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Abstract

There are three aims of this paper. The first is to explain the reasons for a behavior
we had long suspected to be true but the real reasons for which we could never quite
nail down. Modulated striped patterns arising from a wide class of gradient microscopic
pattern forming systems display universal behavior. Their order parameter evolves ac-
cording to a phase diffusion equation that derives from an averaged energy that consists
of coordinate invariant combinations of the coefficients in the metric and curvature two
forms of a well-defined phase surface. The evolution towards universality is asymptotic in
that the pattern evolves in such a way so that, over longer and longer time scales, many
terms from the microscopic energy simply become negligible leaving behind canonical
forms common to a wide class of microscopic pattern forming systems. The second aim
is to emphasize with some new results the key role that the Jacobian matrix of the map
from physical to order parameter space plays in both two and three dimensions. In two
dimensions, it is closely related to the Gaussian curvature of the phase surface. It is a
conserved density whose integral over space in two dimensions or on cross sections in
three become boundary terms that measure the topological indices of point defects in
two dimensions and loop defects in three. In all dimensions, the Jacobian matrix acting
on the order parameter vector, the gradient of the phase, is zero when the local pattern
wavenumber is close to its preferred value and this leads to the effective linearization of
the phase diffusion equation. The third aim is to honor Hermann Flaschka, a close friend
and scientific colleague for over fifty years, an outstanding mathematician, a true gen-
tleman and scholar with an uncanny knack of explaining the most complicated of ideas
in the simplest of ways, who passed away last year. Hermann was one of the founding
editors of Physica D and served as the coordinating editor for almost twenty years.
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1. Introduction and General Discussion

Natural patterns turn up all over the place in nature and in laboratories. A simple
uniform state of a microscopic system driven far from equilibrium by some external stress
can destabilize at a certain threshold [1, 2]. At that phase transition, various shapes and
configurations become preferentially amplified and, via nonlinear interactions, compete
for dominance until a new winning and energy minimizing state emerges. In this paper we
focus on a class of gradient microscopic systems that are translationally and rotationally
invariant and whose preferred post instability planform is one of stripes or rolls in which
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the microscopic field breaks translational symmetry and is locally periodic. However,
rotational invariance is not broken. In spatial geometries whose size greatly exceeds the
local pattern wavelength the stripe wavelengths l are chosen to within certain bounds,
but their orientations are not. Those are chosen by local biases. As a result, the emerging
pattern is not a uniform state of stripes all pointing in the same direction but consists
of a mosaic of patches of stripes with different orientations that meet and meld together
along line and point defects in two dimensions and on planes, lines and points in three.

The underlying microscopic field w(x⃗, t) is locally periodic and has the form

w(x⃗, t) = w(θ;∇θ = k⃗(X⃗, T ))

=
∑

An(k
2) cosnθ

(1.1)

The phase gradient is modulated over distances L (box size or average distance between

defects) that is long with respect to the local wavelength l. The ratio ϵ =
l

L
, the inverse

aspect ratio, is small and we take advantage of this fact. Using asymptotic WKB like
methods derived from the pioneering ideas of Keller and Whitham for slowly modulated
oscillators and waves, we can define and describe the evolution of the macroscopic order
for such patterns. That order parameter is the phase θ(x⃗, t) of the underlying locally

periodic field along with its gradient, the local pattern wavevector k⃗. The evolution
equation has the form [3, 4]

τ(k2)ΘT +∇ · k⃗B(k2) + ϵ2η∇4Θ = 0 (1.2)

where τ(k2) and η are positive. In (1.1), the microscopic field w(x⃗, t) is locally 2π periodic
in θ. It is even in θ, reflecting the fact that the contours representing the maxima of w
can be labeled 0, 2π, 4π or by their negatives. There are two important consequences of
this. First, the gradient of the phase is not a vector field on the plane but rather on its
double cover. Thus in general, ∇θ = k⃗ will be a director field and not a vector field on
the plane. Second, the microscopic field w can be represented by a cosine Fourier series

as shown. In (1.2), the phase diffusion equation, θ(x⃗, t) =
Θ(X⃗, T )

ϵ
, X⃗ = ϵx⃗, T = ϵ2t, so

that k⃗(X⃗, T ) = ∇x⃗θ = ∇X⃗Θ. The restriction that k⃗ is only defined as a vector field on
the double cover of the plane has consequences as it broadens the number of states into
which the pattern may settle.

Although the cubic shape of the function B(k2) (shown in Fig. 1) was well understood
to be universal, the exact nature of the regularization, chosen from special examples to
be the biharmonic of Θ and suspected to have that form in general, remained an open
challenge. Regularization is needed because ∇ · k⃗B is a quasilinear differential second
order spatial operator on Θ whose matrix of coefficients has eigenvalues B and dkB

dk
which may, and indeed are, not necessarily negative for all wavenumbers k throughout
the pattern. The consequence is that the unregularized equation (1.2) is a diffusion
equation with negative diffusion coefficients at some locations and therefore, without
regularization, is ill posed. Eqn. (1.2) can be formally written as
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Figure 1: The universal shape of the function kB(k2).
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τ(k2)ΘT = −δE
δΘ

(1.3)

where

E =

∫ ∫
dX⃗

((
− 1

2

∫ k2

Bdk2
)
+

1

2
ϵ2η(∇ · k⃗)2

)

E =
1

2π

∫ 2π

0

Edθ

(1.4)

It turns out that Ē is simply the original microscopic energy E averaged over the local

periodicity of the pattern; namely Ē =
1

2π

∫
Edθ. The question is: Why is it that all the

terms in the order ϵ contribution to Ē other than the curvature (∇ · k⃗)2 that could arise
from averaging the original energy E are negligible and of lower order in ϵ? We shall
see when we average E that many other terms are possible. But only the squared mean
curvature survives! We shall also see that the Gaussian curvature can also be in the
integrand but this integrates out to a boundary contribution that measures the amount
of Gaussian curvature that, under the initial evolution described by (1.2), will condense
onto and reside at point defects.

The answer is that the non-universal terms are still present for the initial stages of
the evolution (1.2). The first part of the evolution that occurs on the horizontal diffusion
time scale Th = 1

ϵ2 , the time it takes diffusion to communicate across the macroscopic
distance L, will see the pattern attempt to reach a state where the first part of the
averaged energy is minimized. That occurs when k tends to a preferred wavenumber
kB that turns out the be the middle zero of the graph of kB(k2) versus k. For pattern
forming systems that arise from microscopic gradient flows, the wavenumber kB is the
one chosen by all the various selection mechanisms; minimization of the energy; the edge
of the Busse balloon corresponding to the zig-zag stability boundary; circular or curved
patterns, stationary dislocations; boundary constraints. For microscopic systems that
are not gradient, many features of the phase diffusion equation are the same but the fact
that, for example, dislocations do not necessarily remain stationary at kB , which in the
non-gradient case is the zig-zag instability edge of the Busse balloon, means that the
apparent gradient structure of the phase diffusion equation is not sufficient to guarantee
the pattern macroscopic evolution is gradient. This is why we stipulated that we are at
present only treating pattern forming systems that are gradient at the microscopic level.

But given that the underlying microscopic system is gradient, then, almost every-
where, k tends to kB . But it cannot become kB everywhere because of boundary con-
straints and the fact that different neighboring stripe patches have different orientations
means that k < kB along line defects. But almost everywhere on the horizontal diffusion
time scale k2 − k2B becomes small. This has two key consequences. First, for times long
with respect to Th, the minimization of the first part of the macroscopic and averaged
energy leads to k2−k2B being small almost everywhere in the averaged energy integration
domain. As we shall see, this means that all the potentially non-universal terms that
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could arise in the second part of E become negligible. All derivatives that capture the
modulation of the pattern of the form k⃗ · ∇k2, that measure the changes of wavenumber
normal to the constant phase contours, are much smaller than derivatives such as∇·⃗k that
measure its changes along the phase contours. The latter measure the curvature of the
phase contour and are non-negligible and indeed very important near both line and point
defects, whereas the former are not. The result is that, as the evolution progresses past
the horizontal diffusion time, only the terms measuring curvature in what amounts to the
Taylor expansion of the original microscopic energy integrandW (w,∇w ·∇w,∇·∇w, . . .)

with rotational and translational symmetries, ∇x⃗ = k⃗
∂

∂θ
+ ϵ∇X⃗ in powers of ϵ∇X⃗ about

the pure periodic state, survive. The average energy does not start out being universal
but it evolves to be as most of the terms that could remember the details of the mi-
croscopic system from which they came simply become small. Only a canonical subset
remain.

The second important consequence is that the Hessian fxgy − fygx, k⃗ = (f, g) and
Jacobian of the map from (x, y) to (f, g) is almost everywhere zero as, except near point
and line defects, all x, y points map to the circle k2 = k2B . Modulo a factor which
becomes constant because k2 tends to k2B , this is also the Gaussian curvature. Thus,
under the evolution, the Gaussian curvature of the phase surface, which may initially be
distributed, will slowly condense onto line defects. Then, as the line defects evolve so
that the corresponding local phase surface has a nonzero curvature in only one direction
(across the line defect) and zero curvature in the orthogonal direction, the Gaussian
curvature tends to zero on the line defects. But the Gaussian curvature is a conserved
density and therefore has no option but to end up condensing onto points. These points
often lie at the intersection of the line defects, the most important of which are the
concave and convex disclinations. That condensed Gaussian curvature gives rise to the
invariant indices that characterize these two canonical point defects of two dimensional
patterns. There is also another important outcome of this property of the Jacobian
matrix. We shall see that it allows for an almost linearization of the stationary phase
diffusion equation (1.2) not only in two but in all spatial dimensions.

The notion that the average energy evolves so as to become universal is analogous
to a behavior that many had suggested might be true for integrable wave systems. As
is now known, completely integrable Hamiltonian partial differential equations tend to
come in families, each flow corresponding to one of the infinite constants of motion
acting as a Hamiltonian. The best known is the Korteweg-deVries (KdV) equation and
associated family. The KdV equation describes the initial long time evolution of small
amplitude, long wave deformations of dispersion modified hyperbolic systems along their
characteristics. Examples of such microscopic systems were the Fermi-Pasta-Ulam chain
in the continuum limit and one directional shallow water equations. The canonical KdV
equation arises as a condition to remove secular time growths in a perturbation expansion
around the pure translation state and the idea was that, as the constraints became more
refined, from straightforward advection by the wave speed to the more restricted KdV
flow, the long time evolution would become more closely driven by the higher motion
constants that act as Hamiltonians for the higher order integrable members of the KdV
family. The integrable family of KdV flows can also be derived by a process analogous
to averaging the Hamiltonian of the original system. It was conjectured that, as time
evolves beyond that time where the KdV equation is applicable, the later evolution would
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become universal and be described by higher and higher order Hamiltonians in the KdV
family. Alas, interesting though that idea was, it proved not to be the case and, in fact,
eventually the FPU chains with all sorts of spring laws exhibit behaviors which do not
have an integrable character at all but rather eventually become chaotic systems with
non-zero Lyapunov exponents. Yes, even the FPU chain, with its strange and unexpected
recurrence behaviors, on long but not infinitely long time scales eventually does become
chaotic and will act diffusively just as Debye and the proponents of that original model
had surmised. Although, in the case of FPU, the “thermalization” took a lot longer than
they had originally guessed. But with gradient pattern forming systems, it does seem to
be the case that the evolution can lead to a state where subsequent terms in the averaged
energy become universal and almost completely independent of the microscopic systems
from which they arose.

The outline of this paper is as follows. In section 2.1, we begin by applying the
averaging to a pattern forming system for a complex field with a real valued energy
functional which admits very simple spatially periodic solutions w(x⃗, t) = A∗exp(iθ), θ =
k⃗ · x⃗. In such cases, the averaging process is extremely simple and the outcomes, and
especially the reasons for the emergence of universal behavior, are transparent. In section
2.2, we apply the ideas to real fields where the locally periodic solutions are not so easily
represented but which, nevertheless, lead to the same universal outcomes. In all we do,
the phase is the active order parameter and the amplitude (or sequence of amplitudes
in the case of real fields) is a passive coordinate slaved to the modulus k of the phase
gradient. But there may be places in the pattern, centers of dislocations, amplitude grain
boundaries, where the amplitude becomes small and at those places the amplitude is no
longer algebraically slaved to k but rather becomes an active order parameter with its
own evolution equation. This is also the case near onset. So one must reflect on what
one must do at such locations and speculate as to how much of the universality might be
lost due to their presence. In section 3, we list many of the properties of solutions of the
canonical solutions of the regularized phase diffusion equation and in particular those
solutions which capture point and line defects. We raise several important challenges. In
section 3.1, we discuss open questions connected with the energy minimizing convection
patterns in elliptical containers. In section 3.2, we discuss open questions connected with

loop defects in three dimensions which have very interesting fractional invariants of
1

3
,
1

2
and 1.

2. Canonical Patterns

2.1. Canonical patterns of complex fields

Consider the system with complex field w(x, y, t) = u(x, y, t) + iv(x, y, t) with the
energy functional

E =

∫ (
(∇2 + k20)w(∇2 + k20)w

∗ −Rww∗ +
1

2
w2w∗2 + βww∗∇w∇w∗

)
dx (2.1)

For β > 0, R < 0, w = 0 is the only minimum of E. As R increases through zero, the
w = 0 solution is unstable to a periodic stripe pattern, infinitesimally stable for a range
of k to be defined below,
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w = A(k2)eik⃗·x⃗, A2(k2) =
R− (k2 − k20)

2

1 + 2βk2
, k = |⃗k| (2.2)

However, as we have discussed, because of rotational symmetry and resulting degener-
acy, the orientation of naturally arising patterns is determined by local biases so that
the pattern, instead of being uniform, will consist of patches of stripes of almost con-

stant wavenumber but with directions that change significantly over distances
l

ϵ
, large

compared to the local pattern wavelength. Accordingly we seek to describe the natural
pattern as a modulated version of (2.1) as

w = A(k2; X⃗ = ϵx⃗, T = ϵ2t) exp iθ(x⃗, t) (2.3)

where

∇x⃗θ = ∇X⃗Θ(X⃗, T ) = k⃗(X⃗, T ) (2.4)

The evolution of w and its complex conjugate are given by

wt = − δE

δw∗ , w∗
t = −δE

δw
(2.5)

and then

δE =
δE

δw
δw +

δE

δw∗ δw
∗ = −w∗

t δw − wtδw
∗ = −2AtδA− 2A2Θtδθ. (2.6)

Inserting (2.3) into (2.1) with

∇x(A exp iθ) = exp(iθ)(ik⃗ + ϵ∇X⃗)A

∇2
x(A exp iθ) = exp(iθ)(−k2 + iϵ(2k⃗ · ∇X⃗ +∇X⃗ · k⃗) + ϵ2∇2

X⃗
)A

(2.7)

We obtain, upon substitution into (2.1) that

E =

∫
{(k2 − k20)

2A2 −RA2 +
1

2
A4 + βk4A4 +K}dx⃗

+ iϵ

∫
{(k20 − k2)(k⃗ · ∇A2 +∇ · kA2)− (k20 − k2)(k⃗ · ∇A2 +∇ · kA2)

+ βA3(∇A)− βA3(∇A)}

+ ϵ2
∫
{(2k⃗ · ∇A+∇ · k⃗A)2 + 2(k20 − k2)A∇2A+ βA2(∇A)2}dx⃗

(2.8)
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Several observations about (2.8). First, because of the simplicity of the form of the
modulated stripe solution, the averaging

E =
1

2π

∫ 2π

0

Edθ (2.9)

is done automatically. Second, to make sense of the energy integral, a constant K has to
be added to ensure convergence because we have not yet specified the behaviors of the
pattern at some distant boundary. We show shortly how that constant is determined.
Third, although we have written it out, the O(ϵ) contribution to Ē vanishes as indeed
it must since E is real. Although obvious here, it will not be so obvious when we treat
patterns with real fields in § 2.2. Next, we look at the evolution of the amplitude A,
namely

2At = −δE
δA

(2.10)

Since the time derivative is order ϵ2 and the variation of the O(ϵ2) part of Ē with respect
to A gives rise to second spatial derivatives of Ē which again are O(ϵ2), the dominant
contribution to (2.10) is the algebraic relation

0 = 2A

((
k20 − k2

)2

−RA+A2

(
1 + 2βk2

))
(2.11)

Only at special points where A is small (dislocation centers) or near onset where A is also

small will this term be balanced by
∂A

∂t
and ∇2A. In that case, it becomes the amplitude

part of the Newell-Whitehead-Segel equation [5] for striped patterns near onset. In those
circumstances, both the amplitude and phase are active order parameters. Far from
onset, however, only the phase is an active order parameter and the amplitude is slaved
[6]algebraically to the modulus of the phase gradient by (2.11).

A2 =
R− (k2 − k20)

2

1 + 2βk2
. (2.12)

We note that, because of the presence of the β, the maximum of the amplitude A is
not realized at k0. Neither will it be maximized at the preferred wavenumber kB . The
evolution of the phase is given by

A2θt = −1

2

δE

δθ
or A2ΘT = −1

2

δE

δΘ
(2.13)

where Ē is now the averaged energy Ē0 + ϵ2Ē2 where, using (2.12),

E0 =

∫
E0dx⃗ =

∫
−1

2
(1 + 2βk2)A4dx⃗. (2.14)
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The maximum of (1 + 2βk2)A4 and the minimum of its negative is how we define kB ,
namely

d

dk2

(
1 + 2βk2

)
A4 = 0. (2.15)

To ensure convergence we choose the added constant K to be (1+2βk2)A4 estimated at
kB and therefore write

E0 =

∫ (
(1 + 2βk2)A4

)k2
B

k2

dx⃗ (2.16)

The negative of its variation with respect to θ gives

A2ΘT +∇X⃗ k⃗B(k2) = 0 (2.17)

where

B(k2) =
1

2

d

dk2

(
1 + 2βk2

)
A4 (2.18)

We have already discussed that (2.17) is ill-posed whenever k is outside the Busse balloon
kB < k < kE and requires regularization. We focus on the case where k < kB that occurs
near most of the line and point defects. In that case the regularization is provided by
the O(ϵ2) terms in the averaged energy (2.8). As we see from (2.8), most of the terms
reflect their microscopic origins and so, as it stands, the regularization does not look
to be universal. But, on closer inspection, we see that, because they all arise from a
multinomial Taylor expansion of the original energy integrand in each of its arguments

under the action of ∇x⃗ = k⃗
∂

∂θ
+ ϵ∇X⃗ , the terms either involve differentiating k⃗ as it

changes direction along the phase contour or differentiation of k2 in the direction of k⃗.

The ∇ · k⃗ ∗A2 is an example of the former while k⃗ · ∇X⃗(A2) is
dA

dk

2

k⃗ · ∇k2 is an example

of the latter. But since k⃗ ·∇k2or k⃗ ·∇(k2−k2B) is small because, under the minimization
of the first part of the averaged energy, k2 − k2B is small almost everywhere and because
even along defect lines there is little change in the wavelength along the defect line, all
the latter terms are negligible compared to the former. Let us emphasize this. It is not
the fact that A2 is maximum at kB as it would be for the case of β = 0,the complex Swift-
Hohenberg equation, but the fact that k2 is almost constant everywhere that makes the
non-universal terms negligible. As a consequence, the only surviving terms in the O(ϵ2)

part of Ē in (2.18) are the ones involving ∇ · k⃗. The second part of the averaged energy

can then be well approximated by ϵ2
∫
dx⃗A2(k2B)∗(∇· k⃗)2 and that will be common to all

averaged energies arising from a very wide class of microscopic systems. The regularized
phase diffusion equation then has the universal form

A2(k2B)ΘT +∇ · k⃗B + ϵ2A2(k2B)∇4 ·Θ = 0 (2.19)
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Moreover, for times of the order of and longer than the horizontal diffusion time, we can

also approximate B(k2) by

(
dB(k2)

dk2

)
k2
B

(k2 − k2B) and its corresponding energy Ē by

E =

∫ (
(
d

dk2
B(k2))

)
k2
B

(k2 − k2B)
2 + ϵ2(∇ · k⃗)2A2(k2B)

)
dx⃗ (2.20)

By analogy with elastic systems, it is natural to call the first the pattern “strain” and the
second the pattern “bending” energy as, respectively, they involve the first and second
spatial derivatives of the deformation, here the phase. We now turn to the case of
real fields for which the averaging process is not quite as transparent. At the end of
that section/or in section 3, we also discuss the defect point indices which measure the
amount of Gaussian curvature of the phase surface deposited at that point.

2.2. Canonical patterns for real fields

The previous class of examples for complex pattern fields for which the insertion of
the locally complex field led to an automatic averaging of the energy functional was
useful in that it allowed us see the big picture relatively easily without the complication
of more difficult calculations. Nevertheless, guided by that study we now turn to the
case of pattern forming systems with real fields and, although more complicated, follow
the steps of the earlier analysis. We consider energies of the form

E =

∫
Wdx⃗ (2.21)

where W, the integrand, is any rotationally and translationally invariant function of
all even combinations of w and its gradients. By including the up down symmetry, W
invariant under w into −w, we avoid any possibilities of subcritical bifurcations with non-
stripe planforms such as hexagons. (Hexagons can still be a viable multimode planform
in such systems but they rely on cubic interactions and are much less likely.) For a
typical and generic example of (2.21) we consider,

E =

∫ {(
(∇2 + k20)w

)2

− 1

2
Rw2 +

1

4
w4 +

1

2
βw2(∇w)2 +K

}
dx⃗. (2.22)

The evolution of the microscopic field w(x⃗, t) is given by

wt = −δE
δw

= −
(
∇2 + k20

)2

w +Rw − w3 + βw(∇w)2 + βw2∇2w. (2.23)

Equation (2.23) admits an exact stationary 2π periodic solution for striped patterns

w(x⃗, t) = w(θ = k⃗ · x⃗; {An(k
2)}∞1 , R) =

∑
An(k

2) cosnθ (2.24)

with w 2π periodic in θ, which can be found by direct substitution and by solving the
resulting coupled nonlinear algebraic equations for An(k

2) for n = 1, 3, 5, . . . Because of
the up-down symmetry, only the odd harmonics are present. As discussed already, the
use of the cosine series to represent w is deliberate. It reflects the fact that the phase
contours can be labeled 0,±2π,±4π, . . .. We now seek modulated solutions as
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w(x⃗, t) = w(θ; {An(k
2)}, R;∇θ = k⃗(X⃗ = ϵx⃗, T = ϵ2t) = ∇X⃗Θ(X⃗, T )) (2.25)

We can find the evolution equations for Θ(X⃗, T ) in two ways. The first is by solving
the equation (2.23) with the modulated form for w iteratively and applying solvability

conditions arising from the translational invariance of the pattern that means that
dw

dθ
is

a solution of the homogeneous part of the linearized equation for w. The forcing terms in
the equations for the iterates arise from the slow variations of all quantities with respect
to X⃗ and T and the condition that they have to be in the range of the linearized equation
for the iterates of w gives the evolution equation for the phase Θ(X⃗, T ). We choose to
use the second way, used in the previous section, which is to substitute the modulated w
into the microscopic energy functional (2.22) and average over θ. We obtain then from
(2.21) that

wtδw = −δE (2.26)

which, upon averaging over theta, gives

⟨w2
θ⟩θtδθ = −δE. (2.27)

In carrying out the second approach, we still will have to use the equation parallel
to (2.12) that obtains the expressions for the amplitudes in terms of the wavenumber,
An = An(k2), and the way in which this is done is much less transparent than it was for
the complex field case in which the slaving of the amplitude equation gave us an explicit
expression (2.12) for A(k2). Substitute (2.25) into (2.21) with

∇x⃗ → k⃗∂θ + ϵ∇X⃗

∇2
x⃗ → k2∂2θ + ϵ(2k⃗ · ∇+∇ · k⃗)∂θ + ϵ2∇2

X⃗

(2.28)

and so on. For the moment, then, we write

∇x⃗w = k⃗wθ + ϵ∇X⃗w

∇2
x⃗w = k2wθθ + ϵ(2k · ∇+∇ · k⃗)wθ + ϵ2∇2

X⃗
w

(2.29)

But let us understand what the operator ∇x⃗· means when acting on w given by (2.24),

∇x⃗w =
∑(

− nk⃗An(k
2) sinnθ + ϵ

dAn

dk2
∇X⃗k

2 cosnθ

)
(2.30)

The θ derivative acts on the cosines and the slow derivatives act of k2 through the
amplitude dependence on the latter. We now insert (2.29) into (2.24) and average by
writing

E =
1

2π

∫ 2π

0

dθE (2.31)
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and obtain

E = ⟨
∫ {

1

2
(k2w2

θθ + k20w)
2 − 1

2
Rw2 +

1

2
βk2w2w2

θ +K

}
dx⃗⟩

+ϵ⟨
∫ {

(k2wθθ + k2vw)(2k⃗ · ∇wθ +∇ · k⃗wθ) + βw2wθk⃗ · ∇w
}
dx⃗⟩

+ϵ2⟨
∫ {

(k2wθθ + k20w)∇2w +
1

2
)2k⃗ · ∇wθ +∇ · kwθ)

2
βw

2(∇w)2
}
dx⃗⟩

+o(ϵ2)

(2.32)

We now want to take the same step as we did with the complex field patterns in that we
want to include the dependence of all the amplitudes on k2 as the amplitudes are slaved
to the modulus of the phase gradients. The way we do this is to use the equation (2.23)
for w directly after making the substitutions in (2.28) and keeping all terms to order ϵ2.
We obtain

k4wθθθθ + 2k2k20wθθ + (k20 −K)w + w3 − βk2ww2
θ − βk2w2wθθ

= −wt − ϵ

{
(k2∂2θ + k20)(2k⃗ · ∇wθ +∇ · kwθ) + (2kk⃗ · ∇+∇ · k⃗)(k2wθθθ + k20wθ)

−2βwwθ(k⃗ · ∇)w − βw2)2k⃗ · ∇wθ +∇ · kwθ

}
−ϵ2

{
(k2∂2θ + k20)∇2w +∇2(k2wθθ + k20w) + (2k⃗ · ∇+∇ · k)2wθθ

−βw(∇w)2 − βw2∇2w

}
+ o(ϵ2)

(2.33)

Multiply (2.33) by w and average, liberally using integration by parts, to obtain

1

2
k4⟨w2

θθ⟩ − k2k20⟨w2
θ⟩+

1

2
(k20 −K)⟨w2⟩+ 1

2
⟨w4⟩+ βk2⟨w2w2

θ⟩

= −1

2
⟨wwt⟩ −

1

2
ϵ

{
⟨w(k2∂2θ + k20)(2k⃗ · ∇wθ +∇ · k⃗wθ)⟩

⟨w(2k⃗ · ∇+∇ · k)(k2wθθθ + k20wθ)⟩

−2β⟨w2wθ(k · ∇)w⟩ − β⟨w3(2k⃗ · ∇+∇ · k⃗)wθ⟩
}

(2.34)

Substitute (2.34) into (2.33) and write

E = ⟨E⟩ = E0 + E1 + E2 (2.35)

We will analyze each contribution in turn. First, we observe that the substitution of
the amplitude dependence on k2 manifests as a replacement of the many of the higher
derivative terms in the original averaged energy. We find,
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E0 =

∫
dxdy

{
− 1

4
⟨w4⟩ − 1

2
βk2⟨w2w2

θ⟩+K

}
=

∫
dxdyE0 (2.36)

The minimum of Ē0 is achieved for k2 = k2B where

d

dk2
E0 =

d

dk2

(
1

4
⟨w4⟩+ 1

2
βk2⟨w2w2

θ⟩
)

= 0 (2.37)

where E0 is the integrand of Ē0. As before, we choose the “convergence” constant K to
be the value of E0 in the far field where we choose k to be the preferred wavenumber kB .
Thus,

E0 =

(
1

4
⟨w4⟩+ 1

2
βk2⟨w2w2

θ⟩
)k2

B

k2

(2.38)

Note the similarity between this expression and (2.14) which becomes identical if we
simply use the first harmonic A1(k

2) cos(θ) for w. Then the phase diffusion equation to
leading order is

⟨w2
θ⟩ΘT +∇X⃗ k⃗B(k2) = 0 (2.39)

where

B(k2) = 2
dE0

dk2
(2.40)

We next look at the order ϵ contributions to the averaged energy which, in the case of
the complex field, clearly vanished. In the real field case, they still vanish but it takes a
little more work to show that they do. The contributions come from two sources, first the
terms at O(ϵ) in (2.32) and second from (2.34) that arose when we effectively replaced
the amplitude dependence of the An(k2) sequence. The totality of terms at this level is
then given by (2.41)

∫ {
⟨(k2wθθ + k20w)(2k⃗ · ∇wθ +∇ · kwθ) + β⟨w2wθk⃗ · ∇w⟩

}
dx⃗

−1

2
⟨wwt⟩ −

1

2

∫ {
⟨w(k2∂2θ + k20)(2k⃗ · ∇wθ +∇ · k⃗wθ)⟩

+⟨w(2k⃗ · ∇+∇ · k)(k2wθθθ + k20wθ)− 2βw2wθk⃗ · ∇w⟩

−β⟨w3(2k⃗ · ∇+∇ · k)wθ⟩
}
dx⃗

(2.41)

The ⟨wwt⟩ term can be written as ⟨wwθθt⟩ = ϵ⟨wwθ⟩ΘT which is the average of a perfect
theta derivative of a periodic function and therefore zero. All the terms proportional to
∇ · k⃗ also vanish for the same reason. Similarly all the terms proportional to k20 vanish.
Next we have all the higher derivative terms which we write as

⟨2k2wθθ(k⃗ · ∇)wθ⟩ − ⟨k2w∂2θ (k · ∇)wθ⟩ − ⟨wk⃗ · ∇wθθθ⟩ (2.42)
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The last two terms can be integrated by parts to give 2k2wθ(k⃗ ·∇wθθ) which, when added

to the first term is 2k2k⃗ · ∇⟨wθwθθ⟩ which integrates to zero as w and its derivatives are
all periodic. It is remarkable that in the β = 0 limit that the inclusion of information
of how the amplitudes depend on k2 makes all the terms vanish simply by reason of the
periodicity of w.

The terms proportional to β require slightly more work. Their vanishing is not as
obvious. The term proportional to ∇ · k⃗ clearly is a perfect derivative but the other
remaining terms combine to give −β⟨w2wθ(k⃗ · ∇)w⟩. To see that this is zero, we must

remind ourselves that k⃗ ·∇X⃗ acting on w acts only on k2 through the amplitudes An(k
2).

Namely k⃗ · ∇X⃗w =
∑ dAn(k

2)

dk2
cos(nθ). The product of this with the former terms give

terms which are all of the form cos(rθ) cos(sθ) sin(mθ) cos(nθ) where r, s,m and n are
integers and these combine to give sines of four arguments of the form sin(+/− r + /−
s + / −m + / − n) which, if the integrand is not zero integrates to a periodic function
and, even if zero, are exactly zero. Therefore, just as in the complex field case, all the
O(ϵ) terms in the averaged energy vanish.

Finally we compute the O(ϵ2) contribution. As we have already argued, all terms

involving (k⃗ ·∇X⃗) acting on the amplitude sequence give terms proportional to
dAn(k

2)

dk2

times k⃗ · ∇X⃗(k2) which we might also write as k⃗ · ∇X⃗(k2 − k2B). By virtue of the fact
that the strain part of the energy makes k2 close to k2B almost everywhere, these terms

are negligible compared to the terms proportional to ∇ · k⃗. The latter come from both
(2.33) and (2.34) respectively as

ϵ2
∫

1

2
(∇ · k⃗)2⟨w2

θ⟩dx⃗

−ϵ2
∫

1

2
(∇ · k⃗)2⟨wwθθ⟩dx⃗

(2.43)

which, after integration by parts, give

ϵ2
∫
⟨w2

θ⟩(∇ · k⃗)2dx⃗ ≃ ϵ2⟨w2
θ⟩kB

∫
(∇ · k⃗)2dx⃗ (2.44)

The regularized phase diffusion equation is then

⟨w2
θ⟩ΘT +∇ · k⃗B(k⃗) + ϵ2⟨w2

θ⟩∇4Θ = 0, (2.45)

where ⟨w2
θ⟩ is evaluated at kB and with

B(k2) = 2
dE0

dk2
, (2.46)

where

E0(k
2) = ⟨1

4
⟨w4⟩+ 1

2
βk2⟨w2w2

θ⟩⟩
k2
B

k2 , (2.47)

which is universal. Although we have carried out the calculation using a typical integrand
W for the microscopic energy, it is not hard to see that as long as that integrand is
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rotationally and translationally invariant with respect to Euclidean transformations and
that W is even in the field w, the same arguments will obtain.

3. Two challenges

3.1. The Jacobian of the map from x⃗ to k⃗; self-dual reduction of the RCN equation in
two, three and any number of spatial dimensions; some properties of defects; and a
challenge.

We have seen that the minimization of the strain energy on the horizontal diffusion
time scale leads to the local wavenumber k being close to kB almost everywhere. This
fact leads to the elimination of many of the terms that potentially appear in the bending
energy and results in the averaged energy being universal. But it also has other conse-
quences. In two space dimensions, the Jacobian of the map from physical space to order
parameter space is simply the Hessian fxgy−fygx and the fact that finite areas of points
in physical space map to a circle in order parameter space means that almost everywhere
the Hessian and Gaussian curvature of the phase surface are zero. We had previously
shown that this allowed us to effectively linearize the regularized phase diffusion equa-
tion in two space dimensions. but it turns out that a similar reduction is possible in any
number of spatial dimensions. A new result is: if k tends to kB almost everywhere, then
differentiation of k⃗ · k⃗ = k2B with respect to each of the spatial variables gives us that

Jk⃗ = 0. The Jacobian matrix J has an eigenvector k⃗ with an eigenvalue zero. It also
means that the determinant is zero but it is the fact that Jk⃗ is a zero vector that leads
to effective linearization.

The RCN stationary phase diffusion equation is

η∇4θ +∇ · k⃗B = −δE
δθ

= 0 (3.1)

E =

∫ (
1

2
η|∇2θ|2 + α

2
G2

)
dx⃗ (3.2)

G2 = − 1

α

∫ k2

k2
B

Bdk2, α = − 1

4kB
|B′(kB)| (3.3)

As we have indicated, it can be greatly simplified by a self-dual reduction and almost
everywhere be effectively linearized in any number of spatial dimensions. The fact that
the linearization is not exact is due to the condensation of nonzero minors of the Jacobian
matrix, which in two dimensions is the determinant of J and effectively the Gaussian
curvature, onto points in two dimensions and loops in three. These act as localized delta
function like sources in what is otherwise a linearized system. Their influence, however,
can be handled in a perturbative manner.

But first, some preliminaries. In two dimensions, the Hessian is a conserved density
and its evolution towards localization is described by

τ(kB)
∂J

∂t
+∇ · K⃗ = 0 (3.4)

where
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K⃗ = (Qxgy −Qygx, Qyfx −Qxfy) (3.5)

and

Q = (fB)x + (gB)y + α∇4θ (3.6)

Next, we list some useful formulae that relate the area of the Hessian to a boundary
integral and the topological indices associated with the concentration of this quantity at
defect points. Similar indices will be associated with closed loops in three dimensions.
We will discuss the two dimensional case first. The key formlulae are:

(1− r)Fr + k2BrFr+1 =

∫
C

fdg − gdf

(k2B + f2 + g2)r
=

∫
C

k2B
(2k2B)

r
dφ =

k2B
(2k2B)

r
[φ] (3.7)

where (f, g) = (k cosφ, k sinφ), and we assume k is kB everywhere on the boundary C

and [φ] is the twist T of the director field k⃗ as it travels along the boundary circumscribing
the area Ω. The function Fr is

Fr = 2

∫
Ω

fxgy − fygx
(k2B + f2 + g2)r

dxdy (3.8)

In deriving (3.4), we think of the surface as being the dimensional phase surface z =
θ

kB
.

The formulae can also be used for any r value although the ones which are integer or
half integer are the most interesting.

For r = 0, we obtain

F0 = 2

∫
Ω

(fxgy − fygx)dxdy = k2BT (3.9)

The boundaries can be distant or they can simply be curves surrounding individual
defect points such as concave and convex disinclination as long as the first stage of the
energy minimization has taken place so that the Hessian has condensed onto points and
the wavenumber k is kB on the circumscribing boundary.

We are now in a position to explain why it is that, for patterns which are locally stripe
and planar in any number of spatial dimensions, the stationary RCN equation describing
the energy minimizing configurations, including those with line and point defects, can be
”almost” linearized. Although much of this conclusion had been conjectured in earlier
papers, we now see how dramatic the consequences of the local wavenumber approaching
kB almost everywhere are.

We want to solve (3.1). We ask that if the self-dual or anti self-dual balance of the
energies in (3.2) can lead to solutions of (3.1). This hope was originally motivated by an
observation by [7] that the shape of a stationary dislocation, originally given in [8] and
described by the fourth order stationary RCN equation, could be described by equating
the strain and bending energies in (3.2). It was proven for two dimensional patterns that,
if J is identically zero, the same result obtains.

We now show it will hold in any number of spatial dimensions. We set,
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∇2θ = βsG+ sχ (3.10)

where

β =
α

η
, s = ±1 (3.11)

and derive the equation for the amount of χ by which the self-dual and anti self-dual
balances do not satisfy (3.1). After a little manipulation, we find, for any number of
spatial dimensions that

∇2χ+∇sχ∇k⃗G = −βs∇k⃗ ·
(
Ĵ(Ĵ −∇2θI)∇k⃗G

)
(3.12)

But, since ∇k⃗G is 2
dG

dk2
k⃗ and, if k2 tends to k2B , k⃗ is an eigenvector of the Hessian matrix

J with eigenvalue zero, the right hand side of (3.12) is zero almost everywhere in the

pattern domain. To see this, differentiate k⃗ · k⃗ = k2B with respect to the three spatial

coordinates (or all of them in higher dimensions) and then one sees that Jk⃗ = 0⃗. It is
only nonzero at point defects in two spatial dimensions and on the loop defects in three.
It is even zero on the line defects in two dimensions.

But we can go further than simply exploiting self-dual solutions. We can almost
linearize the equation pair (3.10) and (3.12). We first focus on the two space dimension
case. In that case, as we have shown in [7], the right hand side of (3.12) is βsJ∇2

kG
where J is the Jacobian of the Hessian matrix fxgy − fygx which is almost everywhere
zero because the map from almost all points (x, y) is to a circle k2 = k2B in order
parameter space. Then,

∇2χ+∇sχ∇k⃗G = βsJ∇2
kG. (3.13)

Typically the resulting χ will decay as
1

r
, r =

√
x2 + y2, the distance from point defects

where J is located. But, as we have shown, G2 can be well approximated by (k2 − k2B)
2.

Since, the sign s takes care of the plus-minus ambiguity, (3.10) becomes

∇2θ = βs(k2B − k2) + sχ (3.14)

Let θ =
1

βs
lnψ and find that

∇2ψ − (β2k2B + βχ)ψ = 0 (3.15)

Set χ = ψv and then v satisfies

∇2v − (β2k2B + βχ)v = −4βψ−1J (3.16)

Clearly if J ≡ 0, χ = 0 and (3.15) is linear. Even if J is delta function like, χ decays
away from the defect and the equation pair (3.15), (3.16) can be handled perturbatively.

We now briefly list some of the various solutions of (3.15, 3.16) that correspond to
two dimensional defects and some of their key properties. After this brief list, we pose
an open challenge.
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Figure 2: The nipple instability and the birth of a VX pair.

1. The simplest solutions for which J ≡ 0 are sums of exponentials

ψ =

N∑
1

exp(βk⃗j · x), |⃗kj | = kB (3.17)

N = 1 corresponds to a field of straight parallel rolls.
2. The phase grain boundary (PGB) arises when N = 2 and leads to a wave vector

field

k⃗ = ∇θ = s

β

∇
ψ
ψ =

1

2
(k⃗1 + k⃗2) +

1

2
s(k⃗1 − k⃗2) tanh

1

2
(k⃗1 − k⃗2) · x⃗ (3.18)

which is also the weak solution with the usual Maxwell rule for the hyperbolic system
∇ · k⃗B = 0,∇× k⃗ = 0 when |⃗k| ≤ kB . One can verify by direct computation that J ≡ 0.

3. Creation of VX pairs. If α is the angle that each of the stripe patches makes with

the PGB direction,the energy per unit length of PGB is
4

3
ηk3B sin3(α). But as α → π

2
,

the stripe patches are parallel and there should be no energy cost. This suggests that as
α increases, the PGB becomes unstable. It does so to a perturbation in which the former
wavevector field of (3.18) becomes a director field. (See the second part of Fig. 2) A

VX pair with energy per unit length of the former PGB of
4

3
ηk3B(1− sin(α)) is created.

Thus. PGB’s are unstable to concave- convex disclination pairswhen sin3 α > 1 − sinα
or α ≥ 43◦.

4. The canonical point defects, concave (V) and convex (X) disclinations are shown
in Fig 3.

The concave disclination consists of a triad of PGB’s meeting at the point defect
at the point defect at 120◦ angles. The convex disclination consists of a semicircular
arc joining straight stripes. Their corresponding phase surfaces have Gaussian curvature
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Figure 3: A concave (;eft) and a convex (right) disclination.

localized at the defect points. Their far fields are described by solution of the Helmholz
equation (3.17).

5. The far fields of other point defects such as spines, saddles, targets, vortices which
are composites of the canonical point defects V and X can also be captured using the
reduction (3.15), (3.16).

6. A particularly interesting defect is the stationary dislocation. It is the composite
of a saddle (VV) and a vortex (XX) whose harmonic (i.e. solutions of ∇· k⃗ = ∇× k⃗ = 0)

structure is given by f − ig = kB +
i

z
. For a nontrivial B(k2) their far field is given by

seeking solutions ψ = expβkBxf(x, y) and treating y derivatives in F as more important
than x derivatives (the paraxial approximation) so that F (x, y) satisfies 2βkBFx+Fyy = 0
We seek solutions such that θ(−x, y) = θ(x, y) and that θ(x, y) = kBx for y large and
positive and to kBx+ πsgnx for y large and negative. The solution then is

θ(x, y) = kBx+
1

β
ln

{
1

2
(1 + exp(βπsgn(x))) +

1

2
(1− exp(βπsgn(x)))Erf(

√
βkB

y√
|x|

)

}
(3.19)

The multi dislocation state is captured by a superposition of (3.19) as long as the
centers are well separated.

And now we come to our first challenge which we shall introduce with a series of
figures. Figure 4 is the result of a computation of solutions of the Swift-Hohenberg
equation with boundary conditions chosen to force stripes meeting at various angles
shown across the top of the figure. As predicted in item 3 above, the VX pair creation is
beginning to show at 0.25π. It becomes more pronounced as the angle increases and leads
to a sequence of such pairs along the PGB. However we note that the contours emanating
from the V become less Y shaped and more V shaped so that the arms become more or
less paralled to the original PGB itself. Indeed at angles of .45π, the pattern looks more
and more like a sequence of dislocations. This observation is consistent with what we see
in ellipses with boundary conditions (in the context of convection in an elliptic cylinder
with heated sidewalls) chosen to ensure that the boundary phase contours are parallel to
the boundary and the wavevector normal. These are shown in Figs 5, 6, 7, 8, 9, 11 a, b,
12 a, b

In Fig. 5, we see the eikonal solution (namely the solution obtained by moving along
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Figure 4: Numerical solutions of the Swift-Hohenberg equation with boundary conditions corresponding
to stripes with increasing angles.

Figure 5: A stripe pattern corresponding to a phase given by the eikonal equation |∇θ| = 1.
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Figure 6: A numerical simulation of the Swift-Hohenberg equation on an elliptical domain. Compare
the eikonal solution on the same domain shown in Fig. 5.

boundary normals with phases 0, 2π, etc. marked at intervals of
2π

kB
) regularized by a

PGB between the two foci. This would indeed be the solution for an idealized elastic
blister whose energy is very similar to (3.2) with carefully controlled boundary conditions.
The surface height would rise with constant slope and meet in a ridge located between
the two foci where the cavities begin.

However, one observes that the angles at which the phase contours meet the PGB
become larger and larger. Figure 6 shows us what happens. The white triangle marks
the focus, the center of curvature of the end of the boundary along the major axis. The
white diamond marks the point at which the angle reaches its critical value and from
that point to the center we see a sequence of dislocations with the contours closest to
the major axis parallel to that rather than being shaped as they would if they followed
the eikonal solution exactly. But as Fig 7 indicates, the deviation from kB (here chosen
to be unity) is very small and well within the k − kB = O(ϵ) tolerance. Fig 8 shows the
local energy density which is clearly largest on the sequence of VX pairs near the foci
and on the sequence of dislocations nearer the center of the ellipse. Fig. 9 is a repeat
of Fig. 6 with a 4:1 aspect ratio with results very close to that of Fig 6. Fig. 10 is the
result of a simulation of the Oberbeck-Boussinesq equation at a Prandtl number of 100
(at which the equations are almost but not exactly gradient) and a Rayleigh number of
2000. Figures 11a and 11b are the results of an experiment by Meevasana and Ahlers [9]
with ethanol and a simulation of Swift-Hohenberg in an identical geometry. Figures 12a,
b are simulations of Swift-Hohenberg.

The challenge is to deduce all this structure from the stationary phase diffusion equa-
tion (3.1) for the energy minimizing field. In the far field, away from the major axis
between the foci, the Gaussian curvature (Hessian) would appear to be so small as to be
negligible so it is likely the self dual approximation obtains. On the outside, the mean
curvature is also small so the eikonal solution dominates.
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Figure 7: Deviation |∇θ| − kB of the local wave-number from the preferred wavenumber for the Swift-
Hohenberg solution on an elliptical domain.

Figure 8: The local energy density on the Swift-Hohenberg solution on an elliptical domain.

Figure 9: The Swift-Hohenberg solution on an elliptical domain with a larger aspect ratio.
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Figure 10: Numerical simulation of the Overbeck-Boussinesq equations for convection.

Figure 11: (a) Experimental results for convection in an elliptical container. (b) Simulation of the Swift-
Hohenberg equation on the same domain.
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Figure 12: Simulations of the Swift-Hohenberg equation. Note the flattening of the phase contours as
the major axis is approached.

But as we move in, the curvature of the phase contours is slightly more pronounced as
to allow, if in balance with the strain energy, proportional to (k2−k2B)2, small deviations
in the latter in which k > kB but well within the Busse balloon and still of order ϵ.
Therefore the self dual approximation will allow for some flattening of phase contours
as the major axis is approached. Most of the energy in the pattern, as is clear from
Fig. 8, resides along the major axis. This behavior can be approximated by a series

of phase contours where θ = 0 and gaps where
∂θ

∂y
= 0. Following through with this

approach allows us to calculate the optimal placing of the divisions so as to minimize
the energy [10]. In all likelihood that will be the multidislocation solution (a sum of
(3.14) solutions). Another question to address is whether, at the dislocations, one has
to reintroduce the amplitude as an additional order parameter as the local wavevector
approaches the neutral stability curve where the amplitude is small. In any event, the
matching of what is observed, in experiments and in simulations of both the large Prandtl
number Oberbeck-Boussinesq equations and its toy model the Swift-Hohenberg equation,
provides a healthy but yet unresolved challenge for the theory.

3.2. Pattern quarks and leptons and a second challenge

We saw in 3.1 that the canonical point defects in two dimensional striped patterns
were concave (V) and convex (X) disclinations. Their associated invariants, namely the
“Twists”, measuring the amount of Gaussian curvature condensed onto the point defects,

when divided by 2π were fractional, −1

2
and

1

2
respectively. In three dimensions, the

point defect analogues of the V and X will easily dissociate, while loop defects are stable
and encode interesting topology [11]. The defects that are structurally stable are loops
(see Figures 13 and 14) in which the cross sections are concave and convex disclinations.

As we shall see, they still retain their “spin” or ±1

2
invariants. However because

the tori which envelope these loops have two independent closed loops on their surfaces
on which the amount of twists of the k⃗ director are invariant, each loop defect has an
additional invariant which in the case of the V (X) string or loop with a concave (convex)

disclination cross-section, can be integer multiples of
1

3
(1). Because of the analogy with

“charge” we call these objects pattern quarks and leptons.
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Figure 13: A phase defect in three dimensions with a concave disclination backbone.

Figure 14: A phase defect with a convex disclination backbone.
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Figure 15: Concave disclinations and fractional twist.

Before we give the results of these calculations, we point out that the main ideas
of the two invariants can be seen from a geometrical viewpoint. For the V string, the
object of interest is a loop with a concave disclination cross-section which is twisted
about the backbone so as to match the w(x⃗, t) field at the two ends z = 0 and z = l
which are identified. This can be done in essentially two ways. We can ask either
that the phase field is periodic, i.e. θ(x, y, z = 0) = θ(x, y, z = l) or antiperiodic, i.e.
θ(x, y, z = 0) = −θ(x, y, z = l). To achieve the former we must match sectors S1 and
S3, as shown in Fig. 15, which will require a twist of the direction f, g, h = ∇θ along a

suitable contour joining r = r0, α = 0, z = 0 to r = r0, α =
4π

3
, z = l of

2

3
· 2π .

To achieve the latter, we simply match sectors of S1 and S2 which will require an

angular twist of
1

3
·2π. Each of their negatives is also possible by twisting in the clockwise

direction. The spin invariant is obtained by examining the twist of the direction ∇θ
around any cross-section. For the X-string, the field w(x⃗, t) can only be made periodic
in the backbone direction by twisting the backbone by an integer multiple of 2π. The

spin index again is
1

2
. Each invariant is associated with the twist of the director field

around the two independent directions on the torus and the line integrals can be related
to the area integrals of the two independent and nontrivial sectional Gaussian surface
curvatures of the three dimensional surface θ(x, y, z).

It is worth remarking on and emphasizing this extraordinary possibility. We start
from a field following a dynamics embued with only rotational and translational sym-
metry. However, when sufficient stress is applied to that system, there naturally emerge
objects with fractional invariants. Contrast this with the standard model (TSM) of
theoretical physics in which, informed by the experiments of the early seventies, the
symmetries associated with U(1), SU(2) and SU(3) were invoked to capture the charge
and spin invariants associated with quarks and leptons. In the context of patterns, there
is no imposition of such symmetries a priori. The stress on the system causes instabilities,
and the melding of differently oriented planar stripe patterns lead to loop defects with
precisely the fractional invariants associated with charge and spin.

Here is an outline of what we wish to present. We begin with a listing of previous
results although now fortified by our understanding that, even in three dimensions, the
self dual approximation is valid. To simplify the formulae, we choose units such that β
and kB are both unity. We then pose a series of outstanding challenges.
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It is a useful exercise to employ what we call the Laplacian approximation to consider
solution to the phase diffusion equation in the special case where we take B(k) ≡ 1 and

satisfy each of its two terms separately by solving∇·k⃗ = ∇2θ = 0. Since∇×k⃗ is also zero,
in two dimensions this means that fx = −gy, fy = gx which are the Cauchy-Riemann
conditions guaranteeing that f − ig is analytic in x+ iy.

Disinclinations are captured by the functions z1/2 and
1

z1/2
analytic on the Riemann

surface which is the double cover of the plane. Indeed such singularities arise in the

theory of quadratic diffentials. Choose θ(x, y) = Im
2

3
ζ3/2, ζ = x + iy,= ρ3/2 sin(

3α

2
)

where (x, y) = (ρ cos(α), ρ sin(α)). A little analysis shows f − ig = ρ1/2 exp(
iα

2
) = ke−iφ

where (f, g) = (k cosφ, k sinφ) Then φ = −α
2
. As α travels around the defect at ζ = 0,

the corresponding twists in φ is −π. This is the two dimensional Laplace or harmonic
concave disclination. The Laplace convex disclination is found by choosing θ = Im2ζ1/2.
In three dimensions, we solve Laplace’s equation on a cylinder with a backbone along
the z axis identifying θ(x, y, 0) with θ(x, y, l) in various ways described earlier when we
discussed the main ideas.

For the V-string, or pattern quarks, the Laplacian approximation can be written as

θ =
2

3
Kr

3
2 sin

(
3α

2
− nπz

l

)
(3.20)

where n is integer and we have approximated I3

2

(r) by its small argument limit. Therefore

we work in the radial domain 2π(= λ) << r << l.

f − ig = Kr1/2 exp i

(
α

2
− nπz

l
− π

2

)
(3.21)

h = −2πn

3l
Kr3/2 cos

(
3α

2
− nπz

l

)
(3.22)

We note that, for
r

l
small, |h| << |f |, |g|. Therefore the twist of the direction (f, g, h)

can be calculated from the change in ϕ where f − ig =
√
f2 + g2 exp(−iφ),

√
f2 + g2 =

Kr1/2.

φ = −α
2
+
nπz

l
+
π

2
(3.23)

Along the contour z = constant, 0 ≤ α ≤ 2π, the twist or change in ϕ is −π. Along

the contour α = α0 +
2π

3
t, z =

l

n
t, r = r0(α0), 0 ≤ t ≤ n on which θ and h are constants,

the change of φ,
1

2π
[φ] is
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1

2π
[φ] =

1

3
n. (3.24)

For θ periodic over 0 ≤ z ≤ l, n is even and its smallest value is n = 2. We call this
the pattern up quark. For θ antiperiodic, we choose n = 1. We call this the pattern

down quark. The corresponding index is
1

3
. For X-strings, or pattern leptons, the

Laplace solution is θ = 2Kr1/2 sin(
α

2
− πnz

l
) for which f − ig =

√
f2 + g2 exp(−iφ) =

Kr1/2 exp i(−α
2
− πnz

l
− π

2
), h = −2nKπr3/2

l
cos(

α

2
− πnz

l
). The twist angle is

φ =
α

2
+
nπz

l
+
π

2
(3.25)

Around the two circuits r = r0, z = constant, 0 ≤ α ≤ 2π and r = r0, z =
l

n
t, α =

α0 − 2πt, 0 ≤ t ≤ n the respective twists are π and −2πn. The choice of antiperiodic θ
leads to indices ±1. We note that the choice θ periodic leads to indices ±2.

We now turn to the self dual problem for which solutions for θ(x, y, z) are obtained
by solving (3.15), the Helmholz equation for ψ and then calculating θ = s lnψ.

For the V-string, or pattern quarks, the self dual approximation 1–3 gives

θ1(r, α, z;n) =

√
3

2
r cos

(
α− 2nπ

3

z

l
− π

3

)
− ln

(
2 cosh

r

2
sin

(
α− 2nπ

3

z

l
− π

3

)) (3.26)

θ2(r, α, z;n) = −
√
3

2
r cos

(
α− 2nπ

3

z

l
− π

)
+ ln

(
2 cosh

r

2
sin

(
α− 2nπ

3

z

l
− π

)) (3.27)

θ3(r, α, z;n) =

√
3

2
r cos

(
α− 2nπ

3

z

l
− 5π

3

)
− ln

(
2 cosh

r

2
sin

(
α− 2nπ

3

z

l
− 5π

3

)) (3.28)

The sectors are rotated versions of those shown in Fig. 15 and are defined by
2(n− 1)

3
π < α − 2nπ

3

z

l
<

2nπ

3
, n = 1 − 6. The solutions are approximate, valid for

2π << r << l. The phase functions θ4, θ5, θ6 in sectors 4, 5, 6 are the negatives of those
in S1, S2, S3. The z dependence of the arguments are chosen so that, under the twist

associated with integer n, the points α0 on z = 0 rotate to α0 +
2nπ

3
on z = l. We note

that
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θ1(r, α, z = l;n = 2) = θ3(r, α, z = 0;n = 2) (3.29)

and

θ1(r, α, z = l;n = 1) = −θ2(r, α, z = 0;n = 1). (3.30)

In the first case, we match sectors 1 and 3. The twist along the helical contour joining

(r0, 0, 0) to (r0,
4π

3
, l) is

4π

3
. . In the second case, the twist is

2π

3
. Again the twist

along a contour at constant z is −π . A similar three dimensional analogue to the two
dimensional solutions gives twists for the X-string of π and −2πn.

There is a connection of the “charge” invariants with the Gaussian curvature of the
twisting phase surface that has a boundary which consists of C1: a helical curve joining

(r = r0, α = 0, z = 0) to (r = r0, α =
4π

3
, z = l) : C2: the straight line at α =

4π

3
,

joining r = r0 to r = 0 : C3 : the backbone on which k → 0 joining z = l to z = 0 at
r = 0 : C4 : The straight line joining r = 0, α = 0, z = 0 to r = r0, α = 0, z = 0. The

value of
1

2π

∫
C1
k2dφ is

2

3
. . Its value on C2 and C4 is zero because on these straight

lines [ϕ] = 0. The value along the backbone is also zero. Thus
1

2πr0
· 2

∫
(∇f ×∇g) · n̂dS

which adds the projections of (∇f × ∇g) onto z = 0, r ≤ r0, 0 ≤ α ≤ 4π

3
and onto

α = 0, 0 ≤ r ≤ r0, 0 ≤ z ≤ l is
2

3
. One can calculate these integrals for the case where

we approximate θ by
2

3
r

3

2 sin(
3α

2
− 2πz

l
). Then

1

4
(frgα−fαgr) = − 1

4r
, frgz −fzgr =

π

l

and
1

r
(fαgz−fzgα) = 0. The integral

2

2πr0

∫ r0
0

∫ 4π

3
0

1

r
(frgα−fαgr)rdrdα = −1

3
whereas

2

2πr0

∫ r0
0

∫ l

0

π

l
drdz = 1.

In the harmonic case, one must divide out by the radius r0 as the wavenumber does
not tend to unify in the far field but to r. Therefore the two sets of invariants, the

“spins” , −1

2
and

1

2
are the ”charges” ±1,±2

3
,±1

3
, reflect the amounts of sectional

Gaussian curvatures which have condensed on the loop backbones. On the other hand,
the energy of the V string is proportional to the mean curvature condensed along the

PGBs for the V-string which is proportional to 3 sin3
π

6
times multiplied by the product

of its cross sectional and backbone lengths L and l. The X-string energy is proportional
to l lnL .

5. There are lots of open challenges. Most are of interest in their own right and aim
at gaining a better understanding of the defects contained in natural patterns. Others
are motivated by the possibility of connections with the origins of subatomic particles.

1. The embedding of disclinations in physically reasonable far fields. Even in two
dimensions, this is a challenge. Our calculations of the energy of the concave disclination
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assume that the three phase grain boundaries have infinite extent. So this brings up
the question: Are disclinations finite in size with finite energy and, if so, how do the
contributions from the phase grain boundaries (discontinuities in the gradient of the phase
field) in the case of the concave disclination and of discontinuities in second derivative
(curvature) in the case of convex disclinations decay as r, the distance from the core,
increases and how do these objects meld in with physically reasonable far fields? Perhaps
they do not. Perhaps they are part of a very slowly coarsening process which only
ends after many mergings and when the final defect configuration is of the size of the
system and constrained from complete elimination only by boundary constraints. These
questions become even more difficult when we consider the V and X strings in three
dimensions. Can they be embedded in R3 or do they require the notion of a wrapped up
dimension so that the configuration space is not R3 but S1×R2 or more simply a torus?

One can try to think of gedanken experiments. In [7], we showed how a striped
convective pattern evolves in an elliptical cylinder whose sidewalls are heated. Near the
boundary, the convection rolls are parallel to the walls (their wavevector k⃗ is normal to
the wall) and their wavelength is the preferred value, the eikonal construction. But the
normals to an elliptical cylinder form caustics emanating from the two foci so that the
eikonal solution leads to multivaluedness. A thin film elastic blister would regularize this
solution by introducing a wedge-like boundary roof layer between the two foci and allow-
ing the gradient of the height undergo a sharp discontinuity (PGB) there [12]. The angle
between the wavevector and the PGB, α , is zero at both foci and increases towards the
center. What we find in a convecting fluid is that, once α > 43◦ , the pattern exercises its
option to allow director field perturbations of what was previously a vectorfield. There
is a creation of VX pairs, a nipple instability, a prediction supported by both numerical
and experimental confirmations, the former using both the Swift–Hohenberg approxima-
tions and the full Oberbeck–Boussinesq equations. The final pattern (presumably the
energy minimum although, for nonconvex problems, one has no uniqueness result; in
some circumstances, one can show by finding almost coincident upper and lower bounds
that an observed configuration has an energy which the minimum must have) consists
of what appears to be a chain of “dislocations” in which ∇θ · n̂ and θ are both zero on
alternating segments on the chain axis [25]. The number is determined by how strongly
elliptical the container is. In an experiment conducted by Ahlers and colleagues, there is
only one. It would be interesting to attempt an experiment in an ellipsoidal container,
axisymmetric around its long axis, with some pattern producing system, possibly chemi-
cal in nature, which can produce three dimensional patterns. One might conjecture that
one would obtain a bound zero charge pair of VX strings because there is no twist along
the backbones. It might be also possible to use a toroidal cylinder with elliptical cross
section in which one might induce a 2π twist, a hydrogen atom like arrangement.

2. Interstring forces. Whereas much is known about the interaction energies and
forces between vortices (a back to back superposition of two convex disclinations) and
dislocations (two concave, two convex dislocations) in vectorfield pattern forming sys-
tems, and, in certain cases, between disclinations in two dimensions, nothing is yet known
about the interaction forces between loop disclinations. Some of the difficulty is that we
do not have finite energies for individual disclinations. What one would like to be able
is to calculate the interaction free energy between two such objects by subtracting the
individual free energies from that of the combination and calculating its dependence on
the parameters r, an appropriate choice of interdisclination distance, and the spin and
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charge indices. One would like to see whether, for example, the interactive energy be-
tween a single V-string with 2π twist (two up quarks and one down quark) and an X
string is inversely proportional to r and the product of the signed charges.

3. Composites of pattern quarks and leptons. A related question concerns the com-
position of pattern quarks and leptons. Presumably one cannot match an individual up
or down pattern quark with a pattern lepton because their charges (which are related
to their topological structures) do not match. Therefore, one might conjecture that if
pattern quarks and leptons can only appear (stably) in pairs then we require quark com-
posites whose indices add to multiples of ±1, e.g. two up quarks and a negative down
quark (a pattern proton). One could also add a zero charge configuration, e.g., inte-
ger multiples of one up and two down quarks (a pattern neutron). Do such composites
consist of pattern up and down quarks which share the same loop backbone (and whose
topologies are clearly calculated by the addition of indices) or can one have interlinked
loops? We should note that their cousins in excitable media, vortices with vectorfield
order parameters, tend to appear as single rather than interlinked loops.

4. More sophisticated models. Patterns can arise as stationary (exchange of stabili-
ties) or as traveling standing waves (overstability). The latter arise when the unstressed
system supports oscillatory or wave motion. For example, the next most simple model of
atmospheric motion is the beta plane model which adds the north–south dependence of
Coriolus parameter to the geostrophic balance. When stressed with a north–south tem-
perature gradient, the resulting vertical shear of the east–west velocity and associated
density, pressure fields can destabilize via what is called the baroclinic instability to a
traveling pattern which has the character of Rossby waves, the natural oscillations of the
unstressed system. Therefore the recipe for a pattern forming system with waves is a
superposition of Hamiltonian and gradient flows. It would be interesting to investigate
the nature of defects in a pattern forming system whose Hamiltonian component had
Lorenz symmetry added to that of translation and rotation. The system is stressed by
the addition of the gradient component.

Acknowledgement

The authors of this work were supported by the award NSF-GCR 2021019.

References

[1] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys.,
65:851–1112, Jul 1993.

[2] Y Pomeau and P Manneville. Stability and fluctuations of a spatially periodic convective flow.
Journal de Physique Lettres, 40(23):609–612, 1979.

[3] T. Passot and A. C. Newell. The phase-diffusion equation and its regularization for natural con-
vective patterns. In Jean-Daniel Fournier and Pierre-Louis Sulem, editors, Large Scale Structures
in Nonlinear Physics: Proceedings of a Workshop Held in Villefranche-sur-Mer, France 13–18
January 1991, pages 1–20. Springer, Berlin, Heidelberg, 1991.

[4] T. Passot and A. C. Newell. Towards a universal theory for natural patterns. Physica D: Nonlinear
Phenomena, 74(3–4):301 – 352, 1994.

[5] Alan C. Newell. Envelope equations. In Nonlinear wave motion (Proc. AMS-SIAM Summer Sem.,
Clarkson Coll. Tech., Potsdam, N.Y., 1972), pages 157–163. Lectures in Appl. Math., Vol. 15.
Amer. Math. Soc., Providence, R.I., 1974.

[6] MC Cross and Alan C Newell. Convection patterns in large aspect ratio systems. Physica D:
Nonlinear Phenomena, 10(3):299–328, 1984.

31



[7] A. C. Newell, T. Passot, C. Bowman, N. Ercolani, and R. Indik. Defects are weak and self-dual
solutions of the Cross-Newell phase diffusion equation for natural patterns. Physica D: Nonlinear
Phenomena, 97(1):185–205, 1996.

[8] A. A. Nepomnyashcy and L. M. Pismen. Singular solutions of the nonlinear phase equation in
pattern-forming systems. Physics Letters A, 153(8):427–430, 1991.

[9] Worawat Meevasana and Guenter Ahlers. Rayleigh-Bénard convection in elliptic and stadium-
shaped containers. Phys. Rev. E, 66:046308, Oct 2002.

[10] N. M. Ercolani and S. C. Venkataramani. A variational theory for point defects in patterns. J.
Nonlinear Sci., 19(3):267–300, 2009.

[11] Thomas Machon, Hillel Aharoni, Yichen Hu, and Randall D. Kamien. Aspects of defect topology
in smectic liquid crystals. Comm. Math. Phys., 372(2):525–542, 2019.

[12] NM Ercolani, R Indik, AC Newell, and T Passot. The Geometry of the Phase Diffusion Equation.
Journal of Nonlinear Science, 10(2):223–274, 2000.

32


	Introduction and General Discussion
	Canonical Patterns
	Canonical patterns of complex fields
	Canonical patterns for real fields

	Two challenges 
	The Jacobian of the map from  to ; self-dual reduction of the RCN equation in two, three and any number of spatial dimensions; some properties of defects; and a challenge.
	Pattern quarks and leptons and a second challenge


