of transmission congestion is uncertain. Because of the reasons explained 

above, we can see FTR obligations as risk reduction instruments and price them as 

options in the way explained in Chapter 1.  We can apply the formulae obtained in 

section 3.1 of  Chapter 1, where C represents the uncertain congestion costs, P represents 

the fair value of the FTR-obligation, and H represents the premium that FTR buyers are 

willing to pay to reduced the risk associated with C.  

 

3 The pdf of the Annual Sum of hourly Congestion Rents: 

In Chapter 3 we presented evidence that FTRs hedgers pay a premium for the 

reduction of the risk this instrument provides; and in the previous section we explained 

how the arguments of Chapter 1 can be used in the framework of FTRs.   A natural next 

step in our analysis is to investigate how the model fits with actual data. 

Given the uncertainty on the total congestion cost over the period of time covered 

by the FTR, EQ. 13 “predict” what on average that premium should be. The observed 

values of the premium paid and received by FTR buyers should be distributed around this 

expected value.  

Our EQ.13 imply that the value of the premium is completely defined by the size 

of the pdf of C, . A real test of the validity of our approach would require that the 

value of  is derived independently for each FTR and shown to correspond to the 

one suggested by the value of the premium paid.   

)(cfc

)(cfc
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There is one limitation that makes fully validating the theory from the data impossible: 

the data necessary to estimate  does not exist today and may never exist. )(cfc

To estimate the expected value and volatility of the annual congestion costsC , it 

would be necessary to have many observations of these costs, or in other words, many 

years worth of data.  FTR markets have been operating for only a few years.  Even if we 

waited to have a good sample of observations of , the fact that the pattern of congestion 

is affected by changes of the grid (addition of new transmission lines, introduction of new 

nodes, changes in the demand pattern, or appearance and disappearance of electricity 

generation plants, etc) would make questionable the validity of the data.   

C

Nevertheless, we can use the observation of the hourly values of the congestion 

costs during a year, to estimate the pdf of annual congestion costs C.  

3.1 A bootstrap approach to estimate the distribution of annual CRs 

In the sections that follow, we describe how we implement our version of a 

bootstrap approach to find the distribution of annual CRs from the observation of hourly 

CRs for one year.  A bootstrap is a computer-intensive method to do statistical inference 

based on the distributions of sample statistics (Simon 1997; Moore 2003; Hesterberg 

2005).  In the case described here, the bootstrap will consist of finding the distribution of 

a statistic (the sum of all observations) based on a large “sample” (that is obtained from 

our understanding of only one observation). 

The whole idea consists of finding a way to express the hourly CRs as a function 

of deterministic variables and random variables with known distributions, so we can 

simulate many years of hourly CRs as if they were different observations of the same 

 137



year. Once we have each year realization, we find the annual sum and obtain a sample of 

annual sums from which we are able to derive a distribution. 

We generate 1,000 sequences of 8,784 values for hourly CRs corresponding to 

one year. Then for each year’s simulation we sum all hourly CRs to obtain the annual 

CRs, so we obtain 1,000 “observations” for a year from which we can obtain an empirical 

version of the distribution of annual CRs.  

The algorithm followed for determining the distribution of annual CRs for a path has 

five steps: 

 Step 1: Find a function that describes hourly CRs.  

 )8784..2,1(),,( ∈∀= tRYXfyt

where X represents independent variables that help to explain the mean and the 

variability of hourly CRs, Y represents the information of all previous t, and R represents 

a random component. 

Step 2: Simulate a sequence of the form  878421 ˆ,...,ˆ,ˆ yyy

Step 3: For the simulated sequence, calculate the sum of annual CRs for 24 hours, 

on-peak hours, and off-peak hours. Let be the annual CRs for 24 hours, represented in 

sequence j. Then .  Similarly let , and be the annual CRs for on-peak 

and off-peak hours respectively.   Let be an indicator variable of whether hour t is a 

peak hour or not, so if hour t is a peak hour, and = 0 otherwise.  Then we have that 

and . 
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Step 4: Go back to step 2 until j=1,000. 

Step 5: Analyze observations of ω , , and to find an empirical version of 

their distribution.  

Onω Offω

3.2 Analysis of hourly CRs. 

A wide body of literature on models of spot electricity prices (for markets around 

the world) seems to back the idea that mean-reverting and seasonal components (Barlow 

2002) must be included to efficiently capture the part of the prices that can be predicted.  

To account for the high kurtosis of these prices (that makes unusually high, and unusually 

low values likely) several authors have proposed incorporating time-varying volatility 

and/or jumps in the models, with times of occurrence, sizes and durations determined by 

different stochastic processes (Weron, Simonsen et al. 2003) (Rambharat, Brockwell et 

al. 2005). For the variable we care about (hourly differences in the day-ahead (forward) 

electricity prices between two nodes) mean-reversion and seasonality may also play a 

role, but the effect of jumps might be canceled.  Instead the time-varying volatility might 

do a better job, replicating the real price process. 

In what follows we analyze congestion rents using time-series analysis 

methods(Brockwell and Davis 1996).  We will denote with yt(k) the congestion rents for 

path k at hour t . As said before hourly CRs differ with path and type of hour, but in 

general exhibit a very high variability for all paths, as shown in Table 49 of Chapter 3. 

Hourly CRs exhibit daily, weekly and monthly seasonality but are stationary.   

As an example of the characteristics of hourly congestion rents, the following 

graph shows hourly CRs for path 526.  Path 526 refers to the combination of POI 94 and 
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POW 395, which is among the paths most heavily traded (with trades of buy-obligation 

FTRs made by 12 market participants) and with highest prices per MWh (in the 95% 

percentile). 

 

Figure 1. Hourly Congestion Rents for Path 526 
 

The fact that the series of hourly CRs for this path is stationary and does not need 

any differentiation is confirmed by the Dickey-Fuller test, which allows us to reject the 

hypotheses that the time series has a unit root, and a seasonal root with p-values<0.0001 

(Dickey (1976) 1994).  

A typical histogram of for the paths for which there were FTRs traded looks 

very close to the one of path 526, shown in Fig 2.  The observations are skewed to the 

ty
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right of the mean, and the tails (specially on the right side) are long. 
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Figure 2. Hourly Congestion Rents Path 526 
 

A scatter plot of the hourly CRs for a path, shows that there is seasonality and 

autocorrelation.  A chi-square test allows us to soundly reject the hypothesis that the 

process of hourly CRs is white noise (p-value <0.0001).   

Furthermore, as it could be expected, hourly CRs exhibit autocorrelation, that is 

linear correlation between the hourly CRs observed at a certain hour and the observations 

in previous hours.  The following plot presents the average linear autocorrelation of 
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hourly CRs for path 526, for the first 24 lags.  The correlation is very high for lag 1 and 

reaches its lowest point at lag 12, where it starts increasing again. 

                                         The ARIMA Procedure                                           
                                                                                                       
                                       Name of Variable = P526                                         
                                                                                                       
                                  Mean of Working Series    4.536474                                   
                                  Standard Deviation        6.862824                                   
                                  Number of Observations        8784                                   
                                                                                                       
                                                                                                       
                                           Autocorrelations                                            
                                                                                                       
    Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1      Std Error      
                                                                                                       
      0     47.098355        1.00000    |                    |********************|             0      
      1     42.950048        0.91192    |                    |******************  |      0.010670      
      2     38.890611        0.82573    |                   .|*****************   |      0.017412      
      3     34.634072        0.73536    |                   .|***************     |      0.021411      
      4     30.179083        0.64077    |                   .|*************       |      0.024115      
      5     25.838759        0.54861    |                   .|***********         |      0.025981      
      6     21.556252        0.45769    |                   .|*********           |      0.027268      
      7     17.307977        0.36749    |                   .|*******             |      0.028129      
      8     13.427181        0.28509    |                   .|******              |      0.028671      
      9     10.155965        0.21563    |                   .|****                |      0.028992      
     10      7.566257        0.16065    |                   .|***                 |      0.029174      
     11      5.686627        0.12074    |                   .|**                  |      0.029274      
     12      4.600074        0.09767    |                   .|**                  |      0.029331      
     13      4.445700        0.09439    |                   .|**                  |      0.029368      
     14      5.031845        0.10684    |                   .|**                  |      0.029402      
     15      6.411424        0.13613    |                   .|***                 |      0.029447      
     16      8.467019        0.17977    |                   .|****                |      0.029518      
     17     11.356560        0.24112    |                   .|*****               |      0.029642      
     18     14.475074        0.30734    |                   .|******              |      0.029865      
     19     17.552119        0.37267    |                   .|*******             |      0.030223      
     20     20.663646        0.43873    |                   .|*********           |      0.030742      
     21     23.613150        0.50136    |                   .|**********          |      0.031446      
     22     26.125277        0.55470    |                   .|***********         |      0.032343      
     23     28.089798        0.59641    |                   .|************        |      0.033409      
     24     29.134898        0.61860    |                   .|************        |      0.034600      
                                                                                                       
                                    "." marks two standard errors                                    

Table 1. Autocorrelation plot for hourly congestion rents for path 526. 
 

If yt(k) for t=1,2,..8784 were independent and identically distributed (iid) random 

variables, following a known distribution, it would be possible to derive analytically the 

probability distribution function of the annual congestion rents for path k, C(k). For 

example, if we had that yt(k) were iid~ ),( kkN σμ , then C(k)~ )8784,8784( kkN σμ .  

However, as it has been shown, there is autocorrelation in the data, and therefore a good 

argument to try to express Yt with a time-series model. 

3.3 Modeling hourly CRs as an ARMAX Time-series model with GARCH errors 

Because data of CRs is constituted by observations that have been recorded every 

hour, the evolution of CRs can be analyzed using methods for the analysis of discrete 
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time series.  The goal of this analysis is to find a way to express hourly CRs as a function 

of available information constituted by previous observations and independent variables.  

If we find a good model that allows us to generate hourly CRs, we can simulate a year 

worth of data many times and infer from there the distribution of the annual sum. 

 Out of several linear time-series models tried, the one with best-fit statistics is 

one that includes the hourly aggregated load of PJM and an Autoregressive Moving 

Average model with seasonal components or ARMA(1,1)(1,1)s.  The model is 

represented by the following equation: 
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Where represents the CRs for hour t, is the aggregated load at PJM 

east at hour t, in MW, and 

tY tLoadPJME

μ , β , 1φ , 24φ , 1θ , 24θ are the parameters for the seasonal 

ARMA model that includes  as a regressor.  The last term  is a random 

variable that is normally distributed with mean zero and variance . Because of the 

presence of an independent variable X (in this case the aggregated load at PJM at time t, 

or ), this model can be called an ARMAX model.  Different methods can be 

used to find the parameter estimates that minimize the error or maximize the likelihood of 

the observations Y

tLoadPJME tE

2σ

tLoadPJME

t.  

The parameter estimates obtained for Path 526, using the Conditional Least 

Squares (CLS) method are shown in the following table1: 

                                                 
1 The term conditional is used because the forecasts are computed by assuming that the unknown values of the response 
series before the start of the data are equal to the mean of the series. Thus, the forecasts are conditional on this 
assumption. . The CLS estimates are conditional on the assumption that the past unobserved errors are equal to 0. CLS 
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Conditional Least Squares Estimation                                   
                                                                                                       
                                   Standard                 Approx                                     
      Parameter      Estimate         Error    t Value    Pr > |t|     Lag    Variable    Shift        
                                                                                                       

     μ    -5.56619       1.21185      -4.59      <.0001       0    P526            0        

     1θ             0.04896       0.01208       4.05      <.0001       1    P526            0        

     24θ           0.75566       0.01492      50.66      <.0001      24    P526            0        

     1φ                                       0.89345       0.0054400   164.24      <.0001       1    P526            0        

     24φ                          0.90661       0.0096541    93.91      <.0001      24    P526            0        

     β                 0.0003113    0.00003325     9.36      <.0001       0    PJM_E           0        

                                                                                                       
                                                                                                       
                                   Constant Estimate      -0.05538                                     
                                   Variance Estimate      6.724398                                     
                                   Std Error Estimate     2.593145                                     
                                   AIC                    41673.95                                     
                                   SBC                    41716.44                                     
                                   Number of Residuals        8784                                     

Table 2. Conditional Least Squares Estimation 
 

The p-values for each parameter confirm the idea that all the independent 

variables are significant.  

A linear regression of the values of onto the values of the estimation obtained 

with the proposed model  for path 526 has an R-squared of 0.96.   The same model was 

tested for other 45 paths, and in all but one case R-Squared was 0.7 or more.  Although 

the model seems to explain a good portion of the volatility of hourly congestion rents, the 

residuals still exhibit autocorrelation and therefore do not meet the condition of being 

white noise (WN).   

tY

tŶ

A scatter plot of the residuals of the ARMAX model shows that there is 

heteroskedasticity, that is that the variance of the residuals is not constant.  Furthermore, 

there seems to be “volatility clustering” in the sense that large residuals seem to be 

                                                                                                                                                 
estimates are found minimizing the sum of squared residuals that is the difference between the prediction and the real 
observation for each t.  
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together.  The following graph presents the residuals obtained when we fit the proposed 

model to path 526. 

 

Figure 3. Residuals of the ARMAX model for path 526 
 

For path 526, an autocorrelation check of the residuals makes clear that the 

residuals are correlated. Using a  test, the hypothesis of no autocorrelation has to be 

rejected for lags higher than 12, as the next table shows. 

2χ

Autocorrelation Check of Residuals                                   
                                                                                                       
      To        Chi-             Pr >                                                                  
     Lag      Square     DF     ChiSq    --------------------Autocorrelations--------------------      
                                                                                                       
       6        5.90      2    0.0524    -0.000    -0.000     0.023    -0.008     0.003     0.008      
      12       25.77      8    0.0012    -0.022     0.005    -0.008     0.004    -0.022    -0.034      
      18       48.64     14    <.0001    -0.017    -0.015    -0.019    -0.038    -0.015     0.005      
      24      196.99     20    <.0001    -0.008     0.018     0.044     0.036     0.086     0.076      
      30      232.19     26    <.0001     0.046     0.034     0.018     0.012     0.014     0.003      
      36      237.50     32    <.0001     0.015     0.005    -0.000     0.014    -0.012     0.004      
      42      252.26     38    <.0001    -0.011    -0.026    -0.013    -0.025    -0.007    -0.006      
      48      309.53     44    <.0001     0.011     0.013     0.018     0.021    -0.006    -0.074      

Table 3. Autocorrelation Check of Residuals 
 

 145



Equivalently, the Engle’s test for the presence of ARCH effects allows us to reject 

the hypothesis that the residuals time series are a random sequence of Gaussian 

disturbances. (p-value <.0001 for lags 1,6,12,18,24,30,36,42 and 48). 

Squared residuals also exhibit autocorrelation. The test for the null hypothesis 

that squared residuals are not autocorrelated is rejected with  p-value <.0001 for lags 

1,6,12,18,24,30,36,42 and 48). 

2χ

The autocorrelation found in the residuals after the ARMAX model has been fit, 

may be due to the presence of extreme values in the hourly CRs data and also perhaps, 

the lack of some relevant information to predict hourly CRs.  The fact that residuals are 

not WN might also mean that CRs follow a “long memory” process and that more 

parameters need to be included in the model.   

  The following graph shows the histogram of the residuals for the ARMAX 

model for path 526.  As it can be seen, residuals are centered at zero, and there are long 

tails. 
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Figure 4. Histogram of Residuals of the ARMAX model for path 526 
 

To account for the excess kurtosis observed in the histogram of residuals, and the 

volatility clustering observed in its scatter plot, we fit a General Autoregressive 

Conditional Heteroskedasticity (GARCH) model(Bollerslev 1986; Bollerslev 1987)to the 

residuals. After fitting the model, we will be able to generate the variance of the ARMAX 

prediction’s error at a given point in time, as a function of the variance of previous errors. 

The model chosen to describe the variance of the residuals has one ARCH term, 

two ARCH seasonal terms, and one GARCH term.  Therefore the variance for the error at 

time t can be expressed as: .   2
4848

2
2424

2
11

2
11

2
−−−− ++++= ttttt EEEk γγγσασ

The estimates of the parameters , k 1α , 1γ , and 24γ are found assuming that  is 

normally distributed with mean 0 and variance equal to .  Although it would be 

tE

2
tσ
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possible to assume different distributions for , we assume a normal distribution to ease 

the computation requirements. 

tE

The following graph shows 1) Congestion Rents for path 526, 2) the residuals of 

the ARMAX model , 3) the corresponding standard deviation , and 4) the 

standardized residuals / .  From the graph, it can be concluded that the GARCH 

model helps in the description of the volatility of the residuals of the ARMAX model. As 

it can be observed from the graph, standardized residuals are stable and do not present 

cluster volatility.  Furthermore, the test for the null hypothesis that standardized 

residuals are not auto correlated cannot be rejected for lags 1 to 12. 

tE tσ

tE tσ

2χ

 

Figure 5. Congestion Rents - Residual ARMAX model – Conditional Standard Deviation from 
GARCH (P=1, Q=1,24,48) – Standardized Errors 
 

 148



3.3.1 Estimation of the distribution of Annual CRs 

The histograms of 10,000 realizations of annual CRs for path 526 are shown 

below.  For annual CRs for 24 hours, the minimum, maximum, mean and standard 

deviation are 37,803, 40,060, 38,966, and 316 respectively. The null hypothesis that the 

distribution of annual CRs for 24 hours is normally distributed cannot be 

rejected2(Jarque-Bera Test: p-value = 0.8530 (Judge, Hill et al. 1985)). 

 
Figure 6. Histogram Simulated Annual CRs for Path 526. 24 hours 
 

The histogram for annual CRs for on-peak hours for path 526 is shown in Fig.7.  

The minimum, the maximum, the average, and the standard deviation are 18,424, 27,554, 

                                                 
2 The null hypothesis that the distribution of annual CRs for 24 hours is normally 
distributed cannot be rejected either, for 43 out of 45 paths tested. Same result is obtained 
for the distributions for on-peak and off-peak hours. 
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23,131, and 1,140 respectively.  The hypothesis that annual CRs are normally distributed 

cannot be rejected (Jarque-Bera Test: p-value=0.8724). 

 

Figure 7. Histogram Simulated Annual CRs for path 526. On-peak hours 
 

The histogram for annual CRs for off-peak hours is shown in Fig.8.  Again, we 

cannot reject the hypothesis that the distribution is normal (Jarque-Bera Test: p-value = 

0.3379).  The minimum, maximum, average, and standard deviation of annual CRs for 

off-peak hours are    11,629, 20234, 15,836, and 1,122 respectively.   
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Figure 8 Histogram Simulated Annual CRs for path 526. Off-peak hours 

 

3.4 Modeling hourly CRs as an ARMAX time-series model with residuals drawn 

from an empirical distribution 

Although the use of a GARCH model seems appropriate to model the residuals of 

the ARMAX model, it would be convenient to have a simpler way of modeling such 

residuals that allowed the estimation of the function that determines them in a shorter 

time.  Since our goal is to find a prediction of hourly CRs for many paths (about 4,000 for 

the 2003-2004 auction in PJM), avoiding the use of models that require long computation 

times becomes a priority.  
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In order to simulate a year of hourly CRs with a model simpler than GARCH, we 

let Et, be a random draw from an empirical version of the probability distribution 

function of the observed residuals.  

To characterize the error in the ARMAX model we first find an empirical version 

of its probability density function.   

The corresponding empirical Cumulative Distribution Function (cdf) derived from 

the observations of the ARMAX errors for path 526 is shown in the plot below. 

 

Figure 9. Empirical cdf of ARMAX residuals for path 526 
 

To simulate one observation of Et, we use the method of the inverse cdf, which 

consists of generating an uniform random variable between 0 and 1, and then assigning to 

Et, the corresponding value in the inverse cdf.  In other words 
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)(ˆ 1
tt uFE −= where is the inverse empirical cdf and ~ . )(1

tuF −
tu )1,0(uniform

 This method allows us to preserve the same distribution of errors observed in the 

model. However, the different realizations of Et generated in this way are one 

independent from the other, and this contradicts our observation of autocorrelation in the 

residuals.  Although this can lead to errors in the estimations of hourly congestion rents, 

its impact might not be very important on the annual sum.  If nothing more, results 

obtained with this method will be useful as a point of reference for a comparison with 

results from other methods to simulate annual CRs.  

To find a distribution of the annual CRs we simulate 1,000 realizations of a year 

of hourly CRs, using the following equation: 

 

tttttt

tttttt
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For t<25, we assume that any unobserved Yt is equal to the overall mean miu. 

An histogram of the simulated annual CRs is shown in the following graph. 
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Figure 10. Histogram Simulated Annuals CRs. 24 Hours 
 

The minimum, maximum, mean and standard deviation of annual CRs for this 

path are 38,330, 40,552, 39,475, and 282 respectively.  The null hypothesis that annual 

CRs follow a normal distribution cannot be rejected. (Jarque-Bera Test: p-value=0.9955) 

   
The following graph shows the results of 10,000 simulated values of annual CRs 

for on-peak hours. 
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Figure 11. Histogram Simulated Annual CRs. On-peak hours 
 

The minimum, maximum, mean and standard deviation of annual CRs for this 

path are 19,472, 26,932, 23,350, and 987 respectively.  The null hypothesis that annual 

CRs follow a normal distribution cannot be rejected. (Jarque-Bera Test: p-value=0.8995) 

 
The following graph shows the histogram of the 10,000 “observations” of annual 

CRs for off-peak hours.   
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Figure 12. Histogram Simulated Annual CRs. Off-peak hours 
 

The minimum, maximum, mean and standard deviation of annual CRs for this 

path are 12,521, 19,841, 16,125, and 990 respectively.  The null hypothesis that annual 

CRs follow a normal distribution cannot be rejected (Jarque-Bera Test: p-value=0.7208). 

3.5 Modeling Hourly CRs as random variables following empirical distributions 

based on type of hour and month. 

In this section we try another version of the bootstrapping to get the distribution 

of annual CRs.  We partition the sequence of 8,784 hours observed in 24 slots and treat 

each subgroup as a sample of iid variables, to infer a probability distribution.  Then we 

generate a “year” of observations by randomly drawing an appropriate number of hours 

from the 24 empirical distributions. 
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The partition is based on month and type of hour. Since there are 12 months and 

two different types of hours (on-peak and off-peak) the hourly CRs are partitioned in 24 

subsets that should be somewhat homogeneous. 

To simulate a year of hourly CRs we generate each hour from the corresponding 

empirical distribution.  For example to generate the month of June, we take 464 random 

draws from the empirical distribution of on-peak hours of June and 256 random draws 

from the empirical distribution of off-peak hours of June. We do the equivalent for each 

month until the 8,874 hours have been generated.  Then we sum the 8,874 observations 

and take the result as one observation of annual CRs.  We repeat the procedure many 

times as described above. 

Even though we would expect CRs for the same month and type (on-peak or off-

peak) be somewhat similar, the variability of each of the 24 distributions (but specially 

those corresponding to on-peak hours) is quite high.  In many cases, the standard 

deviation exceeds the mean and the range is very large.  The hypothesis that the 

distribution is normal is rejected for the 24 cases (Jarque-Bera test p-value<.00001).  The 

following table shows summary statistics of the 24 subgroups of hourly CRs for path 526. 

Num Hours Min Max Mean St dev 
Month Off On Off On Off On Off On Off On 

Jun 384 336 -5.2 -7.44 18.41 48.97 2.86 7.17 4.61 9.04 
Jul 376 368 -3.31 -4.56 31.98 64.14 6.21 11.21 6.6 9.14 
Aug 408 336 -0.01 -0.01 34.29 31.45 5.05 6.53 6.22 5.35 
Sep 384 336 -1.18 -1.72 39.68 23.54 4.39 7.18 7.21 5.78 
Oct 376 368 -2.97 -4.67 36.16 30.45 4.19 6.14 8.12 7.17 
Nov 416 304 -2.96 -0.99 22.74 27 1.52 4.06 3.43 4.81 
Dec 392 352 -2.75 -3.53 16.13 20.23 0.88 3.58 2.24 3.83 
Jan 408 336 -9.08 -3.21 21.06 40.2 3.15 5.49 5.32 6.91 
Feb 376 320 -2.06 -0.95 19.08 9.59 1.59 1.34 2.92 1.8 
Mar 376 368 -6.02 -4.14 33.23 28.13 1.98 3.55 6.73 6.28 
Apr 368 352 -3.53 -2.97 19.02 21.83 1.15 6.16 2.97 5.15 
May 424 320 -3.05 -6.38 35.55 46.97 3.12 12.79 6.91 11.61 
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Table 4. Summary Statistics of the 24 subgroups of hourly CRs for path 526 
 

A histogram of 1,000 “observations” of annual CRs for path 526, obtained with 

the method of the 24 empirical distributions is shown below.  The minimum, maximum, 

mean and standard deviation of annual CRs for this path is 40,769, 46,272, 43,520, and 

865 respectively.  The null hypothesis that annual CRs follow a normal distribution 

cannot be rejected. (Jarque-Bera Test: p-value=0.7686).  

 

Figure 13. Histogram Simulated Annual CRs for Path 526. 24 hours 
 

The histogram of annual CRs for off-peak hours is displayed below. The 

minimum, maximum, mean and standard deviation of annual CRs for this path are 

13,650, 16651, 15,122 and 486 respectively.  The null hypothesis that annual CRs follow 

a normal distribution cannot be rejected. (Jarque-Bera Test: p-value=0.2669). 
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Figure 14. Histogram Simulated Annual CRs for Path 526. Off-peaks hours 
 

The histogram of annual CRs for on-peak hours is displayed below. The 

minimum, maximum, mean, and standard deviation of annual CRs for this path are 

26,517, 30,276, 28,397, and 543 respectively.  The null hypothesis that annual CRs 

follow a normal distribution cannot be rejected. (Jarque-Bera Test: p-value=0.3724). 
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Figure 15. Histogram Simulated Annual CRs for Path 526. On-peak hours 
 

The distribution of the annual CRs simulated with our method of the empirical 

distributions seems to be normal, for 24 hours, on-peak and off-peak hours.  This result is 

not exclusive of path 526, but what we would expect from any path after applying the 

Central Limit Theorem -CLT (Feller 1945) and a property of the sum of normal 

distributions.   

In its most simple form, the CLT states that the distribution of the sum of 

independent and identically distributed random variables with meann μ and finite 

variance , tends to be normal with mean2σ μn  and variance , as  approaches 

infinite. 

2σn n
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Therefore, if we generate the CRs corresponding to a given type of hour and 

month as independent draws from the same distribution its sum, will be normally 

distributed.   

Also, if X and Y  are normally distributed with means Xμ , Yμ , and variances 

 , , then 2
Xσ 2

Yσ YX + is also normally distributed with mean YX μμ + and variance 

.   22
YX σσ +

Hence the generation of annual congestion rents as the sum of monthly CRs (each 

being generated as a sum of iid rv, and therefore being normally distributed) can be 

described with a normal distribution.   

This observation allows us to characterize the distribution of annual CRs for 24 

hours, for all paths as normally distributed with mean and variance 

 where , represents the number of hours of type  in month 
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4 Comparison of methods to find the distribution of annual CRs 

     All the methods presented to estimate the distribution of annual CRs are 

different and could lead to different estimations of the fair value of CRs. Because there is 

evidence that hourly congestion rents are not iid, the methods that express the value of 

congestion rents at one hour as a function of past values should be preferred.  However, 

the time that the estimation of the necessary parameters takes, precludes at least for this 

dissertation its use for all the 3,601 paths.   In this section we compare results for 45 
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paths, in order to understand better how the estimation methods differ, and how this 

affects the final estimation of the fair value of the FTR 

4.1 Comparison of methods from sections 3.3, 3.4 and 3.5. 

We applied the methods of section 3.3 and 3.4 to estimate the distribution of 

annual CRs for 45 selected paths, assuming 1) an ARMAX process with a GARCH error 

and 2) an ARMAX process with an error sampled from an empirical distribution.   

Results show that for most of the cases, the distribution of annual CRs can be 

assumed to be normal, and the methods of Chapter 1 for a normal distribution can be 

applied (For the methods of section 3.3., out of the 45 paths analyzed, the hypothesis of 

normality was rejected for 2 paths for 24 hours, 2 paths for on-peak hours and 3 paths for 

off peak hours –no path had the hypothesis of normality rejected for the 3 distributions-.  

For the methods of section 3.4., out of the 45 paths analyzed, the hypothesis of normality 

was rejected for 7 paths for 24 hours, 3 paths for on-peak hours and 2 paths for off peak 

hours).   

Because under the assumption of a normal distribution, the fair price of the FTR 

depends only on the coefficient of variation, we compare the coefficients of variation 

obtained with the methods of sections 3.3 and 3.4 to those obtained with methods of 

section 3.5.  Under the assumption of CRs following a normal distribution, a higher 

coefficient of variation implies a higher fair price of the FTR. 

The following graphs show a comparison of the coefficient of variation estimated 

with methods of section 3.3, 3.4 and 3.5, for each class of FTRs.  We include a path in 

the comparison of Coefficients of Variation for a class, when the distribution of CRs can 
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be assumed normal.  Paths are included in the three different graphs, when the 

distribution of the congestion rents for that class can assumed to be normal, even if there 

were no trades for that particular class of FTR 

In general the coefficients of variation obtained with the three methods follow the 

same pattern. For CRs for 24 hours, the coefficients of variation obtained with the 

method of CLT are higher.   
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Coefficients of variation of CRs for 24 hours. Selected paths 

Figure 16. Coefficient of Variation of Annual CRs for 24 hours.  
 

Coefficients of variation obtained for annual CRs for on-peak hours are in general 

lower when CLT is invocated. 
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Figure 17. Coefficient of Variation of Annual CRs for On-peak.  
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Coefficients of variation of CRs for off-peak hours. Selected paths 

Figure 18. Coefficient of Variation of Annual CRs for Off-peak.  
 

There is not a clear tendency for the coefficient of variation obtained for off-peak 

hours when CLT method is applied, relative to the other two methods.   

For those paths for which corresponding CRs cannot be assumed to follow a 

normal distribution, the estimation of the fair value of the FTR has to be made by solving 

EQ. 13c from Chapter 1. 
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5 The fair value of FTRs for all paths assuming annual CRs are normally 

distributed (Standard deviation of CRs is found using methods of section 3.5) 

In this section we present an estimation of the fair price of FTRs for all paths, 

based on the estimation of the distribution of annual CRs using methods from section 

3.53, under which, the resulting distribution is normal and the fair price of a premium a 

linear function of the coefficient of variation according to the findings of Chapter 1. 

The following table summarizes information about the estimated coefficient of 

variation (sigma/expected value of CRs) of annual CRs that would be generated for each 

path with the method of the 24 empirical distributions and the invocation of the CLT, 

explained in section 4.  As explained in section 4, the generation of CRs for each hour as 

independent draws from an empirical distribution implies that the distributions of annual 

CRs are normal.  

 
Estimated Coefficient of Variation 

Annual CRs 
 24 hours On-peak Off-peak 
Minimum 0.017 0.015 0.020 
5% percentile 0.026 0.022 0.032 
25% percentile 0.041 0.036 0.047 
Median 0.074 0.068 0.075 
75% percentile 0.159 0.146 0.156 
95% percentile 0.686 0.506 0.785 
Maximum 164.064 191.037 13,640.000 

Table 5. Estimated coefficient of variation of annual CRs 
 

From the previous table, the coefficient of variation for annual CRs for 24, on and 

off-peak hours, is less than 0.08 for half the paths, and 0.8 for 95% of the paths.  From 

our results of Chapter 1 for a normal distribution a coefficient of variation of 0.08 implies 

                                                 
3 In the appendix of this section we compare the fair value of the FTR versus the value observed in the auction, when 
the fair value is based on 1) an estimation of distribution of CRs assuming an ARMAX model with errors coming from 
an empirical distribution, and 2) an estimation of distribution of CRs assuming an ARMAX model with GARCH 
errors. 
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a fair price of the FTR of 1.022 times the expected value of annual CRs, and a coefficient 

of variation of 0.8 implies a fair price of 1.22 times the expected value of annual CRs.  If 

our estimation of the probability distribution of annual CRs is correct, and if trades 

occurred at fair prices, then we should not observe prices more than 20% above the 

expected price of the corresponding CRs. 

In what follows, we compare the real prices observed in the auction, to the fair 

price predicted by our formula ( ) σσ 2760.0, +≅ CCPnormal  presented in Chapter 1, 

assuming the expected value of annual CRs is equal to the real CRs observed.  This 

assumption is strong, but is the only reasonable assumption we can make in the absence 

of more data. 

The comparison is made by path for each class of FTR, and both for hedgers and 

speculators.  As explained in Chapter 3, we call hedgers those market participants who 

paid for the FTR and later received the corresponding CRs, and speculators/insurers those 

who were paid to hold the FTR and later paid back the corresponding CRs.   Those paths 

for which the holder did not guess correctly the direction of the congestion were excluded 

from the analysis.  

For 24-hour FTRs, the price of FTRs was closely correlated to the fair price, but 

substantially higher.  Hedgers paid on average 1.33 times the fair price as seen in the 

following graph. 
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Figure 19. Fair Price Vs Price Paid by Hedgers 
 

There were very few cases of speculation with 24 hours FTRs, as explained in 

Chapter 3. (There were only 102 paths).  For those cases, the average price received by 

speculators was more than 40% higher than the fair price. 
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Figure 20. Fair Price Vs Price Received by Speculators 
 

For on-peak FTRs, there is also high correlation between the fair price and the 

price received.  As for 24h FTRs, the price observed in the auction is higher than the fair 

price predicted by our method. 

Hedgers paid on average 20% more than the fair price for on-peak FTRs, as seen 

in the following graph. 
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Figure 21. Fair Price Vs Price Paid by Hedgers 
 

Speculators received on average a price more than 30% higher than the fair price, 

as seen in the following graph. 
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Figure 22. Fair Price Vs Price Received by Speculators 
 

The only case in which the price observed in the auction is lower than our 

predicted fair price is the case of off-peak FTRs bought by hedgers.  Hedgers paid only 

90% of the fair price of off-peak FTRs. 
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Figure 23. Fair Price Vs Price Paid by Hedgers 
 

The price received for off-peak FTRs by speculators is only 11% higher than the 

fair price.  The correlation between real and fair price is 0.9 which is the lowest for all the 

cases analyzed. 
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Figure 24. Fair Price Vs Price Received by Speculators 

 

6 The Fair Value of FTRs when these are seen as protection against monthly CRs: 

So far we have treated FTRs as instruments to hedge against annual CRs.  This 

conceptualization seems reasonable because the payment for holding FTRs is in fact the 

annual sum of hourly congestion rents, but is not the only possible way to look at these 

contracts.  It is very likely, that because transmission customers are billed monthly, they 

might see annual FTRs as a bundle of hedges against 12 monthly congestion costs. 

Treating FTRs as insurance against annual costs vs as insurance against monthly 

costs for the whole year might have an important impact in the estimation of the fair 

value of the FTR.  If we agree that it is reasonable to expect the sum of the variability of 
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monthly CRs to be higher than the variability of annual FTRs, then we will agree that the 

fair price of FTRs when seen as protection against monthly CRs will be higher than when 

these are seen as protection against annual CRs.    

Under the framework of FTRs as insurance against 12 uncertain future costs, the 

fair price of an FTR P is given by: 

( ) ( )∑
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12
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Where  represents the probability density function of CRs for month i and )( ic cf
i

( ))( ic cfP
i

is the value of an FTR that covers CRs for month i, given by equation 13 in 

Chapter 1.  Furthermore we could see FTRs as protection against 24 different uncertain 

costs, for each hour-class (on or off-peak) and month. 

We could estimate the probability density function of monthly CRs, using a 

bootstrap approach as we did to estimate the probability density function of annual CRs.  

We would need to find the empirical distribution of hourly CRs for each month (and 

class, e.g. peak or off-peak hour) and then use this distribution to obtain several 

“observations” of monthly CRs.  The use of ARMAX models like the two presented in 

previous sections would most likely be useful to represent hourly CRs during a month, 

but the estimation of the parameters for the 12 different months for each of the 3,601 

paths presented in previous sections would imply long computation times, inconvenient 

for the time frame of this dissertation. Therefore with the intention of illustrating only 

how the estimation of the FTR fair price would change with this approach, we choose to 

assume that the distribution of monthly CRs are normal with mean and std 

)( ic cf
i

)( ic cf
i
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deviations equal to those observed for the corresponding months and hour class during 

the period 2003-2004, and use EQ.13 to calculate the fair value of the FTR. 

The following plots show a comparison for each path between the estimate of the 

fair value of an FTR when this is seen as protection against monthly CRs and the average 

observed price.  

The two following plots compare the estimate of the fair price of the FTR as the 

sum of the fair price of 24 FTRs that provide protection against monthly CRs for peak 

and off-peak hours, and the average observed price for all the FTR transactions that 

occurred for that path.   
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Figure 25. Fair price vs average price paid for paths traded exclusively by hedgers for 24-hours. 
Assume FTRs are seen as protection against monthly CRs. 
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The slopes of the lines that relate Fair Price and Price Paid, is less far from 1, than 

the slope calculated for the same paths when the fair price was estimated assuming with 

methods of section 5.  For those paths traded by hedgers, the slope moves from 1.3317 

(in figure 19) to 1.3189 (in figure 25), while for those paths traded by speculators, the 

slope moves from 1.4122 (in figure 20) to 1.3922 (in figure 26). 
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PriceReceived = 131.5386 + 1.3922*FairPrice. ρ=0.92956. 102 paths.

 
Figure 26. Fair price vs average price paid for paths traded exclusively by speculators for 24 hours. 
hours. Assume FTRs are seen as protection against monthly CRs. 
 
 

The following two plots show a comparison between the average price of FTRs 

for those paths traded for on-peak hours, and the estimate of the fair price found by 

applying the methods of this section.  Again the slopes of the lines that relate Fair Price 

and Price Paid, is closer to 1 than the slope calculated for the same paths when the fair 

price was estimated with methods of section 5.  For those paths traded by hedgers, the 
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slope moves from 1.2032 (in figure 21) to 1.1853 (in figure 27), while for those paths 

traded by speculators, the slope moves from 1.3131 (in figure 20) to 1.2931 (in figure 

28).

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104 Price of On-peak FTRs. Fair Price Vs Price Paid By Hedgers

Fair Price ($)

P
ric

e 
P

ai
d 

($
)
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Figure 27. Fair price vs average price paid for paths traded exclusively by hedgers for on-peak 
hours. Assume FTRs are seen as protection against monthly CRs. 
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Figure 28. Fair price vs average price paid for paths traded exclusively by speculators for on-peak 
hours. Assume FTRs are seen as protection against monthly CRs. 
 

 

For those paths traded for off-peak hours by hedgers, the slope of the LS line 

between the estimate of the fair price and the average of the observed price is farther than 

1, than what it was when the estimate of the fair price was found with methods of section 

5. The slope moves from 0.89712 (in figure 23) to 0.88207 (in figure 29).  For those 

paths traded by speculators for off-peak hours, the tendency is the same as for the 

previous 4 cases analyzed; fair price and average of the observed price seem closer than 

when the estimates were given by those of section 5. The slope moves from 1.1151 (in 

figure 24) to 1.0942 (in figure 30). 
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Figure 29. Fair price vs average price paid for paths traded exclusively by hedgers for off-peak 
hours. Assume FTRs are seen as protection against monthly CRs. 
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Figure 30. Fair price vs average price paid for paths traded exclusively by speculators for off-peak 
hours. Assume FTRs are seen as protection against monthly CRs. 
 
 
 

7 Conclusions: 

We proposed a framework to estimate the fair or risk neutral value of the FTRs. 

To find a precise estimate of that fair value poses a challenge, both because of lack of 

timely and consistent data and the changing conditions of the grid.  

Attempting to overcome the absence of data about annual CRs, we used three 

different methods to estimate its distribution, based on the observation of hourly data on a 

year.  Two of the methods require intensive computations and were only applied to 45 

paths.  The premiums predicted by these methods are in average much lower that the real 

prices observed. 
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A third method that assumes hourly CRs are independent random variables, 

makes use of the Central Limit Theorem to conclude that annual CRs are normally 

distributed and estimate the corresponding parameters. The estimates of the standard 

deviation for each path, using this method, were used to estimate the fair price of the 

FTRs.   Altough fair and real prices are highly correlated, the real price is on average 

higher than the fair one, with the only exception of the FTRs traded by hedgers for off-

peak hours. 

Our predictions of a fair price need to be taken with care, not only because the 

method used to estimate the distribution of annual CRs is not infallible, but also, because 

the fair price depends heavily on the assumed expected value, which in our case is the 

observed value of CRs.  This assumption is quite strong, but is our only alternative in the 

absence of better data.   

In some years it will be possible to make an analysis that uses an estimation of the 

expected value and variance observed by the market participants before they participate 

in the auction, to predict a fair value.  A comparison of such prediction with the real 

price, will be a better test of our method. 

Given the size and nature of the uncertainty that the market participants currently 

face, and given the fact that auctions naturally select those whose willingness to pay is 

the highest, the observed price of FTRs may reflect their fair value. However we cannot 

rule out the possibility of higher risk aversion on the side of the hedgers, and the 

existence of strong market inefficiencies, as it has been discussed in Chapter 3. 

This Chapter not only presents a way to estimate the value of reducing the 

exposure to risk in the context of FTR markets, but it also illustrates how the methods of 
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option theory can be used for a much wider set of problems, even when the random 

variable of interest has an unknown probability distribution. Because the derivation of the 

mathematical formulae underlying this approach does not assume any specific properties 

for the source of the uncertainty, the framework can be used in very different settings.   
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Part Three: Other applications of options theory to value risk-

reduction in the electricity industry 
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Chapter 5: The Value of Installing an Emissions Control 

Device to Reduce Emissions from a coal-fired power plant 

 

1 Introduction 

Coal-fired power units account for more than 50%1 of U.S. electricity generation 

and are the single biggest source of air pollution in the U.S.  Changes in regulations 

controlling emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), mercury (Hg), and 

carbon dioxide (CO2) in the atmosphere will pose a serious challenge to the electricity 

generation sector and especially to coal-fired power plants. 

Currently, SO2 and NOx emissions from power plants are regulated by a 

combination of command-and-control (CAC) and cap-and-trade (CAT) instruments, 

depending on pollutant and plant location.  Until recently there were no regulations 

controlling mercury emissions, but on March 15, 2005, the U.S. Environmental 

Protection Agency (EPA) issued the Clean Air Mercury Rule to permanently cap and 

reduce mercury emissions from coal-fired power plants across the U.S. by more than 

70%. This rule assigns states a number of allowances, and requires each state to present a 

plan to keep emissions within their budget.2  Further, while the current administration 

will not support CO2 regulations in the near future, most experts believe that federal 

                                                 
1 Electricity supply from coal accounted for 54% in 2001.  EIA forecasts that under reference case assumptions, this 
tendency will remain in the next 20 years. 
DOE/EIA. (2004). "Annual Energy Outlook 2004." 2005, from http://eia.doe.gov/oiaf/aeo/pdf/aeotab_16.pdf. 
2 http://www.epa.gov/mercury/control_emissions/ 
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controls on greenhouse gas (GHG) emissions for U.S. power plants will eventually be 

required.3

The reduction of emissions from the electricity generation sector implies either 

retrofitting existing coal-fired power plants or replacing them with newer and cleaner 

technologies.  Retrofitting existing coal plants to reduce emissions of sulfur-oxides, 

nitrogen-oxides, mercury, or carbon-dioxide requires equipment that is expensive to 

install and operate, and therefore the goal of reducing emissions inevitably conflicts with 

the goal of keeping electricity prices at their current level. 

 Policy makers might obtain important information from the analysis of how those 

trying to comply with regulations will evaluate their alternatives and make their choices.  

Because compliance decisions must be made under tremendous uncertainty, and imply 

significant financial risk, there is an opportunity in this problem to use the rational theory 

of options valuation exposed in Chapter 1.    

The objective of this chapter is to illustrate with a simplified example how the 

“option” metaphor applies in the context of investment for air-emissions compliance, and 

how the methods of options-valuation can inform policy making in these field.  Section 2 

describes the difficulties that arise when the decision maker is deciding how to make its 

coal-fired power plant comply with air emissions regulations. 

                                                 
3 International treaties and recent laws appear to foretell Federal Controls: Consider for example: the State of New 
Hampshire House Bill 284-FN relative to additional emissions reductions from existing fossil fuel burning steam 
electric power plants http://www.gencourt.state.nh.us/legislation/2002/hb0284.html.   
Oregon Carbon Dioxide Emission Standards for New Energy Facilities, House Bill 3283. 
http://www.leg.state.or.us/97reg/measures/hb3200.dir/hb3283.a.html.   
State of Massachusetts DEP Regulation 310 that caps CO2 emissions from the six highest polluting power plants in 
1,800lbs of carbon dioxide per megawatt-hour. 
http://yosemite.epa.gov/globalwarming/ghg.nsf/actions/LegislativeInitiatives
California Automobiles/lemon law AB1058. http://www.dca.ca.gov/legis/2001 autolemon.htm 
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2 Investment decisions for compliance with air-emissions regulations for coal-

fired power plants.  

Under a CAT approach, the regulator sets a cap for the pollutant and issues an 

equivalent number of emission permits, or allowances, which can be traded in the market.  

Under the Acid Rain Program, the EPA allocates allowances to existing generating units 

for free, in a quantity determined by historical heat-rate input.  Units are authorized to 

emit as many tons of pollutant as allowances have been allocated. Because, the number of 

allowances allocated covers only a portion of their emissions, individual plant operators 

must decide whether (a) install emissions control equipment, (b) buy “emissions 

allowances” in the market, or (c) reduce the electricity output (so less emissions are 

generated). 

 Often, units that install Environmental Control Devices (ECD) end up emitting 

less pollutant than what they have been allowed.  Unused emissions allowances can be 

sold in the market, or if allowed they can be banked for use in future years.  Generating 

units that end up with emissions over the number of allowances held must purchase 

allowances and pay a fine for each ton.4   To make a choice about whether and when to 

install emissions-control equipment, decision makers have to consider the expected cost 

of compliance for each of the possible alternatives, which depends on the capital and 

operating cost of ECDs, number of allowances allocated, level of emissions, and price of 

allowances.  Many uncertainties difficult the evaluation of the different compliance 

options: 

                                                 
4 Fines were $2,000 per ton of SO2 in 2004. 
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2.1 Uncertainty in future regulations. 

The current number of allowances allocated for each pollutant is known by 

generator, but the number of allowances that will be allocated in future years is highly 

uncertain.  As it has been mentioned, significant changes in the future air-emissions 

regulations are expected but neither the timing nor the stringency is known.  This 

uncertainty essentially charges a toll, because waiting to decide until all legislative, 

regulatory, and judicial uncertainty is resolved can prove costly, but “locking in” an 

emission-control technology too soon could prove equally expensive. On one hand, 

plants might face stringent regulations without being prepared and could be forced to buy 

expensive emission allowances.  On the other hand, the installment of a particular control 

technology can preclude or make more expensive the option to install newer technologies 

more efficient or better suited for updated regulations.   

Regulatory uncertainty can be very costly.  In previous work (Patiño Echeverri 

2003), reproduced in Appendix 5, we proposed  a method to compute the expected cost 

of regulatory uncertainty for coal-fired plants for a set of plausible regulatory scenarios 

with attached probabilities.  Under this approach, each plausible regulatory scenario 

determines plants’ emissions, price of allowances, and fuel prices, so when a regulatory 

scenario is realized there are no more uncertainties.  We illustrated in a then current case 

study of a 500 MW coal-fired power plant that optimal ECD installment decisions in the 

face of such uncertainty could result in expensive investments that may never be used.  

The total cost of regulatory uncertainty over a 30 year period for this case study was $40 

million or 20% of the cost of a new coal-fired plant of the same size.  In the illustration 

 189



included in this chapter we account for regulatory uncertainty by shortening the time the 

ECD is expected to operate. 

2.2 Uncertainty in unit emissions 

The emissions of an electricity-generating unit are proportional to the power 

output and therefore cannot be predicted with accuracy without knowing future 

utilization-capacity-factors.  If the plant participates in the spot market, then its electricity 

output is also a random variable that depends upon electricity demand, market structure, 

and the generator’s bid.  If the bid is affected by the cost of compliance with 

environmental regulations, then the compliance strategy and unit emissions are related in 

a closed loop fashion.  Coal-fired units are usually operated as base-load plants and 

therefore there is less uncertainty about the time of operation and the corresponding 

emissions.   

2.3 Uncertainty in emissions-allowances prices   

The price of allowances depends on the compliance decisions made by all the 

units participating in the market of allowances. For example, if all generating units decide 

to install ECDs and reduce emissions to a level below the legal requirements, then the 

price of allowances will drop to zero.  On the other hand, if allowances are scarce, prices 

can approach the fine’s price.   

Forecasting allowances prices has proven to be a difficult task in the recent past.  

For instance, when the Clean Air Amendment was enacted, the cost of compliance with 

the Acid Rain Program standards for SO2 was estimated to be $400-$1000/ton, but by 

2000, allowances ranged in price from $130 to $155 and remained close to $140 until 
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2003, when prices started rising.  The NOx budget offers another example; although 

forecasts of marginal control costs ranged from $500/ton to about $2,500/ton and in very 

few cases close to $5,000/ton, some trades in early 1999 occurred about $7000/ton but 

prices later fell to less that $1000/ton (Farrell 2000).  In 2003, trades for NOx allowances 

for vintage 2004 and 2005 occurred at prices between $3,000/ton and $4,000/ton (Cantor-

Fitzgerald 2005).  

It is argued (Ellerman 1998) that in phase II of the CAAA90, a high supply of 

SO2 allowances and prices much lower than expected occurred in part because owners of 

big power plants preferred to invest in expensive scrubbers rather than incur the risk of an 

allowances shortage.  Later, the situation with NOx was the opposite.  Many plants 

preferred to wait to see what would happen in the market of NOx allowances before 

installing any expensive control technology.  This “wait and see” approach of many 

plants is at least one of the causes of the high prices of NOx allowances seen in recent 

years. Estimating allowance prices under multi-pollutant regulation poses additional 

difficulties, due mainly to synergies between the control of SO2, NOx and CO2.
5  

2.4 Modeling prices of allowances 

In the example presented in this chapter, allowance prices are modeled with a 

geometric-Brownian stochastic process, with drift and volatility estimated from observed 

prices in the past 18 months.  Allowance markets appear reasonably efficient. The trading 

of SO2 allowances between unrelated companies has been significant since the market 

opened in 1995.  The volume of trading reached a peak of 15 million tons in year 2000 

and in 2003 almost 8 million allowances were traded(Burtraw, Evans et al. 2005).  The 
                                                 

5 For example, analysis conducted by EIA shows that while a scenario with stringent regulations only on SO2 leads to allowance prices of $300, $700 and $1,000 in years 
2008, 2010, and 2020 (in 1999 dollars), a scenario with the same stringent cap of SO2 and stringent caps for NOx and CO2, leads to prices of $100, $100 and $50 for the same. 
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volume of trading appears important when compared to the annual cap of 8.5 million tons 

of SO2. 

Trading programs for NOx seem to have been successful too.   The OTC,6 the 

RECLAIM7, and the NOx SIP8 call markets have shown increased trading as they 

mature.  In the RECLAIM market, in year 2000 electricity generators were allocated 

2,350 tons of credits and purchased about 2,250 tons in allowances(Ellerman 2003).  The 

new NOx Budget Trading for Eastern States has had robust trading activity between 

separate economic entities, since its inception in 2003 (EPA 2005).   Close observation of 

recent allowance prices might be the best source of information to characterize the 

uncertainty in these markets. 

3 Incorporating financial risk management tools in the analysis of environmental 

regulations. 

To illustrate the point of how to incorporate option theory in the decision making 

process regarding regulatory compliance, the next two sections consider the decision of 

whether to install an ECD to reduce emissions. 

3.1  Traditional Approach: Real Options 

Herbelot (Herbelot 1994), and Insley (Insley 2003) examine the problem of 

whether or not to install an ECD, using a “real options” approach (Dixit and Pindyck 

1993).   This approach looks at the ECD installation as an irreversible investment and the 

allowances as the alternative that allows delaying such investment. The option to install 
                                                 
6 The Ozone Transport Commision (OTC) was created by congress to facilitate ozone compliance in 11 States that include the northeastern and Mid-Atlantic States from 

Maryland to Maine, District of Columbia and northern counties of Virginia. 

7 The Regional Clean Air Incentives Market (RECLAIM) is a program created by the South Coast Air Quality Management District to reduce emissions from 390 facilities by 8% 

each year from 1994 through 2003. It had low allowance prices and little trading in the early years, but demand for allowances increased in 2000. 

8 The NOx State Implementation Plan (SIP) Call Program, began in 2003, after the petition of northeastern states to the EPA to require reductions from upwind states. It affects 19 

eastern states. 
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an ECD is valuable only if it has not been yet exercised, and therefore it may be optimal 

to rely on allowances even if the present value of the expected cost of compliance with 

allowances is higher than the present value of the expected cost of compliance with the 

ECD.  The solution requires finding a threshold value for allowances’ prices for which 

the option of installing the ECD is equal to the present value of the compliance cost with 

ECD. When allowances’ prices reach or exceed this value, the unit must install the ECD. 

Herbelot showed that purchasing SO2 emissions allowances was the preferred 

alternative even if the present value of expected compliance cost with allowances was 

higher than the expected cost of compliance switching fuel or installing a scrubber. This 

study was completed before knowing what would be the industry response to the CAAA 

1990.  In fact, only very large plants installed scrubbers and many switched fuel, causing 

SO2 allowances’ prices to drop to levels unexpected in the early 90s. 

Insley (2003) also examined the choice of installing an environmental control, but 

this more sophisticated model accounted for the time that it takes to install a scrubber 

(“time to build”) and the embedded options of halting the installation temporarily or 

permanently at different stages. It also accounts for the alternative of mothballing the 

scrubber if the benefits do not cover variable costs.  

3.2 Alternative approach: Rational options 

The underlying assumption of the traditional real options approach is that decision 

makers are more interested in minimizing regret associated with an irreversible 

investment, than minimizing the  regret of a shortage of allowances.  We look at the 

problem as if the order of concerns were just the opposite, and look at the installation of 
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ECDs not as irreversible investments that the unit should avoid but as insurance against 

high prices of allowances. 

If the ECD can be installed and then used at will,9 then the installation of the ECD 

can be seen as a transaction that gives the investor the right, but not the obligation, to 

“buy” a determined quantity of allowances at a specified price within a specific time 

period.  The price “paid” per allowance is the ECD’s O&M per ton pollutant removed.  

The time during which this right can be exercised is  the remaining life-time of the 

generating unit, the life-time of the ECD or the time before a new regulation makes the 

unit and/or the ECD obsolete, whichever comes first.  Therefore, the installation of the 

ECD is equivalent to the purchase of a bundle of call options.  Whenever the capital cost 

of the ECD is exceeded by the value of these call options, the investment should be 

undertaken.  

If the expected lifetime of the ECD is T , and the expected “generated 

allowances” on year t are , then installing it is equivalent to getting  call options at 

year 1,  call options at year two etc.., and  call options at year T.  Since the number 

of allowances that can be generated each year is limited, the options generated by the 

ECD can only be exercised at the expiration date.  In other words, they are European call 

options.   Note here that “exercising the option” really means using the ECD.  Since the 

decision of using an ECD could be made every day (or every few hours), we could divide 

the bundle of options obtained into periods shorter than one year.  For simplicity, 

however, we assume that the decision of whether or not to operate the ECD (already 

installed) is made once per year, and therefore the expiration date of all this options is 

tN 1N

2N TN

                                                 
9 This is feasible for both an SO2 and an SCR because both generally have “bypass” units that allow the flue gas to 
completely bypass the vessels.  
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one year after they are obtained. (A change in this assumption would not change any of 

the derivations here. It changes only the numerical results of the example.) 

The value of installing the ECD is then given by: 

)1,(
0

+∑
=

− ttcallNe
T

t
t

tρ        EQ.1 

Where represents the value at time t of a European call option on one 

allowance, with exercise date at time t+1, and 

)1,( +ttcall

ρ  is the discount rate.   

 Note that EQ.1 sums the discounted value of options that will be received every year 

that we continue to have the ECD installed, instead of summing the value of options 

received today.  Technically, the options are “received” at the same time, but they have 

different expiration dates, so EQ.1 could be written as: 
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where  represents the value at time 0 of a call option that expires at 

time t.  When the call is valued assuming the process followed by allowance prices is 

geometric-Brownian motion, the value of

)1,0( +tcall

 )1,( +ttcall , will be less than the value of 

.  Therefore the value of the ECD will be lower if we use EQ.1. than if we 

use EQ.1b, assuming geometric Brownian motion for allowance prices.  Because the 

period of evaluation of the options (T) is measured in years, the assumption that a 

characterization of the uncertainty based on observations of prices over a short period of 

(1 or 2 years) will hold, is very strong, and the value of 

)1,0( +tcall

)1,0( +tcall might be over 
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estimated.  To account for the fact that by valuing options that will expire in several 

years, we are perhaps stretching the validity of our characterization of the underlying 

source of uncertainty, we choose to use EQ.1 instead of EQ.1b.  As we will see later, the 

use of EQ.1 will allow us to find a confidence interval for the value of the ECD. 

  

3.2.1 The option to buy one allowance 

As explained in Chapter 1, in order to value an option we need to characterize the 

stochastic process followed by the underlying source of uncertainty or equivalently, a 

probability distribution function for the value of the underlying at the time of expiration 

of the option.   

For SO2 and NOx, the best source of information we can use to characterize the 

uncertainty of future allowance prices is today’s market.  The market for SO2 has been 

operating for more than 10 years now, and in the absence of anything better it can be a 

good source of information about the trend and volatility of SO2 allowance prices. 

Under the assumption of allowance prices following an Ito process (see chapter 

1), we can use the Black and Scholes formula to calculate the value of the option to buy 

one allowance, and the value of the stream of call options on allowances that will be 

obtained at the installation of the ECD.  Applying the Black and Scholes formula to EQ.1 

we conclude that the value of installing a scrubber is: 
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where 
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of the standard-normal distribution. tS  is the price of allowances at time t, X is the 

ECD’s per-ton O&M annual cost, (O&M /N), σ is the per annum volatility of allowance 

prices, t  is the year when the allowances will be generated ( t < lifetime of the ECD), and 

T is the life time of the ECD.  

If we were using EQ.1b, then we would have 

                              I [ ]∑
=

−− Φ−Φ
T

t

str
tt

t dXedSNe S

0
21 )()(ρ                with: 

( )
tT

trX
S

d
−

⎟
⎠
⎞⎜

⎝
⎛ ++

=
σ

σ
2ln

2

1  and 
( )

tT

trX
S

d
−

⎟
⎠
⎞⎜

⎝
⎛ −+

=
σ

σ
2ln

2

21 . 

3.2.2 Accounting for construction time 

The time between the decision to install an ECD and the moment where it is ready to 

operate might be considerable for most technologies.  Before the ECD is ready to operate, 

there will be no emission reductions and no “options” to “buy allowances” will be 

generated, therefore, EQ.2 must be modified to account for this reduction in the value to 

install an ECD.  If τ  is the time when the ECD will be ready, then the value of installing 

an ECD is given by: 
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  Where d1, d2, and )(xsΦ are defined as in EQ 2. 

If we wanted to be more precise, we should also account for the fact that to complete 

the final stages of installation of the ECD, it might be necessary to shutdown the 

generating unit.  The cost of stopping the production of electricity for some weeks or 

months should be included in the capital cost. 

3.2.3 Volatility of Allowance’s prices for SO2 and NOx 

The following graph shows transaction prices of SO2 allowances in the past 19 

months.10 
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Figure 1: SO2 allowances prices  

                                                 
10 Prices of transactions reported daily by Cantor Environmental Brokerage between March 15 2004 and October 21 
2005.  Cantor Environmental is a broker active since 1992, with a very significant trading volume in the NOx and SO2 
trading programs. See http://www.emissionstrading.com 
 



 199

 

The following graph shows transaction prices for NOx SIP Call allowances for 

different vintages.   
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Figure 2: NOx Allowance Prices 
 

As explained in Chapter 1, stock prices are usually modeled as following an Ito 

process or geometric-Brownian motion. Because allowances are traded in a market with 

robust liquidity, and because they can be banked, we can also model the stochastic 

process followed by its prices as following geometric-Brownian motion process.  The 

practice of using this continuous-time stochastic model is widely accepted in finance, 

despite the fact that prices are discrete variables (records of trading are daily) and despite 

documented violations of the assumption of constant volatility. 
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Stating that allowance prices follow a geometric-Brownian stochastic process is 

equivalent to saying that their daily variation follows a normal distribution. Therefore, to 

test the goodness of fit of a geometric Brownian motion model to the observed prices we 

can test the hypothesis of normality for one-period “returns.”   

The following graph shows the time series of daily returns from SO2 allowance prices 

relative to current price ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

t

t

S
S 1ln . 
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Figure 3. Daily Changes in SO2 allowance prices 
 

A histogram reveals that the distribution or daily changes in allowance prices is 

more “peaky” than a normal distribution, and in fact the hypothesis that daily returns 

follow a normal distribution is rejected (Jarque-Bera test, Kolmogorov-Smirnov test p-
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value<0.05), implying that the geometric-Brownian motion process does not accurately 

describe the uncertainty in allowance prices.   In fact, the violation of the assumption of a 

Brownian-Motion process is relatively common in financial markets. Despite this 

violation, this model remains widely used because of its simplicity and also because it 

still provides good information about the price of derivatives.  A more detailed analysis 

would use time-series theory (as in chapter 4) to determine a more accurate process for 

allowance-prices and the value of its derivative. However, since allowances are traded in 

markets that could be considered mature, the violation of the assumption of a geometric-

Brownian process is not very serious here and the prices obtained for its derivative are 

typically close to those obtained with a process that better represents allowance’s price 

dynamics. As a result, we maintain this assumption in the calculations that follow, but we 

acknowledge its limitations when more accurate analyses are needed.  
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Figure 4. Daily “returns” of SO2 Allowance prices  
 

The estimate of the annual volatility of SO2 allowances, computed as the standard 

deviation of the natural logarithm of daily Price Relative Changes  
t

t

S
S 1+  assuming years 

of 252 trading days is 39.63%. The standard error of this estimate is 2%.11                          

The following table shows volatility estimates and standard errors of the 

processes followed by NOx allowance prices for different vintages.  The hypothesis that 

“returns” follow a normal distribution is rejected (p-value < 0.05 for Jarque-Bera Test 

and Kolmogorov-Smirnov, Anderson-Darling tests). 

                                                 
11 We used a sample of 370 days. 
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3.2.4 The Investment Decision Rule 

The decision of whether or not to install an ECD comes from the comparison 

between the value of the option (the value of the stream of call options received with the 

installation of the ECD) and the price of that option (the cost of installing the ECD).  The 

installation decision rule is therefore given by a comparison between the ECD’s capital 

cost per ton removed each year, and the value of the call options bundle.  And the ECD 

should be installed if the Capital Cost ECD is smaller than the Value of the ECD as given 

in EQ.2 that is. 

Install ECD if capital cost ECD < [ ]∑
=

−− Φ−Φ
T

t

srs
tt

t dXedSNe
τ

ρ )()( 21    EQ. 3. 

 

Note that EQ.3, depends on St, which for t-0 is a known value (today’s price) but 

for t>0 is a random variable. From modeling the prices with an Ito process, the log of the 

price at time t is normally distributed: ( )tSln ~ ( )[ ]ttSo σσμφ ,2ln
2

−+ .  

Since for NOx we have information of allowance prices for the next 2 years, we 

can use those to calculate the value of the “option of using the ECD” for those years.  For 

the rest of the periods, we need to get estimations of St.   

The introduction of uncertainty in the equation of the value of installing an ECD 

changes the decision rule and demands from the investor an elicitation of his risk-

attitudes.  An investor could chose to install the ECD if the capital cost of installing it is 

lower than the Expected Value of the bundle of call options, or if it is lower than the 
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lower bound of the 95% confidence interval.  The more time into the future we expect the 

ECD to operate, the higher the uncertainty about the value of installing it. 

3.3 Example: 

In this section we illustrate how the methods described here can be applied to a real 

case.  Consider a generating unit with the following characteristics: 

 -Name Plate Capacity: 570MW,  

 -Average Heat Rate: 10,690 Btu/kWh,  

 -Emission rates: 0.423lbsNOx/MMBtu, 5.786LbsSO2/MMBtu 

Costs of installing a WFGD to remove SO2:           

 -Capital Cost = $117.7M,  

 -Annual O&M = 18.28,       

 -Emissions rate after scrubber is in operation: 0.61lbsSO2/MMBtu 

 -Number of allowances generated every year = 97,413 

 -Annual O&M per ton (allowance) = $187.6546 

Installing an SCR: 

 -Capital cost = $63M,  

 -Annual O&M = $6.6M,   

 -Emissions rate after SCR is in operation: 0.15lbsNOx/MMBtu 

 -Number of allowances generated every year = 5,023 
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Assume that it is reasonable to expect both ECDs will be operating for 10 years (that 

is T=10 years), and construction time is 2 years (τ =2).  Also the risk-free rate is 4%, and 

the discount rate is 10%. Assume that every year the scrubber could be operated to get N 

= 97,413 allowances, and the SCR could be operated to get 5,023 allowances. 

3.3.1 Decision to install a scrubber to reduce emissions of SO2 

The estimates of the drift and volatility parameters for the process followed by 

SO2 allowance prices are μ  =0.0588 and σ = 0.4126 respectively.  Current price12 is 

$985.  The expected value of the price of one allowance at year 1, 2, .. 10, and the 

corresponding 5th and 95th percentiles are given below,  

 

SO2 allowance prices 

T 
5th 

percentile 
95th 

percentile E(ST) 
0 $985 $985 $985 
1 $427 $2,154 $959 
2 $298 $2,933 $935 
3 $224 $3,694 $910 
4 $176 $4,468 $887 
5 $142 $5,268 $864 
6 $116 $6,097 $841 
7 $96 $6,960 $819 
8 $81 $7,859 $798 
9 $69 $8,794 $777 

10 $59 $9,767 $757 
Table 1. Estimates of SO2 allowance prices (So in EQ.3) 

 

Using EQ.3, and a discount rate ( ρ =10%) we get the expectation, and the 5th and 

95th percentiles of the value of the stream of options that would be obtained after 

installing the scrubber. 

                                                 
12 October 21 2005. 
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Value of installing Scrubber 
5th percentile E[ ] 95th percentile 

 $        14,527,958  $      297,789,268  $   2,407,894,124  
Table 2.  Value of installing a WFGD 

 

Because the capital cost of the scrubber is $177 million, a decision rule that 

looked at the expected value would prescribe installation. 

3.3.2 Decision to install an SCR to reduce emissions of NOx 

The estimates of the drift and volatility parameters for the process followed by NOx 

allowance’ prices for different vintage years are given below. 

Parameter estimates for NOx 
price’s process 

Vintage 
Year Drift Volatility
2004 0.005 0.315 
2005 -0.002 0.442 
2006 0.002 0.359 
2007 0.004 0.356 

Table 3. Estimates of drift and volatility parameters for NOx allowance prices. 
(Assuming years of 252 trading days) 

 

Since under the assumption that construction time is 2 years, there will be no 

allowances before year 2007, then we will use the estimates of the process followed by 

prices for vintage year 2007 as inputs to find the estimates of the prices of allowances for 

years 2008 and on.  The following table shows the estimates of allowance prices for each 

year (in that year US$). 

NOx Allowance Prices 
T 5th percentile 95th percentile E(ST) 

2 $2,600 $2,600 $2,600
3 $1,219 $4,924 $2,450
4 $860 $6,195 $2,308
5 $649 $7,288 $2,175
6 $507 $8,279 $2,049
7 $405 $9,198 $1,931
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8 $329 $10,059 $1,819
9 $270 $10,870 $1,714

10 $224 $11,635 $1,615
Table 4.  Estimates of estimates of NOx allowance prices for years 2007 and on 

 

Applying EQ.3 and a discount rate of ρ =10%, we get the expected value, the 5th 

and 95th percentile of the value of installing the SCR. 

 

Value of installing SCR 
5th percentile E[ ] 95th percentile 

$5,882,748 $21,062,733 $107,592,862
Table 5.  Value of installing an SCR 

 

Because the capital cost of an SCR is $63 million, a decision rule that looked at 

the expected value, would suggest not installing it. 

3.3.3 Accounting for the possibility of a change in regulation   

In the presence of regulatory uncertainty the chances of having a new regulation 

that makes obsolete the ECD and/or the generating unit before their life-times had 

expired, might motivate decision makers to think of T as an uncertain value. In this case 

finding the minimum value of T for which the value of the option exceeds the per-ton 

capital cost, might be more important to inform the installment decision.  The following 

graphs present the difference between the call option and the per-ton capital cost for both 

the WFGD and SCR for the generating unit considered in this example. 
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Figure 5. Difference between the value of installing a WFGD and its capital cost 
 

If allowance prices reach the 5th percentile of the distribution or lower, then the 

WFGD will not be used and the investment will not be profitable.  If allowance prices 

stay at their expected value, then the scrubber should be installed only if it is expected 

that the plant and the scrubber will operate for at least four more years. 

The following graph shows the difference between the value to install a SCR and its 

capital cost, for different number of years of operation of the plant.  Allowance prices 

should be much higher than their expected value, and the expected number of years 

before the plant or the SCR stop operating should be larger than 8, for the decision to 

install an SCR to be made. 
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Figure 6. Difference between the value of installing an SCR and its capital cost 
 

4. Policy implications 

The analysis of how compliance choices are affected by regulation-related 

uncertainties can be enriched with our view of market participants’ decisions. 

When the time T is determined not by the life-time of the unit, but by the 

expected time when air-emissions regulations will change, then T is an uncertain value 

difficult to predict.  Since T affects both the value of the project of installing the ECD and 

the threshold value to which it is compared, in the same direction, any decrease in T 

makes less likely the installation of an ECD and any increase makes it more likely.   

The regulator has some control over the value of T decisions makers will use in 

their calculations.  Market participants may estimate T from the deadlines of proposals 
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for new regulations.  By keeping deadlines of proposals for new regulations 

homogeneous, the perceived uncertainty in T can be reduced and installation of ECDs 

won’t be unnecessarily delayed.  Regulators could also offer special treatment for units 

that installed ECDs during a certain period guaranteeing a longer compliance time for 

new regulations that could render its operation obsolete.  To inform policy making in this 

matter it may be useful to ask questions such as: By how much should the capital cost of 

the scrubber drop to offset a 1-year drop in T?  The answer could be used for example to 

find the right value of subsidies or tax discounts that could be offered to speed the 

process of ECDs installation and the consequent reduction of emissions.   

This approach also indicates that information about derivative prices in electricity 

and environmental markets (for example options on allowances) can be used as a source 

of valuable information for policy makers. 
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Chapter 6: The Fair Value of Operational Reliability 

1 Introduction 

Although current operation of bulk power systems in the U.S. makes use of 

important advances in information technology, operations research, and electric 

engineering, the reliability standards towards which that practice is directed have changed 

little since the old days of regulated industries. The processes are very modern, the inputs 

are not.  For example, when running Optimal Power Flow (OPF) algorithms, the inputs of 

the objective function related to reliability, are very much like “rules of thumb” that have 

been traditionally used since the times of vertically integrated utilities. 

These heuristics are used as standards to pursue when provisioning generation, 

transmission, and ancillary services resources.  Examples of these rules are the (n-k) 

dispatching criteria and the Installed Reserve Margin as a fixed percentage of the peak-

load. The (n-k) criteria states that the Systems Operator (SO) should dispatch and commit 

generation resources in a way that assures the reliable operation of the system even in the 

presence of any k outages among n total resources of generating or transmission 

equipment.  To achieve this reliability requires, in many cases, scheduling generators out 

of merit-order and leaving enough transmission capacity available to sort out 

contingencies. An Installed Reserve Margin of for example 15%, states that the System 

Operator (SO) should commit generation to meet 115% of the expected peak load.   

Why is it that an Independent Power Operator, who has the best technologies to 

monitor the current state of the system, access its past history, assess its current resources 

and forecast future needs, still designs the production schedule so as to have 10% of 
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operating reserves?  Where does this 10% come from?  Why is it 10% and not 5 or 20%? 

Most of the operation standards for the bulk power system are arbitrary values that have 

worked in the past, but that have not direct relationship with the magnitude of the 

uncertainties that make difficult to meet electricity demand instantaneously. 

We argue that information about the uncertainties that surround the operation of 

the power system can be used to enlighten the debate of how much reliability should be 

pursued and how resources should be allocated to pursue it.  In this chapter we present a 

method to determine the value of having flexible generators in order to react to load 

fluctuations.  Because having this flexibility is analogous to having a financial option, 

this value can be seen as the value of hedging against the uncertainty on the load due to 

the volatility of the demand and the possibility of congestion and we can use the methods 

of Chapter 1 to find its value.  We will illustrate our point valuing the flexibility that 

leads to “operational reliability” in the PJM market.  

This chapter is organized as follows.  In Section 2 we review some concepts of 

reliability theory and introduce the concept of “operational reliability”. In Section 3 we 

introduce the “options theory” relevant to this chapter. In Section 4, we explain how to 

use options theory to price “load following capability” which is fundamental for 

operational reliability. In Section 5, we present data for the PJM region and estimate the 

value of having load following capability in this market. In Section 6, we discuss how our 

results relate to the estimated costs of outages.   
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2 Reliability in a power system 

2.1 Reliability requirements  

Meeting the electricity demand in a particular power system requires a perfect 

balance in time and in space between power consumed and power generated. Since the 

demand side is often not under the control of the SO, the balance must be obtained by 

adjusting the supply side in a way that perfectly matches the demand at each point of the 

grid and at any particular time.  The capacity of a power system to meet this demand 

depends on the availability and quality of three types of resources; the generation 

resources, the transmission grid, and the ancillary services’ resources. 

The installed capacity of the generating resources and the transmission capability 

of the grid are necessary for the reliable operation of the system, but are not sufficient to 

keep “the lights on”.  It is necessary to have resources suited to cope with soft and abrupt 

fluctuations of load and generation due to normal or emergency conditions.  These 

resources, usually denominated as ancillary services resources, are generators1 that have 

one or more of the following characteristics: 

− Flexible Dispatchable Output: The ability to vary the output level within a range 

− Cycling Capability: The ability to cycle between on and off, measured by the 

number of possible starts per day or week 

− Regulation Capability: The ability of the generator to detect small differences 

between load and generation and tune its output to correct them 

                                                 
1 Loads that can be disconnected as required by the system are also regarded as ancillary resources that provide the 
service of helping balance generated and consumed power. In essence, the MW amount available because of the load is 
disconnected can be seen as generation extra for the system. 
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− Short Start Time (Quick start capability): The ability to begin generating in a short 

period of time (usually 30 minutes or less) 

− Short Down Time: The ability to be on after being shutdown in short period 

− Fast Ramp Rates: The ability to increase or decrease the power output rapidly 

− Black Start Capability: The ability to initiate without an outside energy supply or 

the ability to remain operating when automatically disconnected from the grid 

− Flexible Reactive Power Output: The ability to increase the reactive power 

generated 

 

The commitment of generation resources has to consider not only its location in 

relation to loads and transmission lines or its generation capacity, but also its potential to 

provide ancillary services.  Because of this, the scheduling of generating units can be 

very different from the simple optimal scheduling that would be obtained if the system 

operator were trying only to minimize the cost of supplying power demand.   

For simplicity, we have chosen to focus only on the extra cost of scheduling 

generators with flexibility or the potential to provide “load following capability”, which 

we will call “the cost of operational reliability” and the subject matter of this chapter. 

Before speaking about the cost of operational reliability, it is useful to review the concept 

of reliability and the way it is conventionally measured.  
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2.2 Measuring reliability 

The reliability of a power system is a measure of its ability to meet power demand 

at all times, despite contingencies.  It is an emergent property of the system, difficult to 

assess without considering the characteristics and all the possible interactions of the 

components of the electric grid.  Reliability is also a non-stable property that depends on 

external factors, such as power demand and weather conditions. (For example, the same 

system is less reliable when operating to meet peak load than when operating to meet 

only half of it. It is also less reliable if we account for the possibility of malicious 

intents.) 

Reliability is usually measured with indices expressed as frequencies, durations, 

probabilities, or expectations of system problems (See for example:(DOE 2004)).  A 

value-based approach is commonly taken to express reliability standards.  Goals are 

stated in the form of indices values (averages or expected values) instead of distributions.  

Some authors advocate the use of index distributions as a complementary source of 

information that is very useful in some applications (e.g. (Billinton and Bagen 2004). 

Common indices for measuring system-wide reliability are: 

− LOLP: Loss of load probability: The probability that the entire generation 

supply is lower than the system load. 

− LOLE: Loss of load expectation: The number of time units that the load 

exceeds the generation supply. 
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− LOEE: Loss of energy expectation (EENS Expected Value of Energy Not 

Served Or EEU Expected Energy Unserved) Expected energy curtailed due to 

load loss. Looks at the magnitude and duration of load exceeding supply 

− SAIFI: Average Interruption Frequency Index  

− SAIDI: System Average Interruption Duration Index  

− MAIFI: Momentary Average Interruption Frequency Index  

− There are also common indices for distribution reliability that measure the 

frequency, duration and severity of system problems such as circuit overloads, 

bus load voltages, etc…) 

2.3 Assessing and pursuing reliability 

Measuring the reliability of a given power system is not an easy task. The failure 

probability distribution of each component must be determined and analyzed in 

conjunction with all other system components and external variables.  The theoretical 

calculation of some reliability indexes requires the exhaustive enumeration of all possible 

contingencies and their associated likelihood.  Several research efforts have lead to 

improved methods to assess system-wide and node-by-node reliability of a power system.  

The solutions are either methods to simplify the representation of the power system while 

keeping all the relevant information, or computer algorithms to speed up the tasks of 

diagnosing the state of the system. 

Similarly, there are many documented efforts to incorporate reliability 

considerations in virtually every stage and aspect of the operation of a power system.  

Methods have been proposed for optimizing system maintenance, system expansion, and 
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system operation considering both costs and reliability.  The goals of such proposals are 

usually to minimize costs subject to reliability constraints expressed in the form of 

desired indices values.   

There are two categories of strategies for improving reliability.  The first category 

comprises those actions that seek to minimize the failure of a system component, such as 

trimming trees that could cause failure in transmission lines, installing grid equipment to 

manage voltage, and performing maintenance to generating units to minimize the 

probability of unscheduled outages. The second category includes those actions that seek 

to prepare the system for contingencies, such as scheduling extra generating capacity, 

allocating transmission margin, installing relays, and scheduling units with a black-start 

capability. 

2.4 Operational reliability in a deregulated electric industry.  PJM’s example 

In the time of vertically integrated utilities, it was not difficult to procure enough 

capacity, transmission or ancillary services to meet system’s demand, as all industry 

participants cooperated towards the goal of reliable operation of the grid.  But in today’s 

restructured industry, any product or service that is not financially compensated 

inevitably will disappear.  At PJM for example, the load following capacity of the 

generation fleet has decreased considerably in the last years ((PJM 2004).  Generating 

units with the desirable characteristics listed in Section 2.1 have been retired, and have 

been replaced by units with inflexible operational characteristics.  PJM plans to 

implement a new market-based system of incentives to pay for reliability related services, 

because it realized that if generators are not paid in proportion to the contribution of their 

flexibility to the reliability objective, very soon there will not be enough resources to 
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satisfy the reliability-based constraints for dispatching.   Most of the retirements of 

capacity have been of fossil-fueled steam resources with load-following capability, and 

the majority of the capacity additions have been gas-fired combined cycle units with 

inflexible operating characteristics and with combustion turbines and wind turbines that 

do not have load-following capability either.    

At PJM it has also become evident that even if the generating resources have 

load-following capability, the service will not be offered unless there is a compensation 

system for it. Perhaps because they are trying to avoid increased maintenance due to 

cycling, bidders in the electricity market have started 1) offering less and less their ability 

to cycle, 2) reporting longer required down times and 3) reporting fewer number of 

possible starts per day or week. 

If we accept the idea that including load following capability will likely increase 

the cost of electricity, then it makes sense to ask the question how much “load- 

following” capability should the SO allocate?  Although it would be good to have as 

much as possible of all the services to maintain a reliable electricity supply, the inherent 

costs that ultimately are passed on to the consumers force us to ask how much is it fair to 

pay. 

We do not claim to answer the questions of how safe is safe enough for a power 

system or how much should be paid to have a satisfactory level of safety. Instead, we 

show how a risk neutral SO would approach the problem of how much load following 

capability to provide to its system.  We regard this approach as a small step to enrich the 

discussion of what level of reliability is needed and how much should be paid for it in the 
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power system. The risk neutral result is to be used as a reference point and compared to 

the cost actually paid. 

3  Options theory and the price of risk 

As mentioned, having a flexible generator capable to follow the load is like 

having an option. Having flexible resources gives the SO the option of meeting changes 

in the load, instead of suffering the financial consequences of not meeting them. 

As explained in chapter 1, the method of risk neutral valuation is useful not only 

to price any derivative contingent on the price of an underlying traded asset, but it is also 

useful to price any derivative contingent on an underlying random variable that follows a 

continuous-time stochastic process.  The most remarkable characteristic of this method is 

that this variable does not need to be the price of any traded security or related at all to 

financial markets (See(Hull 1997) Chapter 13: “General Approach to Pricing 

Derivatives”).  Moreover, the general method of risk neutral valuation, as a sub product 

of the pricing of the derivative, gives the price of the risk associated with the underlying 

variable. This finding is independent of the nature of the derivative.  

Because of these properties of risk neutral valuation, we can define artificial 

derivatives to set up a theoretical portfolio with certain desirable properties from which 

we can derive the price of risk of the underlying variable.  To illustrate how risk neutral 

valuation can be used, we will price the reduction in the risk of not having enough load-

following capability at the daily time scale. 
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4 The fair value of “load-following capability”   

Several events may create an imbalance between load and generation.  For our 

analysis, we will assume that the system has reserve capacity to offset the effect of 

unscheduled outages of major generators and the only remaining task to provide 

reliability to the system is allocating load-following capability to adjust the electricity 

supply to the fluctuations of the load that cannot be forecasted.  We will also assume that 

the analysis is conducted for a region without transmission congestion, so there will be no 

need to increase the electricity output due to the lack of transmission capacity. 

After excluding the possibility of needing more generation because of 

transmission constraints or unscheduled outputs, there are two remaining reasons why 

there could be a supply-demand imbalance and therefore the necessity of suddenly 

increase the electricity output.  One is the normal real-time fluctuation that is corrected 

by those units in the system equipped with Automatic Generation Controls or AGC to 

tune their output and correct instantaneously small imbalances between load and supply.  

The other source of imbalance is due to errors in the demand forecast that make the 

production plan inadequate to meet the real needs of the grid. In this case, it becomes 

necessary to increase or decrease the output of those units that are on, and perhaps to start 

or shutdown certain units, all in a short period. If the flexibility2 of the units operating is 

not enough to correct these imbalances, it will not be possible to serve the load for the 

time that takes to restore balance.  Note that the value of having load following capability 

and supplemental reserves is contingent on the magnitude of the deviations of the load 

from its forecasted value. 

                                                 
2 Flexibility is used loosely and it refers to the characteristics listed in Section 2.1. 
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The cost of having load following capability depends on the characteristics of the 

generating fleet and the magnitude of the forecasted load.  In cases where flexible units 

need to be scheduled to meet the forecasted demand, load following capability comes at 

no extra cost.  In other cases, where forecasted demand can be met with low-cost 

generating units with no load-following capacity, the cost of providing load-following 

capabilities will be the cost of replacing low-cost inflexible generators with the more 

expensive units with load following capabilities.  

If we let C be the random variable representing the costs associated to the 

deviations from the load forecast, and H the premium that should be paid for having load 

following capability, then ( ) CPPCH −=,  where C  represents the expected value of 

 (at time T), and P is the fair value that should be paid to have load following 

capability. 

C

Applying the methods of Chapter 1, we obtain  

( ) ( ) CdcTcPcP
P C +−= ∫
∞

,ϕ      EQ.11. 

where ( TcC , )ϕ represents the pdf of C at time T.   If C(t) does not follow a stationary 

process, then the value of P will change with time and should be defined as the “fair price 

that should be paid to have load following capability at time T. 

5 The value of “load following capability” in PJM 

In this section, we use data of the PJM region to illustrate how to use our formula 

to find the fair value of load-following capability.  To characterize the stochasticity of 

fluctuations on the load, we formulate a time series model to forecast the PJM demand, 
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and then use the error in the forecast E  as the source of uncertainty that makes having 

load-following capability valuable.  We will assume that the costs of having a load that 

exceeds the forecast are the same as having a load that is lower than the forecast if there 

is no load-following capability, because decreasing the electricity output might be as 

difficult as increasing it, when the generating units are inflexible.  Therefore, the variable 

of interest will be the absolute value of the error in the forecast. 

The cost C  of not having load following capability is an increasing function of 

the absolute value of error in the forecast.   Because any choice of such function would be 

arbitrary, and would introduce unnecessary complexity to our example, we choose to let 

be the same as the absolute value of the error in the forecast and express it in MW 

units, so 

C

EC = .  Since C  represents the number of MW that the load will fluctuate 

around the forecast, the units of its derivative H  are also MW. 

5.1 The process followed by C 

As previously mentioned,  represents the absolute value of the error in the 

forecast of the load.  In other words, C is the irreducible uncertainty about future load—

the uncertainty that remains after we account for all our knowledge about historical load 

and its relationship with some predictors as weather and date. 

C

There are several models in the literature to forecast electric load for the short-, 

medium- and long-term (see (Feinberg and Genethliou 2005)).  Most models use time-

series analysis, artificial neural networks and fuzzy logic, and include weather related 

variables as the Temperature-Humidity Index and the Wind-Chill Index, as well as 

information on the hour of day, day of week, holidays, etc. For our example, we use a 
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time-series model with predictors, and data of the aggregated PJM load (East PJM) for 

the period from March 1st 2001 to January 31st 2003. 

Figure 1 shows the time series of the aggregated load for PJM East. 
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Figure 1: Aggregated Load for PJM East 
 

 The model chosen to forecast the aggregated load includes a) the time series of 

the Temperature-Humidity Index (THI) at Washington Reagan National Airport, b) a 

dummy variable that indicates whether or not the hour is a “peak hour”3, and c) an 

Autoregressive model with 2 lags and a seasonal lag (AR(2)(24))(See for example: (Box, 

                                                 
3 In PJM “peak hours” are hours ending 8:00-23:00, Monday trough Friday, excluding Federal Energy Regulatory 
Commission (FERC) holidays. 
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Jenkins et al. 1994)).  Although simple, the model has an R-square of 0.9956, and a mean 

absolute error of 272 MW.  

The absolute error in the forecast (that is, the difference between the load values 

predicted by the load and the actual values) is the variable we will take as C .   

Figure 2 shows the error in the load forecast for each hour of the analyzed period. 

We can see that the time-series does not seem to have a trend or drift, and therefore its 

expected value does not change with time.  It is also clear that the variance of the error is 

constant and therefore its probability distribution is the same at any time T and can be 

estimated from the values of the error along all the forecast period.   
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Figure 2:  Error in load forecast for each hour analyzed 
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We choose to estimate the p.d.f of , in a non parametric way, using a Kernel 

smoothing function and an associated bandwidth that is theoretically optimal (See for 

example (Silverman 1986)). Figure 3 shows the estimated p.d.f. for .  

C

C

 

 

Figure 3: Probability density estimate for C 
 

Using our estimation of Cϕ to solve EQ.11, we get a value of of 405MW and an 

associated value of H equal to 80MW.  The value of 

P

P  is 124% the mean value of  a

222% the median value of C .  This means that the amount the System Operator shou

be willing to pay for having load-following capability and reducing the risk associat

errors in the forecast is about 1.24 times the expected value of the losses incurred if tha

C nd 

ld 

ed to 
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load-following capability was not present, or 2.22 times the theoretical median of those

losses.  

 

The results do not change by more than 0.5% if we estimate the p.d.f. with other 

kernel functions or bandwidths.  The results are also not sensitive to small changes in the 

data. For example if we decided that the eight extreme values of the prediction error 

observed in Figure 1, are due to mistakes in the input data, and removed them from our 

sample to find the p.d.f., we would obtain a value of  that is still 1.24 the mean value of 

 and 2.18 its median.  If we went further and removed the 10% most extreme observed 

values of , then  would be 1.23 times the mean of C  and 2.1 times its median. 

P

C

C P

Figure 4, shows the corresponding p.d.f. for the case when we remove from the 

observed error the 10% most extreme points of the load prediction error. 
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Figure 4: Probability density estimate for C, removing 10% most extreme values 

 

6 The value of reliability  

To allow a better interpretation of the results, it would be convenient to have a 

way to translate the units of  from its MW units to a monetary unit.  This would give us 

a way to price “load following capability”.  As mentioned before, this could be done with 

a function that assigns to each MW value of a change in the load the associated economic 

cost.  The task of identifying such function is beyond the scope of this chapter; in the 

worst-case scenario, there could be an incapacity of the system to cope with such change 

and a black out would occur.   

C
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To get an idea of the translation of MWs lost into monetary values, the 

information about the cost of the latest blackouts can be useful.  The costs of outages 

vary depending on the characteristics of the affected parties in conjunction with the 

characteristics of the outage.  Industrial, commercial, and residential customers all have 

different needs and ways to value a reliable source of power and suffer different 

consequences depending on the frequency, duration, and time of occurrence.  There are 

two ways of assessing the cost of an outage.  One way is by assessing its direct and 

indirect costs accounting for all the activities disrupted and the associated consequences 

due to the loss of power.  Another way to estimate the value of not having power outages 

for each costumer is assessing the consumers “willingness to pay” (WTP) for avoiding 

such disruptions. 

For some customers, direct costs can be calculated based on the operation and 

maintenance of their back-up power equipment.  However this only holds for short 

outages, as supplies to keep back-ups operating become scarce after prolonged times 

without power.  For all other cases, direct costs relate to the value of forgone profits, 

equipment damaged, supplies spoiled, and even human lives lost or threatened.  Factories 

must stop production lines, information based companies might lose important data and 

equipment, hours of labor might be wasted.  For residential customers there maybe also 

damages of equipment and expenses for food and even lodging in extreme weather 

conditions.   

Because of the difficulty of estimating direct costs and because of the possibility 

of leaving out many intangibles, the WTP approach is a useful alternative to value 

reliability.  Usually the WTP is determined by surveying customers.  The use of a WTP 
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value to make system wide decision has to account for income effects that can bias 

survey respondents’ values. 

There have been some estimates of the direct costs of blackouts in the U.S.  For 

example, the 1977 outage of New York City when more than 5,000 MW were not served 

for a period of 25 hours had direct costs estimated in $0.66/kWh. Indirect costs were 

estimated in $3.45/kWh, for a total of  $4.11/kWh or $4,110/MWh, which is 120 times 

the national average retail electricity price of electricity in 1977 (ICF 2004)4.  

The blackout of August 14, 2003 affected 50 million people in the nine states of 

the Northeast and Midwest of the U.S and one Canadian province for almost 2 days, with 

more than 60,000 MW out of service, and generated a cost for the national economy 

estimated at $7-$10 billion (DOE 2003).  The $4.67-$6.67 per KWh of losses for the 

economy are 63-90 times the national average retail price across all sectors of 7.42 cents 

per KWh in the year 2003 (DOE 2004). 

In a survey conducted after the 2003 blackout (EPRI 2004), 53% of U.S. 

residential customers reported a willingness to pay up to 10% more on their electric bills 

for ten years to avoid a similar blackout. Similarly 54% of U.S. businesses would be 

willing to pay 1% or 2% more on their electric bills to enhance the power delivery system 

and improve power reliability.  A third of the businesses would be willing to pay up to 

5% more and 65% would be willing to pay 10% more.  

In developing countries, the estimated costs of outages are also several times the 

cost of electricity. A study of the impact of power supply interruptions in the Sri Lankan 

                                                 
4 ICF consulting presented this calculation in its article “The Economic Costs of the Blackout’ based on data from the 
1977 blackout from the U.S. Congress office of technology assessment “Physical vulnerability of power system due to 
natural disasters and sabotage.” OTA-E-453 Washington, D.C. U.S. GPO. June 1990). 
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industrial sector shows that in a typical year of power shortages such as 2001 the losses 

for planned and unplanned outages are US$0.66 and US$1.08 per kWh of energy loss 

(Wijayatunga and Jayalath 2004). A survey on the Nigerian manufacturing sector shows 

that the costs of back-up equipment are on average 3 times the cost of publicly supplied 

electricity (Adenikinju 2003).  

7 Conclusions 

In this chapter we presented a method to determine the value of having flexible 

generators to react to load fluctuations.  This value can be seen as the value of hedging 

against the uncertainty on the load due to the volatility of the demand and the possibility 

of congestion. Because having this flexibility can be related to a financial option, we 

propose to use the risk-neutral valuation method, to find a risk neutral quantification of 

its value. We illustrate our point valuing the flexibility that leads to “operational 

reliability” in the PJM market. Our formula for that value is what we call “the fair value” 

of operational reliability.  

We would like to compare our theoretical value with what is actually paid for 

operational reliability in PJM, and we would like also to compare it to what people would 

be willing to pay for it.  Because of the traditional different allocations of capacity to 

balance load and supply in a power system, like “Installed Reserves”, “Supplemental 

Reserves”, and “Load-Following Capability”, determining how much is actually paid for 

operational reliability posses a challenge.  Establishing the characteristics of the function 

that translates the MW units of the error forecast, into monetary units, is equally 

challenging.  Nevertheless, the framing of options theory has the potential to offer a 

contribution to use information about the uncertainties that surround the operation of the 
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power system to enlighten the debate of how much reliability should be pursued and how 

resources should be allocated to pursue it.   
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Appendix – Chapter 3 

1 List of market participants in alphabetical order 

Acr 
#  

Participant LSE? 
Ranking By 

Profits 
Ranking By 

MWh Traded 
Category by 
Transactions 

ACNEgy 42 x 13 51 B 
AECI 28 x 19 24 B 

AEPAP 54   20 39 A 
AETS 19 x 48 38 B 

AEVine 16 x 39 43 A 
AHC 33 x 43 28 D 

AMPO 49 x 17 52 B 
BPBGS 10   47 32 B 
BPGM 29 x 42 50 B 
CEDS 45 x 25 40 C 

CEPLLC 8   1 1 E 
CINSI 39   32 17 E 

CITZNS 30 x* 34 47 B 
CNCT 4 x 36 21 E 

ConEdE 41 x 24 34 E 
CoralR 2   3 15 E 

CPSDMB 34 x* 37 49 B 
CPSI 9 x* 46 3 D 

DCELLC 5   2 11 E 
DPL 21 x 31 27 C 

DTEBGS 17 x 10 31 A 
DTEET 50 x 9 33 E 

EASTON 44   8 48 B 
ECPDTE 43   12 54 B 
EMMT 3 x 33 6 E 
EPLUS 20 x 53 2 A 

EXGNPT 31 x* 41 5 A 
FESC 22 x 54 7 A 

FPLEPM 6   26 16 D 
GALT 46   23 53 A 

JARON 47   28 20 C 
JCPLFP 40 x 40 37 B 
MetEd 32 x 30 41 B 
MLCS 51   22 22 C 

Morgan 25   14 4 E 
MPR 14   6 8 D 
NEV 26 x* 38 44 B 

NRGNJ 23 x 49 30 B 
ODEC 27 x 45 14 A 
PaElec 38 x 35 29 B 

PEPSRV 7 x 44 18 A 
PSERT 13 x 29 9 D 
QuarkP 53   16 45 C 
RAMEP 37   15 25 C 

RESI 11 x 50 19 A 
RESR 12 x 51 35 B 

SELWM 36 x 52 10 A 
SES 52 x 18 46 A 

SETC 18 x 7 26 D 
SUSQEP 24   11 12 E 

TESI 48   27 42 A 
UGID 35 x* 21 36 B 

WGCHZL 15 x* 5 23 E 
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WPC 1 x * 4 13 E 

Table 1. Market participants in alphabetical order. Category and Ranking by 
Capacity Traded and Profits. 

2 Information of market participants form their web pages: 

 
The following is the description of the companies that participated in the FTR 

auction as it appears in their web pages or the web pages of the parent companies.  This 

information might serve to fully identify the participants as hedgers or speculators. 

2.1 WPC: Williams Power Company, Inc. 

Formerly known as Williams Energy Marketing and Trading.  Buys and sells 

energy commodities (including electricity, natural gas, and refined petroleum products) 

and provides risk management services, primarily to wholesale utility and industrial 

customers in North America. 

Subsidiary of Williams Companies 

2.2 CoralR: Coral Power, L.L.C. (Retail) 

Coral acts as the marketer of Shell’s North American natural gas production and 

benefits from access to a strategic portfolio of power generation and gas storage assets.  

Affiliate of Shell Coral is aligned with the power generation activities of 

InterGen, which is a joint venture of Shell and Bechtel and a 30-percent equity owner of 

Coral. 
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2.3 EMMT: Edison Mission Marketing and Trading, Inc. 

On behalf of EME affiliated generating facilities EMMT trades in U.S. domestic 

electricity, natural gas, crude oil, heating oil, unleaded gasoline and emission allowances, 

as well as associated financial instruments including futures, swaps and options. EMMT 

maintains a 24-hour scheduling desk for electricity that is responsible for monitoring all 

transactions that are flowing at any point in time.  

Subsidiary of Edison Mission Energy (“EME”). EME is an IPP and a wholly 

owned subsidiary of Edison International 

2.4 CNCT: Conectiv Energy Supply 

Inc.Conective Power Delivery serves more than one million homes and 

businesses in the regulated electricity and natural gas markets of Delaware, New Jersey, 

Maryland and Virginia. 

Subsidiary of Pepco Holdings, Inc. (PHI) is a holding company formed as a 

result of the merger between Pepco (POM) and Conectiv (CIV).  

2.5 DCELLC: DC Energy LLC  

DC Energy is an energy arbitrage firm that uses a rigorous quantitative analytical 

approach along with a robust framework for striking the balance between risk and return. 

Our focus is on the attractive investment opportunities in the complex deregulated energy 

markets emerging throughout the United States 

A close partner of Dean & Company, a strategy consulting firm 
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2.6 FPLEPM: FPL Energy Power Marketing,  

Inc.FPL Energy utilizes its enhanced energy marketing and trading organization - 

Power Marketing, Inc. - to realize the full value of its physical assets. The company 

employs a relatively low-risk, asset-based hedging strategy, rather than a speculative 

trading strategy, which enables it to moderate risk and enhance returns. Power Marketing, 

Inc. actively trades around FPL Energy's expanding portfolio and contracts for a 

substantial portion of its output, as market conditions warrant. 

Part of FPL Energy, an industry leader in the production of clean energy with 

more than 80 percent of its generation coming from natural gas or renewable sources 

including wind, hydro and solar. FPL Energy is the unregulated electricity generation 

subsidiary of FPL Group with more than 5,000 net-megawatts in operation. 

2.7 PEPSRV: Pepco Energy Services, Inc. 

One of the Mid-Atlantic's leading providers of energy and energy-related products 

and services for the full range of energy users from residential customers and small 

business customers to large commercial, institutional, industrial and government users. 

Pepco Energy Services also provides both energy suppliers and large energy users such 

as utilities, municipalities, cooperatives and aggregators with an array of energy 

management services including risk management and acquisition and management of 

power generation assets. It has more than 100,000 customers (From Connecticut to 

Florida) and more than $1 billion in annual revenue from energy and energy-related 

products and services in 2003. 
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A wholly owned, separately managed subsidiary of Pepco Holdings, Inc. (PHI). 

See market participant # 4. 

2.8 CEPLLC: Citadel Energy Products, LLC  

“Affiliate of Citadel Investment Group. Citadel Investment Group LLC. is a 

world leader in alternative investments.  With professionals in Chicago, San Francisco, 

London, Tokyo and New York, explores, analyzes and invests in financial markets 

globally.  We combine a unique intellectual foundation, superior technology and 

outstanding people to identify and exploit market opportunities. We find the edge between 

reward and risk and consistently transform our insights into high risk-adjusted returns 

for our investors. Because of this high volume, the company also acts as a market maker 

on smaller exchanges for some blue-chip stocks. Citadel currently manages 

approximately $10 billion for a wide range of investors. Characterized by its creator's 

rigorous application of quantitative trading methods and technology, the firm employs 

several different investment strategies.” 

2.9 CPSI: Constellation Power Source Inc. 

Constellation Energy Commodities Group (formerly Constellation Power Source) 

is a leading source of wholesale power in deregulated US markets. The company holds 

the energy marketing and trading operations of parent Constellation Energy Group.  

Subsidiary of Constellation Energy. See market participants # 26 and #35. 
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2.10 BPBGS: BP Energy Company (BGS) 

Based in Stamford, Sempra Energy Trading Corporation (SET) is one of the 

largest commodity trading companies in North America. The company combines 

financial risk-management techniques with physical expertise to provide innovative 

solutions for customers  

Part of BP. “BP is one of the world's largest energy companies. Our main 

activities are the exploration and production of crude oil and natural gas; oil refining, 

marketing, supply and transportation; and the manufacture of petrochemicals. We have a 

growing presence in gas and power and in solar power generation.  BP provides 

wholesale and large industrial electric power in select markets. Being a major consumer 

of electricity at our own facilities, we understand commodity fuels and their price 

relationship from both sides. This knowledge allows BP to offer energy solutions 

designed to create value for our power customers.” See market participant 29 

2.11 RESI Reliant Energy Services  

“Inc.Reliant Energy Inc is one of the leading producers, suppliers, and 

marketers of electricity in the United States. We offer a complete suite of energy products 

and services to clients who range from residential and small commercial customers to 

large commercial, industrial, and institutional customers. The largest retail electric 

providers in Texas with more than 1,6 million residential customers, and within four 

months of entering the PJM market captured the number two position in the large 

commercial and industrial segment.  Has approximately 20,000 megawatts of power 

generation capacity in operation, under construction or under contract.” 
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2.12 RESR Reliant Energy Services, Inc. (Retail See market participant # 11.) 

2.13 PSERT: PSEG Energy Resources and Trade LLC  

PSEG Energy Resources & Trade is the trading arm of PSEG Power. Markets the 

output of PSEG Power's generation assets, acquires and hedges fuel, economically 

dispatches plants and trades numerous energy-related products. PSEG Energy Resources 

& Trade trades a range of products, including electricity, generating capacity, natural gas, 

emission credits, transmission rights, coal and oil. PSEG Energy Resources & Trade 

mainly trades in PJM and the immediately adjacent electric pools. In order to limit risk 

and to extract maximum value from PSEG Power's generation assets, PSEG Energy 

Resources & Trade trades around the assets of PSEG Power.  PSEG Energy Resources & 

Trade is one of the few trading operations with an integrated trading/generation model. 

The trading floor dispatches plants -- treating all of PSEG Power's plant assets as a whole 

from a trading and marketing perspective, rather than having each plant operate as a 

completely separate unit with its own separate P&L. 

Subsidiary of PSEG Services Corporation.  PSEG is a $28 billion energy and 

energy services company with three major subsidiaries: PSE&G, a regulated electric and 

gas distribution business, PSEG Power, a US power producer and PSEG Energy 

Holdings, the parent of PSEG's other unregulated businesses including: PSEG Global an 

international operator of power generation and distribution systems, and PSEG 

Resources, which invests in energy-related financial transactions. 
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2.14 MPR: Mirant Americas Energy Mktg. (Potomac River) 

“Mirant Americas Energy Marketing, L.P. is one of the leading electricity and 

gas marketers in the United States markets.  MAEM engages in, among other activities, 

asset and risk management with respect to the operation of the core generation business.  

As asset and risk manager, MAEM is core generation business.  As asset and risk 

manager, MAEM is responsible for, among other things, procuring and scheduling 

deliveries of fuel consumed by Mirant's domestic power generating assets, bidding and 

scheduling the generation facilities into local market areas, selling energy, energy 

capacity and related products produced by the plants, and hedging gross margin 

expectations to reduce the risks associated with market volatility. MAEM currently holds 

many of the regulatory approvals necessary for Mirant to continue operating within the 

gas and power market environments.” 

“Subsidiary of Mirant Corporation.  Through its wholly owned subsidiary, 

Mirant Corporation. Mirant Americas Inc., and its indirect wholly owned subsidiaries, 

MAEM, Mirant Americas Generation, LLC and Mirant Mid-Atlantic, LLC, Mirant owns 

or controls generation facilities in the United States with an aggregate generation 

capacity of 18,000 megawatts.” 

2.15 WGCHZL: Williams Generation Company-Hazelton 

Williams Generation Company Hazelton is an affiliate of Williams Power 

Company, Inc 

See market participant 1. “Williams' businesses produce, gather, process and 

transport clean-burning natural gas to heat homes and power electric generation across 

 242



the country. It has 7,900-megawatt power portfolio, in its 6 tolling agreements in 

Alabama, California, Louisiana, Michigan, New Jersey and Pennsylvania, and 2 owned 

generation facilities in New Mexico and Pennsylvania.”  

2.16 AEVine Atlantic City Electric Company (Vineland) 

“The Group's principal activities are to generate, purchase, deliver and sell 

electricity throughout the United States. The utility, which operates as Conectiv Power 

Delivery generates, transmits, and distributes electricity to more than 520,000 homes and 

businesses in southern New Jersey. Atlantic City Electric operates more than 11,000 

miles of transmission and distribution lines. The utility has sold most of its power 

generation assets, but it still has interests in selected fossil-fueled power plants. Parent 

company Conectiv was acquired by another utility holding company, Pepco Holdings, in 

2002. Subsidiary of Conectiv” 

2.17 DTEBGS: DTE Energy Trading, Inc. (BGS) 

“DTE Energy Trading is an active physical gas and power marketing company. 

Providing energy sourcing and management solutions for municipalities, electric 

cooperatives, independent power producers, investor owned utilities and retail energy 

suppliers, DTE Energy Trading's expert staff has the ability and know-how to manage 

large power generation, gas storage and transportation assets.  

Subsidiary of DTE Energy.  DTE Energy is an utility with $20 billion in assets 

and more than 150 years of energy expertise.” 
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2.18 SETC: Sempra Energy Trading Corporation 

Based in Stanford, Sempra Energy Trading Corporation (SET) is one of the 

largest commodity trading companies in North America. “The company combines 

financial risk-management techniques with physical expertise to provide innovative 

solutions for customers in natural gas, electricity, petroleum and base metals. With 650 

employees in the United States, Canada, the United Kingdom, Switzerland, Spain and 

Singapore, SET serves more than 1200 customers worldwide. Our highly trained 

professionals, combined with a state-of-the-art trading facility, provide our customers 

with a unique combination of risk management products, trading experience, and 

physical capabilities to minimize their daily risks and strengthen their bottom line.”  

Subsidiary of Sempra Energy.  Sempra Energy is a Fortune 500, energy services 

holding company with nearly 13,000 employees worldwide. Headquartered in San Diego, 

Sempra Energy serves more than 10 million metered consumers, the largest customer 

base of any energy utility in the United States. 

2.19 AETS: Allegheny Energy Supply Company, L.L.C. 

PPL EnergyPlus is an asset-backed marketer and trader of wholesale electricity, 

capacity, options, risk management products, emission allowances, tolling and structured 

or customized products. “Our firm sales are backed by more than 10,000 megawatts of 

PPL Generation's proven and reliable generating plants throughout the United States.” 

Subsidiary of PPL Generation 
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2.20 EPLUS: PPL Energy Plus L.L.C. 

2.21 DPL: Delmarva Power & Light Company 

Formerly known as Conectiv.  For many years the power companies in the 

Conectiv regions were known by traditional utility names; Delmarva Power and Atlantic 

City Electric. Those names were changed to Conectiv in the mid 1990s to reflect the 

many non-utility lines of business that were a part of the enterprise at that time. "We 

merged with Pepco (the utility serving Washington DC and its Maryland suburbs) in 

2002 and as part of the PHI family of companies we are refocused on our core utility 

business which accounts for 70% of our revenues. The return to the historic names we 

used for decades signifies a returning to our roots as local companies serving a local 

community, and more clearly indicates who we are and what we do" 

Sister company of Atlantic City Electric. Part of Conectiv. 

 

2.22 FESC: FirstEnergy Solutions Corp. 

FirstEnergy Solutions and its affiliates offer a wide range of energy and related 

products and services, including the generation and sale of electricity; exploration, 

production and sale of natural gas; mechanical and electrical contracting and 

construction; and energy management. “You can see there's a lot of experience behind 

our national service, energy management and energy use strategies.  In a competitive 

energy marketplace, we're providing our customers with a variety of innovative products 

and services, allowing them to remain focused on their core business. We're a licensed 

electric supplier in Ohio, Pennsylvania, New Jersey, Delaware, Maryland, Michigan and 
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Washington, D.C. We currently offer price quotes on natural gas to larger business and 

manufacturing customers located in Ohio, Pennsylvania, New Jersey, Kentucky and West 

Virginia.”  

Unregulated subsidiary of FirstEnergy Corp.  FirstEnergy Corp. is a diversified 

energy company headquartered in Akron, Ohio. Its subsidiaries and affiliates are 

involved in the generation, transmission and distribution of electricity; marketing of 

natural gas; and energy management and other energy-related services. Its seven electric 

utility operating companies - Ohio Edison, The Cleveland Electric Illuminating 

Company, Toledo Edison, Metropolitan Edison, Pennsylvania Electric, Pennsylvania 

Power, and Jersey Central Power & Light - comprise the nation's fourth largest investor-

owned electric utility system, based on serving 4.3 million customers in a 36,100-square-

mile service area that stretches from the Ohio-Indiana border to the New Jersey shore.  Its 

various subsidiaries have annual revenues of more than $12 billion and electric sales of 

approximately 124 billion kilowatt-hours. "Our Corporate Vision is to become the 

leading retail energy and related services supplier in our region." 

2.23 NRGNJ: NRG New Jersey Energy Sales LLC  

NRG Energy is a competitive energy provider founded in 1989. NRG owns and 

operates a variety of energy-related operations worldwide.  “We have one of the 

industry's most diverse generation portfolios, distinguished by its range in geography, 

fuel source and dispatch level.”  
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2.24 SUSQEP: Susquehanna Energy Products, LLC  

Affiliate of Susquehanna Investment Group.  Susquehanna Investment Group 

(SIG) is one of the largest option market making organizations in the United States. As a 

specialist, designated primary market maker on the nation's option exchanges, SIG 

commits its capital to offer liquid markets to retail and institutional investors seeking to 

hedge investment risk. In addition to acting as specialist in approximately 600 equity 

options, 40 index options and dozens of currency options, SIG also fields market makers 

in nearly every other U.S.-listed option class. 

2.25 Morgan: Morgan Stanley Capital Group, Inc. 

“Morgan Stanley bankers work hand in hand with corporations, institutions and 

governments to provide the best solutions for each of our clients' needs. In the Banking 

Group, Morgan Stanley bankers bring specific industry, regional and product expertise 

to each client, advancing Morgan Stanley's industry leadership in devising and executing 

the most innovative, customized answers to the most challenging issues in the global 

marketplace.” 

2.26 NEV: Constellation NewEnergy, Inc. 

“Constellation NewEnergy is a leading competitive supplier of electricity and 

energy-related services to commercial and industrial customers throughout North 

America, providing products that enable customers to effectively manage and control 

energy costs.  Constellation NewEnergy serves more than 8,000 commercial and 

industrial customers in nearly three dozen states and three Canadian provinces. These 

customers include more than half of the Fortune 200 and represent more than 10,000 
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megawatts of peak load. The company’s electric supply business operates in all 

competitive energy markets in the U.S. and Canada.” 

“Subsidiary of Constellation Energy. Constellation Energy is the nation’s 

leading supplier of competitive electricity to large commercial and industrial customers. 

It is one of the nation’s largest wholesale power sellers, A major generator of electricity 

and a regulated distributor - Baltimore Gas and Electric utility - of electricity and 

natural gas in Central Maryland. Constellation Generation Group: owns more than 

12,000 MW of electrical generating capacity. Constellation Energy Commodities Group 

sells power into the wholesale market. Constellation New Energy: provides and procures 

power and natural gas for large commercial and industrial customers. BGE: 

Transmission and Distribution of Electricity.” 

 

2.27 ODEC: Old Dominion Electric Cooperative  

"We exist to serve our Members. We shall provide reliable, safe and economical 

wholesale electric power sources, continually evaluate and meet the Members’ needs in 

order to facilitate their growth and strength, and to assure their continued success, take 

an active role in the development of opportunities advantageous to the Members. Old 

Dominion's systems and its 12 member electric distribution cooperatives have 

relationships of proven reliability and earned trust that go back 60 plus years. In fact, 

those served by these 12 local cooperatives are more than customers; they're also owners 

of the cooperative." 
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2.28 AECI :Allegheny Electric Cooperative, Inc. 

Allegheny Electric Cooperative is a generation and transmission cooperative 

formed by the electric distribution cooperatives in Pennsylvania and New Jersey. There 

are 14 distribution members/owners of Allegheny Electric Cooperative.  The cooperative 

owns interests in 2 generation plants enough to provide about half of the cooperative’s 

needs. The remainder is bought from other generation companies. The current supplier is 

Williams Energy Marketing and Trading.  

2.29 BPGM: BP Energy Company (Green Mountain) 

“As the largest retail provider of less-polluting electricity to residential and 

commercial customers in the U.S., Green Mountain Energy Company offers electricity 

that is:Cleaner - All of our electricity comes from less-polluting sources like wind, water, 

solar, biomass, geothermal, and natural gas. Reliable - The source of the electricity you 

pay for changes, not how electricity is delivered.” 

2.30 CITZNS Reliant Energy Services, Inc. (Citizens Electric) 

“The Reliant Energy Wholesale Group is a leading provider of electricity, natural 

gas and energy services with a focus on the competitive segments of the electric power 

industry in the United States and Western Europe. We acquire, develop and operate 

electric power generation facilities that are not subject to traditional cost-based 

regulation and therefore can sell power at market-determined prices.  We also trade and 

market power, natural gas and other energy-related commodities and provide related 

risk management services. We refer to the combination of our power generation 

operations with our trading, marketing and risk management operations as our 
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"wholesale business.” Our trading, marketing, and risk management skills complement 

our generation positions. The combination provides greater scale and skill associated 

with the management of our fuel and power positions, sophisticated commercial insights 

and understanding of the key regions in which we participate, and a wider range of ways 

in which we participate in the market and are able to meet customer needs.” 

Citizens' Electric is a wholly owned subsidiary of C&T Enterprises, a subsidiary 

of Claverack Rural Electric Cooperative and Tri-County Rural Electric 

Cooperative. 

2.31 EXGNPT: Exelon Generation Co., LLC  

(Power Team)Exelon Generation manages a diverse portfolio of natural gas, coal, 

hydro, nuclear, solar and wind generated electricity." We are bold and aggressive. We 

seize opportunities, and then make the most of them - for our customers, shareholders, 

and communities.  Exelon Generation is considered a world-class operator of nuclear 

power generation, a leader in wholesale power marketing, and an innovator in the fossil, 

hydro and wind and solar development areas. We are reaching, with all of Exelon 

Corporation, to become the most recognized and admired utility services company in the 

world." 

Subsidiary of Exelon Corporation. Exelon Corporation is one of the nation’s 

largest electric utilities with more than $14 billion in annual revenues.  It distributes 

electricity to approximately 5.2 million customers in Illinois and Pennsylvania, and gas to 

460,000 customers in the Philadelphia area.  Exelon Corporation is parent of PECO and 

ComEd 
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2.32 MetEd: Metropolitan Edison Company  

The Group's principal activities are the distribution and sale of electric energy in 

an area of approximately 3,300 square miles in eastern Pennsylvania. The Group also 

sells, purchases and interchanges electric energy with other electric companies. The 

Group's retail customers are metered on a cycle basis. Revenue is recognized for unbilled 

electric service through the end of the year 

Wholly owned subsidiary of FirstEnergy Corp. See market participant # 22. 

2.33 AHC:Amerada Hess Corporation 

Amerada Hess Corporation is a leading global independent energy company, 

engaged in the exploration and production of crude oil and natural gas, as well as in 

refining and in marketing refined petroleum products, natural gas, and electricity 

 

2.34 CPSDMB: Constellation Energy Commodities Group  

(DPL MD Base)Constellation Energy Commodities Group, formerly known as 

Constellation Power Source, sells  power into the wholesale market, providing utilities, 

electric co-operatives, municipalities, and power marketers reliable energy at predictable 

prices. Also manages fuel and power logistics and other energy services. 

Subsidiary of Constellation Energy. See market participant # 26. 

2.35 UGID: UGI Development Company  

Wholly owned subsidiary of Ugi Corp. Ugi Corp is a distributor and marketer of 

power products and services. 
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2.36 SELWM: Select Energy, Inc. (Wholesale Marketing) 

"Our Power Marketing and Trading divisions are active in all three Northeastern 

power pools (ISO New England, New York ISO and PJM Interconnection). Serving over 

5,000 megawatts of peak load in New England, Select Energy is one of the largest 

wholesale energy suppliers in the region today. With decades of power sourcing and 

generation expertise, our risk-savvy team is well-regarded throughout the industry." 

Subsidiary of Connecticut-based Northeast Utilities (NYSE: NU).                                                       

Select Energy manages and markets power output for approximately 1,300 megawatts of 

generation owned by the affiliate Northeast Generation Company. 

 

2.37 RAMEP: Ritchie Energy Products, L.L.C.Formerly known as RAM Energy 

Products LLC. 

2.38 PaElec: Pennsylvania Electric Company 

The Company's principal activity is to distribute electricity on retail as well as 

wholesale basis. The Company distributes and sells electric energy in an area of 

approximately 17,600 square miles in western Pennsylvania to a population of 

approximately 1.6 million.  It also sells, purchases and interchanges electrical energy 

with other electric companies. 

Wholly owned subsidiary of FirstEnergy Corp. (See market participant # 22.)           

As a lessee of the property of its subsidiary, The Waverly Electric Light & Power, the 

Company also serves a population of about 13,400 in Waverly, New York and vicinity 
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2.39 CINSI: Cinergy Services, Inc. 

Cinergy Service, Inc., a Delaware corporation ("Cinergy Services" or 

"Applicant"), Cincinnati, Ohio, a service company subsidiary of Cinergy Corporation 

("Cinergy"), a registered holding company 

Subsidiary of Cinergy Corporation. Cinergy's regulated operating companies are 

The Cincinnati Gas & Electric Company (Cinergy/CG&E)(Ohio), Union Light, Heat & 

Power (Cinergy/ULH&P) (Kentucky) and PSI Energy, Inc. (Cinergy/PSI) 

(Indiana).Cinergy’s regulated public utilities in Ohio, Indiana, and Kentucky serve 1.5 

million electric customers and about 500,000 gas customers. In addition, its Indiana 

regulated company owns 7,000 megawatts of generation. Cinergy’s competitive 

commercial businesses have 6,300 megawatts of generating capacity. The 

interconnections of Cinergy's Midwestern transmission assets give it access to 40 percent 

of the total U.S. energy consumption. Cinergy's 2003 operating revenues were $4.4 

billion. 

2.40 JCPLFP: Jersey Central Power & Light (FP Load) 

Jersey Central Power & Light Company serves more than 1 million customers in 

New Jersey  

Subsidiary of FirstEnergy Corp. (See market participant # 22.) 

2.41 ConEdE: ConEdison Energy, Inc. 

“Con Edison Energy is a wholesale energy company that designs innovative 

supply services to foster success, mitigate risk, and manage volatility in the wholesale 

energy marketplace. Customers in the generation, distribution, and power marketing 
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industries value our supply, logistics and risk management services because we tailor 

them to their individual needs. We're able to offer these services because of our unique 

capabilities.  First, we know the region -- everything from weather patterns to regulatory 

requirements.  Second, we've invested in sophisticated information systems that allow us 

to analyze market developments and track prices. Third, we have a broad range of 

experience in electricity and gas trading, fuel optimization, and generating asset and 

transmission system operations.”  

2.42 ACNEgy: ACN Energy, Inc. 

ACN Energy is another milestone in ACN's quest to provide consumers with 

choice in the services they use every single day. More than 85,000 ACN customers enjoy 

the convenience of a single provider for all essential services. ACN Energy, has been 

offering consumers an alternative choice for natural gas and electricity services in several 

deregulated markets throughout the U.S. since 1998. ACN Energy currently serves areas 

in California, Georgia, Maryland, New York, Ohio, Pennsylvania and Texas.  

Wholly owned subsidiary of ACN Inc. "ACN is a leader in the rapid expansion of 

the global telecommunications industry and has become one of the world’s leading direct 

sellers, having served millions of satisfied customers in 18 different countries." 

2.43 ECPDTE: Energy Cooperative Association of PA  

“The Energy Cooperative is the only non-profit consumer cooperative in 

Pennsylvania licensed as a competitive electricity supplier. By combining the buying 

power of over 6,500 households and small businesses we are able to negotiate low prices 

and locked-in rates for electricity. We also provide renewable, Green-e certified 
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electricity to our members and promote energy efficiency services to permanently lower 

your electric bill. Although we are licensed to serve the entire Commonwealth of 

Pennsylvania, we have our hands full serving our members in the Philadelphia area.” 

2.44 EASTON: Easton Utilities Commission Easton  

Utilities operates, manages and maintains the electric, water, wastewater, natural 

gas, cable television and Internet utility services for the Town of Easton and portions of 

the surrounding area. In 1923, Easton became the first municipality in the state to own all 

of its utilities, an arrangement that is still unique today. The Electric Department now 

provides service to over 9,500 customers in a 53 square-mile service territory. “We are 

connected to the PJM Interconnection, L.L.C. (PJM) power pool and use this venue to 

purchase our electricity on an hourly basis. Easton also owns 16 diesel generators and 

operates them to offset costs during times of high-priced PJM energy. Easton’s installed 

electrical generation capacity is 60 megawatts, enough to meet the Town’s service load 

during periods of normal demand. To meet the town's growing electricity needs, Easton 

will soon add another 10 megawatts.” 

2.45 CEDS: Consolidated Edison Solutions, Inc. 

Consolidated Edison Solutions (Con Edison Solutions) works to solve the energy 

supply needs of retail customers in the Northeast. The company markets electricity and 

natural gas as an alternative supplier for homes and businesses in deregulated utility 

markets. It also provides energy procurement and management services.  

Subsidiary of Consolidated Edison, Inc.  Consolidated Edison Inc is one of the 

nation’s largest investor-owned energy companies, with $10 billion in annual revenues 
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and approximately $23 billion in assets.  Consolidated Edison Company of New York 

(Con Edison), a regulated utility, provides electric service in New York City (except for a 

small area of Queens), and most of Westchester County. “We provide natural gas service 

in Manhattan, the Bronx, and parts of Queens and Westchester. Con Edison also owns 

and operates the world’s largest steam system, providing steam service in most of 

Manhattan.” 

2.46 GALT: Galt Power Inc. 

Galt Power is engaged in the sale of electricity and related products through the 

wholesale electricity markets. This includes the day ahead and real time energy markets, 

capacity markets, ALM, Emergency and Economic Demand Side Response markets, and 

Financial Transmission Rights (FTR) markets. Galt Power became a PJM member in 

December 2003. Galt Power helps Load Serving Entities (LSEs) including Municipal and 

Cooperative Utilities in many of the regular transactional functions they must perform in 

the PJM and similar Independent System Operator (ISO) markets. In particular Galt 

Power helps LSEs cost effectively manage their participation in the ISO demand response 

programs. Galt Power is capable of trading demand response and distributed generation 

portfolios in the PJM market. Likewise Galt Power is able to help manage the congestion 

risk through a combination of Financial Transmission Rights and participation in the 

energy markets. Our research provides valuable analysis and understanding of the 

wholesale markets for clients involved in the bidding of demand response and distributed 

generation products. 
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2.47 JARON : J. Aron & Company  

J. Aron is the commodities division of Goldman Sachs. They are members of 

COMEX and the LBMA in London. They specialize in over-the-counter options trading.  

Part of Goldman Sachs. The Goldman Sachs' Commodities group provides full 

service commodity risk management to commercial, investor, and sovereign customers 

worldwide. “We cover virtually all commodity related exposures including Oil, Natural 

Gas, Metals, Power, Weather and Forest Products. The group delivers a global approach 

to risk management with more than 150 professionals around the world, with offices in 

locations such as New York, London, Sydney, Singapore and Tokyo. We strive to combine 

our understanding of client objectives with superior derivative expertise, world-class 

block trading, and leading edge commodities research to create customized risk 

management solutions.” 

 

2.48 TESI: Tractebel Energy Services, Inc. 

Changed its name to SUEZ Energy Resources NA, Inc in April 2005.  SUEZ 

Energy Resources NA provides electricity and risk management solutions to commercial 

and industrial customers looking to control their energy budgets. Licensed in 12 markets 

(Texas, New York, New Jersey, Massachusetts, Maryland, Maine, Pennsylvania, Ohio, 

Rhode Island, Delaware, Connecticut and Washington, DC), 

Subsidiary of SUEZ, an international industrial and services group that designs 

sustainable and innovative solutions in the management of public utilities as a partner of 

public authorities, businesses and individuals. The Group aims to answer essential needs 
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in electricity, gas, energy services, water and waste management. SUEZ is listed on the 

Brussels, Luxembourg, Paris, New York and Zurich stock exchanges and is represented 

in the main international indices: CAC 40, DJ STOXX 50, DJ EURO STOXX 50, 

Euronext 100, FTSE Eurotop 100, MSCI Europe and ASPI Eurozone. The Group 

employs 160,700 people worldwide and achieved revenues of EUR 40.7 billion in 2004, 

89% of which were generated in Europe and in North America.  

2.49 AMPO: American Municipal Power-Ohio,  

Inc.American Municipal Power-Ohio supplies wholesale power to more than 80 

community owned distribution utilities, primarily in Ohio. The power generation 

company, which is owned by its member municipalities, was formed in 1971. The 

municipally owned power systems are scattered throughout the state. Not all generate 

their own power; some buy all or part of their supply from AMP-Ohio at wholesale rates. 

At its dispatch center near Columbus, AMP-Ohio taps between two and three dozen 

suppliers, including the New York Power Authority, Louisville Gas & Electric and 

Cinergy. 

2.50 DTEET DTE Energy Trading, Inc. 

See Market participant 17 

2.51 MLCS Merrill Lynch Capital Services, Inc. 

Merrill Lynch is one of the world’s leading financial management and advisory 

companies, with offices in 36 countries and total client assets of approximately $1.6 

trillion, at the end of 2004 
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2.52 SES: Sempra Energy Solutions  

Sempra Energy Solutions offers comprehensive portfolio of electricity, natural 

gas and emissions risk management products. 

Subsidiary of Sempra Energy. With more than 13,000 employees worldwide, the 

Sempra Energy companies develop energy infrastructure, operate utilities, and provide 

related products and services to more than 29 million consumers in the United States, 

Europe, Canada, Mexico, South America and Asia. 

2.53 QuarkP: Quark Power, L.L.C. 

Web page www.quarkpower.com not working yet. 

2.54 AEPAP: Appalachian Power/American Electric Power  

American Electric Power owns more than 36,000 megawatts of generating 

capacity in the United States and is the nation's largest electricity generator. AEP is also 

one of the largest investor-owned electric utilities in the United States, with more than 5 

million customers linked to AEP’s 11-state electricity transmission and distribution grid. 

The company is based in Columbus, Ohio.  Systemwide there are more than 38,000 

circuit miles of transmission lines and more than 186,000 miles of distribution lines.  

Customer service is provided through seven regional utilities: AEP Ohio, AEP Texas , 

Appalachian Power , Indiana Michigan Power , Kentucky Power , Public Service 

Company of Oklahoma , Southwestern Electric Power Company . Appalachian Power 

(AP) provides service to AEP customers in West Virginia and Virginia. It has 929,000 

customers, 2,370 employees, 6,972 transmission miles, 46,227 distribution lines, 5,871 

megawatts of generation capacity and 5 billion in assets. 
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Clean air and affordable electricity? 
Dalia Patiño-Echeverri, Zhiyong Wu and Marija Ilic 

 
Abstract— Performance criteria of the power industry such as 

environmental impact, electricity prices, and quality/reliability of 
the service are functions of fuel market, government regulations, 
the state of the art of technology, and the combined actions of 
different industry participants.  We argue that to prescribe 
optimal government interventions, it is imperative to understand 
as much as possible about the dynamics of the interaction 
between industry participants, as well as the interactions with 
fuel and technology markets.  In this paper we propose a model 
that relates air emissions and electricity prices with government 
policies regarding allocation of emissions allowances, fines, 
subsidies and investments in R&D.  We present results of the 
simulation of a simplified model. 
 
Index Terms—Pollution control, market models, 
governmental factors, game theory.  

I.  INTRODUCTION 
oal-fired power units account for more than 50%1 of 
electricity generation and are the single biggest source of 
air pollution in the U.S.  The reduction of emissions from 

the electricity generation sector implies either retrofitting 
existing coal-fired power plants or replacing them with newer 
and cleaner technologies.  Retrofitting existing coal plants to 
reduce emissions of sulfur-oxides, nitrogen-oxides, mercury, 
or carbon-dioxide requires equipment that is expensive to 
install and operate.  The retirement of existing power plants 
also implies intensive capital investments and therefore higher 
costs for electricity generation.   

Since the availability of affordable electricity is a necessary 
condition for GDP growth, the goal of minimizing the level of 
toxic emissions in the atmosphere while keeping electricity 
prices low poses a very serious challenge to society.   
  A very relevant question arises: how should the government 
act over a finite period of time to achieve desired levels of 
atmospheric emissions and electricity prices? 

In order to shed some light on this issue, we propose a 
model of the electricity generation system that (1) explicitly 
considers a number of control instruments that the government 
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1 Electricity supply from coal accounted for 54% in 2001.  EIA forecasts 
that under reference case assumptions, this tendency will remain in the next 20 
years.[1] 

can use to balance atmospheric emissions and electricity 
prices, and (2) accounts for the fact that industry participants 
make strategic decisions to maximize their profits and face 
several sources of uncertainty.  The model is constituted by 
four subsystems: the fuel market, the electricity market, the 
environmental or allowances market, and the market of 
equipment for control of emissions. 

A computational implementation of a simplified model and 
a simulation over a number of years allow us to comment 
about how this problem needs to be studied.    

II.  BACKGROUND 
There are at least three big efforts to understand the effects 

that environmental legislations for the electricity generation 
system may have on the U.S: 1) the National Energy 
Modeling System (NEMS)[2], 2) the Argonne National 
Laboratory’s AMIGA model [3], and 3) the EPA’s Integrated 
Planning Model (IPM)[4]. 

NEMS and AMIGA are general equilibrium models of the 
U.S. economy, while IPM is a bottom-up linear programming 
model of the electric power sector.   All assume that decisions 
by industry participants are made with perfect foresight, and 
forecast electric power sector decisions for a given set of 
environmental regulations  

The NEMS and AMIGA models forecast capacity 
additions, fuel dispatching, and electricity prices based on 
different endogenous and exogenous inputs of the electric 
sector and the U.S. economy.  IPM forecasts decisions made 
from the national to the plant level in response to legislative 
requirements seeking to minimize the net present value of the 
cost of compliance over the planning horizon.  

A recent analysis using NEMS was prepared in response to 
a request by the U.S. Congress to examine the costs of 
imposing caps on power sector emissions of SO2, NOx, Hg and 
CO2.  Some results of this analysis are contained in “Strategies 
for Reducing Multiple Emissions from Electric Power 
Plants”[5]. AMIGA and IPM models have also been recently 
used to assess the impacts of legislations to reduce emissions 
from the electricity sector2.  

We believe that it is necessary to analyze the problem with 
a model that differs from the existing ones in that the model 
(1) explicitly accounts for the fact that industry participants 
are making decisions under uncertainties about future 
regulations, fuel prices, and other participant’s actions, (2) 
accounts for different instruments of government intervention 
                                                           

2 Also Johnson and Keith [6] developed a model that forecasts capacity 
additions, retirements, and retrofits for different prices of carbon emissions 
within the Mid Atlantic Area Council Region of the North American Electric 
Reliability Council. 
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such as subsidies and investments in R&D, and for details of 
the regulation such as how and when allowances are allocated 
to generating units, and (3) frames the question of what the 
government should do as an optimization problem in which 
both electricity price and air-emissions are considered. 

III. MODEL DESCRIPTION 
We represent the electricity generation sector with a 

number of generating units that vary in fuel, size, and 
efficiency.  

The generation cost for each unit is determined by some 
fixed costs, the cost of fuel, and the cost of complying with 
environmental regulations.  

The cost of fuel for a particular unit depends on its heat 
rate and fuel price. Assuming that environmental regulations 
provide a Cap-and-Trade (CAT) System, the environmental 
cost for each plant will be a function of the number of 
allowances it has been allocated by the government, the price 
of allowances, and the price of add-on Emissions Control 
Devices (ECD). 

We assume all generating units reserve all their capacity 
production for sale on the spot market.  All generators submit 
their bids to the Independent System Operator (ISO), who 
runs an economic dispatch model to meet electricity demand.  

The electricity price is the clearing price obtained in a 
uniform-price auction. Electricity demand is assumed to be 
inelastic and is treated as an exogenous input. 

Figure 1 illustrates the interaction among different 
variables considered in the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Overview of the system 

 
A. Electricity Market 
Let  represent the electricity price at time, and the 

demand of electricity.  Let  be the supply function bid by 

generator  at time 
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i τ  which specifies the quantity of power 
offered and the price demanded.  If  is equal to the 
market-clearing price of an uniform-price auction, then 

 where is the electricity price bid by the last 
generator (most-expensive supplier) needed to meet demand.  
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In our model we will assume that the market is truly 
competitive and generators are profit-oriented so they adjust 
their power output to the level for which their marginal cost of 
electricity generation is equal to the expected spot price [7]. 
Therefore, a generator’s bid to the spot market corresponds to 
its marginal cost of electricity generation, which includes the 
cost of fuel and the cost of compliance with environmental 
regulations. 

 
B. Market of Emissions Control Devices 
We assume that the capital cost of ECDs decreases as 

companies and the government put money in to Research and 
Development (R&D).  We assume that the amount that firms 
devote to R&D is proportional to allowance prices. 

The different technology-based alternatives that allow the 
reduction of emissions in electric generating units can be split 
into two categories: (1) installation of add-on emissions 
control equipment, (2) modification of the firing process.  The 
first category includes devices such as wet and dry scrubbers 
to remove SO2, selective catalytic reduction devices (SCR) to 
remove NOx, Carbon Injection Devices (CI) to remove 
Mercury, and Carbon Capture and Sequestration technologies 
(CCS) to reduce CO2 emissions.  In the second category of 
alternatives to reduce emissions we can include methods such 
as switching fuel (for example to low-sulfur coal), modifying 
the unit to co-fire other fuels (for example, biomass or natural 
gas), and improving the heat rate of the unit.  In this paper we 
use the term ECD to refer to all possible technologies of both 
categories. 

Coal Price 

Gas Price Gas Supply 
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Allowances price

Average cost allowances

Fuel Cost Plants For any ECD it is true that installation and operation costs, 
removal rates, and energy penalties are generator specific and 
cannot be forecasted with complete accuracy until they are 
operating.  However, it is also true that the degree of 
uncertainty is somewhat higher for less tested technologies 
such as CCS. 

Assuming that capital and OM (operation and 
maintenance) costs of ECDs evolve with time as new 
necessities to reduce emissions generate investments in R&D, 
we have chosen to model the capital cost of ECDs as a state 
variable related to government policies and private 
investments.   

Let 
tr
r  represent the aggregated investment in R&D by all 

units in time t . Let  be the amount invested in R&D by the 
government and  be the subsidy the government will give 

to unit i  for installing ECD  at time t .  

trg
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Therefore, , the cost of installing ECD k to unit I at 
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where (.)~
1
iα  and (.)~

2
iα  are random variables whose 

probability distributions have parameters that depend on the 
R&D investments of previous periods. 

 
C. Fuel market 
Prices of fuels are determined by the aggregated demand at 

a particular period of time.  The quantities demanded of each 
fuel are a result of the amount of electricity generated by each 
generating unit. We assume here that the supply functions for 
each fuel are time invariant. 

Let  be the inverse supply function of fuel at 
time 

)( kk Ypτ k
τ , which measures the price at which sellers are willing 

to supply a given amount of fuel. 
Let  be the amount of fuel  consumed by 

generating unit  at time 

)(,
ii

k sy ττ k

i τ , when producing an electricity 
output of . Let  be the aggregated demand of fuel  at 

time 

isτ
kYτ

k

τ , e.g. , where  is determined by the 

economic dispatch performed in the electricity market as in 
(2). 
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In this paper we will assume that supply functions for coal 
and gas are time invariant and exogenously determined.  This 
means that conditions for the extraction and transportation of 
coal and gas for the time scope analyzed here are not affected 
by other variables of the model and remain constant.  

 
 

D. Environmental Market 
1) Cap-and-Trade System 
In this model we will assume that there is a CAT system to 

control emissions of different pollutants.  Under a CAT 
system, the government sets a cap and issues an equivalent 
number of emission permits or allowances which can be 
traded in the market.  The government can allocate allowances 
in two different ways, grandfathering allowances or 
auctioning them.  Under the grandfathering approach, 
government allocates to existing generating units a number of 
emission allowances for free. The number of allowances 
allocated to each plant might be determined by some historical 
data (as in the case of the EPA Acid Rain Program) and 
remain that way for a number of years, or can be periodically 
adjusted.  The unit is authorized to emit as many tons of 
pollutant as allowances has been allocated.  Since the number 
of allowances allocated covers only a portion of its emissions, 
to comply with regulations the unit has three alternatives: (a) 
to install emissions control equipment, (b) to buy “emissions 
allowances” in the market, (c) to reduce its electricity output. 

 Often, units that install Environmental Control Devices 
(ECD) end up emitting less than what they have been allowed 
.  The emissions allowances not used can be sold in the market 
or if allowed, be banked for use in future years.  Those 
generating units that have emissions over the number of 
allowances held must pay a fine to the government for each 
ton.  In this sense, the government can be seen as a seller of an 
unlimited number of allowances at a price equal to the fine.   

To make decisions regarding whether and when to install 
emissions-control equipment, decision makers have to 
consider the expected cost of compliance for each of the 
possible alternatives.  The expected cost of compliance 
depends on the capital and operating cost of ECDs, number of 
allowances allocated, level of emissions, and price of 
allowances.   

  
 2) The decision to install an ECD 
Modeling the decision that power plants’ owners make in 

regard to ECDs poses several difficulties. 
We can assume that at each period t , generators will 

design a strategy or a plan regarding which ECDs should they 
install and use every future period to minimize the expected 
cost of compliance over a planning horizon T , and will act 
accordingly.  Such strategy will be reviewed next period as 
new information allows a more accurate calculation of the 
expected cost of compliance. 

Let iL  be an indicator matrix of the ECDs installed by 
generator , at each period, so  if generator i  decides 

to install ECD in period  and otherwise.  Similarly 

let  be an indicator matrix of the ECD the generator uses in 

each period. Therefore 1 if generator i  uses ECD k  in 

period t and 0 otherwise.   
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Let (.)i
ter  represent the air emissions of generator i  at time 

, and t i
tar  represent the number of allowances (for each 

pollutant) allocated by the government, to generator i  for 
period .  If t *

twr represents the price of allowances at time i, 
represents the capital cost for generator  to install ECD 

 at time t , and  represents the Operation and 

Maintenance Cost, then the expected value of the cost of 
compliance for unit 
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We assume that in order to use a particular ECD, a unit has 
to install it η  periods in advance. Note that every installment 
decision that plant makes in previous periods is a constraint 
for future periods.  In other words, at time t, columns 1, 2,..,t-
1 of iL  and are not decision variables, but initial 
conditions, because they represent decisions that were already 
executed in previous periods.  These path dependencies in the 
solution make this problem one of Dynamic Programming.  
Also, since 

iU

i
ter , i

tar and *
twr  are random variables, the problem 

is a Stochastic Dynamic Program or a Multi-stage Stochastic 
Program 3[8].    

                                                           
3 Given that variables and are binary, the problem is linear mixed-

integer. 
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At each period the installation and use of ECDs is given by 
the first column of matrixes and  that solve: iL iU
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Note that (4) implies that compliance is mandatory and that 
banking of allowances is not possible.  This means that when 
emissions are higher than the number of allowances held, the 
unit has to buy the difference i

t
i
t ae rr

−  at a price *
twr .  Similarly, 

when emissions are lower than the number of allocated 
allowances, the unit has to sell the difference at the same price 

*
twr .  In practice, under the Acid Rain Program units are 

allowed to bank all the SO2 allowances they have left and use 
them in future years.  Units are also allowed to bank NOx 
allowances but these banked allowances are discounted. 

 
3)  Calculating the expected cost of compliance 
If we accept that units make their compliance decisions by 

trying to minimize the expected cost, a natural question is how  
they calculate it.  Given that the number of allowances 
allocated, price of allowances, and costs of ECDs in coming 
years are all random variables, how do units calculate the 
expected cost of compliance for a certain strategy? 

In the following subsections we comment on the 
uncertainty inherent to key variables and the way they affect 
the decision making process of power plant makers in regard 
to a compliance strategy.   

 
3.1) Uncertainty in future regulations. 
The current number of allowances allocated for each 

pollutant is known by generators, but the number of 
allowances that will be allocated in future years is highly 
uncertain.  It is expected that significant changes in the future 
air emissions regulations will heavily affect electricity 
generators that burn fossil fuels.  However, neither the timing 
nor the stringency of these future regulations is known.  This 
uncertainty in future regulations has a cost. Waiting to decide 
until all legislative, regulatory, and judicial uncertainty is 
resolved could prove costly; however, “locking in” an 
emission-control technology too soon could prove equally 
expensive. On one hand, plants might face stringent 
regulations without being prepared for that, and could be 
forced to buy expensive emission allowances.  On the other 
hand, the installment of a particular control technology can 
preclude or make more expensive the option to install newer 
technologies more efficient or better suited for updated 
regulations.  In [9] a method to compute the expected cost of 
regulatory uncertainty for coal-fired plants is proposed for a 
set of plausible regulatory scenarios with attached 
probabilities.  Under this approach, each plausible regulatory 
scenario determines plants’ emissions, price of allowances, 

and fuel prices, so when a regulatory scenario is realized there 
are no more uncertainties.  In this paper, we take a different 
approach and assume that even in the absence of regulatory 
uncertainty, the plant has still to consider that other important 
variables such as emissions, allowances and fuel prices are 
unknown and partially determined by its own decisions and its 
interaction with other market participants.   

 
3.2) Uncertainty in unit emissions 
Unit emissions are proportional to the power output and 

therefore cannot be predicted with accuracy without knowing 
future utilization capacity factors for the unit.  If the plant 
participates in the spot market, then its electricity output is 
also a random variable that depends upon electricity demand, 
market structure, and the generator’s bid.  If the bid is affected 
by the cost of compliance with environmental regulations, 
then the compliance strategy and unit emissions are related in 
a closed loop fashion. 

 
3.3) Uncertainty in emissions-allowances prices   
The price of allowances depends on the compliance 

decisions made by all the units participating in the market of 
allowances. For example, if all generating units decide to 
install ECDs and reduce emissions to a level below the legal 
requirements, then the price of allowances will drop to zero.  
On the other hand, if allowances are scarce, prices can 
approach the fine’s price.   

Forecasting allowances prices has proven to be a very 
difficult task in the recent past.  For instance, when the Clean 
Air Amendment was enacted, the cost of compliance with the 
Acid Rain Program standards for SO2 was estimated to be 
$400-$1000/ton, but by 2000, allowances ranged in price from 
$130 to $155 and have remained close to $140.  The NOx 
budget offers another example; although forecasts of marginal 
control costs ranged from $500/ton to about $2,500/ton and in 
very few cases close to $5,000/ton, some trades in early 1999 
occurred about $7000/ton but prices later fell to less that 
$1000/ton.[10]  In 2003, trades for NOx allowances for 
vintage 2004 and 2005 occurred at prices between $3,000/ton 
and $4,000/ton.[11]  

In [12] it is argued that in phase II of the CAAA90, a high 
supply of SO2 allowances and prices much lower than 
expected occurred in part because owners of big power plants 
preferred to invest in expensive scrubbers rather than incur the 
risk of an allowances shortage.  Later, the situation with NOx 
was the opposite.  Many plants preferred to wait to see what 
would happen in the market of NOx allowances before 
installing any expensive control technology.  This “wait and 
see” approach of many plants has been at least one of the 
causes of the high prices of NOx allowances seen in recent 
years. Estimation of allowance prices under multi-pollutant 
regulation poses additional difficulties, due mainly to 
synergies between the control of SO2, NOx and CO2

4. In our 
                                                           

4 For example, analysis conducted by EIA shows that while a scenario 
with stringent regulations only on SO2 leads to allowance prices of $300, $700 
and $1,000 in years 2008, 2010, and 2020 (in 1999 dollars), a scenario with 
the same stringent cap of SO2 and stringent caps for NOx and CO2, leads to 
prices of $100, $100 and $50 for the same. 
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model we will assume that the forecasts that power plant 
owners use to make their compliance decisions are based on 
the allowance prices they observe, which are clearing prices in 
a uniform price auction. 

    
4) Clearing allowances prices 
Allowances suppliers (for a certain pollutant) are the units 

that, as a result of having installed an ECD, have lower 
emissions than the number of allowances allocated by the 
government. In contrast, allowances buyers are the units 
whose emissions exceed the government allocated allowances. 

Let  represent the set of buyers of allowances for 
pollutant j in time t.  Since ECDs reduce the emissions of 
different pollutants at different rate, a particular unit can be a 
supplier of allowances of one pollutant and a buyer of 
allowances of other pollutant.  For example a unit that installs 
a dry scrubber can supply SO

j
tB

2 allowances, but could need to 
buy NOx allowances.  This situation might change over time 
as the unit changes its emissions because of a change in the 
electricity output or because of the use or non-use of certain 
ECD. 

Let  represent the demand of allowances for pollutant j 
at time t and let  and  represent the j-th component of 
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As with electricity, we assume that the price of allowances 
for pollutant j  at time ,  is the market clearing price of 
a uniform-price auction.  If the demand of allowances is 
higher than the number of allowances supplied by units, then 
price will be equal to the fine, otherwise it will be equal to the 
bid of the last unit called to sell allowances to meet demand. 
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where 
jt ,
 is the fine for no compliance with regulations for 

pollutant j, and  is the bid of the last unit called to sell 
allowances to meet demand, when suppliers of allowances 
have been stacked in ascendant order according to their bids. 
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5) Simulating compliance decisions by power plants 
If we accept that the outcome of every compliance decision 

made by a power plant is strongly dependent on the decisions 
made by other plants, then the interaction among different 
plants has to be modeled as a strategic game.   

In our model, we assume that decisions made by unit are 
those that result in a Nash Equilibrium (NE).   

To illustrate our thought, consider the example of a system 
with only three units making a decision regarding whether to 
install an SO2-scrubber.  To simplify the analysis assume: 

 

                                                                                                     
 

a) The only pollutant capped is SO2 and there is a CAT 
system in which the three units are partially grandfathered so 
they receive a fixed amount of SO2 emissions allowances.  

b) There is no uncertainty regarding future environmental 
regulations, so participant units know for certain how many 
allowances they will receive from the government for their 
entire planning horizon. 

c) There is no uncertainty about future emissions.  That is, 
participants can forecast with accuracy their future emissions 
because their future electricity output and fuel composition are 
known.    

d) The allowances market clears as described in 3. 
e) The choice to install a scrubber is a “now or never” 

option.  That is, if the unit chooses not to install a scrubber, it 
can not install it later. 

f) Once installed, the scrubber has to be used.  For all 
plants, the scrubber reduces 90% of the unit SO2-emissions. 

g) Each seller of allowances (units that choose to control 
emissions) bids its variable cost for reducing emissions.  

h) The payoffs of each plant under every circumstance are 
“common knowledge.” 

i) All plants make their decision simultaneously. 
Assumptions e) and f) are needed to justify the framework 

of a “one move” game.  Otherwise, we would have to consider 
a repeated game in which units that have not installed a 
scrubber can decide to do it in future moves, and those that 
already installed it can decide not to use it. 

Assume plant emissions, scrubber cost and allowances 
allocation as presented in Table 1.  (Scrubber (Wet Flue Gas 
Desulfurization System WFGD costs retrieved from IECM 
model using default values. [13])  

 
TABLE 1. WGFD COSTS AND ALLOWANCES ALLOCATION 

WFGD costs  

Unit 

Capacity 

(MW) 

Emissions 

(Tons) 

Capital 

Cost ($ 

million) 

Variable Cost 

($/Ton 

reduced 

Annual 

allocation of 

allowances 

(Tons) 

1 (Big) 500 45,000 56 250 27,000 

2 (Small) 200 18,000 37 400 10,800 

3 (Small) 200 18,000 37 400 10,800 

 
The payoff for each plant is its expected cost of compliance 

for the entire planning horizon. To represent all possible 
combinations of decisions of the three plants with their 
correspondent payoffs we can draw a “game-tree” [14] with 
three players as in Figure 2. 

 267



 

c a

c a c a

c a c a c a c a

-169 -151 -151 -133 -16 -304 -304 -304
-109 -109 -18 -18 -73 71 -144 -144
-109 -18 -109 -18 -73 -144 71 -144

s t u v w x y z  
Fig. 2. Game tree 

 
Each terminal of the three in Figure 2 corresponds to the 

vector of payoffs.  The vector labeled as v corresponds to the 
payoff when the three plants chose to control their emissions, 
and the vector labeled as z corresponds to the payoff when all 
the plants choose to comply with regulation buying 
allowances.  The first component of each vector of payoffs 
corresponds to the payoff of unit 1, the second component 
corresponds to the payoffs for unit 2, and so on. 

If we assume a fine for no compliance of $2,000, and an 
allowances market as the one described in section 3, then the 
price of SO2 allowances will be $0, for outcome s, $250 for 
outcomes t, u and v, $400 for outcome w, and $2000 (fine 
price) for outcomes x, y and z.   

Note that the best outcome for plant 1, w, occurs when this 
plant chooses to buy allowances and the other two plants 
choose to control their emissions.  In this case, plants 2 and 3 
supply all the allowances unit 1 needs to buy to comply, and 
the price of each allowance is $400/ton.  For plant 2 (or plant 
3) the best outcome occurs when plant 2 (and/or plant 3) 
chooses to buy allowances and plant 1 chooses to control its 
emissions.  In this case plant 1 can sell all the allowances that 
plant 2 and/or plant 3 needs to comply with regulations.  The 
worst outcome for every unit occurs when it decides to buy 
allowances and these are sold at the fine price.  There are two 
Nash equilibria in pure strategy, v and w.  By finding the NE 
in mixed strategies we find that unit 1 chooses to control 
emission with probability P1=0.269, and units 2 and 3 choose 
to control emissions with probabilities P2=P3=0.661 (The 
units choose to control at “random” according to those 
probabilities). 

If we remove assumption j) and force plant 1 to make the 
first move, then the only Nash equilibrium obtained is node v. 
In the simplified simulation that we describe before, a similar 
game is modeled, but in this case the decision of whether or 
not to install an ECD is not restricted to the previous period, 
but allowed to be made at any time in the planning horizon. 

 
E. Control Instruments 
In this model we consider three different ways in which the 

government can intervene in the system: 
1) Through allowances allocation: The government has a 

direct way to control the market of allowances by setting the 

acceptable emissions level at a certain point and allocating 
allowances to utilities accordingly. 

2) Through the level of the fine for non-compliance: The 
government can also set the value of the fines for each ton of 
emissions that a unit has over its level of allowances.  

3) Affecting the “installation threshold” for ECD:  The 
government can make more attractive the option of installing 
ECD to power units in two ways: 

a) Lowering the cost of ECD: The government could 
provide subsidies to buy ECD and have short-term impact 
in the level of installed ECD. The government can also 
support R&D activities to increase the likelihood of 
substantial improvements in the cost of ECD. 

b) Even if the cost of ECD is the same, the government 
can make the option of installing ECDs seem more 
attractive by making utilities expect to use them for a longer 
time.  

 
Let A  represent the allowances allocated by the 

government,  represent the fines charged for non- 
compliance, 

F
M  represent the subsidies given to units that 

install ECDs and  be the money invested by the 
government in R&D for ECDs. To answer the question of 
which policy instruments are better to achieve low emissions 
and fair electricity prices, an optimization framework seems 
appropriate.  The constraints of such an optimization problem 
are given by the characteristics of the units that constitute the 
sector, and the structure of the markets for fuel, electricity and 
allowances. At least three different ways to formulate this 
problem can be considered:  

RG

 

1.) A multi-objective optimization problem, where the goal 
is to minimize at the same time the amount of emissions over 
a planning horizon, the amount of money invested by the 
government in R&D and subsidies for ECD, and the 
electricity prices.  All the goals are combined in a single 
objective function as a weighted sum of the money the 
government has to put into the system (subsidies and R&D 
investments, minus fines collected), emissions and electricity 
prices. 
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In (10), βα , , andγ  are weights which have to be chosen 

carefully so the tradeoffs between the three key variables 
(government expenditure, emissions and electricity prices) are 
well represented. In the last term in (10), γ  must be chosen 
related to the expected electricity demand 

τδ  because the 
demand level captures the relative importance of electricity 
prices at each period. 

2.) An optimization problem where the goal is to minimize 
the amount of emissions while keeping electricity prices and 
money spent by the government under a certain level. 
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1ψ and 2ψ represent the maximum allowed levels for 
electricity prices and government expenditure in 
Environmental Policy. 

3.) To minimize the electricity prices and amount of money 
spent by the government while keeping emissions under a 
certain level.  So far this has been the approach adopted by the 
U.S. Acid Rain Program for controlling emissions of SO2 
which began in year 2000, setting a permanent annual cap of 
8.95 million tons from all affected utilities [6]. 
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IV. SIMULATION OF A SIMPLIFIED MODEL 
A. Description of simplified model 
In order to illustrate the model described, we implemented a 

simplified model, in which we assume the only pollutant 
regulated is SO2 and the only ECD available is a Wet Flue 
Gas Desulphurization System (WFGD). We also disregard 
here all the effects that money in R&D might have in the 
evolution of ECD technologies and assume there are no 
changes in the capital cost of the WFGD.  We also disregard 
the effects that uncertainty in future regulations has in the 
optimality of decisions made by plants and assume they all 
have perfect foresight of government policies. 

In order to keep running times short, we chose to represent 
the U.S. electricity market with a reduced number of plants.  
We looked at all the coal-fired units in the U.S. and divided 
them into four equally numerous groups according to its 
generation capacity.  Then we calculated the average of key 
variables for each group, and defined four hypothetical plants 
as being the average plant of each group.  These four 
hypothetical units correspond to what we could call the “very 
small,” “small,” “medium,” and “large” prototypical units.  
Similarly we characterized the prototypical gas units and 
chose to include in the model only 6 units – the ones that 
represent the small, medium and large units of each type. To 
estimate the cost of installing WGFD we used the IECM[13]5.  
These prototypical coal and gas units are included in the 
model with attributes as those in the table 2. 

                                                           
5 For plants 2 and 3 (medium and large), heat rate and capacity were 

specified in the IECM. Other parameters were left as the default in the model.  
The cost of WFGD for plant 1 was extrapolated, accounting for economies of 
scale. 

TABLE 2.  UNITS INCLUDED IN MODEL 

WFGD 

U
ni

t Name 
Plate 
Capac

ity 
(MW) type 

Heat 
Rate 
(Btu/ 
kWh) 

SO2 
Emissio
ns Rate 
(ton/M
Wh) 

Capital 
Cost ($) 

Annual 
O&M 
Cost ($) 

Annual 
Variable 
O&M 
Cost ($/ 
MWh) 

SO2 
Reduc-
tion (%) 

1 59 coal 11,982 0.0347 3E+07 4.E+06 0 0.89 

2 172 coal 11,000 0.0318 4.4E+07 7.E+06 0 0.89 

3 571 coal 10,600 0.0306 7.9E+07 1.E+07 0 0.89 

5 12 gas 12,773 0.0000 0 0.E+00 0 0 

6 42 gas 11,973 0.0000 0 0.E+00 0 0 

7 166 gas 11,067 0.0000 0 0.E+00 0 0 

 
In order to explore the optimal values for the variables 

controlled by the government (number of allowances allocated 
and price of fine for no compliance), we simulate the 
electricity and allowance markets for 11 years, for different 
combinations of allowances allocated and fines.  The 
algorithm followed can be summarized as follows: 
-For all the plausible government policies, for each year of the 
planning horizon, 

1. Simulate how units make their decision as to whether 
or not to install   a WFGD. 

2. For each day 
a. Simulate the electricity market. (Find 

schedules for each plant and clearing price.) 
b. Record SO2 emissions and expenses in 

electricity. 
3. Simulate market of allowances.  Find clearing price for 

that year. 
4. Calculate emissions and dollars spent in for each 

policy, as well as the value of the objective function as 
in (10). 

The compliance decisions made by participant units are 
those that correspond to the NE of a strategic game in which 
each of the coal units has the option to install the WFGD at 
any time during the 11 years.  Since we are modeling 3 coal-
fired units there are 11^3=1,331 cases that each plant has to 
consider.  If there is a non-unique NE we assume that units 
choose the one that optimizes the government objective 
function.   

We also assume that all units estimate their payoffs in the 
game based in a forecast of the environmental costs of the 
future.  Environmental costs are forecasted based on an 
estimation of emission levels and allowances prices.  
Estimations of future emission levels are made assuming the 
utilization factor of the plant will be similar to previous years. 

The electricity market clears as described in IIIA.  The 
electricity demand profile corresponds to the annual demand 
profile of ISO NE, scaled so it can be met with the capacity of 
the units modeled.  Units bid their marginal cost which 
includes the cost of fuel and their environmental cost.  The 
cost of coal is assumed to be $1.2/mmBtu for 11 years, and 
the cost of gas is assumed to increase from $4.18/mmBtu in 
year 1 to $4.64/mmBtu in year 11.  
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The environmental cost for those units that do not have 
WFGD is the cost of the allowances they will have to buy to 
cover their emissions.  For those units that are sellers of 
allowances the environmental cost is the annualized capital 
cost of the WFGD minus the revenue for allowances sold each 
year. 

 
B. Results 

If the government allocation required each plant to reduce 
its SO2 emissions by 30% and fixed the fine for no compliance 
in $2000/Ton, then the NE is obtained when the large plant 
installs an WFGD in year 1, and the other two plants do not 
install WFGD.  In this case total SO2 emissions during the 11 
years considered are 228,000 tons and total expenditures in 
electricity are 1.11 billion.  How good is this policy? Fig. 3 
shows the minimum level of emissions that can be obtained 
for each level of electricity expenditure -“Pareto Frontier”- 
and the point of NE.  The frontier is found by evaluating 
emissions levels and electricity expenditures for each of the 
1,331 possible combinations of WFGD installation decisions 
(We omitted in the graph a very extreme point in which all the 
plants install WFGD).  The point labeled as “optimal” 
corresponds to the ideal outcome if government assigned to 
emissions a value of $1,000/ton, to make the objective of 
reducing emissions commensurable with the objective of 
reducing the cost of electricity.  The NE would be far from 
this point and clearly, the policy of requiring reductions of 
30% and fixing a fine of $2,000 would not be good enough. 
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Fig.  3.  Pareto Frontier and NE for a policy with 30% emissions reductions 
and $2000/ton fines. 

 In order to find the best policy, we can compare Pareto 
frontiers.  Figure 4 shows the Pareto frontiers for two policies 
in which the fine is still $2,000/ton and the reductions 
required are 40% and 80%.  The Pareto frontier when 
reductions required are 80% lies below the frontier when 
reductions required are 40%, so for the same electricity 
expenditures emissions can be much lower if the government 
allocates fewer allowances.  A comparison of the Pareto 
frontiers of different levels of allowances allocation indicates 
that the best policy is to enforce reductions of more than 80%.   
However if the government wanted to cap the total 

expenditures in electricity at a level lower than $1.05 billion, 
then the number of allowances allocated should be higher.   
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Fig.  4.   Pareto frontiers of two policies with fine = $2000. 

A similar analysis of the effect of the fines shows that results 
do not change when fines are between $1,000 and $3,000/ton. 

V.  CONCLUSIONS 
We have described and illustrated a model that explicitly 

relates government policies with emissions and electricity 
prices.  The accuracy of the analysis to design optimal policies 
depends upon the assumptions made regarding the behavior of 
industry participants.  Such behavior is determined by the 
information the participants have available, the methods used 
to forecast future values of key variables, and participants’ 
approach to the risk and uncertainty.   

A detailed and accurate model of the behavior of industry 
participants when facing different policies can enlighten any 
analysis the government makes to choose policies that 
maximize social welfare. 
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Appendix – Chapter 5 
 

The Cost of Regulatory Uncertainty in Air Emissions  

for a Coal-fired Power Plant  

 

Dalia Patiño Echeverri, Paul Fischbeck, Benoit Morel, and Alex Farrel 

 

 

Abstract: 
 

Uncertainty about the extent and timing of changes in air-emissions regulations for coal 
fired power plants makes the difficult problem of selecting a compliance strategy even 
harder.  Capital investments made today under uncertainty can limit future compliance 
options or make them very expensive.  In this paper, we present a method for computing 
the cost of operating a moderate-sized, coal-fired power plant under different conditions 
of future regulatory uncertainty.  Using a Multi-Period Decision Model (MPDM) that 
captures the decisions (both capital investment and operating) that a power plant owner 
must make each year, the framework employs a Stochastic Optimization Model (SOM), 
nested in the MPDM to find the strategy that minimizes the expected net present value 
(ENPV) of plant operations over a fixed planning horizon.  By comparing model runs 
under different uncertainty conditions, the cost of regulatory uncertainty can be 
calculated. 
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1. Introduction 

Uncertainty imposes costs to society by preventing optimal decisions to be 
recognized and pursued.  One source of uncertainty is the legislative/regulatory process.  
This paper quantifies these costs in one important example in the electricity industry, 
uncertainty of future air emission regulations. 

Significant changes in the regulations controlling emissions of sulfur dioxide 
(SO2), nitrogen oxides (NOx), mercury (Hg), and carbon dioxide (CO2) in the atmosphere 
will occur in the future, posing a serious challenge to the electricity generation sector and 
especially to coal-fired power plants.  Uncertainty about the extent and timing of 
potential future regulations makes the difficult problem of selecting a compliance 
strategy even harder.  These uncertainties may even be exacerbated by the industry if it 
follows the usual path of litigation.1

Significant emission reductions from coal-fired power plants could require 
installing expensive add-on controls, retrofitting the plant to burn alternative fuels, or 
even retiring the plant and replacing it with a new, cleaner one.  The suitability of any 
compliance strategy is particularly dependent on which pollutants are regulated, when 
and how stringently they are regulated, and the details of the regulatory instruments.  The 
same strategy that may look optimal under one regulatory scenario could prove to be very 
expensive under others. 

Currently, SO2 and NOx emissions from power plants are regulated by a 
combination of command-and-control (CAC) and cap-and-trade (CAT) instruments, 
depending on pollutant and plant location.  New regulations are scheduled to come into 
force in the next several years.  However, there is uncertainty about the future of both 
current and upcoming SO2 and NOx regulations. At present, there are no Federal 
regulations on mercury emissions from power plants, but Congress has ordered the EPA 
to propose regulations on mercury emissions from coal- and oil-fired power plants by 
December 2003.  Finally, while the current administration do not support CO2 regulations 
in the near future, all credible observers believe that Federal controls on greenhouse gas 
(GHG) emissions for U.S. power plants will be required eventually.2  

 Several bills controlling some or all of these pollutants were introduced in the 
107th Congress, and the issue is sure to arrive again in the upcoming session. Many of 

                                                 
1 Although there is a deadline of May 2004 for the implementation of more stringent NOx standards, 
recent suits by utilities could postpone the action. [Energy Argus Daily. Clean Air Regulations and 
Markets. Vol. 9 No 148 August 2002.] 
 
2 International treaties and recent laws appear to foretell Federal Controls: Consider for example: the State 
of New Hampshire House Bill 284-FN relative to additional emissions reductions from existing fossil fuel 
burning steam electric power plants http://www.gencourt.state.nh.us/legislation/2002/hb0284.html.   
Oregon Carbon Dioxide Emission Standards for New Energy Facilities, House Bill 3283. 
http://www.leg.state.or.us/97reg/measures/hb3200.dir/hb3283.a.html.   
State of Massachusetts DEP Regulation 310 that caps CO2 emissions from the six highest polluting power 
plants in 1,800lbs of carbon dioxide per megawatt-hour. 
http://yosemite.epa.gov/globalwarming/ghg.nsf/actions/LegislativeInitiatives
California Automobiles/lemon law AB1058. http://www.dca.ca.gov/legis/2001 autolemon.htm 
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this bills feature CAT systems to control all these pollutants, while a few rely on CAC 
approaches.3   

 Future regulations may have broad economic impacts on the cost of fuel, type of 
generation, and control technologies that will be required. Despite these uncertainties, 
plant owners and operators must still make investment decisions to keep up with 
electricity demand.  Waiting to decide until all legislative, regulatory, judicial uncertainty 
is resolved could prove costly; however, “locking in” an emission-control technology too 
soon could be equally expensive.  Changes in the legislative/regulatory process that 
reduced or eliminated some of the underlying uncertainties could provide significant 
economic savings for the industry.   

 In this paper, we present a method for computing the cost of operating a 
moderate-sized, coal-fired power plant under different conditions of future regulatory 
uncertainty.  Using a Multi-Period Decision Model (MPDM) that captures the decisions 
(both capital investment and operating) that a power plant owner must make each year, 
the framework employs a Stochastic Optimization Model (SOM), nested in the MPDM to 
find the strategy that minimizes the expected net present value (ENPV) of plant 
operations over a fixed planning horizon.  By comparing model runs under different 
uncertainty conditions, the cost of regulatory uncertainty can be calculated. 

 This paper is organized as follows.  In Section 2, we discuss previous models that 
have been developed to evaluate regulatory uncertainty and show how the proposed 
model is different.  In Section 3, we describe the structure of the MPDM and SOM 
models and how they interact.  In Section 4, we present assumptions used in a baseline 
analysis.  In Section 5, we present the baseline analysis and its results.  In Section 6, we 
present several sensitivity studies on the base case, and in Section 7, we outline 
opportunities for future work. 

 

2. Models for Analyzing Impacts of Environmental Regulations  
 There are different models that forecast the effects that environmental legislations 
may have on the U.S. electric sector, four of them are: 1) the National Energy Modeling 
System (NEMS)(EIA, 2001a), 2) the Argonne National Laboratory’s AMIGA model 
(Hanson, 1999), 3) the EPA’s Integrated Planning Model (IPM), and 4) the Carbon 
Capture and Sequestration in an Electric Market Dispatch Model (Johnson & Keith, 
2002).   

 NEMS and AMIGA are general equilibrium models of the U.S. economy, while 
IPM and the Johnson model are bottom-up linear programming models of the electric 
power sector.   All assume perfect foresight and forecast electric power sector decisions 
for a given set of environmental regulations.   

 The NEMS and AMIGA models forecast capacity additions, fuel dispatching, and 
electricity prices based on different endogenous and exogenous inputs of the electric 
sector and the U.S. economy.  IPM forecasts decisions made from the national to the 

                                                 
3 Consider for example the Clean Power Act of 2001 Bill # S.556 (Jeffords) or the Clean Power Act and 
Modernization Act of 2001 Bill # S.1131 (Leahy), or the  “Clear Skies Proposal”. 
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plant level in response to legislative requirements seeking to minimize the net present 
value of the cost of compliance over the full planning horizon. 

 A recent analysis using NEMS was prepared in response to a request by the U.S. 
Congress to examine the costs of imposing caps on power sector emissions of SO2, NOx, 
Hg and CO2.  Some results of this analysis are contained in “Strategies for Reducing 
Multiple Emissions from Electric Power Plants” (EIA 2001d) and are used later in this 
paper as inputs for the baseline analysis.   

 AMIGA and IPM models have also been recently used (EPA 2001a) to assess the 
impacts of legislations to reduce emissions from the electricity sector.  

 The Johnson model forecasts capacity additions, retirements, retrofitting, and 
dispatching for different prices of carbon emissions within the Mid Atlantic Area Council 
Region (MAAC) of the North American Electric Reliability Council. Unlike the others, 
Johnson’s considers Carbon Capture and Sequestration (CCS). 

 The model proposed here is different from the others in that it 1) is based on a 
unit-level analysis, 2) explicitly accounts for the uncertainty in future regulations, 3) 
allows future decisions to adjust to resolved uncertainties, and 4) can be used to 
determine the inherent costs of different types of regulatory uncertainty. It also varies 
from NEMS, AMIGA and IPM in that it considers CCS. 

 

3. Modeling Decision Making of a Power Plant Operator 

 In this paper, we present a method to compute the cost of operating a power plant 
under different conditions of future regulatory uncertainty.  To do so, the MPDM is used 
to model plant investment, operation, and allowance choices on a yearly basis.  (Figure 1 
shows model dynamics).  Each year, the MPDM calls on the SOM to determine the 
optimal operating and investment strategy for that year that minimizes the cost of 
generating a fixed amount of electricity for the next 30 years, based on current and 
expected conditions.   
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Consider : 
*Probabilities for future scenarios  
*Initial technologies available  
*Regulatory requirements for  
current period. 

Run SOM and find best 
strategy for periods 1-30 

Follow what is suggested in 
strategy for period 1: 
*Install 
*Use 
*Buy and Sell allowances 

Period 1 

Follow what is suggested in 
strategy for period 2: 
*Install 
*Use 
*Buy and Sell      allowances 

Run SOM and find best 
strategy for periods 2-31 

Consider : 
*Updated probabilities for future scenarios  
*Available technologies 
*Regulatory requirements for current period 

Period 2 Period j: Uncertainty is resolved. 

Calculate Costs incurred in 
Period 1 

Calculate Costs incurred in 
Period 2 

Run SOM and find best 
strategy for periods j to 30 

Calculate Costs that will 
incur in Periods j, j+1, 30 

Consider : 
Scenario 
characteristics  
Available technologies 

Compute total capital and OM costs 
incurred. 

Figure 1. Multi-Period Decision Model 
 

3.1 Representing the uncertainty: Probabilities on plausible scenarios 
 In this analysis, uncertainty is characterized by a probability that is assigned to 
each member of a set of mutual-exclusive, exhaustive plausible “scenarios.”  A scenario 
defines a sequence of future regulations, emissions caps, allowances prices and policy 
instruments. Every scenario is a “bundle” of assumptions on future regulations and 
allowances market behavior for every year of the planning horizon. Each scenario implies 
a deterministic trend for allowances prices, and therefore, when the uncertainty about 
regulations is resolved so are the uncertainties in allowances prices. Table 1 shows the 
five scenarios that will be considered for a baseline analysis.  

Scenario Name BAU 2P+1 3P 3P+1 4P 

Number of phases 1 2 1 2 1 

Year of implementation 2003 2007 2009 2007 2007 2009 2011 

Reduction in allowances allocated - 63% 63% 63% 63% 63% 63% 

Max Emissions Rate (lb/mbtu)        SO2

Policy Instrument Trade Trade Trade Trade Trade Trade Trade 

Reduction in allowances allocated - 60% 60% 60% 60% 60% 60% 

Max Emissions Rate (lb/mbtu)        NOx

Policy Instrument  Trade Trade Trade Trade Trade Trade 
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Reduction in allowances allocated - - 60% 60% 60% 60% 60% 

Max Emissions Rate (lb/mbtu)        Hg 

Policy Instrument  Trade Trade Trade Trade Trade Trade 

Reduction in allowances allocated - - - - - 60% 60% 

Max Emissions Rate (lb/kWh)        CO2

Policy Instrument  Trade Trade Trade Trade Trade Trade 

Table 1. Scenarios for Baseline Analysis. 
 

 Throughout this study, two types of cost calculations are computed using SOM at 
each time step: 1) The minimum cost of operating the plant when the future regulation 
scenario is known (a deterministic –perfect foresight optimization problem), and 2) The 
minimum expected cost of operating the plant when the decision maker does not know 
the future and assigns a probability to each possible scenario.  This set of probabilities 
(which we will define to be α) is subjective, will vary from decision maker to decision 
maker, and will evolve over time as new information about which scenarios are still 
possible is acquired.  The evolution of these probabilities is assumed deterministic given 
an actual scenario occurring.  However, the decision maker will not know how the 
probabilities will change, until the uncertainty is revealed to her.   

 For our baseline analysis we assume the decision maker believes it is very likely 
that a new regulation will come in less than ten years and the future will take the form of 
one of the scenarios represented in Table 1. We also assume she believes that scenario 
BAU is the least likely while scenario 3P+1 is the most likely, assigning a probability of 
occurrence to each scenario as shown in Table 2.   

 Scenario  BAU 2P+1 3P 3P+1 4P 

Initial Probabilities 0.05 0.15 0.20 0.50 0.10  

Table 2. Initial probabilities α  
 

 

As time passes and scenarios are found not to occur, the decision maker will update her 
beliefs about the remaining scenarios. We assume the probabilities of the scenarios that 
are still plausible will preserve the original ratios.    

 

3.2 Stochastic Optimization Model (SOM) 
 The optimization model finds the investment, operating, and allowance trading 
strategy that minimizes the expected cost to produce electricity subject to environmental 
constraints by selecting control or replacement technologies to install and use over a 
planning horizon.  

 A stochastic linear mixed integer programming model (see e.g., Birge & 
Louveaux, 1997) is used to find the plant’s optimal compliance strategy for the remaining 
planning horizon.  Tables 3 and 4 summarize the input parameters of the SOM. 
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Dimension Index Range 

Scenario s 1-54

Pollutant p 1-4 

Year t 1-30 

Control c 1-49 

Table 3. Dimensions in SOM 
 

 Description Notation Units 
Plant Initial Conditions: 

Initial emissions Plant’s initial annual emissions of 
pollutant p. pIE  

-Tons/year for SO2, NOx and 
CO2. 

-Lbs/year for Hg. 

Initial emission rates Plants Initial emission rates of pollutant p. pIER  
-Lbs/MBtu for SO2, NOx and 

Hg. 
-Lbs/kWh for CO2 

Controls that are available from 
period 1  cAC1  =1 if control c is available, 

=0 otherwise. 

Controls that will be available from 
period 2 Availability in next year cAC2  =1 if control c will be available 

in next period, 0 otherwise. 

Controls that will be available from 
period 3 Availability in next two years cAC3  

=1 if control c will be available 
in two periods,  

=0 otherwise. 
Scenarios 

Number of allowances allocated Number of allowances allocated under 
scenario s, for pollutant p, in year t. tpsAA ,,  

-Tons/year for SO2, NOx and 
CO2. 

-Lbs/year for Hg. 

Maximum emissions rate allowed Maximum emissions rate allowed under 
scenario s, for pollutant p, in year t. tpsMER ,,  

-Lbs/MBtu for SO2, Nox and 
Hg. 

-Lbs/kWh for CO2 

Allowances prices Allowances prices under scenario s, for 
pollutant p, in year t. tpsAP ,,  In year 2000 dollars/allowance. 

Policy instrument Policy instrument: (Tradable allowances, 
taxes or emission standards)  

In the scenarios presented here 
it will be assumed a CAT 
approach 

Probability of Scenario s being 
“reality” Probability of scenario s sπ   

Capital cost for installing the new 
technology. 

Capital cost for installing the control c in 
year t. tcCC ,  Year 2000 dollars 

O&M costs 
Total O&M costs of the plant with the new 
technology used  (including fixed O&M, 

variable O&M and fuel costs) 
tcOM ,  Year 2000 dollars/year 

Emissions reduction (as a 
percentage of initial emissions) 

Emissions Percentage reduction of control 
c, for pollutant p, in time t. tpcEPR ,,  Percentage reduction from 

initial emissions. 

Other Parameters 
Discount rate used by power plant 
operator to calculate NPV of the 
capital and operating expenses 

Discount rate used by decision maker to 
calculate NPV of the capital and operating 

expenses 
r Percent 

Table 4. Input parameters for optimization program. 
 

The decision variables in SOM represent three kinds of decisions; capital investment, 
operational choice, and allowances trading.  Capital investment decisions are represented 
                                                 
4 We consider 5 scenarios for the baseline analysis. 
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by binary variables that indicate whether a particular control or replacement technology is 
installed in a given period.   Operating decisions are also represented by binary variables 
that indicate whether an available technology is used.  Allowances trading decisions are 
represented by variables that indicate how many allowances to sell and buy.  Table 5 
describes the decision variables of the optimization program.5.   

Installation Variables Description Notation Variable type 
Controls installed: Whether the technology is installed or not. tcI ,  Binary 

1 = Installed 
Operating variables  

Technology used Whether a particular available technology is used. tcsU ,,  Binary 
1 = Used 

Allowances Bought Number of allowances bought tpsAB ,,  Continuous  0≥
Allowances Sold Number of allowances sold tpsAS ,,  Continuous  0≥

Table 5. Outputs (Decision Variables) of the SOM. 
 

 

 The objective function is given by: 

( ) ( )∑ ∑ ∑ ∑∑∑ ⎥
⎦

⎤
⎢
⎣

⎡
−++++ −−

c s t p
tpstpstps

c
tctcs

t
s

t
tctc

t ASABAPOMUrCCIr

Minimize

)(11  ,,,,,,,,,,, π
 

Subject to the following engineering and emissions constraints:  

1. Allowances allocated for each pollutant plus net trading have to be greater than or 
equal to zero for each period, in each scenario.  Banking of allowances is not allowed. 

( ) 01 ,,,,,,,,,, ≥−−−+ ∑ ptpc
c

tcstpstpstps IEEPRUASABAA        tps ,,∀

2. Unit emission rates have to be lower than maximum emissions rates allowed by 
regulation.6

( ) tpstc
c

tcsp MEREPRUIER ,,,,, 1 ≤−∑        tps ,,∀

3. Control technologies used in first period have to be initially available in Period 1. 

ccs ACU ≤1,,        cs,∀

4. Control technologies used in second Period have to be initially available in Period 
1 or 2. 

                                                 
5 The program is a “two-stage” stochastic program.  Installation decisions are “first stage decisions” 
because need to be taken without full information about the scenarios, while the choice of which of the 
available technologies to use and number of allowances to trade are “second stage” or “corrective” 
decisions that are made to meet the constraints given for each particular scenario. 
 
6 The scenarios considered here do not consider specific emission rates requirements.  See Appendix A for 
details on each scenario.    
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cccs ACACU 212,, +≤       ) cs,∀

5. Control technologies used from Period 3 on have to be initially available in Periods 
1 or 2 or installed at least two Periods before being used. 

2,,, 321 −+++≤ tcccctcs IACACACU          cs,∀ 3≥∀ t

6. Only one control technology can be used in any period.  (Different combinations of 
control technologies are defined as different technologies.) 

1,, =∑
c

tcsU        s∀

7.  If allowances cannot be traded, then number of allowances bought and sold has to 

be zero. 
 

00 ,,,, =⇒= tpstps ABTIf             tps ,,∀

00 ,,,, =⇒= tpstps ASTIf            tps ,,∀

 
8. Non negativity constraints 
 

{ }
{ }1,0

1,0

0
0

,

,,

,,

,,

∈
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≥

≥
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The optimization program has been implemented as a mixed integer program (MIP) in 
the Optimization Programming Language OPL, with inputs preprocessed by Visual Basic 
in Excel.7   

 

3.3 Multi-period decision model 

 The decision variables obtained from the optimization model define a plan of 
which technologies to install and use every period for a given scenario.  In this analysis, it 
is assumed that for the first several periods, more than one regulatory scenario is possible, 
and that all uncertainty will eventually be resolved.    

 For each time period, the decision maker takes three actions: 1) updates the 
probability set for future scenarios, 2) uses SOM to design an optimal plan for future 
periods based on the plant’s current conditions and the new probability set, and 3) 
executes the plan previously designed for the current period.  Optimal plans designed in 
each period consider that period’s regulation, expectation on future scenarios, and the 
capital investments made in previous years.   

                                                 
7 Constraints that are specific to combination of control technologies are also included.  
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 The multi-period decision process has been implemented as a Script in OPL.  
Table 6 describes inputs for the MPDM. 

Inputs Description 

Years of uncertainty The number of years until the uncertainty is resolved. 

Lead time Time between the announcement of regulation and the implementation 
of the program when the emissions constraints must be met. 

Probability set A set with the probability of occurrence for each of the plausible 
scenarios, for every year of uncertainty. 

Reality The scenario that is occurring. 

Available technologies The initial availability of technologies 

Table 6. Inputs for the MPDM. 
 

 The result of the MPDM is a vector of yearly cash flows (recorded as costs) over 
the entire time horizon.  It specifies for each year the capital and operating expenses 
incurred, and the number of allowances bought or sold.  This cash flow is discounted 
back to current dollars using a constant discount factor. 

 

3.4 Expected value of perfect information 

 The effects of the regulatory uncertainty are assessed by comparing the decisions 
made when there is one certain future scenario, to those made when several regulatory 
scenarios are plausible.  The concept of “expected value of perfect information” EVPI 
(see, e.g., Clemen & Reilly, 2001) can be used to measure the effects of regulatory 
uncertainty.   

 Consider an analysis for the planning horizon 1, ...j, ...T.  Suppose that 
represents the optimal strategy when scenario s happens but the decision maker 

does not know this until the uncertainty is resolved in period j and has to make decisions 
in periods 1, ...j based on a set of probabilities

( sd ,* α )

α .  Suppose ( )sd *  represents the strategy 
followed when scenario s is known to occur by decision maker in first period.  If 

sα represents the initial subjective probability of each scenario being the reality then the 
EVPI for decision maker α  is given by: 

( ) ( )( ) ( )( )( )∑ −=
scenariosins

s sdNPVsdNPVEVPI ** ,ααα  

To calculate the EVPI(α ) the MPDM needs to be run 10 times.  Table 7 describes the 
runs needed. 

1 2 3 4 5 
 

Model 
Run 

Scenario 
BAU 2P+1 3P 3P+1 4P 

Initial Probabilities 1         
d*(1) 

Reality 1         
Initial Probabilities   1       N

o 
un

ce
rta

in
ty

 

d*(2) 
Reality   1       
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Initial Probabilities     1     
d*(3) 

Reality     1     
Initial Probabilities       1   

d*(4) 
Reality       1   
Initial Probabilities         1 

d*(5) 
Reality         1 

 
1 2 3 4 5 

Scenario 
BAU 2P+1 3P 3P+1 4P 

 Initial Probabilities 0.05 0.15 0.2 0.5 0.1 
d*(α,1) Reality 1 - - - - 
d*(α,2) Reality - 1 - - - 
d*(α,3) Reality - - 1 - - 
d*(α,4) Reality - - - 1 - 

U
nc

er
ta

in
ty

: 
A

lp
ha

 R
un

s  

d*(α,5) Reality - - - - 1 

Table 7. MPDM runs to find EVPI(α ) 
 

4. Base Case Assumptions 

4.1 Power plant studied: 
 We will illustrate how uncertainties on regulatory scenarios can impact power 
plant decisions and lead to uneconomical choices, studying one hypothetical coal-fired 
generating unit whose characteristics are typical to many in the current U.S. electric 
sector. 

 The unit chosen generates 3.5 billion of kW-hr every year and has the 
characteristics shown in Table 8. The plant currently complies with the SO2 cap trading 
allowances in the clean air market.  The allowances allocated annually cover 35% of 
plant’s current emissions.  Current NOx emissions rate for this plant is under the 
maximum limit allowed by law.  Also, the plant is not placed in any of the 19 states that 
will be affected by new emissions standards in year 2004. (e.g. Kansas). The coal used is 
a mix of 55% low sulfur coal and 45% High sulfur Bituminous.  Information on current 
emissions was retrieved using the Integrated Environmental Control Model (IECM, 
20028). 

Nameplate Capacity (MW) 500
 Steam Cycle Heat Rate (Btu/kWh) 10,900
 Capacity Factor 85%
 Firing Type Tangential 
 Environmental Controls ESP- Low NOx  Burner
 Years On line 30

(lbs/MBtu) 3.02SO2
Tons per year 70,059
(lbs/MBtu) 0.40

NOx
Tons per year 9,166
(lbs/MBtu) 6.12E-06

Hg 
Lbs per year 284

                                                 
8 Other plant characteristics not specified here are equal to the default case in IECM, 2002. 
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(lbs/kWh) 2.73
CO2

Tons per year 4,785,544

Heat Content (Btu/lb) 10,819
Carbon Content (nearest 0.01%) 60.92
Sulfur Content (nearest 0.01%) 1.60
Nitrogen Content (nearest 0.01%) 1.10
Ash Content (nearest 0.01%) 9.58
Moist Content (nearest 0.01%) 14.33
Mercury content (ppm) 12.00

Coal 

Price (Delivered) ($/ton) 22.90

Table 8. Plant characteristics, current emissions, and coal properties. 
 

4.2 Scenarios 
 For the preliminary analysis, we consider five hypothetical scenarios that differ in 
the number of pollutants addressed and timing.  All scenarios assume a cap and trade 
system and no constraint on emission rates.9   

 For the business-as-usual (BAU) scenario, we assume that allowances or permits 
will be allocated to the power plant at no cost (grandfathered) and in a quantity that 
covers 35% of its current SO2 emissions and all its current emissions of NOx, Hg, and 
CO2.

 

4.2.1. Allowance prices 
 In a cap-and-trade system, expected allowance prices play a key role in 
compliance decisions.  Forecasting allowance prices has proved to be a particularly 
difficult task in the past.  For instance, when the Clean Air Amendment was enacted, the 
cost of compliance with the Acid Rain Program was estimated to be $400-$1000/ton, but 
by 2000 allowances ranged in price from $130 to $155(Acid Rain Program. Annual 
Progress Report, 2000) and have remained close to $140.  The NOx Budget offers another 
example; although forecasts of marginal control costs ranged from $500/ton to about 
$2,500/ton and in very few cases close to $5,000/ton, some trades in early 1999 occurred 
about $7,000/ton but prices later fell to less that $1,000/ton. (Farrell, 2000).  

 Estimation of allowance prices under multi-pollutant regulation posses additional 
difficulties, due mostly to synergies between the control of the criteria pollutants and 
CO2.  For example while under an scenario with stringent regulations only on SO2 leads 
to allowance prices of $300, $700 and $1,000 in years 2008, 2010 and 2020(in 1999 
dollars) an scenario with the same stringent cap of SO2 and stringent caps for NOx and 
CO2, leads to prices of $100, $100 and $50 for the same years (EIA: Strategies for 
reducing Multiple Emissions From Power Plants, 2001). A complete analysis of how 

                                                 
9 Note that any general regulation for coal-fired power plants may imply different reduction requirements 
for each unit.  For example a regulation that imposes a cap 90% below current NOx emissions for the power 
sector would not necessarily imply a requirement of 90% reduction in emissions from the unit considered 
here.  Because of this, the scenarios considered by the power plant are not generic legislations, but specific 
programs that will directly affect its operation. 
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stringent caps on some pollutants could lower the cost of control of other pollutants is out 
of the scope of this paper.  For the baseline analysis, we will assume allowances prices 
for SO2, NOx, and Hg based on those forecasted by NEMS model10.  For CO2 we will 
assume that allowance prices start at $25 the first year of the cap and increase by $5 
annually.   See in appendix A allowance prices for each scenario.   

 

4.3 Control Technologies 
 Alternatives considered are add-on emissions control devices and the replacement 
of the plant with new generation technologies.  Table 8.1 summarizes the alternative 
technologies as well as the assumption and information sources for performance and 
costs. Table 8.2. presents detailed information about each technology. 

Add-on Control Technologies 
SO2: Wet Flue Gas Desulphurization (WFGD) with no 
bypass and limestone as a reagent 

NOx: Hot Side Selective Catalytic Reduction (SCR) 

Hg: Carbon Injection. (Assumes plant has already a 
particulates control)  

CO2: Carbon Capture and Sequestration (CCS) Amine 
System. MEA as a sorbent and Direct Contact Cooler DCC 
used 

Emissions, capital and O&M costs from IECM, using 
plant specifications as in Table 8. and retrofit factor 
of 1.2.   

 
O&M costs assumed to decrease by 0.09% annual 

because of declining coal prices.  

Replacement of existing plant with a new plant 
New Coal Fired Power Plant with all the environmental 
controls. Performance and O&M costs given by IECM model. 

Integrated Coal Gasification Combined Cycle Plant (IGCC) 
with SCR 

IGCC with SCR and CCS via Selexol Process 

Performance and O&M costs of base plant with SCR 
from IECM results for an 800MW plant.   

CCS Capital and O&M costs from estimates for a 
500MW. (Chen, 2002) 

Natural Gas Combined Cycle Power Plant (NGCC) + Dry 
SCR 

Emissions and costs based on a 540 MW plant reported 
by The Northwest Power Planning Council (August 
2002). 

NGCC+SCR+CCS CCS capital and O&M costs from Herzog 1999 

New Coal Plant with all environmental controls. Performance and O&M costs given by IECM model. 

Table 8.1 Control Technologies 
 

Technologies considered: Percentage Reductions from Base 
Plant Costs (In year 2000 $M) 

N Control SO2 NOx Hg CO2 Capital O&M 
CC Annual 
Increase %

O&M Annual 
Increase %

1 WFGD 0.802 0.000 0.700 -0.008 78.0 73.9 0.0000 -0.0090
2 SCR 0.009 0.620 0.000 0.000 38.6 68.3 0.0000 -0.0090
3 CI 0.000 0.000 0.855 0.000 13.9 102.9 0.0000 -0.0090
4 CCS 0.995 0.011 0.000 0.900 378.6 504.7 0.0000 -0.0090

                                                 
10 In forecasting allowance prices for different regulatory scenarios NEMS assumes that emission caps 
would be phased in beginning 2002.  Also NEMS does not consider any 3P scenario, so the  prices we 
assumed are based on NEMS’s prices but do not exactly replicate them. 
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5 FGD + SCR 0.803 0.620 0.945 -0.008 116.6 77.0 0.0000 -0.0090
6 FGD+CI  0.802 0.000 0.855 -0.008 81.9 80.8 0.0000 -0.0090
7 FGD+CCS 1.000 0.012 0.700 0.899 349.0 137.7 0.0000 -0.0090
8 SCR+CI 0.009 0.620 0.855 0.000 52.4 106.2 0.0000 -0.0090
9 SCR+CCS 0.995 0.625 0.000 0.900 425.6 505.9 0.0000 -0.0090

10 CI+CCS 0.995 -0.820 0.855 0.900 392.6 543.0 0.0000 -0.0090
11 FGD+SCR+CI 0.803 0.620 0.945 -0.008 125.8 79.1 0.0000 -0.0090
12 FGD+SCR+CCS  1.000 0.625 0.945 0.899 397.6 143.2 0.0000 -0.0090
13 FGD+CI +CCS 1.000 -0.820 0.855 0.899 353.7 145.2 0.0000 -0.0090
14 SCR+CI+ CCS 0.995 0.625 0.855 0.900 439.5 544.1 0.0000 -0.0090
15 ALL: FGD+SCR+CI+CCS  1.000 0.625 0.945 0.899 397.6 143.3 0.0000 -0.0090
16 Having FGD installing SCR 0.803 0.620 0.945 -0.008 38.6 77.0 0.0000 -0.0090
17 Having FGD installing CI 0.802 0.000 0.855 -0.008 3.9 80.8 0.0000 -0.0090
18 Having FGD installing CCS 1.000 0.012 0.700 0.899 271.1 137.7 0.0000 -0.0090
19 Having SCR installing FGD 0.803 0.620 0.945 -0.008 78.1 77.0 0.0000 -0.0090
20 Having SCR installing CI 0.009 0.620 0.855 0.000 13.9 106.2 0.0000 -0.0090
21 Having SCR installing CCS 0.995 0.625 0.000 0.900 387.1 505.9 0.0000 -0.0090
22 Having CI installing FGD 0.802 0.000 0.855 -0.008 68.1 80.8 0.0000 -0.0090
23 Having CI installing SCR 0.009 0.620 0.855 0.000 38.6 106.2 0.0000 -0.0090
24 Having CI installing CCS 0.995 -0.820 0.855 0.900 378.7 543.0 0.0000 -0.0090
25 Having CCS installing FDG 1.000 0.012 0.700 0.899 0.5 137.7 0.0000 -0.0090
26 Having CCS installing SCR 0.995 0.625 0.000 0.900 47.0 505.9 0.0000 -0.0090
27 Having CCS installing CI 0.995 -0.820 0.855 0.900 14.0 543.0 0.0000 -0.0090
28 Having FGD+SCR installing CI 0.803 0.620 0.945 -0.008 9.2 79.1 0.0000 -0.0090
29 Having FGD+SCR installing CCS 1.000 0.625 0.945 0.899 281.0 143.2 0.0000 -0.0090
30 Having FGD+CI installing SCR 0.803 0.620 0.945 -0.008 43.9 79.1 0.0000 -0.0090
31 Having FGD+CI installing CCS 1.000 -0.820 0.855 0.899 271.8 145.2 0.0000 -0.0090
32 Having FGD+CCS installing SCR 1.000 0.625 0.945 0.899 48.5 143.2 0.0000 -0.0090
33 Having FGD+CCS installing CI 1.000 -0.820 0.855 0.899 4.6 145.2 0.0000 -0.0090
34 Having SCR+CI installing FGD 0.803 0.620 0.945 -0.008 73.4 79.1 0.0000 -0.0090
35 Having SCR+CI installing CCS 0.995 0.625 0.855 0.900 387.1 544.1 0.0000 -0.0090
36 Having SCR+CCS installing FGD 1.000 0.625 0.945 0.899 0.5 143.2 0.0000 -0.0090
37 Having SCR+CCS installing CI 0.995 0.625 0.855 0.900 13.9 544.1 0.0000 -0.0090
38 Having CI+CCS installing FGD 1.000 -0.820 0.855 0.899 0.5 145.2 0.0000 -0.0090
39 Having CI+CCS installing SCR 0.995 0.625 0.855 0.900 46.9 544.1 0.0000 -0.0090
40 Having FGD+SCR+CI installing CCS 1.000 0.625 0.945 0.899 271.8 143.3 0.0000 -0.0090
41 Having FGD+SCR+CCS installing CI 1.000 0.625 0.945 0.899 0.5 143.3 0.0000 -0.0090
42 Having FGD+CCS+CI installing SCR 1.000 0.625 0.945 0.899 43.9 143.3 0.0000 -0.0090
43 Having SCR+CI+CCS installing FGD 1.000 0.625 0.945 0.899 0.5 143.3 0.0000 -0.0090
44 BasePlant 0.000 0.000 0.000 0.000 0.0 65.2 0.0000 -0.0090
45 IGCC+SCR 0.996 0.491 1.000 0.367 730.0 69.3 0.0000 -0.0090
46 Having IGCC+SCR installing CCS 0.996 0.491 1.000 0.863 118.7 76.3 0.0000 -0.0090
47 NGCC+SCR 1.000 0.974 1.000 0.659 282.5 79.1 0.0000 0.0200
48 Having NGCC+SCR installing CCS 1.000 0.974 1.000 0.900 282.5 104.4 0.0000 0.0200
49 New Coal Plant All Controls 0.99993 0.72705 0.950 0.927 799.0 105.8 0.0000 -0.0090

Table 8.2 Characteristics of Technologies Considered 
 

 It is assumed that different control technologies can be installed simultaneously or 
in different stages and can be turned off as desired, so there is always the option to run 
the base plant in its initial conditions.  Costs and performance data for different 
combinations of control technologies was retrieved using the IECM model.   
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 Similarly it is assumed that new capacity and environmental controls can be 
installed in stages at no additional cost. 

 Even after installing new capacity the option of running the original plant remains 
open, as if the plant were “moth-balled” at no cost.  

 Baseline model assumes no “learning-by-doing” so capital costs for all 
technologies remain constant in year 2000 dollars for the entire planning horizon.  Based 
on fuel price predictions contained in Annual Energy Outlook AEO 2003, O&M costs for 
coal plants are assumed to decrease by 0.09% annually as a result of declining coal 
prices, while O&M for natural gas plants are assumed to increase by 2% annually11. The 
starting gas price is assumed to be $3.06/Gj (2000 dollars)(EIA 2001b) and the gas heat 
content is assumed to be 1,020 Btu per cubic foot. (EIA 2001c). 

 

4.4. Lead time, discount rate, and other assumptions 

 For the base case we will assume that the calendar time between the 
announcement of the program and the compliance date (lead time) is shorter than the time 
required for constructing any of the control technologies considered (construction 
time)12. In the base case we will use a discount rate of 10% (real). 

 

 

5. Baseline Analysis 

5.1 Optimal strategy under no uncertainty 
 The first stage to calculate the expected value of perfect information is finding the 
capital and operating costs under no uncertainty.  Table 9 summarizes the optimal 
operating and investment decisions ( )sd * made when each scenario is known to occur 
from the beginning. 

Run d*(1) d*(2) d*(3) d*(4) d*(5) 
 Scenario 1 (BAU) Scenario 2 (2P+1) Scenario 3 (3P) Scenario 4 (3P+1a) Scenario 5 (4P) 

 Install Operate Install Operate Install Operate Install Operate Install Operate 

2003 - Coal - Coal - Coal - Coal - Coal 

2004 - Coal - Coal - Coal - Coal - Coal 

2005 - Coal SCR Coal SCR/CI Coal NGCC/SCR Coal - Coal 

2006 - Coal - Coal - Coal - Coal - Coal 

2007 - Coal CI SCR - SCR/CI - NGCC/SCR - Coal 

2008 - Coal - SCR - SCR/CI - NGCC/SCR - Coal 

                                                 
11 Since AEO predictions extend only to the year 2025, for specifying expected prices for 2026 to 2032, it 
is assumed that price trends forecasted for the period 2015-2025 continue in a linear fashion to the end of 
the planning horizon. 
 
12 Even when new regulations set the compliance date so as to provide enough time to the industry to 
respond, the increased demand of new infrastructure enlarges dramatically both the times and installation 
times.   Removing this assumption changes some of the results but does not change the fundamentals of the 
analysis and conclusions. 
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2009 - Coal - SCR/CI - SCR/CI - NGCC/SCR FGD/SCR/CCS Coal 

2010 - Coal - SCR/CI - SCR/CI - NGCC/SCR FGD/SCR/CCS Coal 

2011 - Coal - SCR/CI - SCR/CI - NGCC/SCR - FGD/SCR/CCS 

2012 - Coal - SCR/CI - SCR/CI - NGCC/SCR - FGD/SCR/CCS 

2013 - Coal - SCR/CI - SCR/CI - NGCC/SCR - FGD/SCR/CCS 

2014 - Coal - SCR/CI - SCR/CI - NGCC/SCR - FGD/SCR/CCS 

2015 - Coal - SCR/CI - SCR/CI Coal/FGD/CCS NGCC/SCR - FGD/SCR/CCS 

2016 - Coal - SCR/CI - SCR/CI - NGCC/SCR - FGD/SCR/CCS 

2017 - Coal - SCR/CI - SCR/CI - Coal/FGD/CCS - FGD/SCR/CCS 

2018 - Coal - SCR/CI - SCR/CI - Coal/FGD/CCS - FGD/SCR/CCS 

2019 - Coal - SCR/CI - SCR/CI - Coal/FGD/CCS - FGD/SCR/CCS 

2020 - Coal - SCR/CI - SCR/CI - Coal/FGD/CCS - FGD/SCR/CCS 
… … … … … … … … … … FGD/SCR/CCS 

2032 - Coal - SCR/CI - SCR/CI - Coal/FGD/CCS - FGD/SCR/CCS 

Table 9. Results for deterministic runs d*(s). 
 

• Given that the BAU scenario is known to occur (there are no new environmental 
regulations over the next 30 years), the optimal strategy involves no new capital 
investments.   

• Given that the 2P+1 scenario is known to occur (there are additional SO2, NOx 
and mercury regulations), the optimal strategy involves investing in SCR in 2005 
and later in 2007 in CI equipment.   

• Given that the 3P scenario is known to occur (there are different SO2, NOx and 
mercury regulations), the optimal strategy involves investing in SCR and CI 
simultaneously in 2005.   

• Given that the 3P+1 scenario is known to occur (there are different SO2, NOx and 
mercury regulations and a CO2 cap), the optimal strategy involves investing in 
NGCC with SCR in 2005 and then in 2015 installing FGD and CCS on the 
original coal plant. 

• Given that the 4P scenario is known to occur (there are still different SO2, NOx 
and mercury regulations and a CO2 cap), the optimal strategy involves investing 
in FGD, SCR, and CCS in 2009. 

For the 3P+1 and 4P scenarios, the decision to install a CCS might not take place 
if we had to account for dispatching (i.e., held a utility perspective).  The high energy-
penalties associated with the FGD and CCS technologies might make these options 
infeasible if demand levels have to be met.  Also it is important to note that the NGCC 
plant in the 3P+1 scenario would provide the necessary CO2 emission reductions (66%).  
If the CO2 cap were higher, then this “control” would not be sufficient. (e.g., it would to 
install a NGCC with SCR and CCS or to install a CCS on the original plant).  Costs of 
these strategies are presented in Table 10. 

Model Run d*(1) d*(2) d*(3) d*(4) d*(5) 

NPV(Capital) - 36.78 39.44 313.35 204.01 

NPV(O&M) 566.62 755.03 796.06 833.15 843.48 

NPV(SO2 Allowances) 89.09 105.29 100.70 17.41 38.07 
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NPV(NOx Allowances) - -2.98 -2.97 -22.77 -0.91 

NPV(Hg Allowances) - -60.75 -79.48 -101.36 -62.61 

NPV(CO2 Allowances) - - - -307.44 -348.96 

Total NPV (2000 M$) 656 833 854 732 673 

Table 10. NPV of capital and operating costs for deterministic runs d*(s).(In year 2000 
$M). 

 

The NPV under 3P is higher than 2P+1 because the cap on mercury is set earlier.  
It is also higher than 3P+1 because there are no possibilities of selling CO2 allowances.  
Case 4P has a lower NPV because all the caps are set in year 2011. 

 

5.2 Sequential decisions under uncertainty 
 The baseline analysis corresponds to a decision maker with initial set of 
subjective probabilities α as in Table 2.  Every year, probabilities will be updated as 
information about which regulations are still possible is revealed.  In these scenarios, it is 
assumed that all of the uncertainty will be resolved at or before 2010, the time that the 
last program will be known.  Every year before the uncertainty is fully resolved, the 
decision maker has to decide how to operate the plant (e.g., which of the available control 
technologies to use) and what capital investments to make if any.  Since we have 
assumed that the future must be one of the five scenarios described, the probabilities will 
be updated accordingly the values in Tables 11-15.   

Year If BAU  2003 2004 2005 2006 2007 2008 2009 2010 
Probabilities of scenario BAU 0.05 0.05 0.05 0.33 0.33 0.33 0.33 1 
Probabilities of scenario 2P+1 0.15 0.15 0.15 - - - - - 
Probabilities of scenario 3P 0.20 0.20 0.20 - - - - - 
Probabilities of scenario 3P+1 0.5 0.5 0.5 - - - - - 
Probabilities of scenario 4P 0.1 0.1 0.1 0.66 0.66 0.66 0.66 - 

Table 11. Probabilities set for run d*(α ,1) 
 

Year If 4P 2003 2004 2005 2006 2007 2008 2009 2010 
Probabilities of scenario BAU 0.05 0.05 0.05 0.33 0.33 0.33 0.33 - 
Probabilities of scenario 2P+1 0.15 0.15 0.15 - - - - - 
Probabilities of scenario 3P 0.20 0.20 0.20 - - - - - 
Probabilities of scenario 3P+1 0.5 0.5 0.5 - - - - - 
Probabilities of scenario 4P 0.1 0.1 0.1 0.66 0.66 0.66 0.66 1 

Table 12. Probabilities set for run d*(α ,5) 
 

Year If 2P+1  2003 2004 2005 2006 2007 2008 2009 2010 
Probabilities of scenario BAU 0.05 0.05 0.05 - - - - - 
Probabilities of scenario 2P+1 0.15 0.15 0.15 1 1 1 1 1 
Probabilities of scenario 3P 0.20 0.20 0.20 - - - - - 
Probabilities of scenario 3P+1 0.5 0.5 0.5 - - - - - 
Probabilities of scenario 4P 0.1 0.1 0.1 - - - - - 

Table 13. Probabilities set for run d*(α ,2) 
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Year If 3P  2003 2004 2005 2006 2007 2008 2009 2010 
Probabilities of scenario BAU 0.05 0.05 0.05 - - - - - 
Probabilities of scenario 2P+1 0.15 0.15 0.15 - - - - - 
Probabilities of scenario 3P 0.20 0.20 0.20 0.29 0.29 1 1 1 
Probabilities of scenario 3P+1 0.5 0.5 0.5 0.71 0.71 - - - 
Probabilities of scenario 4P 0.1 0.1 0.1 - - - - - 

Table 14. Probabilities set for run d*(α,3) 
 

Year If 3P+1  2003 2004 2005 2006 2007 2008 2009 2010 
Probabilities of scenario BAU 0.05 0.05 0.05 - - - - - 
Probabilities of scenario 2P+1 0.15 0.15 0.15 - - - - - 
Probabilities of scenario 3P 0.20 0.20 0.20 0.29 0.29 - - - 
Probabilities of scenario 3P+1 0.5 0.5 0.5 0.71 0.71 1 1 1 
Probabilities of scenario 4P 0.1 0.1 0.1 - - - - - 

Table 15. Probabilities set for run d*(α,4) 
 

For example, if BAU occurs, then, no new environmental programs will ever be 
announced and probabilities in scenarios will have to be redistributed each year.  If by 
2006 no new regulations have been announced, then scenarios 2P+1, 3P and 3P+1 are not 
longer possible (because these involve reductions in year 2007 that would have to be 
announced in 2006) and therefore the probabilities for scenarios BAU and 4P have to be 
updated. We assume that new probabilities are updated preserving the initial ratios, so 
scenario 4P is twice as likely as scenario BAU.  Finally if in year 2010 there is no 
legislation announced then that implies that scenario 4P will not happen and therefore the 
probability of scenario BAU becomes 1.0.  Note that scenario’s probabilities do not 
change during the first three years in any model run. 

 Running the MPDM with these probability sets identifies the optimal strategies 
shown in Table 16.  In all cases, the strategy that minimizes the ENPV is to install a 
NGCC with SCR before any of the uncertainty is resolved (i.e., in year 2005).   

• If the BAU scenario occurs, though constructed, the NGCC plant is never used.   

• If the 2P+1 scenario occurs, then the NGCC plant is started in 2007 and replaced 
by the coal plant with SCR and CI in 2026. 

• If the 3P scenario occurs, then the NGCC plant is started in 2007 and replaced by 
the coal plant with SCR and CI (identical to the 2P+1 scenario). 

• If the 3P+1 scenario occurs, then the NGCC plant is started in 2007 and replaced 
in 2017 by the coal plant with FGD and CCS. 

• If the 4P scenario occurs, the NGCC plant sits idle for four years before being 
used.  And the coal plant with FGD and CCS controls is used from 2018 to the 
end of the planning period.   

Run d*(α,1) d*(α,2) d*(α,3) d*(α,4) d*(α,5) 
 Scenario 1 (BAU) Scenario 2 (2P+1) Scenario 3 (3P) Scenario 4 (3P+1a) Scenario (4P) 
 Installation Operation Installation Operation Installation Operation Installation Operation Installation Operation 

2003 - Coal - Coal - Coal - Coal - Coal 

2004 - Coal - Coal - Coal - Coal - Coal 

2005 NGCC/SCR Coal NGCC/SCR Coal NGCC/SCR Coal NGCC/SCR Coal NGCC/SCR Coal 
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2006 - Coal - Coal - Coal - Coal - Coal 

2007 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - Coal 

2008 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - Coal 

2009 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - Coal 

2010 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - Coal 

2011 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2012 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2013 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2014 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2015 - Coal - NGCC/SCR - NGCC/SCR FGD/CCS-
Coal NGCC/SCR - NGCC/SCR 

2016 - Coal - NGCC/SCR - NGCC/SCR - NGCC/SCR FGD/CCS-
Coal NGCC/SCR 

2017 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - NGCC/SCR 

2018 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS  - Coal/FGD/CCS 

2019 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2020 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2021 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2022 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2023 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2024 - Coal SCR/CI-Coal NGCC/SCR SCR/CI-Coal NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2025 - Coal - NGCC/SCR - NGCC/SCR - Coal/FGD/CCS - Coal/FGD/CCS 

2026 - Coal - Coal/SCR/CI - Coal/SCR/CI - Coal/FGD/CCS - Coal/FGD/CCS 
… … … … … … … … … … …

2032 - Coal - Coal/SCR/CI - Coal/SCR/CI - Coal/FGD/CCS - Coal/FGD/SCR/CCS 

Table 16. Optimal Investment and operating decisions under uncertainty given each 
scenario. “d*(α,s)”. 

 

This cycling between the NGCC plant and the modified coal plant occurs because of the 
increasing O&M costs associated with gas prices, the low coal costs, and in the 3P+1 and 
4P scenarios, the profitability of selling CO2 allowances at a high price.  Table 17 shows 
costs associated with optimal strategies under the five scenarios. 

Model Run d*(α,1) d*(α,2) d*(α,3) d*(α,4) d*(α,5) 

NPV(Capital) 212.25 218.68 218.68 313.35 304.16 

NPV(O&M) 566.62 815.58 815.58 833.15 768.68 
NPV(SO2 Allowances) 89.09 21.08 21.08 17.41 38.7 
NPV(NOx Allowances) - -49.72 -49.57 -22.77 -6.65 

NPV(Hg Allowances) - -92.88 -122.24 -101.36 -52.53 

NPV(CO2 Allowances) - - - -307.44 -249.52 
Total NPV (2000 M$) 868 913 884 732 803 

Table 17. NPV of capital and operating costs for d*(α,s). (In year 2000 $M) 
 

5.3 Calculating the expected value of perfect information 

 Given the cost data shown in Tables 10 and 17 it is possible to calculate the 
expected value of perfect information using the equation presented in Section 3.4.  Inputs 
to this equation can be found in Table 18.  The calculation is the weighted difference 
between the no uncertainty case and the case with uncertainty summed over all scenarios.   

 291



Scenario S 1 
BAU 

2 
2P+1 

3 
3P 

4 
3P+1 

5 
4P 

NPV[d*(α,s)]-NPV[d*(s)] 212 79 30 0 130 

Initial probabilities  0.05 0.15 0.20 0.5 0.10 

EVPI (in year 2000 $M) 41     

Table 18. EVPI(α ) 
 

 The decision maker should be willing to pay $41 million (2000$) to know in 2003 
which of the 5 scenarios will occur.  The relative contribution to this value for each of the 
scenarios is closely related to initial probabilities that the decision maker had.  Because 
the decision maker felt that the BAU scenario was unlikely, if it turns out to occur, she 
will have to pay a hefty penalty ($212 million (2000$).  The decision maker’s most likely 
scenario, 3P+1 occurs, then no penalty is incurred.  A different set of initial probabilities 
could result in different set of optimal strategies and a larger or smaller expected value of 
perfect information. 

 

6. Sensitivity Analyses 
To understand the intricacies of the problem space many inputs to the decision problem 
can be changed.  In this section, we explore how changes to 1) the initial probabilities, 2) 
CO2 cap and 3) the relative costs of coal and gas fuel affect the strategies selected and 
the expected value of perfect information. 

 

6.1 Changing the initial probabilities  
 As was noted in the previous section, different initial probabilities of scenarios 
can affect the decisions made and in turn the expected value of perfect information.  To 
explore this, we changed the probabilities from the baseline analysis so that BAU and 4P 
had zero probability (could not occur) and 2P+1, 3P, and 3P+1 are equally likely (all with 
probability 0.333).  See Table 19. 

Scenario  (2) 2P+1 (3) 3P (4) 3P+1 

Initial Probabilities 1/3 1/3 1/3 

Table 19. Initial β  probabilities. 
 

Results for this combination of probabilities are very similar to the baseline case.  In fact 
the optimal decisions under uncertainty given that each scenario occurs are exactly the 
same and an NGCC is installed in 2005. 

• If the 2P+1 scenario occurs, then the NGCC plant is started in 2007 and replaced 
by the coal plant with SCR and CI in 2026. 

• If the 3P scenario occurs, then the NGCC plant is started in 2007 and replaced by 
the coal plant with SCR and CI (identical to the 2P+1 scenario). 
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• If the 3P+1 scenario occurs, then the NGCC plant is started in 2007 and replaced 
in 2017 by the coal plant with FGD and CCS 

Since the same decisions are being made given the scenario that occurs, the differences 
between the no uncertainty case and the uncertain case are the same.  See Table 20.  The 
EVPI for this probability set is $36 million.   

Scenario S 2 
2P+1 

3 
3P 

4 
3P+1 

NPV[d*(β,s)]-NPV[d*(s)] 79 30 0 

Initial probabilities  1/3 1/3 1/3 

EVPI (in year 2000 $M) 36   

Table 20. EVPI(β) 
 

6.2. A more stringent CO2 cap 
To explore how a change in the CO2 cap will affect the decisions and value of 
information, the 2P+1 and 3P scenarios were used with a modified 3P+1 scenario.  The 
new 3P+1 scenario increased the CO2 emissions reduction from 60% to 70%.  All three 
scenarios were assumed to be equally likely (see Table 21). 

Scenario (2) 2P+1 (3) 3P (6) 3P+1b 

Initial Probabilities 1/3 1/3 1/3 

Table 21. Initial λ probabilities. 
 

 Because of the changes to 3P+1 scenario, the no uncertainty case for this scenario 
had to be calculated (the other two remain unchanged):   

• Given that the 2P+1 scenario is known to occur, the optimal strategy involves 
investing in SCR in 2005 and later in 2007 in CI equipment.   

• Given that the 3P scenario is known to occur, the optimal strategy involves 
investing in SCR and CI simultaneously in 2005.   

• Given that the 3P+1 modified scenario is known to occur, the optimal strategy 
involves investing in CI in 2005 and then in 2007 installing a new coal plant with 
FGD, SCR and CCS controls.  

 

Because of this change in the 3P+1 scenario, the optimal strategies given uncertainty are 
now totally different than before.  In year 2005 SCR and CI controls are installed. (See 
Table 22) 

Run d*(λ,2) d*(λ,3) d*(λ,6) 

 Scenario 2 (2P+1) Scenario 3 (3P) Scenario 6 (3P+1b) 

 Installation Operation Installation Operation Installation Operation 
2003 - Coal - Coal - Coal 

2004 - Coal - Coal - Coal 
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2005 SCR/CI Coal SCR/CI Coal SCR/CI Coal 

2006 - Coal - Coal - Coal 

2007 - Coal/SCR - Coal/SCR/CI FGD/CCS SCR/CI 

2008 - Coal/SCR - Coal/SCR/CI - SCR/CI 

2009 - Coal/SCR/CI - Coal/SCR/CI - FGD/CCS 
… - … - … … …

2032 - Coal/SCR/CI - Coal/SCR/CI - FGD/CCS 

Table 22. Optimal strategies under uncertainty. “d*(λ,s)” 
 

• If the 2P+1 scenario occurs, then the SCR is used from 2007 and the CI from 
2009.  

• If the 3P scenario occurs, then SCR and CI are used from 2007 (same as the no 
uncertainty case above). 

• If the 3P+1 modified scenario occurs, then SCR and CI are used in 2007-08 and 
then FGD and CCS are used.   

EVPI is $3 million. See Tables 23 and 24. 
Model Run d*(λ,2) d*(λ,3) d*(λ,6) 
NPV(Capital) 39 39 254 
NPV(O&M) 755 796 962 
NPV(SO2 Allowances) 105 101 30 
NPV(NOx Allowances) -3 -3 -2 
NPV(Hg Allowances) -61 -79 -101 
NPV(CO2 Allowances) - - -31 

Total NPV (2000 M$) 836 854 1,111 

Table 23. NPV capital and operating costs for d*(λ,s) 
 

Scenario S 
2 

2P+1 
3 

3P 
6 

3P+1b 

NPV[d*(λ,s)]-NPV[d*(s)] 2..52 0 3..58 

Initial probabilities  0..33 0..33 0..33 

EVPI (in year 2000 $M) 3     

Table 24. EVPI(λ ) 
 

6.3 Changes in fuel price 

For the last example we consider 2P+1, 3P and 3P +1 with equal probabilities assuming 
smaller differences in O&M costs for coal and gas13. All the deterministic cases involve 
installing an NGCC plant with SCR.  See Table 25 

 d*(7) d*(8) d*(9) 

                                                 
13 This time we assume that O&M costs for a coal plant remain flat while for a gas plant increase by 0.05% 
per year.   
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Scenario 7 (2P+1c) Scenario 8 (3Pc) Scenario 9 (3P+1c) 
Installation Operation Installation Operation Installation Operation 

2003 - Coal - Coal - Coal 

2004 - Coal - Coal - Coal 

2005 - Coal NGCC/SCR Coal NGCC/SCR Coal 

2006 - Coal - Coal - Coal 

2007 NGCC/SCR Coal - NGCC/SCR - NGCC/SCR 

2008 - Coal - NGCC/SCR - NGCC/SCR 

2009 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2010 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2011 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2012 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2013 - NGCC/SCR - NGCC/SCR CCS NGCC/SCR 

2014 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2015 - NGCC/SCR - NGCC/SCR - NGCC/SCR/CCS 

2016 - NGCC/SCR - NGCC/SCR - NGCC/SCR/CCS 
… … … … … … …

2032 - NGCC/SCR - NGCC/SCR - NGCC/SCR/CCS 

Table 25. Optimal strategies for deterministic runs on “Low gas” 
 

Given that the 2P+1 scenario is known to occur, the optimal strategy involves investing 
in SCR in 2005 and later in 2007 in CI equipment.   

• Given that the 2P+1 modified scenario is known to occur, an NGCC/SCR is used 
in year 2009, when the cap on mercury is set.   

• Given that the 3P modified scenario is known to occur, the optimal strategy 
involves installing and using the NGCC with SCR from year 2007. 

• Given that the 3P+1 modified scenario is known to occur, the optimal strategy 
involves installing an NGCC/SCR in year 2005 and then installing a CCS so that 
can be used from period 2015 when CO2 allowance prices are at $55.  

See the NPV for these scenarios in Table 26. 
Model Run d*(7) d*(8) d*(9) 

Scenario 2P+1c 3Pc 3P+1c 
NPV(Capital) 175.41 212.25 311.26 
NPV(O&M) 782.2 806.68 894.65 
NPV(SO2 Allowances) 27.13 10.23 17.42 
NPV(NOx Allowances) -27.72 -54.19 -31.47 
NPV(Hg Allowances) -95.28 -124.64 -124.64 
NPV(CO2 Allowances) - - -344.94 
Total NPV (2000 M$) 862 850 722 

Table 26. NPV of capital and operating costs for Scenarios 7, 8 and 9. 
 

Optimal strategies under uncertainty are presented in Table 27.  
Model 
Run d*(ω,7) d*(ω,8) d*(ω,9) 
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 Scenario 7 (2P+1c) Scenario 8 (3Pc) Scenario 9 (3P+1c) 

 Installation Operation Installation Operation Installation Operation 

2003 - Coal - Coal - Coal 

2004 - Coal - Coal - Coal 

2005 NGCC/SCR Coal NGCC/SCR Coal NGCC/SCR Coal 

2006 - Coal - Coal - Coal 

2007 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2008 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2009 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2010 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2011 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2012 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2013 - NGCC/SCR - NGCC/SCR CCS NGCC/SCR 

2014 - NGCC/SCR - NGCC/SCR - NGCC/SCR 

2015 - NGCC/SCR - NGCC/SCR - NGCC/SCR/CCS 

2025 - NGCC/SCR - NGCC/SCR - NGCC/SCR/CCS 
… - … … … … …

2032 - NGCC/SCR - NGCC/SCR - NGCC/SCR/CCS 

Table 27.  Optimal strategies for probabilities ω . 
 

For scenarios 3P and 3P+1 the strategies are equal to the strategies in the 
deterministic case.  For scenario 2P+1 the NGCC is installed 2 years before than in the 
deterministic case.   EVPI is $6M. See Tables 28-29. 

Model Run d*(ω,7) d*(ω,8) d*(ω,9) 

Scenario 2P+1c 3Pc 3P+1c 
NPV(Capital) 212.25 212.25 311.26 
NPV(O&M) 806.68 806.68 894.65 
NPV(SO2 Allowances) 9.54 10.23 17.42 
NPV(NOx Allowances) -54.34 -54.19 -31.47 
NPV(Hg Allowances) -95.28 -124.64 -124.64 
NPV(CO2 Allowances) - - -344.94 
Total NPV (2000 M$) 879 850 722 

Table 28. NPV of capital and operating costs under scenarios with “low gas prices”. 
 

Scenario S 
7 

2P+1c 
8 

3Pc 
9 

3P+1c 
NPV[d*(ω,s)]-NPV[d*(s)] 17.11 0 0 

Initial probabilities  0.33 0.33 0.33 

EVPI (in year 2000 $M) 6     

Table 29. EVPI(ω ) 
 

 296



7. Limitations, Conclusions, and Future Work 

7.1 Limitations 
Because of the complexity of the problem space, this study had to make a large set of 
simplifying assumptions.  These assumptions fall into four general categories. 

• Assumptions about the plant: location, life span, efficiency, costs/feasibility of 
new technologies  

• Assumptions about regulations and fuel prices: CAT system, no banking allowed, 
only five scenarios studied at one time 

• Assumptions about the market: based on EIA projections, deterministic trend for 
prices  

• Assumptions about how the decision process: discount rate, expected value 
decision rule, “systematic” updating of probabilities  

We were only able to explore the sensitivity of the results to a few of these assumptions.  
Future work should expand the exploration of the decision space and conduct a series of 
controlled experiments in order to understand the importance of the various factors.  In 
order to analyze the importance of plant characteristics, a number of “representative 
plants”14 should be studied. 

 Unfortunately, limitations with optimization software may severely limit the size 
of studies that can be run.  In order to complete necessary number of optimizations, it 
might be necessary to reduce several of the problems dimensions (e.g., planning time 
horizon, number of technologies) while increasing the number of scenarios considered.   

  

7.2 Conclusions 
Cost of uncertainty can be significant.  In our baseline study we found that the expected 
cost of uncertainty was $40 million in 2000$. This is approximately 80% of the plant’s 
yearly O&M and 5% of the cost of a new plant.  If we consider that there are 40015 plants 
with similar characteristics, the cost of regulatory uncertainty for all of them increases to 
$16 billion. 

Uncertainty costs can be small if the solution set is small.   Several factors can limit the 
number of technologies that are likely to make sense.  If there is a narrow set of possible 
regulations (i.e., they all require tight controls on CO2 emissions) then the choice of plant 
controls is obvious and though it may be expensive, there is little cost in not knowing 
which regulation will finally occur.  Likewise, if there is a dominant technology because 
of other economic factors, (extremely low relative fuel prices or cheap control 
technologies), then the solution set is narrow, and the cost of uncertainty is small. 

                                                 
14 Such plants could be identified via cluster analysis (see e.g., Hair et al. 1992). All U.S. coal-fired power 
plants could be placed in groups or clusters suggested by the emissions data, not defined a priori, such that 
those plants in a given cluster tend to be similar to each other in some sense, and plants in different clusters 
tend to be dissimilar.  By analyzing the “average” plant in each cluster one could have an idea of how the 
analysis would look for all the country. 
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Minor changes in regulations can have major impacts on the optimal strategies because 
there are some emissions thresholds for which the optimal technology changes 
substantially.  For example, we demonstrated that adjusting the CO2 cap between 60% 
and 70% could lead to very different new generating technologies (NGCC or new coal 
plant with CCS).  Even in the case when only one of the scenarios includes a standard of 
70% the strategies change completely. However, adding this scenario greatly reduced the 
cost of uncertainty (see previous conclusions).   

 

7.3 Future Work 
 Also, releasing the assumption of “zero allowances banking” can make a 
difference in the EVPI as decision makers could use this mechanism to hedge against 
uncertainty and delay capital investments.   

 To achieve better understanding of how uncertainties can cause uneconomical 
options, several scenarios need to be considered including those that do not provide cap-
and-trade systems and the ones that call for old plants retirements. 
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Appendix A: Scenarios considered  
 
Scenario 1. BAU. 
 
Parameter Pollutant 2003 2004 2005 2006 2007 2008 -2032 

SO2 35% of current emissions 

NOx 100% of current emissions 

Hg 100% of current emissions 
Allowances Allocated 

CO2 100% of current emissions 

SO2 Maximum emissions rate allowed > Current plant emissions rate 

NOx Maximum emissions rate allowed > Current plant emissions rate 

Hg Maximum emissions rate allowed > Current plant emission rate 
Maximum Emissions 

Rate Allowed 

CO2 Maximum emissions rate allowed > Current plant emissions rate 

SO2 $142 $149 $157 $166 $175 $184 - $383 

NOx - - - - - - 

Hg - - - - - - 
Allowance Prices 

CO2 - - - - - - 

SO2 Cap and Trade (Can buy and sell allowances) 

NOx - - - - - - 

Hg - - - - - - 
Policy Instrument 

CO2 - - - - - - 
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Scenario 2. 2P+1. 
 

Parameter Pollutant 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012-2032

SO2 35% of current emissions 13% of current emissions 

NOx 100% of current emissions 40% of current emissions 

Hg 100% of current emissions 40% of current emissions 
Allowances 
Allocated 

CO2 100% of current emissions 

SO2 Maximum emissions rate allowed > Current plant emissions rate 

NOx Maximum emissions rate allowed > Current plant emissions rate 

Hg Maximum emissions rate allowed > Current plant emissions rate 

Maximum 
Emissions Rate 

Allowed 

CO2 Maximum emissions rate allowed > Current plant emissions rate 

SO2 $142 $149 $157 $166 $182 $245 $162 $173 $184 $196 - 
$331 

NOx - - - - 
 $2,477 $2,558 $2,490 $2,497 $2,404 $2,510 - 

$2,648 

Hg - - - - - - $207,198 $200,340 $193,710 $187,299
- $95,546

Allowance Prices 

CO2 - - - - - - - - - - 

SO2 Cap and Trade (Can buy and sell allowances) 

NOx  Cap and Trade (Can buy and sell allowances) 

Hg  Cap and Trade (Can buy and sell 
allowances) 

Policy 
Instrument 

CO2 Cap and Trade (Can buy and sell allowances) 
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Scenario 3. 3P. 
 

Parameter Pollutan
t 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012-2032

SO2 35% of current emissions 13% of current emissions 

NOx 100% of current emissions 40% of current emissions 

Hg 100% of current emissions 40% of current emissions 
Allowances 
Allocated 

CO2 100% of current emissions 

SO2 Maximum emissions rate allowed > Current plant emissions rate 

NOx Maximum emissions rate allowed > Current plant emissions rate 

Hg Maximum emissions rate allowed > Current plant emissions rate 

Maximum 
Emissions Rate 

Allowed 

CO2 Maximum emissions rate allowed > Current plant emissions rate 

SO2 $142 $49 $157 $166 $143 $152 $162 $173 $184 $196- 
$331 

NOx - - - - 
 $2,477 $2,484 $2,490 $2,497 $2,504 $2,510 -

$2,648 

Hg - - - $221,624 $214,289 $207,198 $200,340 $193,710 $187,299 $181,101 
$95,546

Allowance Prices 

CO2 - - - - - - - - - - 

SO2 Cap and Trade (Can buy and sell allowances) 

NOx  Cap and Trade (Can buy and sell allowances) 

Hg  Cap and Trade (Can buy and sell allowances) 
Policy 

Instrument 

CO2 100% of current emissions 
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Scenario 4. 3P+1. 
 

Parameter Pollutan
t 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012-2032

SO2 35% of current emissions 13% of current emissions 

NOx 100% of current emissions 40% of current emissions 

Hg 100% of current emissions 40% of current emissions 
Allowances 
Allocated 

CO2 100% of current emissions 40% of current emissions 

SO2 Maximum emissions rate allowed > Current plant emissions rate 

NOx Maximum emissions rate allowed > Current plant emissions rate 

Hg Maximum emissions rate allowed > Current plant emissions rate 

Maximum 
Emissions Rate 

Allowed 

CO2 Maximum emissions rate allowed > Current plant emissions rate 

SO2 $142 $49 $157 $166 $143 $152 $134 $117 $102 $90 - $6

NOx - - - - $2,477 $2,484 $2,490 $2,181 $1,911 $1,674 -
$118 

Hg - - - - $221,624 $214,289 $207,198 $200,340 $193,710 
$187,299 

- 
$95,546

Allowance Prices 

CO2 - - - - - - $25 $30 $35 $40 - 
$140 

SO2 Cap and Trade (Can buy and sell allowances) 

NOx  Cap and Trade (Can buy and sell allowances) 

Hg  Cap and Trade (Can buy and sell allowances) 
Policy 

Instrument 

CO2  Cap and Trade (Can buy and sell 
allowances 
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Scenario 5. 4P. 
 

Parameter Pollutant 2003 2004 2005 2006 2007 2008 2009 2010 2011-2032 

SO2 35% of current emissions 
13% of 
current 

emissions

NOx 100% of current emissions 
40% of 
current 

emissions

Hg 100% of current emissions 
40% of 
current 

emissions

Allowances 
Allocated 

CO2 100% of current emissions 
40% of 
current 

emissions
SO2 Maximum emissions rate allowed > Current plant emissions rate 

NOx Maximum emissions rate allowed > Current plant emissions rate 

Hg Maximum emissions rate allowed > Current plant emissions rate 

Maximum 
Emissions Rate 

Allowed 

CO2 Maximum emissions rate allowed > Current plant emissions rate 

SO2 $142 $49 $157 $166 $175 $184 $194 $205 $102 - $6

NOx - - - - - - - - $1,911 - 
$118 

Hg - -  - - - - $193,710 $187,299 
- $95,546

Allowance Prices 

CO2 - - -   - - - $25 - 
$130 

SO2  

Cap and 
Trade 

(Can buy 
and sell 

allowance
s 

NOx  

Cap and 
Trade 

(Can buy 
and sell 

allowance
s 

Hg  

Cap and 
Trade 

(Can buy 
and sell 

allowance
s 

Policy Instrument 

CO2 Cap and Trade (Can buy and sell allowances 

 

 305



 
Scenario 6. 3P+1b. (Stringent CO2 cap) 
 

Parameter Pollutan
t 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012-2032

SO2 35% of current emissions 13% of current emissions 

NOx 100% of current emissions 40% of current emissions 

Hg 100% of current emissions 40% of current emissions 
Allowances 
Allocated 

CO2 100% of current emissions 30% of current emissions 

SO2 Maximum emissions rate allowed > Current plant emissions rate 

NOx Maximum emissions rate allowed > Current plant emissions rate 

Hg Maximum emissions rate allowed > Current plant emissions rate 

Maximum 
Emissions Rate 

Allowed 

CO2 Maximum emissions rate allowed > Current plant emissions rate 

SO2 $142 $49 $157 $166 $143 $152 $134 $117 $102 $90 - $6

NOx - - - - $2,477 $2,484 $2,490 $2,181 $1,911 $1,674 -
$118 

Hg - - - - $221,624 $214,289 $207,198 $200,340 $193,710 
$187,299 

- 
$95,546

Allowance Prices 

CO2 - - - - - - $25 $30 $35 $40 - 
$140 

SO2 Cap and Trade (Can buy and sell allowances) 

NOx  Cap and Trade (Can buy and sell allowances) 

Hg  Cap and Trade (Can buy and sell allowances) 
Policy 

Instrument 

CO2  Cap and Trade (Can buy and sell 
allowances 
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