Journal Publications
- Taborda R., Bielak J. and Restrepo D. (2012).
Earthquake Ground Motion Simulation Including Nonlinear Soil Effects
Under Idealized Conditions with Application to Two Case Studies
Seismological Research Letters. Submitted for publication.
- Taborda R. and Bielak J. (2012).
Ground-motion simulation and validation of the 2008 Chino Hills, California,
earthquake. Bulletin of the Seismological Society of America. In revision.
- Bielak J., Karaoglu H. and Taborda, R. (2011).
Memory-efficient displacement-based internal friction for wave propagation
simulation. Geophysics, 76(6):T131–T145.
[doi]
- Taborda R. and Bielak J. (2011).
Large-scale earthquake simulation — Computational seismology and complex
engineering systems. Computing in Science and Engineering, 13(4):14–26.
[doi]
- Goto H., Ramirez-Guzman L. and Bielak J. (2010).
Simulation of spontaneous rupture based on a combined boundary integral
equation method and finite element method approach: SH and P-SV cases.
Geophysical Journal International, 183(2):975–1004.
[doi]
- Lopez J. Ramirez-Guzman L., Bielak J. and O'Hallaron D. (2010).
BEMC: A Searchable, Compressed Representation for Large Seismic Wavefields.
Lecture Notes in Computer Science, 6187:306–321.
[doi]
- Bielak J., Graves R. W., Olsen K. B., Taborda R., Ramrez-Guzman L.,
Day S. M., Ely G. P., Roten D., Jordan T. H., Maechling P. J.,
Urbanic J., Cui Y., and Juve G. (2010).
The ShakeOut earthquake scenario: Verication of three simulation sets.
Geophysical Journal International, 180(1):375–404.
[doi]
- Askan A., Akcelik V., Bielak J. and Ghattas O. (2010).
Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method.
Comptes Rendus Mecanique, 338(7–8):364–376.
[doi]
- Ichimura T., Hori M. and Bielak J. (2009).
A hybrid multiresolution meshing technique for finite element three-dimensional
earthquake ground motion modelling in basins including topography.
Geophysical Journal International, 177(3):1221–1232.
[doi]
- Epanomeritakis I., Akcelik V., Ghattas O. and J Bielak (2009).
A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion.
Inverse Problems 24:034015.
[doi]
- Day S.M., Graves R., Bielak J., Dreger D., Larsen S., Olsen K.B., Pitarka A. and Ramirez-Guzman L. (2008).
Model for Basin Effects on Long-Period Response Spectra in Southern California.
Earthquake Spectra 24:257–277.
[doi]
- Goto H. and Bielak J. (2008).
Galerkin boundary integral equation method for spontaneous rupture propagation problems: SH-case.
Geophysical Journal International, 172(3):1083–1103.
[doi]
- Askan A. and Bielak J. (2008).
Full Anelastic Waveform Tomography Including Model Uncertainty.
Bulletin of the Seismological Society of America, 98(6):2975–2989.
[doi]
- Askan A., Akcelik V., Bielak J. and Ghattas O. (2007).
Full Waveform Inversion for Seismic Velocity and Anelastic Losses in Heterogeneous Structures.
Bulletin of the Seismological Society of America, 97(6):1990–2008.
[doi]
- Bielak J, Ghattas O. and Kim E.-J. (2005).
Parallel Octree-Based Finite Element Method for Large-Scale Earthquake Ground Motion Simulation.
Computer Modeling in Engineering and Sciences, 10(2):99–112.
[doi]
[pdf]
- Bielak J. (2005).
Reply to "Comment on 'Domain Reduction Method for Three-Dimensional Earthquake Modeling in
Localized Regions, Part I: Theory,' by J. Bielak, K. Loukakis, Y. Hisada, and C. Yoshimura, and
'Part II: Verification and Applications,' by C. Yoshimura, J. Bielak, Y. Hisada, and A. Fernández,"
by E. Faccioli, M. Vanini, R. Paolucci, and M. Stupazzini.
Bulletin of the Seismological Society of America, 95(2)770–773.
[doi]
- Akcelik V., Bielak J., Biros G., Epanomeritakis I., Ghattas O, Kallivokas L.F. and Kim E.J. (2004).
A Framework for Online Inversion-Based 3D Site Characterization.
Lecture Notes in Computer Science (3038):717–724.
[doi]
- Bielak J., Loukakis K., Hisada Y. and Yoshimura C. (2003).
Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: Theory.
Bulletin of the Seismological Society of America April, 93(2):817–824.
[doi]
- Yoshimura C., Bielak J., Hisada Y. and Fernandez A. (2003).
Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part II: Verification and Applications.
Bulletin of the Seismological Society of America April, 93(2):825–841.
[doi]
- Hisada Y. and Bielak J. (2003).
A Theoretical Method for Computing Near-Fault Ground Motions in
Layered Half-Spaces Considering Static Offset Due to Surface Faulting,
with a Physical Interpretation of Fling Step and Rupture Directivity.
Bulletin of the Seismological Society of America April, 93(3):1154–1168.
[doi]
- Xu J., Bielak J., Ghattas O. and Wang J. (2003).
Three-dimensional nonlinear seismic ground motion modeling in basins.
Physics of the Earth and Planetary Interiors 137(1-4):81-95
[doi]
- Bielak J., Xu J. and Ghattas O. (1999).
Earthquake Ground Motion and Structural Response in Alluvial Valleys.
Journal of Geotechnical and Geoenvironmental Engineering, 125(5):413–423.
[doi]
- Bao H., Bielak J., Ghattas O., Kallivokas L. F., O'Hallaron D. R., Shewchuk J. R. and Xu J. (1998).
Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers.
Computer Methods in Applied Mechanics and Engineering, 152(1–2):85–102.
[doi]
- Kallivokas L.F., Bielak J. and MacCamy R. (1997).
A simple impedance-infinite element for the finite element solution
of the three-dimensional wave equation in unbounded domains.
Computer Methods in Applied Mechanics and Engineering, 147(3–4):235–262.
[doi]
- Bielak J., Maccamy R.C., Zeng X. (1995).
Stable Coupling Method for Interface Scattering Problems by Combined Integral Equations and Finite Elements.
Journal of Computational Physics, 119(2):374–384.
[doi]
- Zeng X. and Bielak J. (1995).
Stable symmetric finite element - boundary integral coupling methods for fluid-structure interface problems.
Engineering Analysis with Boundary Elements, 15(1):79–91.
[doi]
- Kallivokas L. F. and Bielak J. (1995).
A Time-Domain Impedance Element for FEA of Axisymmetric Exterior Structural Acoustics.
Journal of Vibration and Acoustics, 117(1):145–151.
[doi]
- Zeng X. and Bielak J. (1994).
Exterior stable domain segmentation integral equation method for scattering problems.
International Journal for Numerical Methods in Engineering, 37(5):777–792.
[doi]
- Zeng X. and Bielak J. (1994).
Stability assessment of a unified variational boundary integral
method applicable to thin scatterers and scatterers with corners.
Computer Methods in Applied Mechanics and Engineering, 111(3–4):305–321.
[doi]
- Kallivokas L.F. and Bielak J. (1993).
Timeâ€domain analysis of transient structural acoustics problems based
on the finite element method and a novel absorbing boundary element.
Journal of the Acoustical Society of America, 94(6):3480–3492.
[doi]
- Kallivokas L.F. and Bielak J. (1993).
An element for the analysis of transient exterior fluid-structure interaction problems using the FEM.
Finite Elements in Analysis and Design, 15(1):69–81.
[doi]
- Zeng X., Kallivokas L.F. and Bielak J. (1993).
A symmetric variational finite element-boundary integral equation coupling method.
Computers and Structures, 46(6):995–1000.
[doi]
- Zeng X., Kallivokas L.F. and Bielak J. (1992).
Stable localized symmetric integral equation method for acoustic scattering problems.
Journal of the Acoustical Society of America, 91(5):2510–2518.
[doi]
- Zeng X., Bielak J. and Maccamy R.C. (1992).
Unified symmetric finite element and boundary integral variational
coupling methods for linear fluid–structure interaction.
Numerical Methods for Partial Differential Equations, 8(5):451–467.
[doi]
- Zeng X., Bielak J. and Maccamy R.C. (1992).
Stable Variational Coupling Method for Fluid-Structure Interaction in Semi-Infinite Media.
Journal of Vibration and Acoustics, 114(3):387–396.
[doi]
- Siller T.J., Christiano P.P. and Bielak J. (1991).
Seismic response of tied-back retaining walls.
Earthquake Engineering & Structural Dynamics, 20(7):605–620.
[doi]
- Bielak J. and Maccamy R.C. (1991).
Symmetric finite element and boundary integral coupling methods for fluid-solid interaction.
Quarterly of applied mathematics, 49(1):107–119.
- Bielak J. and Maccamy R.C. (1990).
Dissipative boundary conditions for one-dimensional wave propagation.
Journal of Integral Equations and Applications, 2(3):307–331.
[doi]