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Abstract

Despite the fact that topological defects are a hallmark of liquid crystalline materials,

current computational techniques for identifying topological defects in particle-based

simulations of these materials – which rest upon Q-tensor theory – do not leverage

topological features of the system. In this work, we describe the TADA algorithm, a

novel approach for identifying disclination cores in liquid crystalline materials, which

is sensitive to topology: This method assigns to each mesogen a unique vector, thereby

extending the concept of the liquid crystal director field down to the scale of mesogens.

In systems containing disclination cores, TADA identifies line segments along which

this assigned vector field is discontinuous, with cores located at the interior termination

points of these line segments. The mere presence of defects can be identified by search-

ing far away from them. We validate this approach by comparing its results to those

obtained using the scalar order parameter, for a variety of liquid crystalline assemblies

sourced from molecular-dynamics simulations. We also identify several benefits of the

TADA algorithm over existing approaches for identifying topological defects in liquid

crystalline materials.
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Introduction

The primary goal of this work is to develop a computational tool for seamless identification

of topological line defects, i.e., disclinations, in liquid crystalline media, without relying on

calculations of local ordering. The historical procedure for identifying line defects in nematics

may be described as follows (cf. refs.1,2): Consider a closed loop in the domain occupied by

the nematic. On arbitrarily assigning an orientation to a director at a point on the loop,

proceed to assign vector orientations to the director along the loop in a continuous manner.

On returning to the “base” point, if the assigned vector orientation of the director is found

to be oppositely aligned to how it began, then there must necessarily be a defect of strength

1/2 encircled by the loop. If on the other hand the vector orientation returns to its original

direction, then there are either no defects within the loop or an equal number of + and −

disclinations encircled by the loop. In this work, we develop a computational implementation

of a slight generalization of this simple idea for the identification of disclinations, without

relying on the construct of closed loops. Moreover, noting the conceptual absence of any

special length-scale in defining the “director” in the above argument, we successfully apply

our technique to assemblies of individual mesogens interacting through an inter-mesogen

potential.

Our main idea is to assign vector orientations to individual mesogens, as shown in Figure

1. We wish to do so in a manner that is as continuous as possible within the domain.

Completion of such an assignment over the entire assembly automatically reveals “layers”

across which the assigned orientation field has to be discontinuous, provided that there are

defects present. Such layers are not uniquely located in space, but nevertheless must be

present somewhere in the presence of disclinations; they either run from the disclination

cores to the boundaries or connect oppositely signed disclinations within the body. While

the layers are not uniquely located in space, their terminations must be, and these are the

locations of the disclination cores.

The algorithm we develop applies to a director distribution obtained by any means,

2



experimentally or through simulation or exact solutions of theory of any type.3,4 A recent

class of vector field models for line defects in liquid crystals has been introduced by Zhang

et al.,5 making connections with the same class of topological defects in elasticity of solids,

and in convection patterns. Our tool is particularly suited for the validation of such models,

which explicitly deal with the layer-like features mentioned above. Such models also need,

in the definition of their energy density function, a parameter that defines the thickness of

these non-unique (in some systems) layers and another that defines the core width of the

defects. Our tool explicitly characterizes such length-scales for the higher-scale continuum

pde models.

It is worth emphasizing that the approach we develop here is distinct from existing

approaches for identifying disclinations in liquid crystalline assemblies. The core difference

is that the method described herein is sensitive to topological information, and does not

depend upon information in the vicinity of each disclination core, whereas existing methods

necessarily rely upon kinematic data near the core itself. For example, the core idea employed

by Callan-Jones et al.,6 by Slavin et al.,7,8 and by Humpert et al.,9 is to identify disclinations

as surfaces along which certain measures of anisotropy (the so-called Westin metrics) take

on constant values; however, Westin metrics cannot reveal the presence of a disclination

using only data far away from the disclinations. Recent work by Schimming and Viñals10

takes a different strategy, namely, constructing a quantity (the disclination density) that

only takes on non-zero values at disclinations. This approach also successfully identifies

disclinations; however, by its nature, it also necessarily requires information in the vicinity

of the disclinations themselves. One existing approach with a mild degree of conceptual

similarity to our method is described by Zapotocky et al.11 and Billeter et al.12 This approach

uses the Q-tensor to guide the creation of a director field, which is evaluated at the corners of

a square lattice imposed upon the simulation domain. This approach identifies disclination

cores as being present within squares whose corners exhibit a discontinuous flip in director

field (a topological insight); however, as with all of the previously described methods, the
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signature of a disclination that this method is sensitive to necessarily requires information

near the core itself. Moreover, this method requires the selection of a length-scale to set the

spacing of the square lattice, and a suitable choice of this quantity depends upon gradients

in the order parameter field; the method described below does not involve any choice of such

a length-scale.

Methodology

Molecular-Dynamics (MD) Simulations

We validate and test the algorithm developed herein on molecular assemblies obtained from

molecular-dynamics (MD) simulations performed in two dimensions using LAMMPS13 and

visualized/post-processed using OVITO.14 In particular, we study systems containing rod-

shaped (calamitic) liquid crystal mesogens, which we treat as ellipsoidal particles interacting

via the Gay-Berne (GB) potential,15,16 a generalization to ellipsoids of the (spherically sym-

metric) Lennard-Jones potential.17 Below, we briefly describe this potential; we refer readers

interested in full details on the GB potential (as implemented in LAMMPS) to the expo-

sition of Brown.18 Consider two ellipsoidal particles (indexed as 1 and 2, and assumed to

be of equal mass m), whose centers of mass are separated by a distance r. With respect to

the laboratory frame, each particle has a relative orientation, which we describe using the

(unsigned) vectors û1 and û2. For these two particles, their inter-particle potential energy

is given by:

U(r) = 4
(
ϵ̃(û1, û2, r)ε0

)(
r̃−12 − r̃−6

)
(1)

r̃ ≡ r − σ̃(û1, û2, r) + σ0

σ0

(2)

where ε0 and σ0 are (respectively) an energy-scale and a length-scale for the inter-particle

interactions, directly analogous to their counterparts for the Lennard-Jones potential. Both
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σ̃(û1, û2, r) and ϵ̃(û1, û2, r) are geometrical terms that account for the relative angle between

the two ellipsoids. The quantity r̃ represents the scaled (non-dimensional) distance between

the two ellipsoids; it is a function of r (the dimensional distance between the ellipsoid centers

of mass), σ̃(û1, û2, r), and σ0. In all discussion that follows, we scale all quantities against

the length-scale σ0, energy-scale ε0, time-scale
√
mσ2

0/ε0, density-scale m/σ3
0, pressure-scale

ϵ0/σ
3
0, and temperature-scale kB/ε0, where kB is Boltzmann’s constant. All mesogens in this

work have an aspect ratio (major-axis-to-minor-axis ratio) of 2.5, and all results obtained

from computing dynamics employ a timestep of 10−3.

Below, we present results from two broad classes of systems:

1. “Synthetic” geometries: We initialize 1800 ≤ N ≤ 2000 mesogens with positions

and orientations so as to create a single disclination core in the center of the system.

Below, we consider four synthetic geometries (±1/2 defects and ± 1 defects). For

the defects of half-integer strength, we work with assemblies that have undergone

energy minimization; for the defects of integer strength, we study assemblies that have

undergone both energy minimization and dynamics at finite temperature, as described

below.

2. “Realistic” geometries: We initialize N = 8100 mesogens in a vapor phase (with

temperature T = 50 and number density ρ = 0.01) and then quench the system,

making use of the Nosé-Hoover thermostat and barostat,19,20 to T = 10−3 and number

density ρ = 0.45 (assuming hard ellipsoids with minor axes of length 1 and major axes

of length 2.5, this number density corresponds to a packing fraction of approximately

0.87, a couple percent less than the maximum packing fraction possible for ellipsoids21).

We bound the system along one dimension with two rigid walls made of mesogens,

which are (for each wall) all constrained to point in the same direction; for the two

walls, these directions are orthogonal to each other, enforcing antagonistic orientational

anchoring conditions, as studied in refs.22,23 The topological defect analysis is carried
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out on snapshots obtained after an equilibration period of at least 10 (non-dimensional

time units) elapses.

(i) Inconsistent assignment of directions (ii) Consistent assignment of directions

Figure 1: Characteristic equilibrium assembly of a subset (N = 208) of mesogens from a
“realistic” system. Blue arrows indicate the direction assigned to each mesogen. In (i), these
directions are directly obtained from LAMMPS output and are (as expected) topologically
inconsistent with each other; in (ii), we show an example of a topologically consistent assign-
ment of directions for this same assembly (all arrows pointing the opposite direction would
also qualify as topologically consistent).

TADA Algorithm

Motivated by the importance of topology, in this section, we present a novel technique that

respects – and helps reveal – the topology of a liquid crystalline assembly. Our approach,

termed the Topology-Accommodating Direction Assignment (TADA) Algorithm, assigns

each mesogen a direction. We note that any given mesogen possesses a major axis, which

corresponds to two possible directions (differing overall by a minus sign). The ultimate goal

of this approach is to select one of those two directions to assign to this mesogen (and to

carry out this procedure for all mesogens in the system). Before describing the technique

itself, it is worth emphasizing several features of this approach:
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1. The TADA algorithm approach stands in contradistinction to the much more com-

mon assignment of an unsigned vector to each mesogen, as is implicitly done for any

approach involving Q-tensor theory and the scalar order parameter; for such a repre-

sentation, there is no distinction between the vectors n̂ and −n̂.

2. This approach to direction assignment is not the same as mapping all vector orienta-

tions to a specified semicircular region (i.e., mapping n̂ → −n̂ whenever n̂ falls outside

of the specified semicircle). Such an approach, by construction, produces directions

that are restricted to a subset of the unit circle (and, as a consequence, such an ap-

proach is unable to capture topological features, such as the rotation of π in the director

field that occurs when traversing a closed loop enclosing a +1/2 defect).

We now describe the TADA algorithm:

1. Initialization: Starting from the assembly of liquid crystal mesogens (none of which

have been assigned a direction), we select (at random) a single mesogen, and assign

it one of the two directions aligned with its major axis (again at random). This

assignment of direction (and all subsequent assignments) takes the form of a unit

vector.

We add this mesogen to the List of Assigned Mesogens (LAM) and also to the List of

Central Mesogens (LCM).

2. Selection of the next mesogen for consideration and computation of the average local

director: For the mesogen most recently added to the LCM, we construct a list of its

neighboring mesogens (termed the List of the Most Recent Central Mesogen’s Neigh-

bors, or LMRCMN), out to a maximum mesogen center-to-center distance of dmax. We

sort this list of mesogens from nearest to furthest, relative to the central mesogen. All

particles on this list are necessarily either on the LAM or not on the LAM.

Of the latter (those mesogens not on the LAM), we select the single nearest mesogen to
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the mesogen most recently added to the LCM, and designate it as the Mesogen Under

Consideration for Assignment (MUCA).

Of the former (those mesogens on the LAM), we compute the average local director

v⃗ave as follows:

v⃗ave =
1

M

M∑
j=1

v⃗j
rj
, (3)

where the index j runs over all M mesogens on the LAM, v⃗j indicates the unit vector

assigned to the j-th mesogen, and rj indicates the center-to-center distance between

the MUCA and the j-th mesogen.

3. Vector assignment for the MUCA: Of the two possible direction assignments for the

MUCA, we select the direction that makes the smaller angle with v⃗ave, and the MUCA

is then added to the LAM.

4. Repetition until selection of the next central mesogen: As long as there are still meso-

gens on the LMRCMN that are not on the LAM, we return to Step 2 (we skip the

construction of the LMRCMN, as it has already been constructed).

Once every mesogen on the LMRCMN has been assigned, we select the first mesogen

on the LMRCMN, remove it from the LMRCMN, and add it to the LCM. We then

return to Step 2.

This process continues until all mesogens in the system have been assigned a direction.

5. Identification of disclination cores: After all mesogens have been assigned a direction, a

Delaunay triangulation24 is placed atop the domain, with each mesogen center-of-mass

serving as a node. All triangles with any side length exceeding twice the ellipsoid major

axis are discarded (such triangles are, without exception, located at the boundaries of

the domain). For each triangle, we compute ||n⃗i − n⃗j|| for each of the three pairs (i, j)

of triangle vertices. For any vertex pair where ||n⃗i − n⃗j|| > δ, we highlight the two

corresponding mesogens. Since the direction assigned to each mesogen takes the form
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of a unit vector, the maximum possible value of ||n⃗i − n⃗j|| is 2, and so δ should be

chosen to be slightly less than 2.

Viewed collectively, these highlighted mesogens form a set of continuous line segments.

We identify all termination points of these segments that are interior to the domain as

disclination cores.

For the results shown below, we use dmax = 3.5 and δ = 1.8.

Results and Discussion

We now discuss several results obtained using the TADA algorithm. We start from the

synthetic assemblies before moving to the more-realistic cases. Along the way, for the sake of

comparison and to highlight contrasts with existing approaches, we also provide calculations

of the scalar order parameter making use of the same liquid crystal assemblies.

Synthetic Systems

We first consider four synthetic systems: As a reminder, these systems have been constructed

so as to contain solitary disclinations (the four systems are ±1/2 and ±1 defects). By

construction, in each of the examples shown in this section, the disclination core is located

at the center of the image.

We begin with the ±1/2 cases. Based upon the regions of strong purple coloration located

at the center of each image in Figure 2 (where there is a significant difference between

individual mesogen orientations and the local average director), we verify that the scalar

order parameter can be used to identify defect cores for these simple assemblies.

In Figure 3, we show that TADA can identify the same disclination cores for the ±1/2

cases. In particular, to verify that TADA is robust to the choice of the initially assigned

mesogen, we run the algorithm using four distinct choices for the initially assigned mesogen.

In every case, the interior termination point of the highlighted segment is indeed the center

9



(i) +1/2 (ii) −1/2

Figure 2: Scalar order parameter for two synthetic assemblies: (i) +1/2 defect and (ii) −1/2
defect. Defect cores are identifiable as regions of strong purple coloration.

of the domain, at the same location as identified using the scalar order parameter, and also

where the defect core was placed by construction. It is worth emphasizing again that the

specific location and configuration of the highlighted segment has no physical significance;

only its termination point in the interior of the domain carries physical meaning.

We turn now to the case of integer defect strength. Because it is well understood that

solitary ±1 defects are unstable, for these two systems we focus on two snapshots in time:

One at a very early time (while the core remains intact) and one after a period of dynamics

and subsequent energy minimization (after the core has had sufficient time to split). The

results for the scalar order parameter are shown in Figure 4; the results for the TADA

algorithm are shown in Figure 5. For both defect types, we observe that at the early stage,

both approaches identify the core location to be at the center of the domain (and we can

visually verify that the TADA algorithm is robust to the choice of initially assigned mesogen).

At the later stage, as expected, both defects with integer topological charge split (for the

specific cases visualized, the +1 defect splits into two +1/2 defects that migrate along a
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(i) +1/2, (0,0) (ii) +1/2, (10,0) (iii) +1/2, (0,10) (iv) +1/2, (0,−10)

(v) −1/2, (0,0) (vi) −1/2, (10,0) (vii) −1/2, (0,10) (viii) −1/2, (0,−10)

Figure 3: Application of the TADA algorithm to identify defect cores for (i-iv) +1/2 defects
and (v-viii) −1/2 defects; disclination cores are located at the interior point of termination
of each yellow segment. In each column of figures, we specify the spatial coordinates for the
initially assigned mesogen, which is different for each column.
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roughly north-south axis and the −1 defect splits into two −1/2 defects that migrate along a

roughly east-west axis). Both methods successfully identify this splitting; in particular, the

TADA algorithm generates a series of highlighted segments, which produce a set of interior

termination points close to the defect core regions identified using the scalar order parameter.

We observe that at the later stage, there is a small amount of discernible variability in the

defect core locations identified using the TADA algorithm, which depends upon the choice

of initial mesogen. This phenomenon is clearest in Figure 5 for the −1 defect. Nevertheless,

for all choices of initially assigned mesogen, the maximum discrepancies in observed core

location are comparable to the length of a single mesogen, which (it is worth noting) is

comparable to the uncertainty in core location using the scalar order parameter (since the

region where S takes on its most negative values is not localized to a single mesogen).

(More) Realistic Systems

We turn now to an assembly of higher complexity, which (as a reminder) was obtained by

rapidly quenching and compressing a mesogen vapor into a condensed phase. We expect

a priori that such a system will feature a wealth of disclinations, not generally amenable

to identification by visual inspection. In Figure 6, we show that both techniques generally

identify the same defect cores, with discrepancies that are at most on the order of a single

mesogen length.

Relative Merits of the TADA Algorithm

Having verified that the TADA algorithm can identify the same disclinations as the scalar

order parameter (modulo at most one mesogen length), we now discuss the advantages of

the TADA algorithm vis-à-vis the scalar order parameter. It is worth emphasizing at the

outset of this discussion that the TADA algorithm directly follows in the footsteps of the

historical (and topologically focused) approach, as discussed in the Introduction. However,

beyond merely being grounded in the historical approach, we identify two key capabilities

12



(i) +1, ES (ii) +1, LS

(iii) −1, ES (iv) −1, LS

Figure 4: Application of the scalar order parameter to identify disclination cores for (i-ii)
+1 defects and (iii-iv) −1 defects. The first column shows early-stage (ES) configurations,
prior to core splitting; the second column shows later-stage (LS) configurations, after core
splitting.
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(i) +1, (0,0), ES (ii) +1, (10,0), ES (iii) +1, (0,10), ES (iv) +1, (0,-10), ES

(v) +1, (0,0), LS (vi) +1, (10,0), LS (vii) +1, (0,10), LS (viii) +1, (0,-10), LS

(ix) −1, (0,0), ES (x) −1, (10,0), ES (xi) −1, (0,10), ES (xii) −1, (0,-10), ES

(xiii) −1, (0,0), LS (xiv) −1, (10,0), LS (xv) −1, (0,10), LS (xvi) −1, (0,-10), LS

Figure 5: Application of the TADA algorithm to identify cores for (i-viii) +1 defects and
(ix-xvi) −1 defects; cores are located at the interior points of termination of yellow segments.
The first and third rows show early-stage (ES) configurations, prior to core splitting; the
second and fourth rows show later-stage (LS) configurations, after core splitting. In each
column of figures, we choose a different coordinate for the initially assigned mesogen.
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(i) scalar order parameter (ii) TADA

(iii) scalar order parameter (iv) TADA

Figure 6: For a realistic configuration of mesogens, identical disclinations identified via (i)
the scalar order parameter and (ii) the TADA algorithm. In (iii) and (iv), we provide close-
up views of the region circled in pink in (i) and (ii), containing two disclination cores. The
color bar shows the range for the scalar order parameter.
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only possessed by the TADA algorithm.

Intermediate-Stage Identification of Defect Core Splitting

As shown in Figures 4 and 5, both the TADA algorithm and the scalar order parameter

are capable of revealing eventual core splitting for integer-charge topological defects. Here,

we call attention to a (potentially unsurprising, but nevertheless noteworthy) strength of

TADA: At intermediate times, just as the disclination core is beginning to split, TADA

unambiguously identifies the split before it is clear using the scalar order parameter, which

instead highlights a large region of disorder (Figure 7). This result suggests that the TADA

algorithm is better suited for tracking defect evolution with fine spatiotemporal resolution.

Defect Identification in Cases of Limited Information

Yet another advantage of the TADA algorithm is that it can infer the presence of a discli-

nation core in a region even when no data is provided in the vicinity of the core itself. In

Figure 8, we show the TADA algorithm and the scalar order parameter for synthetic as-

semblies corresponding to the four topological charges previously studied; in each case, a

certain portion of the dataset containing the core itself has been excised from the dataset.

Whereas the scalar order parameter is blind in all cases to the presence of a disclination

(it is sensitive only to local disorder in the vicinity of a defect), in every case with a ±1/2

strength defect, the TADA algorithm produces a highlighted segment that terminates in the

interior of the domain, on the boundary of the excised region (indicating the presence of a

core somewhere within this region). In other words, the TADA algorithm is truly sensitive

to topological considerations, and does not require information near the core itself to deduce

that the region in which data is missing contains a net topological charge with non-integer

magnitude. (In cases where the region in which data is missing has a non-zero and integer

topological charge, it is possible to either see multiple lines terminating on the boundary of

the excised region or none.) It is worth noting that this analysis compares favorably to –
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(i) +1 (scalar order parameter) (ii) +1 (TADA)

(iii) −1 (scalar order parameter) (iv) −1 (TADA)

Figure 7: Disclination core splitting at an intermediate stage (shortly after the core begins to
split), for (i) +1 (scalar order parameter); (ii) +1 (TADA); (iii) −1 (scalar order parameter);
and (iv) −1 (TADA). The color bar shows the range for the scalar order parameter.
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and is in fact directly inspired by – the arguments in Section IIB of the landmark article by

Mermin.2

(i) +1/2, data excision
area of 100

(ii) −1/2, data excision
area of 200

(iii) +1, data excision
area of 150

(iv) −1, data excision
area of 300

(v) +1/2, data excision
area of 100

(vi) −1/2, data excision
area of 200

(vii) +1, data excision
area of 150

(viii) −1, data excision
area of 300

Figure 8: Identification of defects within four synthetic assemblies, each with a specified
amount of data removed from the overall dataset. The top row (i-iv) shows results from the
TADA algorithm; the bottom row (v-viii) shows results from the scalar order parameter.

We close our discussion by noting yet another advantage of TADA, based upon its suit-

ability for use with efficient statistical sampling techniques. In principle, one could start

from a trivially topologically consistent configuration (e.g., a smectic assembly of mesogens

with all directions assigned to the north) and then obtain defected assemblies only through

“gentle” perturbations/deformations of this initial configuration (here, “gentle” means that

no mesogen ever experiences a force or torque sufficiently large to cause it to flip to an incon-

sistent direction within an otherwise ordered domain). Although such an approach would

ultimately produce a vector field of directions identical to those generated by TADA, TADA

opens the door to the use of non-physical decorrelation methods (via, e.g., high-temperature

dynamics25); this is because TADA “works from a clean slate” each time it assigns directions,
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and is thus completely unaffected if it is initially fed a grossly inconsistent set of directions.

Such enhanced-sampling methods are critical for generating statistically representative en-

sembles of configurations, especially for materials with large correlation length-scales and

long correlation time-scales, as is frequently the case for liquid crystals.

Conclusion

We have developed a novel approach – the Topology-Accommodating Direction Assignment

(TADA) algorithm – for assigning a vector field of directions to any assembly of liquid crystal

mesogens in a manner that is as continuous as possible for that assembly. In assemblies

where this is not possible, the discontinuities identified by this algorithm form line segments,

whose termination points interior to the domain represent topological defects. This strategy

demonstrates that it is possible (and in fact highly fruitful) to extend the concept of a director

field down to the length-scale of individual mesogens within liquid crystalline media, without

making any reference to a local order parameter quantity.

We have validated the TADA algorithm by comparison to disclination cores identified

using the scalar order parameter, for a large variety of assemblies. In all cases, we find

agreement up to the length of a single mesogen. We have also discussed several distinctive

strengths that the TADA algorithm exhibits: Chief among these are the ability to unam-

biguously identify core splitting earlier than the scalar order parameter and the ability to

infer the presence of a disclination in the presence of limited data near the core itself.

There are several natural avenues to develop and leverage the TADA algorithm, which

will be the subject of future work. At a basic level, all of the results and analysis herein

focused on the two-dimensional case; it would be natural to extend TADA to three di-

mensions, enabling the identification of disclination lines running through the body of a

liquid crystalline assembly. The TADA algorithm also generates precisely the geometrical

and topological information needed to calibrate and test a recent class of continuum models
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proposed for line defects in liquid crystals.5 As such, the TADA algorithm is also a promis-

ing technique for supplying nanoscale detail to macroscale models, enabling accurate and

efficient multi-scale modeling of liquid crystalline materials.
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