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We use effective field theories to study the dynamics of dislocations within a solid. We describe
the dynamics of the phonons in terms of two-form gauge fields which allows us to couple the phonons
non-derivatively to the dislocations. Using this formalism we are able calculate the forces between
dislocations and also stresses induced by dislocations. We present new results for these quantities
due to contribution from the dynamical phonon.

I. INTRODUCTION

In this paper, we explore the dynamics of dislocations within a solid using an Effective field theory approach. The
physics of dislocations within solids has been explored for a long time and still is a very active research area. Tradi-
tionally, such a system has been studied by explicitly solving a system of partial differential equations corresponding
to the equations of motion. One is able to formulate approximate solutions that describe the dynamics in a given
setting. Here, we instead choose to use symmetries of the system to formulate an effective action for dislocations
within a solid. This has numerous advantages and allows one to study phenomena which are beyond the scope of
traditional methods.

Recently, there has been a renewed interest in the behavior of defects in solids using symmetric tensor gauge
theories[1–4]. Here we instead focus on the gauge theory of phonons, where they are represented by anti-symmetric
tensor gauge fields [5–7]. These mediate the interactions between the dislocations which are represented as one-
dimensional strings. This construction completely relies on symmetries and allows one to calculate quantities in a
systematic expansion based on simple power counting rules.

The low energy effective theory of solids can be easily understood just from the symmetry breaking pattern of the
solid [8, 9]. This allows one to describe the dynamics in terms of scalar fields which correspond to the comoving
coordinates of the solid. However the couplings to the defects are complicated by multi-valuedness of these fields
which leads to a non-local action. As we will see, this can be circumvented by describing the dynamics in terms
of two-form gauge fields which allows one to write down an effective action with local couplings to the dislocations
[5–7]. These gauge fields describe a non-dynamical “stress-photon” and the dynamical phonon. The effective action
is written as a derivative expansion in these fields with the validity upto a certain cutoff scale of the order of the
dislocation radius.

We use the formalism to calculate forces between dislocations and also stresses mediated by dislocations and make
connections with standard results. Furthermore, we are able to calculate the contribution due to phonons to the above
quantities which have not been presented in the literature so far.

We will begin by reviewing the scalar field theory of a relativistic solid in Sec.II. In Sec.III, we explore the connections
between the scalar field theory and the anti-symmetric dual gauge theory of solids. We then construct a dual effective
action for solids in Sec.IV. We then derive the non-relativistic limit of this action and also write the action for a
non-relativistic dislocation using the method of coset construction. In Sec.V, we detour to a variational approach to
constructing the action for a non-linear dislocation mechanics. In Sec.VI, we explain the power counting rules that
we use to perform systematic calculations within the EFT. Finally, we present some results concerning the potentials
and stresses generated due to dislocations in Sec.VII.

II. EFFECTIVE FIELD THEORY OF SOLIDS

To describe the effective theory of relativistic solids in D + 1 dimensions, we begin with a Lagrangian description
where one introduces D scalar fields ϕI(x⃗, t) for the comoving coordinates of the solids. These comoving coordinates
can be thought of as the labels of the atoms within the solid. To write down the action for a solid, one needs
to be consistent with the symmetries of a solid which in this case are poincare invariance, internal shift symmetry
and internal rotational invariance. Hence all the dynamics of a solid is captured by a SO(3) invariant function of
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BIJ = ∂µϕ
I∂µϕJ [8, 9].

S =

∫
dD+1x F(BIJ) (1)

The low energy properties of a system are dominated by the dynamics of the ground state. We are thus interested
in studying the fluctuations of the system about its ground state. The fields ϕI obtain an expectation value in the
ground state, spontaneously breaking a host of symmetries [8]. The expectation value can be chosen such that the
internal coordinates align with the spatial coordinates i.e

⟨ϕI(x⃗, t)⟩ = xI (2)

Since the ground state breaks a host of symmetries, one would expect multiple gapless particles in the spectrum from
Goldstones theorem. But this need not be the case for space-time symmetries[10], which in the case of solids implies
that only the goldstone bosons associated with translations (phonons) are needed to realize all the symmetries of the
system. Hence the fluctuations can be parameterized as

ϕI(x⃗, t) = xI + πI(x⃗, t) (3)

where πI(x⃗, t) are the phonons. The function F(BIJ) can now be expanded around the background BIJ = δIJ .

F(BIJ) = c0 + c1(2∂
IπI + ∂µπ

I∂µπI) +
1

2
CIJKL(∂

IπJ + ∂JπI)(∂KπL + ∂LπK) + ... (4)

where the ... represent higher order terms in the phonon fields. For an isotropic solid, the elastic moduli tensor CIJKL

takes the form

CIJKL = c2δIJδKL + c3(δIKδJL + δILδJK) (5)

Hence at the quadratic level, the Lagrangian takes the form

L(2) = c1∂µπ
I∂µπI + (2c2 + c3)(∂Iπ

I)2 + c3∂Iπ
J∂Iπ

J (6)

From the above equation, one can see that the phonons have a linear dispersion relation ω ∼ csk. The phonons
represent D degrees of freedom, with D − 1 transverse components π⃗T (x⃗, t) and 1 longitudinal component π⃗L(x⃗, t).
The longitudinal phonons are responsible for compression whereas the transverse phonons cause shear forces in the
solid. The stress-energy tensor of the solid is given by

Tµν = − ∂F
∂(∂µϕI)

∂νϕ
I + ηµνF (7)

In the ground state, the energy density and pressure of the solid are given by

ρ = −F p = F − ∂F
∂(∂iϕI)

∂iϕ̄
I (8)

where ϕ̄I represents the ground state value.

III. DUALITY

Until now we have discussed the effective field theory for solids in terms of the co-moving coordinates ϕI(x⃗, t) of the
individual particles. Whenever topological defects are present within the material, the coupling of the dynamical fields
to these defects is not straightforward. Consider the case of a superfluid, where there is U(1) symmetry associated
with the superfluid phase ϕ. The defects in this case are the superfluid vortex lines and the phase ϕ becomes the
winding angle around the vortex line which is multi-valued. For a vortex line with a winding number N , we get∮

C

dxi∂iϕ = 2πN (9)

where C is a closed contour around the superfluid vortex. This multi-valuedness of the fields ϕ necessitates the use of
dualities in physics. To write a consistent effective theory for superfluids, one needs to introduce dual gauge fields[11–
13]. The dual fields are necessary to make the effective theory local. A scalar field is dual to an anti-symmetric D− 1
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form in D+1 space-time dimensions[14, 15]. As we will see for solids, the scalar fields ϕI are similarly singular in the
presence of a dislocation. Hence in 3+1 dimensions, one introduces anti-symmetric two-form fields bIµν with I = 1, 2, 3
to describe the low energy dynamics of a solid.

Let us understand how the duality works in the case of solids. Dislocations are topological defects in a solid which
carry vectorial charges n⃗, called the burgers vector. Dislocations can be visualized as the end of a half-plane within
a 3D solid or a half-line in a 2D solid. Hence they are line/point defects in a 3D/2D material. In the presence of a
dislocation line, the net displacement traversed by a closed contour enclosing the dislocation is non-zero and equal to
the burgers vector nI . ∮

C

dxi∂iπ
I = nI (10)

This implies that the phonon fields are singular near the dislocation and one needs to use a dual effective theory to
describe them. The dislocation line traces a worldsheet in space-time. We denote the dislocation line by the four
vector Xµ(τ, ρ) , where τ and ρ are arbitrary world-sheet coordinates. The current associated with a p-dimensional
defect is a p+ 1 form and hence a dislocation current in 3+1 dimensions is a two-form given by

Jµν
I = nI

∫
dρ ∂τX

µ∂ρX
ν δ(3)(x⃗− X⃗(τ, ρ)) (11)

where vµ = ∂τX
µ is the velocity of the dislocation line. The dislocation density is given by the temporal component

J0j
I and the spatial components J ij

I correspond to a dislocation line along the jth-direction moving in the ith-direction.
The dislocations can be edge or screw type, depending on whether the burgers vector is perpendicular or parallel to
the dislocation line respectively. Edge dislocations can only move in the direction of their burgers vectors since the
motion perpendicular to their burgers vector involves the addition or removal of atoms.

In the presence of dislocations, the scalar fields are multi-valued; alternatively they can be viewed as single-valued,
but with discontinuities across 2-d spatial surfaces, at least, with singular derivatives on such surfaces. The dislocation
lines are the 1-d curves of termination of such surfaces. The inverse elastic distortion, W I

σ , is defined by removing
these singular parts from the derivative of the scalar fields, but since the ‘curl’ of the distributional derivative of the
scalar fields have to vanish while there are terminating jumps in the latter, the skew-symmetric derivative ofW I

σ must
be non-vanishing at these jump-terminations, equaling the dislocation density, Jµν

I , there: ϵµνρσ∂ρWσI = Jµν
I . This

constraint can be imposed using an anti-symmetric two-form bIµν , which acts like a Lagrange multiplier:

S =

∫
dDx F +

1

2
bIµν(ϵ

µνρσ∂ρWσI − Jµν
I ) (12)

The equation of motion for the scalar field is given by

1

2
ϵσρµν∂ρb

I
µν = − ∂F

∂WσI
(13)

From the above relation one can see that the two-form fields are a non-local and non-linear functional of the phonon
fields. We introduce the stress fields T̂σI = 1

2ϵ
σρµν∂ρb

I
µν which are identically conserved ∂µT̂

µI = 0.
From (13), one can see that this conservation law is equivalent to the equations of motion for the scalar fields, when

W I
σ is a gradient. In this sense, the two-form description of the elastic solid with dislocations may be considered dual

to the scalar description.
We can go further and construct a Lagrangian G(TσI) invariant under the Poincare and internal symmetries.
This Lagrangian describes the dynamics of the solid in terms of the dual gauge fields. In the ground state, the

energy density and pressure are given by

ρ = −G +
∂G
∂T iI

T̄ iI p = G (14)

where T̄ iI represents the ground state value. Comparing (8) and (14), while it is tempting to conclude that G is a
Legendre transform of F , it must be realized that rotational invariance of F , i.e. its dependence on ∂µϕ

I only through
BIJ , prevents it from being convex in ∂µϕ

I and this prevents a Legendre transform to be performed on it w.r.t. ∂µϕ
I .

It is this lack of a direct link between the the scalar field description and the its dual description for a nonlinear
elastic solid (whether with or without dislocations [16]) that motivates our study in Sec. V. There it is shown that
while F may not admit a strict dual functional through a Legendre transform, the Euler-Lagrange equations of its
action can be transformed to produce a family of dual functionals whose Euler-Lagrange equations are the same as
the ones related to F , interpreted through a well-defined dual-to-primal mapping.
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IV. DUAL EFFECTIVE ACTION

Now we have all the necessary ingredients to construct an effective action for solids with dislocations. One can
introduce the three-form field strength for the two-form field which is written as

GI
ρµν = 3∂[ρb

I
µν] = ϵρµνσT

σI (15)

Symmetries force the dual Lagrangian to be a Lorentz invariant and SO(3)(internal) invariant function of the Field
strength. This implies that the dual Lagrangian is a SO(3) invariant function of Y IJ = T I

µ T
µJ . Hence the dual

action is given by

Sbulk =

∫
d4x G(Y IJ) (16)

Since we are interested in the dynamics of the ground state of the system we need to expand this about its background.
Evaluating (13) on the background, the most general solution of the dual fields turns out to be

b̄Ijk = f I[jk](t)

b̄I0k =
1

2
(∂tf

I
jk(t) + c1ϵ

I
jk)x

j + gIk(t)
(17)

But the action in (16) has a gauge invariance under the transformation bIµν → bIµν + ∂µλ
I
ν − ∂νλ

I
µ. This allows one to

perform a gauge transformation and set the functions f and g to zero.
One can now expand around the background and introduce fields Aa

i and Ba
i to describe the perturbations of bIµν .

bIjk = ϵijkB
I
i bI0k =

c1
2
ϵIjkx

j +AI
k (18)

As we will see later, A describes a non-dynamical field which is responsible for forces between dislocations in static
elasticity. On the other hand, B describes the phonons in the solid. The stress fields T I

µ and the function Y IJ

expanded around the background give

T I
µ =σ0

(
δIµ + δ0µ∂

iBI
i + δiµ(ϵ

jk
i ∂jA

I
k − ḂI

i )
)

Y IJ =(σ0)
2
(
δIJ − (∂iBI

i )(∂
iBJ

i ) + (ϵijk∂jA
I
k − ḂI

i )(ϵ
jk
i ∂jA

J
k − ḂJ

i )

+ δJi(ϵ jk
i ∂jA

I
k − ḂI

i ) + δIi(ϵ jk
i ∂jA

J
k − ḂJ

i )
) (19)

where we have replaced c1 with σ0 to denote the expectation value of the stress fields. After expanding around the
background value Ȳ IJ = σ2

0δ
IJ with the perturbations in (19) denoted by Ỹ IJ , one obtains

Sbulk =

∫
ddx (g + gIJ Ỹ

IJ + gIJKLỸ
IJ Ỹ KL + .. (20)

where the ... represent higher order corrections to Lagrangian which will become important when we look at the
non-linearities. We define the couplings as

ga1a2..an
=

dnG
dY a1a2dY a3a4 ..

∣∣∣∣
Ȳ

(21)

The fluctuations of the stress fields can be separated into temporal and spatial components.

T̃ I
m = (∇⃗ × A⃗I)m − ˙⃗

BI
m T̃ I

0 = ∇⃗.B⃗I (22)

Note here that“I” is the Burgers vector index carried by the vectors A⃗ and B⃗. From now on, we will keep all indices
lower case with the upper index denoting the burgers vector index. Hence one can write down the quadratic action
for the stress fields.

Sbulk = σ2
0

∫
ddx d1(T̃

i
j T̃

i
j − T̃ i

0T̃
i
0) + 4d2T̃

i
i T̃

j
j

+ 4d3(T̃
i
j T̃

i
j + T̃ i

j T̃
j
i )

(23)
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where we have used isotropy to define the couplings

gij = d1δ
ij gijkl = d2δ

ijδkl + d3(δ
ikδjl + δilδjk) (24)

One can see that the field A has no time-derivative and hence it is not dynamical. The only dynamical degree of
freedom is the B field, which plays the role of phonons in the dual formalism.

The action defined in (23) is gauge invariant under the transformations bIµν → bIµν + ∂µλ
I
ν − ∂νλ

I
µ. The gauge

transformation parameter itself has a redundancy λµ → λµ + ∂µη. We can gauge fix by choosing either the lorentz
∂µbIµν = 0 or the coloumb gauge ∂ibIiν = 0. Coulomb gauge is not covariant but since we will be interested in the
non-relativistic case, we will use the coulomb gauge. To do this we include a term in the action

SGF =
1

2ζ

∫
d4x(∂ibIiν)

2 (25)

Choosing ζ = 0 amounts to working in the coulomb gauge. In this gauge, the fields A and B obey ∇⃗.A⃗i = 0 and

∇× B⃗i = 0 respectively. Hence A is transverse whereas B is longitudinal in this gauge choice.
Until now, we have looked at the bulk action which describes the dynamics of the two-form fields. Since we

are interested in the forces between the dislocation, we need to understand the dynamics of the dislocation and their
interactions with the bulk fields. This is encoded in the Kalb-Ramond action and the dislocation action. The two-form
dislocation current sources the gauge field biµν and hence the leading order interaction can be written as

SKR =

∫
d4x Jµν

i biµν

=

∫
d4x niC

∫
dρ ∂ρX

µ δ(3)(x⃗− X⃗(t, ρ))vνbiµν

= niC

∫
dτdρ ∂ρX

µ∂τX
νbiµν

(26)

In the second line we have used (11) and in the third line we have substituted for the velocity and C is a constant.
One can notice that this term has no-derivatives acting on the two-form field biµν . This should be contrasted with the

scalar field theory for phonons where ϕI is always comes with a derivative acting on it. One can write this action in
terms of the stress photon and phonon fields.

SKR =

∫
d4x J0k

i b̃i0k + J ik
i b̃

i
ik

=

∫
d4x J0k

i Ai
k + J ik

i ϵikjB
I
j

(27)

Note that phonons are only sourced by moving dislocations. On the other hand static dislocations can still source
stress photons since they couples to the dislocation density.

The dislocations within a solid are described by dynamical fields Xµ(τ, ρ) and hence one can write an action which
describes their dynamics. Since dislocation lines are similar to string-like defects their dynamics can be described by
generalizing the Nambu-Goto action for string-like defects to dislocation lines. Just like the action for a relativistic
point particle is given by the length(proper time) of its world-line, the action for the dislocation line is given by the
area of its worldsheet. The induced metric on the worldsheet is

γab = fµν∂aX
µ∂bX

ν (28)

where a, b run over τ, ρ. fµν is the space-time metric as seen by the dislocation line. One can think of fµν as the
pull-back of the material metric to co-ordinate space. The action is therefore the Nambu-Goto action for strings
generalized to the case of the dislocation.

Sdis =

∫
dτdρ

√
−det γ T (29)

where T represents the Tension in the dislocation. The tension can depend on the stresses in the material and hence
can be generalized to be a function of the bulk fields T (Y ij).
One can now write the action for a solid with dislocations as the sum of the terms described above.

S = Sbulk + SKR + Sdis (30)

This action has all the ingredients to calculate the forces between the dislocations and also the stresses induced by
dislocations. One needs to expand the action using certain power counting rules which we will describe later. Using
this we are able to calculate the required quantities in a systematic manner.
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A. Non-Relativistic limit

Ultimately we are interested in the non-relativistic limit of the action described in (30). To derive the NR limit,
one needs to take the limit c→ ∞. We will first look at the bulk action. Hence we explicitly reintroduce the factors
of c in the stress fields.

T̃ i
m = (∇× A⃗i − 1

c
˙⃗
Bi)m T̃ i

0 = ∇⃗.B⃗i (31)

The Taylor coefficients in the bulk action can depend on the velocity ratio c
cT/L

. Here cT/L is the velocity of

transverse/longitudinal phonons respectively. We will take them to be similar cT ∼ cL and just work with cT . Also
from dimensional analysis, we see that it depends on powers of σ0. Let us assume that the scaling is given by

ga1a2..an
∼ 1

σn−1
0

( c2
c2T

)n
(32)

Using the above scaling, one can write the quadratic action as

S
(2)
bulk = σ0

∫
ddx d1

c2

c2T
(T̃ j

i T̃
j
i − T̃ j

0 T̃
j
0 ) + 4d2

c4

c4T
(T̃ i

i T̃
j
j )

+ 4d3
c4

c4T
(T̃ j

i T̃
j
i + T̃ j

i T̃
i
j )

(33)

where d1, d2, d3 are dimensionless O(1) coefficients. To obtain the normalized kinetic term, one has to rescale the
fields A and B.

A→ 1

σ0

c2T
c2
A B → 1

σ0

c2T
c
B (34)

Using the canonical fields obtained above, one can rewrite the action as

S
(2)
bulk =

1

σ0

∫
ddx d1

(c2T
c2

(∇⃗ × A⃗i − ˙⃗
Bi)2 − c2T (∇⃗.B⃗i)2

)
+ 4d2((∇⃗ × A⃗i − ˙⃗

Bi)i)
2 + 4d3

(
(∇⃗ × A⃗i − ˙⃗

Bi)2

+ (∇⃗ × A⃗j − ˙⃗
Bj)i(∇⃗ × A⃗i − ˙⃗

Bi)j

) (35)

By sending c → ∞, one sees that the first term vanishes in the above Lagrangian and we obtain the non-relativistic
Lagrangian. One can indeed check that this is the correct dual Lagrangian for a non-relativistic solid by deriving the
equations of motion for the dual fields. The variation of the action in (35) w.r.t to the dual fields AI

i and BI
i yields

δAI
i :

1

σ0
(8d3 ϵijm∂j(T̃

I
m + T̃m

I )+8d2 ϵijI∂j T̃
k
k ) = JI

0i

δBI
i :

1

σ0
(2d1c

2
T (∂iT̃

I
0 ) + (8d3 ∂t(T̃

I
i + T̃ i

I )

+8d2 δ
I
i ∂tT̃

k
k )) = −ϵijkJI

jk

(36)

In Linear elasticity, the quadratic Lagrangian for a isotropic elastic solid is given by

Le =
ρ

2
(∂tπ

i)2 − 1

2
Cijkl∂jπ

i∂lπ
k (37)

Here ρ is the mass density of the object. Cijkl is called the elastic moduli tensor whose form is given by

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (38)

where µ and λ are the Lame’ constants. µ is called the shear-modulus and the compression modulus κ can be written
as κ = λ+ 2

Dµ where D is the number of spatial dimensions. Let us define x0 = cT t. The stress fields in this case are
given

T̃ a
0 =

∂Le

∂(∂0πa)
= ρcT∂tπ

a T̃ a
i =

∂Le

∂(∂iπa)
= −Caibl∂lπ

b (39)
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Substituting the above obtained relations in the (36), one obtains the following compatibility equations after the
identification 4µd1 = σ0, 16µ(1 + ν)d2 = −σ0ν and 32µd3 = σ0.

ϵijk∂jεkI = αI
i

∂tεiI + ∂iv
I = ϵijkα

I
jvk

(40)

Note that this differs from the usual compatibility conditions (61) because only the symmetric strain contributes to
the above equations.
The non-linear eom’s can be derived similarly which are given by

ϵijk∂j

( ∂G

∂Y kI
+

∂G

∂Y Ik

)
= αi

I

∂t

( ∂G

∂Y iI
+

∂G

∂Y Ii

)
+ ∂i

(( ∂G

∂Y kI
+

∂G

∂Y Ik

)
∇⃗.B⃗k

)
= ϵijkV

jαk
I

(41)

Now lets look at the interactions which arise in the bulk action. This allows to calculate the sub-leading corrections
to the forces between dislocations. One can show that there are only three invariants one can construct out of Y ij

which can be taken to be the traces

[Ỹ ], [Ỹ 2], [Ỹ 3] (42)

The functional G(Y ) can be constructed using these invariants. The cubic interactions arise from the quantities

L(3) =
1

σ0

(
d2[Y

′]2 + 2d3[Y
′2]
)
+

1

σ2
0

(
d4[Y

′]3

+ d5[Y
′2][Y ′] + d6[Y

′3]
) (43)

where we have replaced Ỹ ij with its non-relativistic limit given by

Ỹ ij −→ Y ′ij =
(
T̃ i
j + T̃ j

i − 1

σ0
T̃ i
0T̃

j
0

)
(44)

Inserting this into (43), we have the following interactions

L3
bulk =

1

σ2
0

(
− 4d2(T̃

I
0 )

2T̃ J
J + 8d4(T̃

J
J )

3 − 4d3T̃
I
0 T̃

J
0 (T̃

I
J + T̃ J

I )

+ d5(T̃
I
J + T̃ J

I )
2T̃K

K + d6(T̃
J
I + T̃ I

J )(T̃
K
I + T̃ I

K)(T̃ J
K + T̃K

J )

) (45)

One can expand the T̃ in A and B to obtain the interactions for these fields. We will not write them explicitly here
since it complicates the above expressions.

Next we look at the non-relativistic limit of the Kalb-Ramond term. As we will see the Kalb-Ramond term remains
the same in the NR limit. From dimensional analysis, one can see that the coupling C is just ρc. We can choose

τ = ct and use the fact that Xµ = (ct, X⃗). Rescaling as in (35), one gets

SKR = ρc
1

σ0

cT
c

∫
dτ dρ

cT
c
∂ρX

k∂τX
0AI

k + cT∂ρX
k∂τX

iϵikjB
I
j

=
nI
cT

∫
cdt dρ

cT
c
∂ρX

k∂τX
0AI

k +
cT
c
∂ρX

k∂tX
iϵikjB

I
j

= nI

∫
dt dρ ∂ρX

kAI
k + ∂ρX

k∂tX
iϵikjB

I
j

(46)

Hence we see that the form of the Kalb-Ramond term is unchanged upon taking the NR limit.
Next we are interested in the non-relativistic action for the dislocation. One can do so by taking the NR limit of

the Nambu-goto action described in (29). But instead we will construct such an action using the method of coset
construction which we describe in the next section.
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B. Coset construction for dislocations in a solid

The coset construction is a tool to construct the action for non-linearly symmetries just from the symmetry breaking
pattern of the system [17–20]. We will not go into details but just mention the main results. For an introduction,
we refer the reader to [8, 21]. A dislocation within a solid breaks a host of symmetries in addition to the symmetry
breaking by the ground state of the solid. The symmetry breaking pattern is given by

unbroken =

 H
P3 + T3 ≡ P̄3

M
, broken =


Ki

Pa + Ta ≡ P̄a

Li +Ri ≡ L̄i

Ti
Ri

, (47)

where a = 1, 2. Note that the rotations along the Hence one can parametrize the coset as

Ω = e−iHteiP̄zzeiX
aP̄aeiη

iKieiπ
iTieiθ

iRieiχ
iL̄i . (48)

where we have chosen the 3-direction to be in the z-direction. We will generalize to Xi = (Xa, z) while performing
our calculations. Using Ω, one can calculate the Maurer-Cartan form defined as Ω−1dΩ and obtain:

Ω−1dΩ = i

{
−Hdt+ P̄jQ

j
i (χ)(η

idt+ dXi)−M(ηidX
i + 1

2 η⃗ · η⃗ dt) +Ri
1
2ϵ

ijk
[
R−1(θ)dR(θ)

]
jk

+KjQ
j
i (χ)dη

i

+ TkQ
k
j (χ)

[
(dXi + dπi)Ri

j(θ)− ηjdt− dXj
]
+ L̄i

1
2ϵ

ijk
[
Q−1(χ)dQ(χ)

]
jk

}
, (49)

where we have introduced the matrices Rij ≡
(
eiθ

iRi

)
ij

and Qij ≡
(
eiχ

iL̄i
)
ij
. Using the coordinates xµ = (t, z) and

defining Pµ = (−H, P̄z), we can rewrite the MC form as

Ω−1dΩ ≡ idxνeν
µ
(
P̄µ +∇µX

aP̄a +∇µπ
iTi +∇µθ

iRi

+∇µη
iKi +∇µχ

iL̄i +AµM
)
.

This equation gives us the covariant derivatives of the goldstone fields. Remember here that Xa act as goldstones
since P̄a are broken generators. We can read off the vierbien

e00 = 1 ez0 = Qiz(χ)(vi + ηi) e0z = 0 ezz = ∂zX
iQiz(χ) (50)

where vi = dXi

dt is the velocity of the dislocation. Using the inverse Higgs constraints in the bulk [10], we can eliminate

the goldstones ηi and θi in favor of the πi fields. For the boost goldstone, we have ηi = ∂tπ
j(D−1)ij . We also have an

additional inverse higgs constraint which arises from the commutator

[L̄a, P̄ z] ∼ P̄ b (51)

Hence we can eliminate the goldstones χa in favor of Xa. The constraint that arises as a result of this is ∇zX
a =

Qia∂zX
i = 0. Note that we still have an rotational goldstone χ3 which is present in the spectrum. Using this we are

finally able to write the covariant derivatives for the goldstones Xa,πi and χ3.

∇tX
a = Qka(χ)(vk + nk)

∇tπ
i =

1

det e
(vk + nk)Dlπ

jQ i
j (χ)(δ

kldet e−Qzk(χ)∂zX
l)

∇zπ
i =

1

det e
∂zX

lDlπ
jQ i

j (χ)

∇zχ
3 =

1

2

1

det e
ϵ3jk

[
Q−1(χ)∂zQ(χ)

]
jk

∇tχ
3 =

1

2
ϵ3jk

[
Q−1(χ)(∂t −

Qiz(χ)(vi + ni)

det e
∂z)Q(χ)

]
jk

(52)
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where we have introduced the bulk covariant derivatives Dlπ
j . Using these quantities, one can write down the action

for the dislocations

Sdisl =

∫
dzdt det e L(∇tX

a,∇tπ
i,∇zπ

i,∇tχ
3,∇zχ

3) (53)

For a straight dislocation X⃗(t, z) = (x⃗⊥, z), the leading order action is given by

Sdisc =

∫
dzdt |∂zX⃗|

[
a0 + a1(v

a − ua)2 + a2((v⃗ − u⃗)aDaπ
i)2

+ a3(∂zX
lDlπ

i)2 + a1(χ
3)2(va − ua)2

+ a4(∂zχ
3)2 + a5(∂tχ

3 − (vz − uz)∂zχ
3)2 + ....

] (54)

where we have used the material velocity ui = −ηi. Since a runs over 1,2 one can see that only the perpendicular
component of dislocation velocity plays a role. The linearized bulk covariant derivatives give the linear strain εij
within the material which in the dual theory can be written as εij = C−1

ijklT̃
kl. This generates the coupling of the

dislocation to the stress photons and phonons in the Nambu-Goto action.

V. INTERLUDE: VARIATIONAL PRINCIPLE(S) FOR NONLINEAR DISLOCATION MECHANICS - A
CONTINUUM MECHANICS-CUM-MATERIALS SCIENCE POINT OF VIEW

Unlike the physics of the microscopic structure of sub-atomic particles (e.g. ‘core’ of an electron), much is physically
known, through direct experimental observation and lattice statics/molecular dynamics/density functional theory
calculations about the microscopic structure of dislocations and their mutual interactions, as well as with applied loads
through boundary conditions, within a (nonlinear) elastic crystal. Due to this knowledge, physically well-justified and
transparent mathematical models can be posited for the phenomena, with the possibility of systematic refinement to
include more detail when deemed necessary after mathematical study and comparison with experiment. There is a
long and distinguished history of the study of dislocations in elasticity in the classical setting, see, e.g., [22–26], the
continuously distributed setting, e.g., [27–29], [30, including second-order effects] and [31], and the connections of some
of the kinematic aspects of dislocations to non-Riemannian Geometry [28, 32, 33]. As well, techniques for developing
well-set, classical thermomechanical theories of the mechanics of continuous media comprising different types of
materials exhibiting strongly nonlinear behavior and satisfying the relevant invariances and material symmetries
are available [34–37] and [31]. These ideas and techniques have been synthesized and extended to produce the
theory/model of dislocation mechanics stated in [38], as reviewed in [39]. The theory admits the minimal specification
of an energy density function ψ(W ) and that of a dislocation velocity field, the function Vs(α,W, ρ) in (56), which,
when guided by the requirements of being proportional to its derived thermodynamic driving force, is a specified
function of the thermodynamically derived Cauchy stress tensor Tij = −ρWkiψ

′
kj and the dislocation density tensor

αij , admitting a scalar or matrix of material constants representing dislocation mobility. Here, ψ′
ij = ∂Wijψ, and it

suffices to use a rectangular Cartesian coordinate system and tensor components w.r.t its basis in this Section. The
time variable is represented by the symbol t and not used as an index.

For prescribed static dislocation fields the framework is shown to be able to compute the stress and energy fields
of such distributions in bodies of arbitrary geometry and general elastic symmetries [40, 41]. Similarly for prescribed
dislocation velocity field, the setup is shown to be able to compute the evolution of the dislocation field [41]. And
the evolution in the fully coupled case also has been shown to work well to predict nonsingular dislocation cores,
dislocation annihilation, dissociation and stress-mediated interaction when restricted to dislocation motion within a
planar layer in a 3–d body [42] within a ‘small deformation’ ansatz.

The phenomenon of macroscopic plasticity of crystalline materials corresponds to the collective dynamical behav-
ior of a very large number of dislocation curves in an elastic body under generally time-dependent loads. While
experimental observations and real practical applications of plasticity abound, it is fair to say that there does not
exist a fundamental theory that arises as a coarse-graining of nonlinear dislocation dynamics as described above (or
by any other model). The phenomenon of plasticity shows fascinating dynamical changes as a function of initial
conditions and tamely evolving driving loads - e.g., yielding, Stage I, II, III, IV behaviors as a function of applied
load temperature and initial crystal orientation, intricate patterned dislocation microstructure formation such as cells
and sub-grain boundaries to name only a few - with no established fundamental theory for understanding them (the
phenomenon is even richer, with rapidly driven situations also being of theoretical and practical interest). It is in this
context that we would like to use a path integral implementation of the dynamics represented by (56) to evaluate how
much of the reality of macroscopic plasticity can be understood by the combination of the model and the technique.
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The rough expectation is to be able to interpret drastic changes of overall behavior observed in reality as statistical
phase transitions as understood in Effective/Statistical Field Theory.

A first step in this program is to define an action functional for the system (56) which, in the first instance, does
not emanate from a variational principle; it is this objective that is tackled in this Section, refining the works [39, 43].

A. The essential idea: A variational principle for a finite-dimensional system of equations

Consider a generally nonlinear system of algebraic equations in the variables x ∈ Rn given by

Aα(x) = 0,

where A : Rn → RN is a given function (a simple example would be Aα(x) = Āαi x
i − bα, α = 1 . . . N, i = 1 . . . n,

where Ā is a constant matrix, not necessarily symmetric (when n = N), and b is a constant vector). We allow for

all possibilities 0 < n ⪋ N and the goal is to construct an objective function whose critical points solve the system

(when a solution exists) for x ∈ Rn.
For this, consider first the auxiliary function

ŜH(x, z) = zαAα(x) +H(x)

(where H belongs to a class of scalar-valued function to be defined shortly) and define

SH(z) = zαAα(xH(z)) +H(xH(z))

with the requirement that the system of equations

zα
∂Aα

∂xi
(x) +

∂H

∂xi
(x) = 0 (55)

be solvable for the function x = xH(z) through the choice of H, and any function H that facilitates such a solution
qualifies for the proposed scheme. In other words, given a specific H, it should be possible to define a function xH(z)
that satisfies zα∂xiAα(xH(z)) + ∂xiH(xH(z)) = 0 for all z ∈ RN (the domain of the function xH may accommodate
more intricacies, but for now we stick to the simplest possibility). Note that (55) is a set of n equations in n unknowns
regardless of N (z for this argument is a parameter).

Assuming this is possible, we have

∂SH

∂zβ
(z) = Aβ(xH(z)) +

(
zα
∂Aα

∂xi
(xH(z)) +

∂H

∂xi
(xH(z))

)
∂xiH
∂zβ

(z) = Aβ(xH(z)),

using (55). Thus,

• if z0 is a critical point of the objective function SH satisfying ∂zβSH(z0) = 0, then the system Aα(x) = 0 has a
solution defined by xH(z0);

• if the system Aα(x) = 0 has a unique solution, say y, and if zH0 is any critical point of SH , then xH
(
zH0
)
= y,

for all admissible H.
• If Aα(x) = 0 has non-unique solutions, but ∂zβS(z) = 0 (N equations in N unknowns) has a unique solution for
a specific choice of the function z 7→ xH(z) related to a choice of H, then such a choice of H may be considered
a selection criterion for imparting uniqueness to the problem Aα(x) = 0.

B. A class of variational principles for nonlinear dislocation mechanics

We implement the idea of Sec. VA to define an action(s) for the nonlinear partial differential equations of dislocation
mechanics given by

0 = ejrs∂rWis + αij

0 = ∂tWij + ∂j(Wikvk)− vkerkjαir − ejrsαirVs(α,W, ρ) = ∂tWij + vk∂kWij +Wik∂jvk − ejrsαirVs(α,W, ρ)

0 = ∂tρ+ ∂k(ρvk)

0 = ∂t(ρvi) + ∂j(ρvivj) + ∂j(ρWkiψ
′
kj).

(56)
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First define the functional

ŜH [A,W, θ, ρ, λ, v, B, α] =

∫
[0,T ]×Ω

dtd3x −Wij∂tAij −Wikvk∂jAij −Aijvkerkjαir −AijejrsαirVs(α,W, ρ)

− ρ∂tθ − ρvk∂kθ

− ρvi∂tλi − ρvivj∂jλi − ρWkiψ
′
kj∂jλi

− ejrsWis∂rBij +Bijαij

+H(W,ρ, v, α),

which is obtained by converting (56) to scalar form by taking inner products with the ‘dual’ fields

D = (A, θ, λ,B),

integrating by parts on the space-time domain assuming the dual fields vanish on the boundary of the domain, and
adding the potential H. Now define

U := (W,ρ, v, α) and D := (∂tA,∇A,A, ∂tθ,∇θ, ∂tλ,∇λ,∇B,B)

(note ‘D ≠ D’) and require that there exists a function

UH(D) = (WH(D), ρH(D), vH(D), αH(D)) (57)

such that for the functional SH [A, θ, λ,B] of the dual fields defined as∫
[0,T ]×Ω

dtd3x LH(D, UH(D)) = SH [A, θ, λ,B] := ŜH [A,WH(D), θ, ρH(D), λ, vH(D), B, αH(D)], (58)

the first variation is given by (we suppress the subscript H on the elements of UH for notational simplicity)

δSH =

∫
[0,T ]×Ω

dtd3x −Wij(D)∂tδAij −Wik(D)vk(D)∂jδAij − δAijvk(D)rrkjαir(D)

− δAijejrsαir(D)Vs(α(D),W (D), ρ(D))

− ρ(D)∂tδθ − ρ(D)vk(D)∂kδθ

− ρ(D)vi(D)∂tδλi − ρ(D)vi(D)vj(D)∂jδλi − ρ(D)Wki(D)ψ′
kj(W (D))∂jδλi

− ejrsWis(D)∂rδBij + δBijαij(D),

(59)

a condition that is satisfied if the system

∂LH

∂Wlp
= −∂tAlp − vp∂jAlj −Aijejrsαir

∂Vs
∂Wlp

(α,W, ρ)− ejrp∂rBlj − ρ
(
ψ′
lj(W )∂jλp + Wkiψ

′′
kjlp∂jλi

)
+

∂H

∂Wlp
(W,ρ, v, α) = 0

∂LH

∂ρ
= −Aijejrsαir

∂Vs
∂ρ

(α,W, ρ)− ∂tθ − vk∂kθ − vi∂tλi − vivj∂jλi −Wkiψ
′
kj∂jλi

+
∂H

∂ρ
(W,ρ, v, α) = 0

∂LH

∂vp
= −Wip∂jAij −Aijerpjαir − ρ∂pθ − ρ∂tλp − ρvj∂jλp − ρvi∂pλi

+
∂H

∂vp
(W,ρ, v, α) = 0

∂LH

∂αlp
= −Aljvkepkj −AljejpsVs(α,W, ρ)−Aijejrsαir

∂Vs
∂αlp

(α,W, ρ) +Blp

+
∂H

∂αlp
(W,ρ, v, α) = 0,

(60)

can be solved in the form of

(W,ρ, v, α) = UH(D).
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This is so, since solving (60) defines UH(D) that ensures ∂LH

∂U (UH(D)) = 0 which then implies

∂LH

∂U
(UH(D)) · ∂UH

∂D
(D) · δD = 0 for all D.

Note that (59) then is simply

δSH =

∫
[0,T ]×Ω

dtd3x
∂LH

∂D
· δD,

and requiring

δSH = 0 for all variations δD that vanish on the boundary of Ω × [0, T ]

shows that the Euler-Lagrange equations of the functional SH defined in (58) are the equations of (56) with the
substitution

(W,ρ, v, α) = UH(D).

To summarize, the primal equations (56) of dislocation mechanics are the Euler-Lagrange equations of any of the
dual functionals, written in terms of particular specific combinations (mappings) of the dual fields for each choice of
the function H, each specific mapping defining the primal fields. Thus one may think of the primal fields as “gauge
invariant” observable combinations of the dual fields (“gauge fields”) satisfying one specific set of equations (the
primal system). While this is not how gauge fields appear in traditional gauge theories of physics, it is interesting
that a completely different starting point and approach raise somewhat similar invariance structures that may be
interpreted as symmetries.

As for the plausibility of being able to solve the algebraic system (60) given a specific D, consider H to be separately
quadratic in each of its arguments, say UA, with large in magnitude coefficient, so, e.g., H = 1

2αWWijWij + · · · , with
1 ≪ |αW |. Then assuming, the solution of the Euler-Lagrange equations are bounded in some appropriate sense,
(60) can indeed be solved to defined UH(D), and it has to be made sure that the solutions of the Euler-Lagrange
equations (using this function) indeed satisfy the assumed bounds. To ensure that this latter condition is satisfied one
has a large class of H functions to operate with and, if all else fails, it appears reasonable to demand admitting only
those extremals at which the second variation of the functional SH is (semi)-definite, i.e., in the space of all paths,
we admit only those extremal paths as admissible that are local minima/maxima of the action functional SH (which,
of course, has direct conceptual similarity with analyzing the dual problem by a path integral approach based on the
action SH). Another alternative is to regularize the dual E-L system with appropriate terms in the gradients of the
dual fields involving small parameters, say ε, and the limit of the solutions to the Euler-Lagrange equations as ε→ 0
may be studied. This second approach need not lend itself to a direct variational characterization of the regularized
Euler-Lagrange equations, but can be dualized again, following exactly the procedure outlined above, to produce a
variational characterization, if so desired.

We end this interlude with the following remarks:

• Our system (56) does not involve multi-valued fields or non-simply connected domains for defining dislocation
dynamics, but is fully capable of representing the topological charge of dislocation lines with its ingredients.

• Based on the explorations of stress-coupled dislocation motion presented in [42, 44], the ‘primal’ system requires
a ‘core-energy’ in the form of the dependence of the energy function ψ on the dislocation density α as well.
This results in the dislocation velocity depending on the curlα. Such a dependence is accommodated within our
‘action-generating’ scheme by adding an extra variable and equation to the system (56) of the form ejrs∂rαis =
βij and writing the dislocation velocity as Vs = Vs(α,W, ρ, β). This would have the effect of increasing the
number of fields in the dual problem as well.
It is an interesting question whether the precise definition of a formally ‘small’ core energy contribution with
a small parameter representing microscopic physics can make a difference in the development of an accurate
model for the prediction of macroscopic behavior, and whether such a device should be allowed in the class
of models admitted. Physically, in the context of the physics of dislocation dynamics, there appears to be no
reason to exclude the possibility of the importance of such effects and, in fact, allows more precise physics to
be incorporated in the description of gross macroscopic behavior (which is, admittedly, a double-edged sword
in the context of coarse-graining). Some evidence to support such an expectation is also provided by the
mathematically rigorous study of the inviscid Burgers equation, ‘regularized’ by a small viscous effect in one
case and by dispersion in another [45–47].
Based on the above observation, one advantage of the ‘dual’ formalism proposed herein may be that when the
microscopic physics to be added is not even qualitatively understood with certainty, working with a regularization
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on the dual side, may be guided solely by the aim of producing a ‘good’ dual extremal, i.e., with guaranteed
existence in an appropriate function space, since this appears to require no modification to the physics of the
primal problem.

• In the context of an action functional that simply has as its Euler-Lagrange equation the given system of pde,
the proposed scheme delivers, at least formally and under the stated requirements, what is needed. However,
if the action functional is to be used in a path integral, dual fields D other than extremals matter as well. In
this sense it is reasonable to demand that the added potential H in LH be subject to further requirements
of invariance that may obstruct the inversion process required to define the function UH(D). In case such a
restriction is so severe as not to allow the definition of even a single ‘change of variables’ (UH(D)), through the
choice of some H), one can retain both the fields W,A and still obtain a relevant action functional, as shown in
[39].

C. Linear dislocation mechanics

We illustrate the proposed technique with a very closely related one (using a Legendre transform, cf. [48]) in the
simplified setting of linear dislocation mechanics with a prescribed dislocation velocity field V in space-time along
with the ansatz

Uij := δij −Wij

Tij := CijklUkl,

ignoring all nonlinearities in (56) and assuming the mass density field ρ to a be specified field. The ansatz is justified
for small elastic distortions (U) about the ground state (cf., [39]). We note that Cijkl is necessarily symmetric in (k, l)
and (i, j) so that it is not invertible on the space of all second order tensors (and hence the stress only depends on
the elastic strain, the symmmetric part of U). With these assumptions, the system (56) may be expressed as

0 = ∂jvi − ∂tUij − ejrsαirVs

0 = ejrs∂rUis − αij

0 = ∂t(ρvi)− ∂j(CijklUkl).

(61)

Taking inner products of these equations with the dual fields D = (A,B, λ) that vanish on the boundary and utilizing
an arbitrary function M convex in the list of arguments M(U,α, v) we define the functional

Ŝ[A,U,B, α, λ, v] =

∫
[0,T ]×Ω

dtd3x vi(−∂jAij − ρ∂tλi)

+ Uij(∂tAij − esjr∂rBis + Cijkl∂lλk)

+ αir(−AijejrsVs −Bir)−M(U,α, v)

Defining

p := (−∂jAij − ρ∂tλi, ∂tAij − esjr∂rBis + Cijkl∂lλk,−AijejrsVs −Bir); Q := (v.U, α)

and M∗(p) the Legendre transform of M(Q) given by

M∗(p) = QM (p) · p−M(QM (p))

(vM (p), UM (p), αM (p)) =: QM (p) = (∂QM)−1(p)

∂pM
∗(p) = QM (p)

(62)

(well-defined because of the convexity of M(Q)), we define the dual action, SM [D],

Ŝ[A,UM (p), B, αM (p), λ, vM (p)] =: SM [D] =

∫
[0,T ]×Ω

dtd3x M∗(p)

whose first variation is given by (after an integration by parts)

δSM =

∫
[0,T ]×Ω

dtd3x QM (p) δp

=

∫
[0,T ]×Ω

dtd3x δλi (∂t(ρvi(p))− ∂j(CijklUkl(p))

+ δAij (∂j(vi(p))− ∂t(Uij(p))− ejrsαir(p)Vs)

+ δBis(esrj∂r(Uij(p))− αis(p)),
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(where we have dropped the subscript M on the dual-to-primal mapping fields for notational convenience). Thus, the
dual Euler-Lagrange equations are the system (61) expressed in terms of the dual fields through the mapping codified
in (62)2, regardless of the convex potential M chosen to define the dual functional SM .

This exercise exposes an interesting fact in a simple setting. Clearly, forM to be convex in U it cannot be invariant
as it has to depend on the skew-symmetric part of the latter - and rotational invariance/invariance under superposed
rigid deformations in the linear setting precludes such a dependence. However, the use of such a potential in the dual
theory does not in any way obstruct the definition of correct physics as embodied in the Euler-Lagrange equations
solved.

It is a curiosity as to what connection this idea has to proceeding with a notional dual model as discussed in Sec. III
when a direct connection to the primal model through a Legendre transform cannot be made due to obstructions
arising essentially from invariance requirements.

VI. POWER COUNTING

In any EFT, one needs to develop certain power counting rules for it to be useful. This is because the action that we
wrote down contains an infinite number of operators and hence one cannot make any predictions because one would
need to determine infinite Wilson coefficients. The observables calculated in the EFT are arranged in a systematic
expansion in powers of the expansion parameter(s). This parameter is a small quantity which is usually the ratio of
some IR scale/energies to some UV scale. Hence to make a prediction at any given accuracy we need to include only
a finite number of operators.

In our theory, we will power count in ratios of lengths and velocities. First we need to identify the scales in our
EFT. Since a solid has both longitudinal and transverse phonons, there are two velocities cT and cL associated with
it. In general, these velocities differ but for purposes we will take them to be similar and use only a single velocity
scale which we will take to be cT . Hence we can use v/cT as one expansion parameter, v being the velocity of the
dislocations.

The lattice spacing a and the dislocation core radius R act as UV scales in the theory. The dislocation radius is of
the order of the lattice spacing and hence we can take it to be the cut-off scale. Since we are interested in calculating
the forces and stresses due to dislocations, we will only be working with potential modes. For these modes the distance
r over which the stress-photons/phonons are exchanged determine the energy and momenta of the modes.

ω ∼ v

r
k ∼ 1

r
(63)

This is a potential mode because the modes are off-shell. Hence we can also power counting in R/r. Also for these
modes ω ≪ cT k and hence one has expand the propagator for these modes.
Using the scaling of the frequency and momenta, one can read off the scaling of the fields from the action in (35).

One can see that the fields scale as

A⃗(x⃗, t) ∼
√
σ0v

r
= B⃗pot(x⃗, t) ∼

√
σ0v

cT r
(64)

where B⃗pot refers to the potential mode of the phonon. Also the dislocation fields scale as

X⃗ ∼ l ∂tX⃗ ∼ v ∂ρX⃗ ∼ 1 (65)

Using the above equations one can power count the interaction terms originating from the action. The leading
contribution to the observables we consider should come from the Kalb-Ramond term since the bulk fields are non-
derivatively coupled to the dislocation. The scaling of the KR terms is given by

nI

∫
dt dρ A⃗I .∂ρX⃗ ∼ a

r

v
l

√
σ0v

r
∼

√
macT

l

a

√
cT
v

nI

∫
dt dρ B⃗I .(∂ρX⃗ × ∂tX⃗) ∼ a

r

v
l

√
σ0v

rcT
v ∼

√
macT

l

a

√
v

cT

(66)

We can see that coupling of the phonon B⃗ is suppressed relative to the coupling of the static mode A⃗. Hence the
effective potential due to stress-photon exchange should be dominant as compared to a phonon exchange. Power
counting tells us that the effective potentials should scale as

V A
eff ∼ σ0a

2l V B
eff ∼ σ0a

2l
v2

c2T
(67)
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FIG. 1: This diagram shows the leading order contribution to the potential between dislocations

Now lets look at the interactions in the bulk which give corrections to the effective potential. This should be sub-
leading to that obtained from the Kalb-Ramond term. The cubic interactions are of the form

Sint ∼
∫
d3x dt

1

σ2
0

[
(∇⃗ × A⃗I − ˙⃗

BI)3 + c2T (∇⃗.B⃗I)2(∇⃗ × A⃗I − ˙⃗
BI)

]
(68)

One can see from the scaling in (65) that the leading contribution come from the interactions of the form

∫
d3x dt

1

σ2
0

(∇⃗ × A⃗I)3 ∼ 1
√
macT

a2

r2

√
v

cT∫
d3x dt

c2T
σ2
0

(∇⃗.B⃗I
pot)

2(∇⃗ × A⃗I) ∼ 1
√
macT

a2

r2

√
v

cT

(69)

We can check that the other cubic bulk interactions are suppressed by powers of v/cT . For examples we can consider

∫
d3x dt

1

σ2
0

(
˙⃗
BI

pot)
2(∇⃗ × A⃗I) ∼ 1

√
macT

a2

r2

( v
cT

)5/2
(70)

which is suppressed by (v2/c2T ) relative to the contribution in (68). Similarly one can show that the other interaction
vertices are also suppressed.

Notice that the KR action includes just a linear coupling of the bulk modes to the dislocation line. For non-linear
couplings, we need to invoke the NG action. Also, we need to calculate the size of the coefficients in (54) which can
be easily done from dimensional analysis.

a0, a3 ∼ σ0(nI)
2 a1, a2 ∼ ρ(nI)

2 a4 ∼ σ0(nI)
4 a5 ∼ ρ(nI)

4 (71)

The linear coupling between the bulk modes and the dislocation arising from the NG action is derivatively suppressed
and hence is sub-leading in the power counting to the interaction arising from the Kalb-Ramond term. The non-linear
interactions can be power counted in a similar way as was done for the Bulk action and Kalb-Ramond term.

VII. APPLICATIONS

Let us apply our effective theory we to calculate the effective potential between two dislocations and also stresses
due to individual dislocations. As we have seen from the power counting, the leading contributions are derived
from the Kalb-Ramond term. For simplicity we will consider straight infinite dislocation lines parametrized by

X⃗(t, z) = (x(t), y(t), z). We will first look at the effective potential generated due to stress-photon and phonon
exchange.
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(a) (b) (c)

FIG. 2: Diagrams contributing to the potential between moving dislocations. The diagram in (a) is the phonon
exchange and (b) is the mixed propagator. (c) shows the contribution from expanding the stress-photon propagator.

A. Effective potentials

The leading contribution to the effective potential is generated due to exchange of a stress-photon as shown in the
Feynman diagram??. This potential is generated even for a static dislocation. This diagram can be calculated as

V1a =

∫
d4x d4y Ja

i (x)G
ab
ij (x− y)Jb

j (y)

=

∫
dt1dt2

∫
dz1dz2 n

a
1n

b
2 G

ab
zz(x− y)

=

∫
dt

∫
dz1dz2

∫
d3q

(2π)3
na1n

b
2 G

ab
zz(q)e

iq⃗.r⃗

(72)

where Gab
ij (q) is the stress-photon propagator and n⃗1 and n⃗2 are the burgers vectors for the dislocations . The

propagator matrix in the last line of (72) is given by

Gab
zz(q) =

 − 2q2yµ

q4(1−ν)
2qxqyµ
q4(1−ν) 0

2qxqyµ
q4(1−ν) − 2q2xµ

q4(1−ν) 0

0 0 − µ
q2

 (73)

Expanding the integrand in (72), one finds

V1a =

∫
dz

∫
d2q⊥
(2π)2

[
(n⃗1.ẑ)(n⃗2.ẑ)

−µ
q2⊥

+ (n⃗1 × ẑ)i(n⃗2 × ẑ)j(
2µ

1− ν

)
∂i∂j
q4⊥

]
eiq⃗⊥.r⃗⊥

(74)

where q⃗⊥ = (qx, qy). We use the general formula to evaluate this integral∫
ddk

(2π)d
1

(k⃗2)α
eik⃗.r⃗ =

1

(4π)d/2
Γ (d/2− α)

Γ (α)

( x⃗2
4

)α−d/2

(75)

Evaulating this in d = 2− ϵ in the M̄S scheme, one has

V1a
L

=
µ

2π
(n⃗1.ẑ)(n⃗2.ẑ)ln(

r

2Λ
) + (n⃗1 × ẑ)i(n⃗2 × ẑ)j

(
µ

2π(1− ν)

)
(δij ln(

r

2Λ
) +

xixj
r2

) (76)

where we have introduced a regularization scale Λ. We see that this agrees with the standard result of classical
elasticity.

Next we look at the potential generated due to a phonon exchange. This diagram is shown in Fig. 2a. This
potential is only generated by moving dislocations as can be seen from (46). The interaction potential generated by
the phonons can be calculated just like we did for the stress-photons. The potential phonon propagators are given by
Gab

ij (q) = µδab
qiqj
q4 . Hence the potential evaluates to
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V2a
L

=
µ

4πc2T
n⃗1.n⃗2 v

i
1(t)v

j
2(t)

(
δij ln(

r(t)

2Λ
) +

xi(t)xj(t)

r(t)2

)
(77)

There is also a contribution from the mixed propagators which is at the same order in power-counting as the phonon
contribution. This is shown in Fig. 2b and evaluates to

V2b
L

=
2µ

(1− ν)
Gijkl(r⃗)

(
ϵ3mjv1iv2m(ϵ3nln1kn2n + νδkl(n⃗1 × n⃗2).ẑ) + v1 ↔ v2, n1 ↔ n2

)
(78)

where

Gijkl(x⃗) = ∂i∂j∂k∂l

∫
d2q

(2π)2
eiq⃗.x⃗

q⃗6
=

1

256π

(
16

(δijxlxk + δikxjxl + δilxkxj + δjlxixk + δjkxixl + δlkxixj)

x⃗2

+(δijδkl + δikδjl + δilδjk)(12 + 16ln(
r

2Λ
))− 32

xixjxkxl
x4

) (79)

To the best of our knowledge, the results (77) and (78) have not been obtained in the literature.

FIG. 3: Diagram contributing to the one point function of the stress fields for a stationary dislocation.

B. Stress due to dislocations

We can use our formalism to also calculate the stresses due to dislocations. In the dual theory the linear stress is
described by T̃ i

j as can be seen from (39). Hence the one-point function of T̃ i
j gives us the stress.

σ j
i = ⟨T j

i ⟩ = ϵimn⟨∂mAj
n⟩ − ⟨∂tBj

i ⟩ (80)

We will first look at the stress due to a straight static dislocation. The only contribution comes from the stress-photon
in this case. This contribution is shown in Fig. 3a. The stress is given by

σj
i (r⃗, t) =

∫
p

∫
k

ϵimnpm⟨Aj
n(p⃗, t)A

l
k(k⃗, t)⟩J l

k(k⃗, t)e
ip⃗.r⃗

= nl
∫
p

ϵimnpm(GA)
jl
nz(p⃗, t)δ(pz)e

ip⃗.r⃗

(81)

where in the second line we have used the fourier transform of the current due to a straight dislocation in the z-

direction J l
k(p⃗, t) = δ(pz)n

lδkz. We also denote the momentum integral
∫

d3p
(2π)3 by

∫
p
. Let us calculate the stress

fields for a screw dislocation, where the burgers vector is along the dislocation line i.e. in the z-direction. Using the
propagators defined in (73) one finds,

σj
i (x⃗, t) = µnz

∫
d2p⊥
(2π)2

(δixδjzpy − δiyδjzpx)

p2⊥
eip⃗⊥.r⃗ + i↔ j

=
µnz
(2π)

(
(δixδjz + δizδjx)

y

r2
− (δiyδjz + δizδjy)

x

r2

) (82)
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(a) (b) (c)

FIG. 4: Diagrams contributing to the one point function of the stress fields for a moving dislocation.

which agrees with the standard results. Similarly for a edge dislocation where the burgers vector is perpendicular to
the dislocation line, one obtains

σj
i (x⃗, t) =

µ

π(1− ν)r2

(
ϵzklnlxkgij −

1

2
ϵzklnl(δijxk + δjkxi + δikxj −

2xixjxk
r2

)
)

(83)

where gij =diag(1, 1, ν). This also agrees with the standard results.
Let us now calculate the stress due to a moving dislocation. In this case, the leading contribution still comes from

(82) and(83) but there are also subleading corrections which arise from Fig. 4a, 4b and 4c. Fig. 4a is the result of
expanding the stress-photon propagator to next-to-leading order whereas 4b and 4c arise from the phonon and the
mixed propagator respectively. The sum of the subleading contributions is given by

σij = Fig. 4a + 4b + 4c = nlδkz

∫
d2p⊥
(2π)2

[
ϵimnpm(GA)

jl
nk(p⃗, ωp) + ϵimnpmϵskrv

s
⊥(GAB)

jl
nr(p⃗, ωp) + ωpϵskrv

s
⊥(GB)

jl
ir(p⃗, ωp)

+ ωp(GBA)
jl
ik(p⃗, ωp)

]
eiωpt−ip⃗.r⃗|ωp=p⃗⊥.v⃗⊥

=
(δlmxn + δlnxm + δmnxl − 2xmxnxl)

r2

( µvmvn
2π(1− ν)2

(ϵlknk(δij(1− 2ν)− δizδjz(1− ν)2)

+ (niϵzjl + δjlϵziknk)(1− ν)2)− µvmvkϵnk
2π(−1 + ν)

(nlδijν + (1− ν)niδjl + njδil)
)

+ ∂mGijkl(r⃗)
( 2µvkvl
(1− ν)2

(ϵzmlnlν)−
2µvm

(−1 + ν)
ϵzknvnnl

)
(84)

with J l
k(k⃗, ωk) = δ(kz)δ(ωk − k⃗.v⃗⊥)n

lδkz and Gijkl was defined in equation (79). Hence the stress due to a moving
dislocation is given by the sum of diagrams in Fig. 3 and Fig 4. This is a new analytical result that has not be
presented in the literature before.

VIII. CONCLUSION

In this paper, we have presented an effective field theory of phonons and their interactions with dislocations using a
dual gauge theory. We use symmetries as our guiding principles to construct the most general theory of phonons and
dislocations. We systematically derive the non-linear Lagrangian for the phonons and also use the coset construction
to derive the dislocation dynamics. Using this we are able to calculate the forces between dislocations and the
stresses induced by individual dislocation, including the contribution of dynamical phonons. We leave the study of
non-linearities for future work.
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Appendix A: Couple-stress theory

The e.o.m’s we derived in (36) received contributions only from the symmetric incompatibility tensor W(ij). In
general this is not true and includes anti-symmetric contributions as well. To derive the exact equations of motion,
one needs to consider contributions of anti-symmetric phonon gradients in the action. This is known as couple-stress
theory. These contributions enter the action at higher order in derivatives per field and are hence subleading. From
a symmetry breaking point of view, these are precisely the rotational goldstones θi which arise due to spontaneous
breaking of rotations by the ground state of the solid. The action for the rotational goldstones can be written as

Lθ = c4(∇tθ
i)2 − c5(∇jθ

i)2 (A1)

But these goldstones are redundant and hence using certain Inverse Higgs constraints, one can rewrite them in terms
of phonons ??. At leading order, the rotational goldstones can be written as θi = 1

2ϵ
ijkWjk. As one can see, these are

anti-symmetric in the incompatibilty tensor. Including these contributions the quadratic action for the phonons is

L(2) =
ρ

2
(W 0i)2 − 1

2
CijklW(ij)W(kl) + c4(∂tW[mn])

2

− c5(∂jW[mn])
2

(A2)

The coefficients scale as c4 ∼ ρ
Λ and c5 ∼ µ

Λ where the cutoff scale Λ is determined by the inverse lattice spacing. We

can now define the tensor C̃ijkl = Cijkl−(c4 ∂
2
t −c5∂2)(δikδjl−δilδjk). Using the Hubbard-stratonovich transformation

one obtains the Lagrangian

L(2) =
1

2ρ
(T̃ 0i)2 − 1

2
T̃ ijC̃−1

ijklT̃
kl (A3)

where now the stress fields are now given by T̃ 0i = ρW 0i and T̃ ij = C̃ijklWkl. Using the dual definition of the stress

fields T 0i = ∇⃗.B⃗i and T ij = (∇⃗ × A⃗i)j − Ḃi
j and varying the action, one obtains

ϵijk∂jWkI = αI
i

∂tWiI + ∂iv
I = ϵijkα

I
jvk

(A4)

These agree with the standard incompatibility equations for elasticity.
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[21] L. V. Delacrétaz, S. Endlich, A. Monin, R. Penco, and F. Riva, “(re-)inventing the relativistic wheel: gravity, cosets, and

spinning objects,” Journal of High Energy Physics, vol. 2014, no. 11, 2014.
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