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Preface 
 
This book is provided on the worldwide web as a free service to the 

community of practitioners and students interested in civil infrastructure systems. 
Reproduction for educational purposes is permitted with appropriate citation. If 
you find this work helpful or have suggestions for additions or corrections, please 
email Chris Hendrickson: cth@cmu.edu or Scott Matthews hsm@cmu.edu.   
Solutions to problems at the end of each chapter are available to instructors. 

 
This book was originally published in 1984 with a focus exclusively on 

transportation facilities and services.  Over the course of time, the book fell out of 
print and the copyright reverted to the authors.  In revising the book for 
publication on the World Wide Web, we have expanded the scope to include 
examples and issues relevant to multiple types of civil infrastructure systems.  
While some of the original focus on transportation facilities remains, we hope that 
readers interested in other types of infrastructure will find it useful.  Moreover, 
our focus is on fundamentals concepts and principles, which were applicable 
thirty years ago and will be equally applicable thirty years from now. 

 
This book is intended to be a complement to a companion volume 

available on the Internet addressing the general topic of Project Management for 
Construction: 

 
http://pmbook.ce.cmu.edu/ 
 

Both books have an Instructor’s Manual available to instructors with answers to 
problems at the end of chapters. 
 

Engineers, planners, and policy analysts, among others, often have 
little formal training or education in investment planning and pricing. Indeed, 
one can hardly expect otherwise when, for the most part, a single course in 
microeconomic theory or engineering economics is required to become degreed 
or certified in most engineering and planning fields. The textbooks, 
handbooks, and manuals used in both the teaching and practice of engineering 
and planning rarely devote more than scant coverage in a chapter or two to 
investment planning, to pricing, to benefit-cost analysis, and similar topics. We 
might ask: Can these matters be so unimportant in the process of planning, 
designing, evaluating, constructing, operating, and maintaining structures and 
facilities which together represent annual resource commitments of hundreds of 
billions of dollars? We believe not. Perhaps as a result of this lack of attention, 
conventional wisdom on this subject is often misleading. For example, consider 
the following set of widely held beliefs about how to efficiently plan, justify, or 
price alternative investments: 

mailto:cth@cmu.edu
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• Buildings, bridges, and other such structures should be designed so as 

to fail or physically collapse only under the most catastrophic and 
improbable conditions. 

• Once built, a facility should be used until the end of its physical life; to 
discard or abandon a still useful facility or piece of equipment is waste-
ful. 

• Those who benefit from facilities or services should pay the costs, and 
those who benefit more should pay more. 

• In designing facilities sufficient capacity should be provided so as to 
meet the demand. 

• Of several investment choices, the one whose ratio of benefits to costs is 
the highest is the "best" one. 

• In an economic analysis of new alternatives or improvements, one 
need only analyze the extra benefits and extra costs over and above 
those for the existing system. 

• Once some large and integrated program (such as the Interstate High-
way System) is begun, it must be completed. 

• Downtown traffic congestion should be reduced, if not eliminated. All 
steps should be undertaken to reduce air pollution, energy con-
sumption, and the loss of lives and limbs. 

However appealing or dearly held one or another of the above beliefs may be to 
one group or another, the fact remains that economic efficiency principles do 
not necessarily support any of them. Some of the conclusions may be desired or 
reached for reasons of fairness or equity, but this is quite a different concern 
from that of improving the efficiency of systems. 
 

In writing this book, it was our hope to clarify the relevant economic 
issues and to provide a useful conceptual framework for addressing the 
problems of investment planning, pricing, and evaluation. Reflecting our own 
backgrounds, many of our examples are drawn from the realms of roadway or 
transit passenger services. However, we should emphasize the more general 
relevance of the material presented here. The principles and analysis 
procedures we discuss are generally applicable to a wide range of investment 
and pricing problems, whether in the public or in the private sector and 
whether in the transportation, construction, utility, water resource, or other 
such industry. 

 
In presenting these principles, we have relied upon descriptive presen-

tations and graphical illustrations as well as mathematical formulations. After 
an introduction to the issues in Chapter 1, the general framework for 
considering investment and pricing options is developed in Chapters 2 to 8. 
These chapters contain discussions of the importance of equilibrium, the 
economic benefits and costs of particular facilities or services, and methods 
for choosing among alternative projects. The following two chapters 
(Chapters 9 and 10) discuss financial considerations and multi-objective 



decision making. Estimation techniques and their associated accuracy are 
introduced in Chapters 11 and 12. Finally, a discussion of some practical 
problems and innovative possibilities in pricing and investment appear in the 
final two chapters. Appendices summarize the mathematical methods used in 
the book, which are generally restricted to algebra and simple calculus with 
graphical illustrations. 

 
Preparation of this text benefited from discussions and work with 

numerous teachers, colleagues, and students over many years. Deserving 
special thanks is Martin Wohl, who is now deceased but inspired the first 
edition of this book. 

  
Finally, we have tried to free the text from errors and misstatements, 

but we are well aware of both our own imperfections in this regard and the 
complexity of the subject matter. Any errors of fact or judgment are our own 
responsibility and embarrassment. Besides asking for the reader's indulgence, 
we would very much appreciate letters pointing out any such mistakes or 
making suggestions for improvement. 

CHRIS HENDRICKSON 

H. SCOTT MATTHEWS 

Pittsburgh, Pennsylvania August 
2011 
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CHAPTER    1 
 
AN INTRODUCTORY STATEMENT 

Contents 
1-1. An Introductory Statement ................................................................................................... 1 
1-2. Problems In Defining The Analyst's Point Of View, In Identifying Relevant Impacts And 
           In Setting Investment Priorities. .......................................................................................... 4 
 

1-1. AN INTRODUCTORY STATEMENT 

Engineers, planners, managers, and legislators regularly employ economic analyses (e.g., 
"benefit-cost", "cost-effectiveness", "breakeven", "financial", "impact", or "alternatives" 
analyses) as part of the overall planning and policymaking process. Knowledge of the 
economic impact of various transport investment and operating options is useful and 
important. However, such analyses are often poorly understood from the standpoint of what 
economic consequences should be incorporated, how they should be measured, when a 
particular method of analysis is appropriate, and even how to apply the various analysis 
methods. Moreover, there is ample evidence that a lack of sufficient understanding of these 
matters makes it exceedingly difficult (if not impossible) for analysts and policymakers alike 
to make rational decisions among different projects, among agencies competing for limited 
available funds, or about funding levels. 

 
Beyond the purely economic impacts of investments and operating decisions, other social 

objectives and constraints are also being pursued.  Reduced environmental impact is a widely 
shared goal, to preserve natural environments, improve public health and also contribute to 
sustainable development.  Broad social benefits are also sought, such as increased 
employment or more social equity.  Again, the methods to measure these impacts and to 
incorporate them in decision making can be controversial and difficult to apply. 

 
This text is aimed at narrowing these gaps, at clarifying the issues and methods involved, 

and at reducing the inconsistencies among project analyses. Further, attention will be given 
to those matters which are capable of analysis and to those which are not and thus which can 
be dealt with only judgmentally. Essential objectives of this text are to develop consistent 
tools for "alternatives analysis"; improved techniques for analyzing infrastructure 
investments; and better methods for conducting benefit-cost and cost-effectiveness analyses. 
Also of crucial importance is the integration of technical material and concepts so that the 
interrelationships between and among the various components of investment planning can 
more readily be understood and applied. 

 
The key issue being addressed—that of developing and explicating better analysis methods 

and techniques for ascertaining the desirability of different policy actions—has as its aims 
the improvement of our understanding of the overall management and policymaking process, 



the elimination of internal inconsistencies, the assurance of completeness with respect to 
accounting for multiple and often conflicting criteria, and the specification of the crucial 
assumptions and concepts to be incorporated in the analysis process. 

To carry out these objectives, we will detail the components of an economic analysis. In a 
sense this discussion will be aimed at identifying what internal and external aspects of 
concern should be considered and incorporated. Second, we provide a framework for 
measuring or predicting the various benefit and cost items (broadly construed) to be included 
in a benefit-cost, cost-effectiveness, or alternatives analysis. Third, we outline the manner in 
which these benefit and cost aspects are interrelated and affect each other for various policy 
actions (e.g., for pricing or control options) and to describe how their totals and increments 
vary over the long run (as demand shifts, as capacity is changed, or as new alternatives are 
introduced). Fourth, we develop procedures for placing present and future benefit and cost 
values on a commensurate value scale (e.g., by making use of appropriate discounting 
techniques). Fifth, we devote attention to the different benefit-cost analysis methods which 
can be used for assessing the worthwhileness of various projects and of additional increments 
in investment. Finally, means of incorporating multiple objectives or attributes will be 
assessed. 

 
While most of the text will be focused on methodological development (e.g., on how to 

conduct cost-effective analyses or benefit-cost analyses, and so forth), it will also be 
necessary to deal rather specifically with a number of empirical issues and with matters of 
practicality and application. For instance, it will not be sufficient to simply deal with 
functional definitions of costs and, in turn, cost functions; what is also needed is some 
attention to the appropriate way to estimate such functions and to incorporate both resource 
and user costs. Nor can one overlook the significant way in which user costs, such as 
travelers' "value of time," relates to this development. Similarly, demand functions will be 
treated in more than abstract terms and placed in a more understandable and useful form. 
Their development will be undertaken such that analysts more fully understand their nature, 
makeup, and importance, and that they have a working knowledge of the applicability and 
utilization of demand relations and cross-relations. While these empirical issues will be 
dealt with briefly during the methodological developments, we shall treat them more 
extensively in the final chapters, which concern the practical difficulties of analysis. 

 
By way of highlighting some of the problems at stake and some of the issues which will be 

dealt with in this work, some illustrations may be helpful. 
 
Far too often, analysts use cost-effectiveness analyses when benefit-cost analyses should 

be used to evaluate alternatives. The essential difference in these analysis methods is that of 
assumptions concerning usage and functional compatibility. Cost-effectiveness analysis 
assumes that usage is unaffected by the alternatives being considered, whereas benefit-
cost and other analyses consider the effects of demand volume changes. Alternatives being 
compared often have service or price differences that will lead to different levels of usage 
(even though volume is assumed to be constant), thus giving rise not only to cost differences 
but also to differences in overall benefits. Comparison of alternatives in such an instance by 
only considering differences in investment cost, maintenance cost, and user cost is 
incomplete and inappropriate. More properly, demand elasticities and cross-elasticities 
should be used to estimate the extra patronage and net benefits resulting from the service or 
price differentials, and then this increment should be used in the total accounting. While it is 



easier and simpler to carry out only a cost-effectiveness analysis, it nonetheless is often 
incorrect. (This is not to say, though, that cost-effectiveness analyses would never be useful; 
for instance, when the service or price levels of the alternatives do not give rise to 
differentials in patronage, a cost-effectiveness analysis would be sufficient.) 

 
Another common and important problem faced when conducting either cost-effectiveness 

or benefit-cost analyses involves the treatment of user cost savings, especially travel time 
savings. In virtually all cases analysts assume (by example or by the analytics employed) that 
the marginal utility of any time saved is constant; that is, they assume that the value of a 
minute of time saved per trip is equal to one-sixtieth of the value of an hour saved. In effect, 
this assumption leads one to value, for example, a one-minute saving in travel time at about 
33 cents per trip if the value of an hour saved is assumed to be $20.00/hour.  With inflation and 
increasing wages over time, the value of time assumed for such calculations tends to increase. 
Such an assumption is often incorporated in analyses for alternative public transport 
proposals, and when such values are magnified by tens or hundreds of thousands of trips per 
day and 30-year horizons, the results easily give rise to rather questionable user benefits of 
tens of millions of dollars.  

 
As a third example, the subjects of subsidy, of proper pricing, and of the practicalities of 

implementing different pricing policies (e.g., free transit vs. peak-load or variable cost 
pricing) need to be dealt with in a more understandable, complete, and less theoretical 
fashion than is now common. Further, these topics should be covered from other than an 
advocacy viewpoint, and they should be dealt with in terms of their effect on economic 
efficiency, on practically, on equity, and on transport financing. 

 
While this text deals primarily with the economic impact of different policy or 

technological options, that focus should not be construed to mean that decisions about 
building or not building more power plants, buildings, roads, airfields, or subways, or those 
about user charge or pricing policies, and so forth, should be based solely and exclusively on 
the basis of their economic consequences. Rather, the contention is simply that the 
economics of choices is important, is relevant, and is an essential part of the decision-
making process. Environmental, political, legal, social and other impacts are and should be 
considered in making decisions. We simply argue that economic considerations should also be 
properly included. Some methods of including other considerations in an analysis are 
described in Chapter 10. 

Further, our hope is that analysts will better understand the appropriate set of questions 
to be asked and the methodologies to be employed in order to obtain good answers. 
Relevant alternatives should not be assumed away; "policy" should not be made in a 
vacuum; "conventional wisdom" and commonsense notions should not stand in our way. 
Three examples may be helpful in understanding such problems. 

 
First, when suppliers are faced with rising costs, seldom does either the supplier or the 

public regulator (who often must approve proposed rate or fare changes) consider—much less 
analyze—other than a rate increase as a means of offsetting cost increases. Similarly, when 
a facility or its service is improved, the "conventional wisdom" usually leads one to 
assume that the improvement "should" be accompanied by a rate increase. In neither 
case, though, can one necessarily conclude that a rate or fare increase will produce net 



economic gains, either to society or to the infrastructure suppliers. Rather, it can be shown 
that in some instances (and perhaps many) both parties will benefit from a rate decrease. 

 
Second, most observers of the transportation scene seem to feel, if not believe, that urban 

traffic congestion "should" be reduced, if not eliminated, and thus that something "must" be 
done about the traffic congestion problem. For years this line of reasoning led many to 
believe that the answer was to build more highways; more recently the conventional wisdom 
has turned to reduced transit fares, to the construction of subways, to downtown auto bans, to 
the encouragement of car pools, and to a host of other nonauto "solutions" to achieve this 
widely acclaimed goal. While it is quite appropriate to consider more than just highway-type 
alternatives as means of reducing traffic congestion, it is of equal importance to consider 
or question the goal itself. That is, it is not clear that we "must" or even "should" reduce, if 
not eliminate, traffic congestion. It just may be, for example, that the extra costs or losses in 
accessibility, privacy, comfort, or what-have-you which accompany such "solutions" may 
outweigh the benefits or gains which accompany them. In short, it may be better to do 
nothing and continue to live with congestion, however bad it may seem to some, than to do 
something about it. 

 
Third, when conducting a benefit-cost analysis for various alternatives, policymakers or 

analysts frequently overstate the "benefits" accrued from an alternative by including as a 
"benefit" item those costs which are said to be saved by not building a rejected or less 
preferred alternative. The usual reasoning is that by virtue of building one alternative, we 
avoid the necessity of building another and thus can include the costs saved as "benefits" 
when analyzing the consequences of building the preferred facility. However, the reasoning is 
illogical and leads to an incorrect identification of the benefits and costs. First, it must be recognized 
that all of the alternatives can be rejected, thus foregoing the benefits and costs of each. Thus, not to 
build one facility does not imply the necessity of building another. Second, if we were to add the 
costs saved from the rejected alternative as a "benefit" item for the preferred alternative, it would be 
possible to justify any alternative simply by rejecting an alternative which has costs that are higher 
than those for the alternative being analyzed. Third, the merit or self-sufficiency of each alternative 
is independent of the other options. That is, the benefits and costs of alternative A result only from 
the construction and operation of alternative A and are independent of alternative B; the net 
benefit of A must be nonnegative if alternative A is to be judged desirable or "feasible." 

 
The above examples hardly exhaust the list of questions or aspects of transport economic analysis 

to be considered, but simply highlight the type of issues and thinking which is to be explored in more 
depth. In some cases it will be possible to reach a definitive answer about the appropriate structure 
and/or methodology to be employed; in others it will not. In either case the intention here is to 
clarify the issues and the proper approaches to economic analysis of pricing, financing, and 
investment options, as well as to indicate where the theory ends and the judgment begins. 

Back to top 



1-2. PROBLEMS IN DEFINING THE ANALYST'S POINT OF VIEW, IN 
IDENTIFYING RELEVANT IMPACTS AND IN SETTING INVESTMENT 
PRIORITIES. 

At the outset it is of critical importance to pinpoint which consequences stemming from 
any policy action should be included in the list of benefit and costs to be used for judging 
economic feasibility and alternatives analysis. Essentially, this involves a judgment about 
whose point of view should be taken and, in turn, about which costs and benefits should be 
considered as internal to the project and which would be regarded as external. For instance, 
when deciding whether it is worthwhile to use (limited) available funds and resources in one 
way or another or to withhold their use until some future time, an individual tends to allocate 
his total resources in a fashion which is the most desirable to him. On a larger scale a private 
industrial firm operates in a similar fashion but considers each alternative use of its 
resources from its own "point of view" or in terms of the most "worthwhile" or profitable 
investment to its owners (or to those whose funds or resources are being risked). 

For any significant infrastructure investment, there will be a series of ‘stakeholder’ groups 
and each of these may have a different point of view.  Some relatively standard stakeholder 
groups include: 

• Society as a whole, 

• Infrastructure facility owners (who may be private firms or public agencies), 

• Infrastructure facility users, 

• Infrastructure facility workers and concessionaires,  

• Infrastructure regulators, 

• Nearby residents to infrastructure facilities, 

• Infrastructure funders, both lenders and grant makers, and 

• Infrastructure facility builders and suppliers. 

Moreover, within these various groups, individuals may have differing interests and points of 
view.  For example, an infrastructure owner consisting of a large organization often has different 
groups charged with facility construction and groups responsible for facility maintenance and 
operations.  These two groups may have different ideas about appropriate priorities for building 
design, with construction groups primarily concerned with initial costs.  Facility occupants might 
have a different set of priorities yet. 

 
Importantly, as the individual or group of individuals making investments changes, a shift 

in "point of view" may occur and the final decision may change accordingly. 
 
The problem of specifying whose interests are at stake or to whom the investment is 

worthwhile is more complex when public projects are considered. For example, should a 
state highway agency, in deciding among various highway projects (including that of doing 



nothing), consider the consequences to the agency, those to the state highway users, those to 
the entire state populace, or those to the nation (or world) as a whole? Also, should the state 
highway agency consider the economic feasibility of only the state agency's expenditures on 
construction, maintenance, and administration or should it be concerned with the feasibility 
of the total outlays and with the overall consequences, whether state, federal, or local and 
whether public or private? 

 

The arguments for and against different viewpoints are numerous. Many argue that a 
national, social viewpoint should be adopted.  This approach was included in the Federal Flood 
Control Act of 1936 that directed the US Army Corps of Engineers to consider benefits from 
waterways projects ‘to whomever they may accrue.’  

 
An alternative position might be to consider the feasibility from the point of view of those 

whose funds or resources are being risked. That is, the feasibility might be judged in terms of 
the welfare of those who must bear the burden of having foregone more worthwhile 
opportunities or of financing capital investments or future operating expenses, should the 
expected benefits not materialize. Following this position, with a pay-as-you-go or fully self-
financed user tax financing program, only the user's viewpoint would appear to be relevant. 
However, should the program be financed out of general state or federal funds (or should  
bonds be sold and backed by the full faith and credit of the state or federal government), then 
the viewpoint of the entire state or federal populace would be appropriate. In general, to take 
the point of view of those whose funds or resources are being risked will result in taking a 
"total public viewpoint," but the definition does permit a more restrictive position to be 
taken where it is appropriate (such as with privately financed facilities or with public 
facilities supported entirely through user tax revenues). 

 
It is our view that the primary economic feasibility test should be defined from the point 

of view of those whose funds or resources (present or future) are being risked, which may 
include only the users or the users, taxpayers, and other affected individuals. Thus, we suggest 
two principles for economic analysis of projects: 
1. The relevant items of "cost" or "benefit" are those specific factors or 

elements which are both affected by a project and valued by those 
whose resources are being risked (i.e., the "owners"). 

2. Cost and benefit items should be valued in relation to the relative 
importance and value which the affected individuals (the owners) 
place on them. 

In practice, the "owners" of a project (or a higher authority) place constraints on the 
system; in such cases these constraints must be considered in analysis. Rather than include 
some arbitrary objective alongside the other terms and give it some relative scale value, the 
"owners" may prefer merely to maximize their own net benefit, for example, subject to some 
specified condition. In a sense this specification would be somewhat analogous to certain 
types of government regulation and is directly akin to establishing certain social objectives, 
regardless of the impacts. While these constraints, or social objectives, will not directly enter 
the economic analysis, their economic consequences should be accounted for in the overall 
decision-making process; the economic value of social objectives can at least be determined 
by imputation. 



 
It should be evident that analysis for private projects is distinctly simpler and more 

straightforward than for public programs. Generally, "costs" for private projects include 
money outlays which must be made to obtain the capital, labor, and service inputs, or to 
compensate others for damages of one sort or another; the "benefits" include the money 
revenues (or other savings or types of payment) received as a result of the project investment. 
In general, only items which in some way are actually translated into or can be expressed in 
money terms are included in the economic analysis. 

 
For the case of public projects at the federal level, all factors or elements of concern which 

have value to the "owning" public and which the public would willingly pay (in a broad 
sense) to gain, or to keep from losing, will be included. Thus, environmental, social and 
political objectives can meaningfully be included in economic analysis, provided, of course, 
that the owning public would be willing to pay for them or at least to trade off some other 
object of interest or value where conflicts occur. Generally, then, social or political factors 
should enter the analysis only in those instances where society would be willing to forego 
dollars and cents, other assets, or other values in their stead. This assumption is made, first, 
since most tangible and "intangible" objects of concern have a history of experience and 
have been valued at the marketplace (at least implicitly); thus, there is a place to start in 
establishing relative if not absolute value scales (a problem that simply cannot be ignored, 
one way or another). Second, this assumption is made to point out that factors of presumed 
concern to the owning public and for which they are not willing to forego something else of 
value (which must be foregone to achieve the object of concern) are just that—presumed rather 
than real. For instance, a commonly expressed view is that we want to keep our air clean and 
our views unobstructed. Having said this, however, it does not follow that society does in fact 
value clean air or an unobstructed view to the point that it would be willing to forego the 
resources necessary to retain the unobstructed view or to keep the air clean. That is, if we 
would be unwilling to forfeit other resources in order to keep from losing our view or clean 
air, then the value of the view must be regarded as presumed rather than real. 

 
Regulations are a specific case of situations in which the public as a whole may decide 

that particular behaviors are not desirable.  For example, private firms may be forbidden to 
discharge toxic pollutants above a pre-defined tolerable level.  It could be that the private 
firms are not in favor of such a regulation as it would increase their private costs of 
production.  However, by enacting such a regulation, society as a whole expresses the 
belief that the benefits of the regulation exceed the private costs.  Indeed, analysts are 
required to make such a determination before the enactment of regulations in many 
instances. 

 
By this discussion, it is not implied that decisions involving environmental, political or 

social values are improper or avoidable. Rather, it is to emphasize that decisions to expend 
additional resources in order to meet or achieve some social goal or objective imply at least a 
limiting value of the social ends (since the extra costs could have been avoided by 
sacrificing the social objective). Also, the earlier remarks were intended to emphasize that 
lack of willingness to "pay" for some social objective (or at least to forego something else of 
value in order to achieve that goal) suggests the lack of real value associated with the 
objective. In any case the analyst bears the responsibility of defining and quantifying 
(directly or by imputation) as many of these aspects as is practical. 

 



As an example, it is appropriate to include within the transportation investment analysis 
and framework consideration of other city planning or community objectives and to account 
for any interactions between transport investment, the spatial organization of business, industry 
and residences, and the resulting economic or social effects. Clearly, these system effects should be 
part of the overall system analysis if the public welfare (in terms of economic efficiency or incidence of 
costs and benefits) is affected over and above that as measured by examining only transportation 
costs and benefits. While these sorts of external effects differ only in character and extent from other 
more readily identifiable externalities which stem from transportation facility improvement and 
usage (such as air pollution), it must be said that it is considerably more difficult to establish reliable 
relationships between transportation and land use. In fact, the present state of the art in 
transportation and land-use planning is such that at best only limited statistical correlations can be 
shown and only approximate and tentative hypotheses about dependent relationships can be made. 
This is not to say that such relationships never existed; the historical record of the impact of new 
transportation technologies contradicts this. However, there is considerable doubt whether new 
transportation investments will have substantial land use or locational impacts in an environment 
with relatively good general transportation facilities such as the United States. Moreover, any 
development which does occur due to such new investments is not likely to represent a net change 
since the development may only be relocated from other sites; changes in land rents near new 
facilities are quite likely to be of this nature and thus represent no net benefit.  
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CHAPTER    2 

THE USAGE OF FACILITIES-USER COST AND 
DEMAND 

Content 
2-1.    Demand Functions ................................................................................................................ 2 
2-2.    Sensitivity Of Travel Demand .............................................................................................. 5 
2-3.   "User Costs" Of Infrastructure Services ................................................................................ 7 
2-4.    Determination Of Equilibrium Volumes And Service Conditions:  An Introduction ........... 9 
2-5.    Problem ............................................................................................................................... 12 
 
 
An essential component of system design and investment analysis is an estimate of the usage or 
volume which will be attracted by different facilities and operating policies. "How many people will 
be attracted?" is one of the most common initial questions asked of planners, and the answer provides 
a starting point for detailed design and analysis studies. Unfortunately, our knowledge about demand 
is often meager, and obtaining accurate forecasts of future user volumes is quite difficult. This does 
not imply that a planner can ignore the problem of estimating volumes, because the benefits and costs 
stemming from different system alternatives are quite sensitive to the resulting volume of use. Nor 
does the difficulty of forecasting imply that a planner must devote a great deal of time and resources 
to the prediction of future volumes; in many cases experience and a proper understanding of the 
factors influencing demand may be used to obtain sufficiently accurate demand forecasts. 
 
To understand the factors influencing demand, it is important to consider purchase decisions from 
the point of view of the users. Adopting this perspective is not easy. For example, a transit manager 
is concerned with the proper operation of and costs incurred for the transit system as a whole. In 
contrast, a patron makes the decision to use the transit system on the basis of the door-to-door 
service provided between his specific origin and his particular destination, rather than on just the 
average service quality of the transit portion of the trip. Moreover, the patron considers aspects of 
his trip which are not affected by the transit system's operation, such as his safety in walking to and 
from the transit stops and the relative attractiveness of alternative travel modes. Also, users 
consider the time and effort involved in travel, in addition to the fares charged for service. Similarly, 
an electricity provider focuses upon the operation of power plants and the electricity grid, whereas a 
customer makes decisions about appliances and the use of appliances on the cost of electricity, the 
appliance electricity use and other functional aspects of the appliance such as appearance and 
functionality.  In this chapter, then, we shall consider demand from the point of view of customers 
and the resulting effects on volume and costs to users (as distinct from the costs to society, which are 
dealt with in Chapter 4). 
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2-1    DEMAND FUNCTIONS 

A demand function expresses the dependent relationship between the volume or quantity of use to 
be demanded and the various factors which influence the quantity demanded, including the price of 
service. (Here, the user cost is regarded as being equivalent to the price of service.  In addition to 
monetary charges, user costs might include travel time. The terms user cost and price will be used 
interchangeably here.) Thus, travel demand is a measure of the desire of a group of people for 
tripmaking under a particular set of circumstances. If these circumstances change, then the travel 
demand also changes. The usefulness of a demand function is that the resulting volume may be 
predicted for a wide range of conditions; that is, the demand function expresses the volume which 
will be desired (i.e., demanded) at each level of the various factors influencing demand. Note that  
demand is not a fixed level of "need" which must be satisfied; as underlying circumstances 
(including the price of travel) change, the amount of demand also changes. 

Figure 2-1 illustrates in its simplest form a demand function.  For a travel demand function, the 
volume might represent the number of trips between a given pair of origin and destination points, at 
a specific time of day and for a particular purpose.  For electricity use, the volume might represent 
the amount of electricity used over a particular period (such as month) at a residence. It is not 
necessary that the demand function be a straight line, although this is a simple and fairly useful 
functional form. The downward sloping form of the demand function indicates that lower volumes are 
demanded at higher prices.   

This demand function (or curve) assumes a particular level and distribution of income, population, and 
socioeconomic characteristics. It is an aggregate demand curve, representing the volume demanded at 
different prices by a particular group or aggregate population, including travelers having high or low 
urgencies for tripmak-ing. Some people among those wanting to make trips will value the trips 
differently due to variations in income or the ability to pay for the trip, and others because of 
differences in the urgency of the trip or the value of getting to their destination, and so forth. 
Functionally, 

 

where q is the quantity of trips demanded when the price is p; a and /? are constant demand 
parameters, which, in practice, must be estimated to find appropriate numerical values. This 
demand function is useful in predicting the effect of price changes; at a price of p Ay a volume q A of 
trips will be demanded. With a price increase to pB, volume will decline to qB. Note that there is a 
price level such that the volume demanded is zero in Equation (2-1); this price level is a//? in 
Figure 2-1. Above that level one can assume that no trips are purchased. 
 



 

 

 
Changes in population, income, or other socioeconomic characteristics could result in shifts or 
movement of the demand curve, as shown in Figure 2-2. That is, the demand could increase (or 
decrease) in response to such changes. We could illustrate these shifts by a three-dimensional 
drawing in which the volume demanded was jointly dependent upon the trip price and level of 
population. Such a drawing would be complicated, however, so a functional form is used to 
represent a demand function: 

 

 
where q is the volume demanded when the price is p and with 
socioeconomic conditions SE. For the simple linear function of Figure 2-
2, 



where ay and βy are the parameters for the socioeconomic conditions of potential customers in year 
y. 

 
Price in the demand function may be thought of as the overall or combined payment in time, 

effort, and money expenses which a customer considers. When combined, these components repre-
sent the "user cost" a customer will face. It is not necessary to combine these components of "user 
cost" into a single price; in the same way that a different demand curve could be shown for each 
level of the socioeconomic variables, a demand curve might be constructed with respect to money 
expenses or fares, given a particular level of effort and travel time. However, an overall price or 
user cost measure is useful for explaining demand changes, and we shall use it repeatedly. As we 
shall later see, the analytical framework is greatly simplified by making use of a combined price 
including time, effort, and money. Obviously, though, constructing a measure of price or user cost 
implies that the various time, effort, and money expenses can somehow be placed on a 
commensurate value scale, a problem discussed in Section 2-3. 

 
It is possible to construct demand functions for individuals as well as groups. Thus, the demand 

curve in Figure 2-1 (with a suitable change in the parameters α and β) might represent the annual 
number of trips demanded by an individual from his home to a destination, given his 
socioeconomic circumstances. It is also possible to focus on a particular demand decisions (such as 
a trip) and consider the probability, or chance, that an individual might make a purchase as a 
function of the price. Such disaggregate or individual demand functions may be summed or 
combined to yield the aggregate or market demand function for a population. Mathematically, the 
aggregate demand function is the sum of the individuals' demands; thus, 

 
 

i=N (as described in Appendix I). Assuming that an individual's demand is linearly related to the 
price, the aggregate demand would be 

 

Where α  and β are simply sums of the individual α i  and β i parameters. 

 
The unit of measurement for the quantity or volume of demand deserves some attention. 

Demand is typically defined over a particular period of time, which might vary from very short 
(for items such as computer usage) to very long (such as monthly water usage bills).  For travel, 
a typical measurement unit is separate and different person (or, where appropriate, vehicle) trips 
per hour desiring to move between a particular pair of zones or points along some transport system 
facility. An hourly time interval for the quantity of trips is somewhat arbitrary, but it is 
important in many urban and intercity travel situations in order to reflect the changes in 

 
where q(p) is the aggregate demand at a price p, N is the number of 
individuals in the population, qi(p) is the demand by the ith individual 
at a price p, and Σ indicates a summation of qt(p) for i=l to  



congestion and other service conditions that affect tripmaking. For example, to use the volume of 
daily trips would often mask large peak and off-peak differentials in travel time and comfort. 
However, it is also important to note that this specification of measurement units implies that 
each vehicle trip will involve an equal number of passengers (that is, identical car occupancy). 
This point is discussed further below. 

 
As a numerical example, suppose that a group had an aggregate demand function of 

 
At a price p = 5, a total of q = 100 - 10(5) = 100 - 50 = 50 trips per hour would be demanded. 
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2-2    SENSITIVITY OF TRAVEL DEMAND 

Generally, demand functions are downward sloping with respect to price, as illustrated in Figures 
2-1 and 2-2. Thus, for travel applications, as a trip requires greater effort, time, and/or expense, 
tripmaking will decline. A useful descriptor for explaining the degree of sensitivity to a change in 
price (or other factor) is the elasticity of demand. Definitionally, the elasticity of demand with 
respect to price, or εp , is: 

   εp = (dq/q)/(dp/p) = (dq/dp)(p/q)  (2-7) 

         

where dq is the change in the number of trips which accompanies dp, the change in price. Also, for 
small changes in price and volume, dq/q and dp/p (when multiplied by 100) are the percentage 
changes in volume and price, respectively. The calculus derivative, dq/dp, indicates the effect on q of 
a very small change in price; Appendix I contains a further explanation. 

 
In practice, there are several slightly different definitions of elasticity, depending upon the 

information used to estimate the elasticity. Point elasticity uses the calculus derivative to describe 
the elasticity at a point on the demand function and applies, strictly speaking, only to infini-
tesimally small changes in price; or where p and q are the average of the "before" and "after" prices 

and volumes, respectively, and ∆q and ∆p are the changes in q and p, respectively, between the two 

points. The various elasticity definitions yield values which are usually quite similar, but the values 
are identical only for very small price changes. 

 
When the elasticity is less than -1 (i.e., more negative than -1), the demand is described as being 

elastic, meaning that the resulting percentage change in volume will be larger than the percentage 
change in price. In this case demand is relatively sensitive to price changes. Contrarily, when the 

 

 
Arc elasticity uses two points on the demand curve to calculate elasticity; 
one common definition is 

 



elasticity is between 0 and -1, the demand is described as being inelastic, or relatively insensitive, 
meaning that the percentage change in volume will be less than the percentage change in price. The 
demand is perfectly elastic when the elasticity is minus infinity, meaning that small changes in price 
will result in infinitely large changes in volume. Finally, if the elasticity is 0, then the demand is 
perfectly inelastic, meaning that small changes in price will have no effect on the volume. While 
many of our planning processes and benefit-cost analyses assume—implicitly if not explicitly— that 
the volumes remain constant even though the prices may change (i.e., the demand is perfectly 
inelastic), it should be recognized that it seldom would be accurate to characterize demand as being 
perfectly inelastic. 

 
For many infrastructure services, demand will typically be inelastic or relatively insensitive to 

prices, particularly in the short run.   This reflects the importance of infrastructure services for 
typical users.  Discretionary purchases would be more sensitive to price changes.  As consumers 
make changes in response to increased costs, the demand will become more sensitive and long run 
price elasticities will be more negative. 

 
For illustrative purposes, these and other relationships will be examined while using a simple 

linear demand function, though little violence will be done to the development of general principles 
by assuming linear demand. 

 
For a linear demand function we can determine the elasticity with respect to price for Equation 

(2-1) by using Equations (2-5) and (2-7); by taking the derivative, we determine the point elasticity 
or the elasticity when the price is p, which is 

 
 

so that price elasticity is only a function of q and the parameter a in the latter case. 

 

For the linear demand case it can be shown that when q is equal to zero, the elasticity is equal to 
minus infinity, when q is equal to a (the intercept on the horizontal or x axis) the elasticity is 0, and 
when q is equal to α/2 (half the intercept on the horizontal or x axis), the elasticity is -1, or what is 
called unit elasticity, the point dividing the elastic and inelastic portions of the demand function. Thus, 
the upper half of the demand function is elastic and the lower half is inelastic (Fig. 2-3). For example, 
with the parameter values of Equation (2-6) and a price p = 5, the elasticity is ep = 1 - 100/50 = 1 - 2 
= -1, which is the unit elastic point. 

 
From all of the above, the practical application and usefulness of knowledge about demand 

functions and elasticities should be evident. For instance, demand functions together with the user 
price permit us to determine how much volume can be anticipated, while elasticities permit us to 
estimate the percentage change in volume which stems from a price change. Moreover, since the 
facility costs are dependent upon the expected level of usage, demand functions are necessary to 
anticipate costs as well. 
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or, after substituting for p, using Equation (2-1), 

 



 

2-3   "USER COSTS" OF INFRASTRUCTURE SERVICES 

Earlier the sensitivity of the amount of volume to changes in the service price was emphasized. 
Consumers and potential consumers are responsive or sensitive to levels of and changes in price, 
where the price is interpreted as the full private user cost of travel, including time, effort, and 
monetary expense.  Of course, many infrastructure services do not have additional costs beyond 
the payments for services.  Example would be renters in a building or water consumers.  In 
contrast, travelers incur numerous costs associated with vehicles and congestion delays.  This 
section will focus on services such as tripmaking that have appreciable user costs beyond 
monetary payments. 

 
The user costs of a trip are usually estimated as a weighted linear combination of travel time 

components and monetary payments for a trip, such as 

 
where p is the price or user cost of travel (in dollars) for a usage level of q, t is the travel time, / is the 
fare or monetary payment, and v is a user time cost parameter. Also, v represents the unit value of 
travel time (in dollars per unit of time). For a user cost function, it is not necessary to assume a 
linear combination of time and fare as in Equation (2-12); it is done mainly for simplicity at this 
stage of the presentation. 

 
The value of the parameter v in Equation (2-12) is usually called the value of time and may be 

estimated by observing user choices (as discussed in Chapter 12). For example, it is usually the case 
that (up to some point) travelers would willingly pay a toll or higher parking fee in order to reduce 
their trip time or walking time on a given trip. 

Once the various travel time components, monetary charges, and appropriate parameter values 
are known, it is a straightforward calculation to find the user cost of travel for a particular trip, by 
using Equation (2-12), for example. That is, given knowledge about the fare and trip time, the user 

 



cost can easily be calculated. However, estimation of travel times requires considerable attention, due 
to the effects of crowding or congestion. 

 
On virtually all transportation facilities user travel times increase as greater volumes use the 

facilities. For a roadway, vehicles begin to interfere with one another, causing each vehicle to slow 
down. The resulting congestion or traffic jam may increase average travel time enormously, 
especially as the volume of usage approaches the roadway capacity. Moreover, transit systems, 
terminal operations, and virtually all other facilities exhibit similar congestion effects. With transit 
systems, for examples, additional patrons mean that vehicles must stop more often and longer, 
thereby increasing passengers' waiting and riding times. At still higher volumes patrons experience 
severe crowding in the vehicles and some may have to wait for following vehicles before boarding. 

 
The consequence of such congestion effects is that the user cost of making a trip tends to increase 

as the volume using a particular facility increases. Each person or vehicle using a facility must 
endure the average delay and expense of using the facility, including the congestion effects caused by 
the total volume or flow of the facility. Thus, the introduction of additional traffic or flow onto a 
facility will increase user costs (for each and every tripmaker) to the extent of both the costs incurred 
by the new tripmakers and the additional costs imposed on all others due to congestion. 

 
In the literature of transportation systems analysis this dependence is summarized by 

price-volume functions, or relationships which express the user cost or price of travel on 
particular facilities as a function of its usage. To calculate price-volume relations, it is often 
useful to first develop performance functions, such as Equation (2-13), which are 
mathematical expressions relating the travel time to different volume levels on a facility. 
Assuming a linear relationship between travel time and facility usage (again for analytical 
simplicity), we get 

 
where t is the average travel time for a usage level of q, t0 is the travel time for low or near-
zero volume levels on the facility, and S is a travel time congestion parameter for that facility. 
In turn, a performance function [such as Eq. (2-13)] may be substituted into a user cost 
function [such as Eq. (2-12)]. The resulting user cost or price-volume relation would be as 
follows: 



 
where p is the user price at a usage level of q, f is money expense, τ is a constant parameter 
representing the value of the minimum trip time, and f is a parameter representing the joint 
effects of travel time increases and the unit time value (so that ζ = vd). Figure 2-4 illustrates 
this user cost or price-volume function. 
 

As indicated in Equation (2-15), the user cost or price will be dependent both upon the level 
of usage, q, and the monetary charges, f. To make matters worse, the money charges 
(whether for transit fares, tolls, or parking charges, etc.) may be and often are dependent 
upon the usage of the facilities as well as their capacity. Discussion of this aspect will be 
deferred to later chapters which deal with pricing and investment policies. 

 
For some infrastructure services, the user costs are quite non-linear.  For example, there may 

be a limit on the number of people who can enter an auditorium or building.  In this case, user 
costs are constant until the capacity is reached and then rise vertically up.  For roadways, user 
costs rise slowly until capacity is neared, at which point they rise rapidly to a high level 
associated with traffic jams. 
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2-4    DETERMINATION OF EQUILIBRIUM VOLUMES AND SERVICE 
CONDITIONS: AN INTRODUCTION 

Given some facility (as well as its operating policies), the volume of use (that is, the 
equilibrium flow as opposed to its potential flow) is determined from joint consideration of 
both the user cost and demand functions. Simply, equilibrium flow will be determined by 
the interaction of demand functions (which indicate the volume of demand at each price 
level) and of user cost or price-volume functions (which describe the prices which will face 
the consumer at different volumes).  In many cases, price would not vary with usage, and so 
the interaction is relatively simple.  In cases in which prices (and user costs) vary with 
volume, then determination of equilibrium volumes is more complicated. 

 
Determination of equilibrium flow or the actual volume which will use a facility (and of the benefit 

or value which will actually accrue to its users, as well as the ultimate costs of providing the 
service) depends on a joint consideration of price and demand functions. Also, it is necessary that 
the price and demand functions introduced above have dependent and independent variables which 
are measured on a common scale; for example, the unit price travelers will have to pay for using a 
particular facility (as shown on the price-volume curve) must be stated in the same overall units as 
the price travelers will be willing to pay (as shown on the demand curve). 

 



To illustrate in a general way the interaction between price-volume and demand functions and to 
indicate equilibrium conditions, consider the price-volume and demand conditions as they presently 
exist for many if not most public highways and transit facilities and as they are portrayed in Figure 
2-5 for some facility x. Facility x is assumed to have a fixed amount of capacity, a particular  

operating schedule, and so forth; thus, changes in the user cost or price stem merely from changes in 
travel time and delay due to changes in usage. We assume that demand is stable or constant from 
hour to hour and can be represented by one hourly demand function. This implies that demand does 
not fluctuate either hour to hour or year to year and that our pricing policy is such that the price-
volume function is constant. Also, for the moment, we will consider only the short-run equilibrium 
conditions and leave until later an exploration of the consequences of system expansion or 
contraction. 

 
For the simplified case in Figure 2-5 the equilibrium flow will be qe and the equilibrium price will be 

pe. That flow and price will stabilize—aside from stochastic or random effects—at (approximately) 
this level can be seen by assuming a different level of flow and considering the consequences. If the 
flow were qu for example, the resultant user price would be Pi; but if the price were px, only q2 travelers 
would be willing to make that payment and travel. And, in turn, a flow of only q2 would require a 
payment of only p2, a price which would cause a flow above qe but below q i to travel; and so forth. 
Iterations will continue in such a fashion until a price and flow level is determined which will be 
consistent with both price-volume and demand functions. The resulting movement towards 
equilibrium results in a distinctive "cobweb" appearance of lines as shown in Figure 2-5. 

 
As a general rule, the volume of travel expected on a facility as well as the average price or user 

cost of travel is indicated by the intersection of the price-volume and demand functions, qe and pe in 
Figure 2-5. If more than one intersection exists, then multiple equilibria are possible, as discussed in 
Chapter 3. Usually, only one volume and price combination results in a stable or long-lasting 
equilibrium. A stable equilibrium exists whenever a slight perturbation—as described in the previous 
paragraph-results in price and volume changes which cause a return to the original equilibrium point. 
Not all price-volume and demand relationships will directly converge in a cobweb fashion on the 
equilibrium point as shown here. Certain very steep or very flat combinations might not do so. Chap-
ter 6 discusses one such case. 

 



 
Using the demand function (q = 100 - 10p) and price function (p = 1.4 + 0.14q + f), the 

equilibrium volume at a toll of, say, f = $0.50, can be found as 

 
with p = $6.63 per trip and travel time t = 0.4 + 0.04(7 = 0.4 + 0.04(33.75) = 1.75 hours. 

 

 



A few other examples may indicate the general procedure for estimating changes in equilibrium 
tripmaking. In Figure 2-6 the effect of a fare increase is illustrated by an upward shift in the user cost 
or price-volume curve. The demand curve remains unchanged, and the new travel volume is q'ei or qe 
- q'e less than the former volume. With an increase in population the demand curve will shift up in 
two-dimensional price-volume graphs. Such a shift is depicted in Figure 2-7, with a resulting increase 
in travel volume to q". Note that the equilibrium travel price has also increased, to p". Without 
considering a change in trip price, a volume of qm would have been incorrectly estimated. Thus, 
changes in trip prices must simultaneously be considered in forecasting travel volumes; otherwise, 
forecasts are likely to be quite inaccurate. 
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2-5 PROBLEM  

 
P2-1. Suppose that a single air carrier (called USR) provides service to two medium sized cities 
(called A and B below) with a stop-over and change of plane at a third hub city (called the 
Burgh).  Currently, 200 passengers per day travel between the two cities on 4 flights (that is, 2 
connections for A to B and 2 connections from B to A).  The current service requires 3 hours, 
involving 1 hour trip from A to the Burgh, 1 hour layover, and 1 hour from the Burgh to B.  You 
are considering starting a new, direct service with a travel time of 1 hour.  Your planned service 
would have 2 round trips daily. 
 

• A. Estimate how many passengers might take the combination of USR and your service if 
the fares were identical and the services as described above.  (Hint: this requires you to 
make one or more assumptions!) 

 
• B. What would be your estimate of the market share you might be able to obtain relative 

to USR? 
 
• C. Could this analysis be expanded to include all pairwise trips if the new service 

involved a link to your hub airport with connections to many cities?  If so, how? 
 
 

P2-2. Transit fare elasticity is commonly estimated as –0.3 (this is a well-established example of 
a “rule of thumb”).  The Pittsburgh local transit service (PAT) has patronage of roughly 79 
million annually, with a fare of $ 1.25 (these are actually 1994 numbers, but they have changed 
little in the intervening years.  Also, only a portion of patrons  pay the full fare – senior citizens 
and school children do not pay fares directly.  In practice, these patrons would have to be 
analyzed separately.).    
 

• A. Suppose PAT increases fares to $ 1.40.  What would happen to patronage and 
revenues? 

 



• B. Suppose that the demand for PAT travel is strictly linear.  Assume the fare elasticity is 
appropriate at the 79 million and $ 1.25 levels, estimate a demand function of the form 
passengers = a + b*fare, where a and b are to estimated. 

 
• C. Based on your linear demand function, what is the total user benefit of PAT service?  

(Remember to use an inverse demand function if you do the area under the demand 
curve).   

 
• D. Based on your linear demand function, what is the change in total user benefit with the 

increase in the fare to $ 1.40? 
 
• E. If the industry rule of thumb was really true, a log-linear form of demand curve should 

be used (since this curve has constant elasticity): passengers = a*(fare)b.  Estimate the 
parameters a and b.  Using this demand function, estimate the change in patronage, 
revenue and total user benefit from the fare change to $ 1.40. 

 
• F. The constant elasticity, log linear curve cannot be used to estimate the total user 

benefit generally of transit service.  Why not?  (A good way to find out is to try to do so).     
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FURTHER DEVELOPMENT OF USER COST AND 
DEMAND FUNCTIONS 

Content 
3-1. Intratemporal And Intertemporal Shifts In Demand Functions ................................... 1 
3-2 Demand In Choice Situations ..................................................................................... 3 
3-3 Demand Functions With Respect To Individual  Price Components ......................... 6 
3-4 Analytical Identification Of Equilibrium In The  Service Market ............................ 14 
3-5     Network Equilibrium Analysis .................................................................................. 16 
3-6     Problems .................................................................................................................... 19 
 
 
The previous chapter introduced the general concepts of infrastructure demand, user costs, and 
equilibrium in the market. This chapter is intended to provide extensions and elaborations of 
those basic concepts. Discussion of the practical and empirical problems associated with 
estimating demand and user cost functions will be deferred until Chapters 11 and 12. 

3-1. INTRATEMPORAL AND INTERTEMPORAL SHIFTS IN DEMAND 
FUNCTIONS 

The determination of equilibrium volume and price levels described in Chapter 2 applies to a 
particular facility in a single time period. As will be seen, this analysis may be applied to 
analyze the effect of different facilities or services, a matter of great usefulness in evaluating 
alternative investments or operating policies. In addition, it is possible to analyze multiple 
time periods. 

 
During a given time period or, say, during a year, demand may fluctuate dramatically from 

hour to hour, from day to day, or from season to season. These intratemporal demand 
fluctuations produce peak-load situations which commonly result in congestion and crowding. 
Together with intertemporal or year-to-year fluctuations, this peaking phenomenon adds greatly 
to the complications of determining equilibrium flow and price levels. Yet its proper 
consideration is important for pricing, for the efficient utilization of facilities, and for 
investment planning. 

Part (a) of Figure 3-1 illustrates demand functions during three different hours of the day 
and their interaction with the price-volume function  for a transportation facility such as a 
roadway; if the demand functions for all 24 hours were plotted, the quantity demanded 
versus time-of-day results would probably be somewhat as shown in part (b). The use of only 
one price-volume function in Figure 3-la implies that the same amount of transport service is 
available in each of the three hours shown. To the extent that the available facilities change 
from one hour to another (e.g., because of scheduling changes, express services only available 
during certain hours, ramp closings, etc.), then a separate price-volume function would be 
needed for each hour. 
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Different demand functions for different times of day have been hypothesized to reflect 

differences in trip values for various trip purposes and preferred times of travel. For example, it 
is reasonable to argue that work trips are more valuable and urgent than shopping trips and that 
they are somewhat restricted with respect to the times of day at which they can be made. Second, 
as will be discussed below, these hourly demand functions are interdependent and have cross-
relations. (These interdependences are not shown on Figure 3-1.) That is, the tripmaking 
during hour Hi is partially dependent on the equilibrium flow conditions during the other hours 
of the day, and vice versa. Put on practical terms, the exact time of the home-to-work trip 
depends not only on the trip price and value of going to work exactly on time but also on the 
trip prices and values of going to work somewhat earlier (and avoiding congestion) or going 
somewhat later (and avoiding congestion but getting one's pay docked); similarly, evening-out-
to-dinner trips and shopping trips depend not only on the trip price and trip value of travelling 
during the most "suitable" hour but also on those during earlier and later hours. These cross-
relation (or cross-elasticity) problems clearly cannot be ignored in any realistic study, just as 
those with respect to modal cross-relations cannot be overlooked in any full analysis. (That is, as 
conditions get better or worse on one mode, they affect not only the absolute amount of 
tripmaking but switches from or to other modes as well.) Similar variations in demand occur for 
power generation, telecommunications, water use and many other infrastructure systems.  

 

Shifts in demand from time period to time period (or, say, from year to year) or 
intertemporal demand fluctuations can be represented by using different demand functions for 
each time period. However, to simplify the graphics, let us assume that we can represent the 
hourly demand functions (as shown in Figure 3-1) for each year by some sort of aggregative or 
averaged demand function; in this case, year to year or intertemporal demand fluctuations 
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would be as shown in Figure 3-2. The shift of the demand function upward and to the right 
implies that population growth, shift in land use, shifts in consumer preference patterns or 
income growth, and so forth, would singly or in combination produce increases in demand at a 
given price. For the hypothetical demand curve shifts and price-volume curve shown in 
Figure 3-2, it is evident that the (aggregated or averaged) equilibrium flow during the early 
years would increase faster than during the later years (in both absolute and relative terms); 
such a result would be the usual result for uniform increases in demand and for facilities or 
systems whose capacity remains fixed over the years. Also, if the price-volume curve were 
vertical in the region of equilibrium, then no increases in equilibrium flow would occur over 
the years. Thus, shifts in demand—that is, shifts of the demand function—do not necessarily 
mean that shifts in the equilibrium flow (or volume actually using a facility) will occur.  Again, 
similar inter-temporal demand function shifts could occur for other infrastructure services such as water 
demand. 

Back to top 

 

3-2 DEMAND IN CHOICE SITUATIONS 

The demand functions formulated earlier need to be extended in order to represent the 
conditions for choice situations in which the decision to use a particular alternative (such as a 
transit service) is dependent upon the price of that alternative as well as the price of 
competing opportunities (such as taxi service). 

Let us assume that travelers are choosing between two competing alternatives (say, between 
two modes or two times of day for travel) and that they consider the prices of both alternatives 
when deciding whether or not to travel, as well as which alternative to select. Then, an 
appropriate set of demand functions for alternatives x and y might be as follows: 

qx=ax +βixpx + yxpy (3-1) 
qy = ay +βypx + yypy (3-2) 
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where qx and qy represent the hourly volume of trips demanded for alternatives x and y, 
respectively, when the price of choice x is p x and the price of choice y is py. The coefficients (a, 
f, and y) are the parameters of the demand functions and must be estimated. Graphically, the 
first of these demand functions would be as shown in Figure 3-3 with volume qx dependent on 
both modes' prices (px and py). Purely for analytical convenience, we have used a linear 
aggregate demand model and a binary choice situation. Disaggregate nonlinear demand models 
or multiple-choice situations might also be used, although the appropriate set of functions 
becomes more complicated. Chapter 11 contains examples of different demand model types. 

The interpretation of such demand functions is straightforward. Assuming that the 
choices x and y represent two competing modes, it is clear that the volume on mode x depends 
not only on the mode x price but also on the mode y price (i.e., the price of the competing mode), 
unless of course the demand function coefficients are zero. (Where travelers are 

choosing among many modes or times of day, some of the demand function coefficients may turn 
out to be zero.) Each of the two demand functions contains a direct demand relation and a 
cross -relation in which the former describes the effect of the price for the mode in question 
upon its volume of tripmaking and the latter describes the effect of the price for the 
competing mode upon the volume of mode x tripmaking. Thus, for mode x, the second term—
or βixpx—is the direct relation and the third term—or yxpy—is the cross-relation. A priori, we 
would expect the coefficients for the direct relations to be negative and those for the cross-
relations to be positive. In this instance—for Equations (3-1) and (3-2)— the set of two direct 
relations and two cross-relations permit us to assess the absolute changes in volume for both 
modes which result from a price change to either, as well as the shifts which occur between 
the two modes. Suppose that the price for mode y were to be reduced by Δpy. Accordingly, the 
volume of mode y travel would increase by an amount γyΔpy, and the volume of mode x travel 
would decrease by an amount yxΔpy. (Recall that it is assumed that fix and yy are negative and 
that the other coefficients are positive.) Moreover, the additional mode y travelers (equal to 
yypy) include some people who made no trips prior to the price drop and some who simply 
shifted from mode x; the latter trips are represented by the cross-relation term of yxΔpy and 
the former by the difference between the two terms, or yyΔpy - yxΔpy. 
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Elasticities for this set of demand functions can be computed in much the same fashion as 

indicated in Section 2.2, except that in choice situations there will be both direct elasticities 
and cross-elasticities; the former describes the sensitivity of a mode's volume with respect to its 
own price while the latter describes its sensitivity to the price of the competing mode. For 
competing modes x and y with demand functions as represented by Equations (3-1) and (3-2), 
respectively, we would have the following point elasticities: 

 
The definition and interpretation of these elasticities is similar to the direct elasticity 
defined by Equation (2-7) in Chapter 2. 
 

Whereas the direct demand relations and cross-relations provide information about the 
absolute changes in quantity demanded which stem from price changes, the elasticities 
describe the changes in percentage terms (i.e., the percentage change in quantity demanded 
which accompanies a 1% change in price). A priori, we would expect the direct elasticities to 
be negative and the cross-elasticities to be positive. 

As a numerical illustration of demand functions in a choice situation, suppose that we are 
considering the demand for travel in different time periods over the course of a day. Price 
changes in one time-of-day period might affect the demand in other time-of-day periods. Thus, 
the aggregate hourly demand during the hth time-of-day period might be represented as 
follows: 

 
in which h = 1, 2,..., r. (In other words, there would be r time-of-day periods and r separate 
demand functions.) To illustrate the intricacies of such a set of demand functions, let us 
make use of the ones shown in Table 3-1. 
 

Note that the demand in any one time-of-day period is not (necessarily) dependent upon the 
prices during all time-of-day periods but only upon the prices during those time-of-day 
periods which can be regarded as competing choices or substitutes. For instance, people who 
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are considering whether to travel during the first time-of-day period (or from 6 to 7 AM) 
generally only consider two time-of-day choices, either then or from 7 to 9 AM. They are 
unaffected by the price during the third time-of-day period from 9 to 10 AM because they do 
not consider that choice as a reasonable substitute. Put differently, they would rather not 
travel at all than shift to a period later than 9 AM. By the same token, people who are 
considering travel during nighttime hours of 7 PM to 6 AM only think about the price during 
that time-of-day period, thus implying that there are no other time-of-day substitutes. 

 
Most of the demand functions in Table 3-1 include both direct demand relations and cross-

relations. The former tell us about the absolute volume changes which result from a change 
in price for the time-of-day period in question, while the latter tell us about the absolute 
volume changes which result from a change in price for other time-of-day periods. If you will, 
the later tell us about shifting peaks. As an example, consider the demand function for the 
first time-of-day period, or 

 
The second term in this function, or -25pi, tells us about increases or decreases in period 1 
tripmaking which result from a price change in period 1. An increase in px will decrease 
period 1 tripmaking and vice versa for a fall in pu everything else remaining constant (i.e., 
given that p2, incomes, and all other relevant factors remain constant). The third term, or 
+15p2, tells us about shifts to or from period 1 which result from changes in p2. If the price 
in period 2 were to increase, then the amount of tripmaking in period 1 will increase because 
of shifts from period 2 to period 1; if the price in period 2 drops, then a shift in tripmaking 
from period 1 to period 2 will occur. 
 

In particular, if p1 is 15 and p2 = 12, then qx = 4000 - 25(15) + 15(12) = 3805. The direct 
price elasticity is e\x  = (-25)(15)/3805 = -0.1 and the cross price elasticity is e\= 
(15)(12)/3805 = 0.05, the latter of which is positive and thereby indicates that an increase in 
p2 will result in an increase in volume q i. 

Back to top 

3-3 DEMAND FUNCTIONS WITH RESPECT TO INDIVIDUAL  
PRICE COMPONENTS 

Analysts often define demand functions with respect to individual user price components, 
such as travel time or monetary fares. While this procedure adds complications and 
must be used with great care to insure that accurate forecasts are possible, it does have the 
advantages of focusing attention on the aspects of user cost which are of greatest interest 
(such as price changes) and avoiding the explicit need to measure the user valuations of 
travel time and effort. 
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For example, it is possible (by means discussed in Chapter 11) to estimate demand curves 
with respect to fares, such as 

 
This expression is similar in form to the demand function with respect to price, which 
includes all components of user cost as discussed earlier. The elasticity of demand with 
respect to fares or monetary charges would then be 

 

 

 

Or for the special case of the linear demand function of Eq. 3-9: 

 

 

 

Alternatively, the elasticity of demand with respect to fare may also be calculated from the 
total user cost of price elasticity as: 
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so that the elasticity with respect to fares (or other components of user cost) is always less 
than the total price elasticity since fares f are only one component of total user cost or price 
p. 

 
The elasticity of demand with respect to fare is quite useful in estimating the changes in 

volume and system revenues due to fare changes. Total revenues are defined as the volume 
using a particular service multiplied by the average fare or toll charge: 

Or, using the inverted linear demand function of Eq. 3-9 to obtain f: 

 

 
Total revenue can be quite important to managers concerned with the financial situation of 
a particular service. An illustrative demand function with respect to fares and the associated 
system revenue functions are shown in Figure 3-4. Several important and general results 
may be derived: 
1. The total revenues will be maximized when the quantity demanded is 

at the unit elastic point. 
2. When the demand is inelastic before and after any price change, a 

fare increase will also raise the total revenues, while a fare decrease 
will reduce total revenues. In essence, when demand is inelastic, 
reductions in fare will induce more trips but the losses from a fare 
drop will outweigh the gains from the extra tripmaking; moreover, 
since a fare increase in case of inelastic demand would reduce trip- 
making, it also would reduce total costs, thus leading to an increase in 
total net revenues (or total revenues minus total costs) as well. 

3. When the demand is elastic before and after any fare change, a fare 
reduction will increase total revenues while a fare hike will do the 
opposite; in this instance, however, little can be said about the effects 
on total net revenues since a fare drop would not only increase total 
revenues but also the amount of tripmaking and total costs. 

4. When the demand is inelastic before a fare change and elastic after 
wards (or vice versa), we do not know a priori whether the total 
revenues will increase, decrease, or remain the same; in this case it 
will be necessary to carry out the full set of calculations in order to 
know the result. 

 
 
  
 

Using Equation (3-13), marginal revenue can be further calculated as 
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With regard to the change in total revenues, it is useful to introduce the marginal revenue 
curve. Marginal revenue is the change in total revenue resulting from a unit increase in 
volume and the accompanying change in fare: 

 

 

using differential calculus (as described in Appendix I). 
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which is linear and is shown in Figure 3-4. In the elastic demand range marginal revenues 
are positive and increased volumes (from reduced fares) increase revenue. In the inelastic 
demand range marginal revenues are negative and increased volumes (from reduced fares) 
decrease revenue. Most of the above conclusions and principles apply with equal validity to 
both linear and nonlinear demand functions, the one practical exception occurring when the 

With a linear demand curve such as Equation (3-9) and its total reve-
nue curve [Eq. (3-14)], the marginal revenue curve is 
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demand function is nonlinear and exhibits constant elasticity for all price levels. That is, 
suppose the demand function were as follows: 

 
in which η and κ are parameters. This is a hyperbolic function, and it can be shown that the 
elasticity with respect to fare, or €/, is equal to —Κ and is constant for all fare levels. In this 
instance it can be shown that all of the general conclusions stated before still hold except 
that the total revenues for a given elasticity or value of €/ will not "increase to some 
maximum point and then fall until they reach zero when the fare becomes zero." Rather, if 
the demand is inelastic (i.e., ef is between 0 and -1), the total revenue will continually 
decrease with increases in volume or q. And if the demand is elastic (i.e., ef is less than -1), 
the total revenues will continually increase with increases in q until the fare is zero (at which 
point the total revenues fall to zero). 

 
Before leaving this discussion of fare elasticity, we should note two common tendencies, 

one far too common with private firms and the latter increasingly coming into vogue with 
public ones. Private transport firms when faced with distressing financial conditions or 
rising costs almost always react to those conditions with a plea for higher monetary changes 
or fares, in spite of the fact that such action can (when the demand is elastic) result in a 
decrease in total revenues, as well as a drop in total net revenues. When demand is elastic, 
especially when there appears to be excess capacity and low costs associated with higher 
utilization of existing facilities, a good case would exist for at least considering the prospects 
stemming from a fare reduction. (The dramatic fare drops invoked by the airlines industry 
in 1978 serve as but one case in point. Similarly, one must wonder about the tendency in 
the taxicab business to always meet rising costs with fare increases—even though the few 
available data indicate both elastic demand and low vehicle utilization.) By contrast, public 
transport agencies appear to have a primary concern with the extra patronage which can be 
achieved by lower fares, all in spite of the fact that (at current fare levels) demand is usually 
quite inelastic (often between -0.1 and -0.3) and that fare reduction will reduce both total 
and net revenues enormously. 
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In addition to the use of demand functions defined with respect to fares, it is common to see 
demand functions which are defined only with respect to travel time; thus, 

 
where ω and λ are parameters and t is travel time. As with fares, an analyst may calculate 
elasticities with respect to travel time using this model. 

 
It is important to note the difficulty in estimating changes in usage by employing 

components of the price functions, such as those in Equations (3-9) or (3-19). To illustrate 
this difficulty, first consider a demand function with respect to price, such as 
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illustrated in Figure 3-5a. A naive analyst might be tempted to argue that a change in fare 
results in an equal change in price. Thus, he might expect a fare drop from f0 to fx to result in 
an equal drop in price (from p0 to pi) and to change usage as indicated by the demand 
function in Equation (3-20) or Figure 3-5a. Figure 3-56 indicates the corresponding demand 
curve with respect to fares. Importantly, however, this "demand function" (and 
corresponding fare elasticity) can be used to estimate changes in volume only if the other 
components of user cost (e.g., travel time) and socioeco-nomic conditions remain constant. 
This is seldom the case as volumes change. 

 
Figure 3-6a indicates the actual impact of a fare change on the equilibrium volume and 

price for the case in which travel time (and user cost) is dependent upon volume of 
tripmaking; this figure is similar to Figure 2-6, which was discussed earlier. Linear rather 
than nonlinear (and monotoni-cally increasing) price-volume functions are illustrated for 
simplicity. A fare decrease results in a downward shift in the price-volume function as 
indicated in Figure 3-6a. Volume increases due to the reduction in user costs, just as in the 
case illustrated in Figure 3-5. However, the increase in volume causes congestion which, in 
turn, increases travel time and the user cost of travel. The net result is that equilibrium 
volume increases, but not as much of an increase as would occur without considering the 
change in travel time due to congestion. Similarly, the user cost of travel is reduced, but 
not by as much as the fare reduction would cause alone. The resulting equilibrium price and 
volume levels would be pe and qe, respectively. In the graph of fare versus volume (Fig. 3-
6b), the change in travel time results in a shift in the demand curve with respect to fare, and 
this shift must be considered. By tracing out the equilibrium volumes, prices, and travel 
times at various fares, it is possible to construct a demand curve with respect to fares 
which incorporates congestion effects. However, this construction presupposes an 
equilibrium analysis such as that in Figure 3-6a. 

Back to top 
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3-4 ANALYTICAL IDENTIFICATION OF EQUILIBRIUM IN THE  
SERVICE MARKET 

In Chapter 2 we discussed the equilibrium in the market as indicated by the demand and 
price-volume functions. Equilibrium volume and price may be identified by the intersection 
of these two functions, as in Figure 3-6a. By restricting our attention to two functions, 
identification of the equilibrium conditions was relatively straightforward and our exposition 
was greatly simplified. We should note, however, that it is possible to identify equilibrium 
directly from individual demand and performance functions, as well as to account for 
interactions among time periods, modes, and cost components. 

In introducing demand functions, we noted that it is possible to estimate different demand 
functions for individuals or subgroups in the population. These disaggregate demand 
functions may be summed to determine the aggregate demand for travel in any particular case. 
Similarly, the price of travel may be calculated by summing the different components of user 
cost (money charges, time, and effort) multiplied by their respective values. In the previous 
section we noted that some components of price may be directly incorporated in the demand 
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function so that demand might be expressed as a function of, say, travel time, fares, and 
socioeconomic conditions. It is possible to identify equilibrium travel conditions directly 
from these individual or group demand functions and appropriate performance curves. 

 
Mathematically, the problem of identifying equilibrium with this approach is equivalent 

to identifying the volume and levels of the user cost components such that all the demand 
and performance functions are correct. A representative set of equations for linear demand 
and performance curves as well as the corresponding functional notation would include the 
following: 

Individual demand functions: 

 

 
where qi is individual demand; q is the aggregate volume; t is travel time; f is the fare level; 
t(q) is a performance function; t0 is the travel time at low levels of volume; and α, β, γ and δ 
are parameters. Functional notation, such as q = q(t, f) simply indicates that the dependent 
variable q is in some manner determined by the explanatory variables t and /, as discussed 
in Appendix I. Linear functions are used in Equations (3-21) and (3-23) solely as illustrations; 
either nonlinear or linear functions could be used in practice. 

 
It is possible to further disaggregate this set of equations by defining separate 

performance functions for different aspects of user cost, such as separate functions for time 
spent riding, walking, or waiting. Corresponding demand functions would be required, 
defined with respect to these various components of travel time. Even further, an additional 
equation might be added to relate the fare level / to the volume of travel. That is, we might 
expect operators to set fares with respect to the actual volume using their facilities. We shall 
discuss different fare setting and pricing policies later; so for the moment, we shall assume 
that fare is constant for all individuals and at all volume levels. 

 
With only one demand and price function, we could represent the problem of identifying 

equilibrium on a single graph, as in Figure 3-6a. Unfortunately, the set of Equations (3-21) to 
(3-23) cannot be represented in a simple pictorial form. They can be solved on a computer, 
however, to find equilibrium volumes and user costs. 

 
The usefulness of expressing the problem of identifying equilibrium in the form of 

equations such as Equations (3-21) to (3-23) is twofold. First, these equations may be easily 
represented for computer application. Second, it permits a generalization of the parameters 
involved in the demand and user cost functions. Note that we have defined different 
parameters or weights in the individual demand functions [Equation (3-21)] to reflect the 

Aggregate demand summation: 
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values of different individuals. Each individual or group may be represented as having a 
different trade-off or value attached to the various components of user cost. It is also possible 
to make these parameter values dependent upon socioeconomic characteristics, so that, for 
example, wealthier individuals put less value on monetary payments and more on the time 
and effort incurred in travel. 

TABLE 3-2.   Illustration of Equilibrium Volumes and 
Prices with Time-of-Day Cross-Relationships 

Equilibrium Equilibrium 
Period Price Volume 

1 322 2748 
2 453 2982 
3 355 2825 
4 211 2286 
5 288 2648 
6 400 2908 
7 342 2797 
8 156 1744 

Note: Demand functions are shown in Table 3-1. The price function 
for period h is ph = 31 + 1750/(28 - 0.00Sqh). Prices and volumes are 
rounded to the nearest integer. 

In what follows we shall generally assume a single price function; that is, we assume that 
travelers are homogeneous with respect to the money and nonmoney parameters of the price 
function. This assumption is common in studies, simplifies the presentation, and permits 
the use of graphical illustrations. Unless noted otherwise, our results may be generalized in 
any instance by identifying the appropriate individual or group price functions and solving 
for equilibrium with Equations (3-21) to (3-23). 

 
Analytical identification of equilibrium is also useful when cross-elasticities are present. 

For example, in Section 3.2, we described eight time-of-day demand functions in which travel 
demand in any one period generally depended upon the price of travel in that period and in 
other periods (Table 3-1). Even with a single price function which relates the price of travel 
to the volume in a particular period, such as 

 

the problem of finding equilibrium volumes and prices cannot be accomplished graphically. 

Back to top 

3-5    NETWORK EQUILIBRIUM ANALYSIS 

One representation of transportation and other spatially distributed systems such as power 
grids or water networks and its associated analytical problems deserves particular note since it 
has been found to be useful in numerous applications. Transportation systems can often be 
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represented by a series of elements which are interconnected. For example, roadway systems 
consist of a set of individual streets, arterials, and roadways that are connected together. In a 
network model these individual components are called links or arcs and the entire system is 
collectively termed a network. The points at which links are connected are termed network 
nodes. Figure 3-7a illustrates a network of this type, which is typical for grid or rectangular 
street systems. The network consists of nine nodes (labeled A to I) and an arc between each 
node for travel in each direction. Thus, there are 24 links (indicated by the lines between each 
node); we define links such that flow can only take place in one direction on each link. 

 
In a network such as the one in Figure 3-7a, each component or link is usually assumed to 

have its own cost and price functions which depend upon the volume of traffic flow on the 
link. Thus, costs and prices are defined over individual links. In contrast, travel demands are 
usually defined with respect to travel flows between nodes. For example, there may be a 
demand function that indicates the travel between node A and node C in Figure 3-7. 
Importantly, the price of travel between two nodes (such as A and C) is the sum of the user 
costs for each link traversed. Thus, in traveling between A and C, a vehicle might traverse 
the link between nodes A and B, thereby incurring travel time and other costs PABJ and the 
link between nodes B and C, thereby incurring travel time and other costs of pBc- In this case 
the total price or user cost for the trip would be the sum of the two link costs, PAB+PBC- 

Figure 3-7. Equilibrium volumes for an illustrative network equilibrium problem, (a) Illustrative network and (6) 
equilibrium flows on the network. Note: equilibrium volumes are shown to the nearest 10 trips per hour. 

 
The use of a network representation such as the one in Figure 3-7a enables an analyst to 

account for a number of systematic effects. First, the choice of a route between two nodes can 
be examined. In many transportation systems there are alternative paths or routes to travel 
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between two points. For example, a freight shipment might travel by two different rail carriers 
over different rail lines. Also, within urban areas, there are often numerous routes to travel 
between two points. A network can allow these different route choices to be modeled. A second 
advantage of a network representation is that the effects of traffic between numerous origins 
and destinations on individual transportation facilities or services can be examined. For 
example, the traffic on the Jink from node E to F in Figure 3-7a might originate in a 
variety of places and be destined for numerous other nodes. A network model permits the 
aggregation of these various origin-destination traffic flows on the link EF to be performed in 
an effective and efficient manner. The cost and price of travel on a link will generally be a 
function of the total traffic on the link, so calculation of this aggregate volume facilitates the 
examination of travel costs. 
 

TABLE 3-3   Illustration of Equilibrium Volumes and Prices on a 
Transportation Network 
Nodal Demand Equilibrium Equilibrium 
Pair Function Volume Price 
A-C q Ac = 600 -4.4p AC 400 46 
A-I  qAI = 900-4JpAI 500 86 
D-C qDC = 600 -4.8p DC 300 62 
D-I  q DI = 800 - 4.6p DI 500 66 
G-C qGC = S00-4.1pGC 400 85 
G-I qGI = 650-4.3pGI 450 46 

Note: Prices are given to the nearest dollar and volumes to the nearest 10 trips. 

To illustrate the use and results of equilibrium network analysis, suppose that six demand 
functions as shown in Table 3-3 exist for travel between various nodes in the network 
appearing in Figure 3-7a. For each link we assume that the user cost of travel is p, = 6.2 + 
350/(28 - 0.008<7,). Finally, we make the assumption that individual travelers choose the route 
through the network which minimizes their own travel cost. Thus, our equilibrium problem 
consists of six demand functions, 24 price functions (one for each link), plus physical 
restrictions that the traffic entering a node must either continue on further links or be destined 
for that node. The resulting equilibrium internodal volumes are shown in Table 3-3, while 
the equilibrium flows on each network link are shown in Figure 3-76. As can be seen in Figure 
3-76, some of the flows between particular nodes take alternative routes through the network. 
Also, links between adjacent nodes are used in both directions of travel, as would occur in 
roadway networks. 

 
In passing, we might note one common assumption which is made in analyzing the choice of 

routes on transportation networks. Suppose that all travelers between two nodes are identical 
with respect to the value that they place on different components of user travel costs. Moreover, 
suppose that each traveler chooses the route through the transportation network which 
minimizes his or her trip cost, which is the sum of the user costs incurred on each link of the 
chosen route. Together, these two assumptions lead to what is known as a "user equilibrium" 
which implies that each traveler attempts to minimize his or her own travel cost. 

An interesting property of a user equilibrium is that each route between two nodes that is 
used by the travelers between those nodes must have equal travel cost. If one route had lower 
cost, then travelers would switch to that route and thereby reduce their travel cost. Routes that 
do not have any flow between the two nodes must have higher travel costs; otherwise, some 
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traffic would divert to these routes. These properties are typically used in computer solution 
algorithms to identify desirable routes and the corresponding volumes and prices on the various 
links in a transportation network. 

 
The examples so far in this section have used transportation networks and links as models of 

actual facilities spread over space, such as roadways or rail lines. We should also note that it is 
possible to represent services or other abstract phenomena as links in a network. For example, 
airline route maps are typically drawn as a network of links and nodes, even though there is 
no physical connection existing between nodes. In this case a "link" consists of a scheduled 
service of airline flights. Similarly, a link attached to a destination node might have an 
associated user cost which represents the cost of parking at the destination zone. In formulat-
ing network models it is only required that each link have its own cost and price functions and 
that the total user cost of traveling between nodes be equal to the sum of the prices incurred in 
traveling on each link of the route. 

 
We might also note several disadvantages of using complicated network models for 

transportation analysis. First, these models are typically expensive to formulate. Developing 
appropriate cost and price functions for each link is particularly burdensome and, in practice, 
quite crude approximations are often made. Moreover, analysis of equilibrium travel flows 
usually requires computer analysis, which may be quite expensive. Avoiding additional 
computational costs often leads to rigid representations of demand and cost functions which 
may be poor representations of reality. Indeed, commonly available computer software 
cannot even include price-sensitive demand functions for internodal travel. Before introducing 
complicated network models, analysts should consider the usefulness of simpler conceptual 
models, which may preclude some systematic interactions but provide a richer representation 
of the various components of demand and cost, as described in the next chapters. 

Back to top 

3-6 Problems  
 

P3-1)   Suppose the cost associated with operating a pipeline can be modeled as: 
 

vc = (2.5)(s 0.5 )(q2) 
 
where q is volume in thousands of gallons, s is pipe diameter (ft) and vc is variable cost in $ 000s 
per year 
 
    Further suppose that the capital cost of pipe placement is:  c =  10 (s 0.6) where s is pipe diameter 
(ft) and c is $ 000's per year. 
 
    a)  Develop the SRTC, SRVC, srmc, sravc, and sratc for a pipe of diameter 10 ft. 
 
 
    b)  Develop the LRTC, LRVC, lrmc, lravc, and lratc curves for the case in which only pipe of 
diameter 6 ft., 10 ft. or 16 ft. is available. 

Back to top 
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Along with an estimate of system or facility usage, a second important concern of planners is the 
cost associated with facility construction and operation. To obtain an accurate estimate of costs 
requires specification of the human and material resources—or factors of production—required to 
produce a particular quantity and quality of infrastructure service. As will be seen, the required 
input of resources depends crucially upon investment decisions and system usage, among other factors. 

As we originally discussed in Chapter 1, it is also important to be quite clear about the point of view 
which is adopted to specify costs of service and facilities. Private operators typically consider only 
those costs which they experience, neglecting a wide range of costs incurred by users or society as a 
whole. Users of facilities consider only their own private costs, ignoring the costs incurred by other 
users, bystanders, and the taxpayers who may subsidize or be disadvantaged by a particular facility. 
In what follows we shall adopt the viewpoint of society as a whole, so that the total required amount of 
human and material resources is considered. As argued in Chapter 1, this viewpoint might be 
appropriate for facilities or services which involve federal funding. This definition of costs includes 
not only the labor and material inputs required to provide, operate, and maintain services  and 
facilities or ways but also will include the personal travel time, effort, and hazard costs expended by 
infrastructure customers. While such a viewpoint clearly has more applicability in the public than in 
the private sector of the economy, private cost functions can be developed from the corresponding 
social cost functions. For example, the "user cost" function of tripmakers described in Chapter 2 
represents a private cost function which, as will be seen, forms one component of social costs. 
Private cost functions will be discussed more extensively in later chapters. 
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4-1    DESCRIPTION AND COMPONENTS OF COST FUNCTIONS 

To determine costs, it is first necessary to describe the physical systems used and their operations. 
From this, the required factors of production may be specified, including labor and material inputs. 
Ideally, the relationships among the production or output (given by the level of facility usage) made 
possible by a technology, operating policy, and both the labor and material inputs will be stated in 
parametric or mathematical form. These relationships are usually called production functions and 
provide insight into the extra resource commitments required for increases in either the quantity 
or quality of output. 
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Although fully specified production functions for an existing or proposed facility would be very 
useful, they are usually not available. Instead, engineering studies provide a set of reasonable 
technological and physical options for particular types of facilities. For example, one option in a 
particular situation might consist of a four-lane divided freeway or a pulverized coal combustion 
power generation plant. However, even within a particular option, an engineer must make judgments 
concerning the best technology in particular cases (such as concrete or asphalt pavement type). In 
developing options, engineers attempt to select those technologies which will require the least 
resources and, in turn, have the lowest cost for a given quantity and quality of output. 

Once production functions or technological options have been specified for the range of output 
levels deemed worthy of consideration, they must be transformed into cost functions or relationships 
which express the dependence of cost upon the quantity and quality of usage, given the specific 
technological features of the facilities used. Simply stated, these cost functions are developed by 
applying factor prices (i.e., the prices of the factors of production) to production functions or 
technological options. Thus, each of the labor and material resources required by the facility or 
system is multiplied by its price and the individual input costs are then summed to obtain the total 
social cost. Note that the development of cost functions requires both the specification of input 
factors (often thought to be the task of engineers) and the estimation of appropriate factor prices for 
present and future material and labor inputs (which is traditionally a problem for an economist). It is 
not idle to suggest that cost functions can best be developed by utilizing the joint efforts and talents of 
engineers and economists, working side by side. 

Cost functions will generally include the following items: 

• Fixed (or nonseparable with respect to the volume of usage) facility and social dislocation costs. 
• Variable facility costs. 
• Facility customer costs.  For travel, these include: 

o Fixed vehicle ownership costs. 
o Variable vehicle costs. 
o Variable user travel time, effort, and hazard costs. 

• Other costs (e.g., external air and noise pollution costs). 

The term fixed and variable will be described more extensively in a later section; for the time being, 
though, fixed costs mean those which remain fixed and do not change with increased usage of a 
facility while variable costs are those which do vary or change with increased usage of a facility. 

The last cost item, "other costs," is the first to warrant some explanation. Generally, it is meant to 
include external costs which are imposed on others (especially nonusers) as a result of infrastructure 
facilities. Examples of such losses are air pollution and noise costs for residents near infrastructure 
facilities such as airports. Clearly, these types of externalities are not unique to public situations but 
apply equally to both public and private sectors. (Consider, for example, the effects of noise, air, or 
stream pollution caused by either your neighbor or a private firm.) However, private decision makers 
generally ignore external costs. It should be recognized that to properly account for externalities in 
the public sector, but not in the private sector, is to establish a double standard for investment policy 
and thus to at least permit inefficient decisions to be made and an improper allocation of 
investments between the public and private sectors. 

 
It is evident that, from a social perspective, externalities should be but usually are not accounted 

for in both the public and private sectors, as long as overall economic efficiency is a goal. This 
introduces the practical problem of analyzing both the relative and overall worth (to the public) of 
public investment projects. For determining the overall worth or economic feasibility of public 
investment, all externalities should be properly measured and accounted for when computing the total 
net benefit; clearly, those public projects with negative total net benefit after inclusion of external 
costs and benefits (but with a positive total before their inclusion) should be rejected, even if 
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externalities are not treated for private investment and assuming that there are no significant 
feedback effects. 

 
Regulation provides an alternative to this ‘privatization’ of external costs.  For example, air 

quality criteria are set to avoid adverse health effects and emission regulations are imposed to 
insure that the air quality standards are not exceeded.  In this case, private firms will pollution 
control or prevention costs to be in compliance with emission regulations while no external health 
costs would be incurred.  In the absence of such regulations, widespread public health costs could 
exist. 

 
Second, there can be no doubt but that the measurement of external costs is extremely difficult 

and somewhat subjective, if at all possible. This difficulty is particularly acute in the absence of 
market mechanisms to provide even approximate indications of real losses. However, as a means of 
estimating the external costs, one might argue that a reasonable proxy would be to determine the 
resource costs required to eliminate the nuisance or to reduce it to a "tolerable" level. In the first 
instance the likelihood of overstating the external cost is high, while in the second it can easily be 
overstated or understated—depending on one's judgment of "tolerable." (More will be said about this 
later.) And, finally, in matters of this sort, it is far too easy (if not common) to improperly label 
income transfers as external costs and thus to double-count (i.e., one man or group loses, but 
another gains to an equal extent, thus resulting in no real loss or external cost to society). 

 
An example may be useful in regard to such valuations of external costs. Suppose that retail 

sales of particular stores decline due to the traffic disruption caused by construction. Are these 
sales declines a real cost to society? The direct answer is, no, they are not. Presumably, sales lost in 
the vicinity of the construction will be made elsewhere, so the lost sales represent a transfer of 
income from nearby store owners to those further away. The only increase in real cost which may 
occur in this relocation of purchases is the increased travel cost and inconvenience of using other 
stores. Thus, lost retail sales are not generally a real cost of construction. Of course, decision makers 
may consider this redistribution of sales income inequitable, but this judgment is not directly an 
economic efficiency matter. 

 
All in all, while the analyst should make every attempt to measure and include all external costs—

and benefits—in the evaluation of public projects, he or she should remain apprised of the possible 
inconsistencies and inaccuracies which can result from failure to examine the circumstances for both 
public and private sectors from estimating the external effects. 

 
Additional discussion is warranted with respect to some of the other cost items. First, these cost 

items generally apply to the cost functions for a particular facility (or plant size) at a specific point in 
time. Second,  the costs should be thought of as those pertaining to a particular pattern and mix of 
flow or output which occurs during some particular year (or at some more specific point in time). 

 
The fixed facility costs for a new or expanded facility will include the costs for construction, land 

acquisition, and social dislocation (i.e., the costs for moving displaced parties or firms as well as 
neighborhood disruption); in those instances where the market prices do not reflect the true costs 
or the marginal opportunity costs, the market prices should be changed accordingly. Particular care 
must be taken in evaluating either the cost of land which is being acquired for new or expanded 
facilities or that of land being used for existing facilities and which continues to be used for 
transport facilities. Again, it is the marginal opportunity cost which is appropriate rather than the 
book value or a zero price (which is occasionally assumed if the land is already being used for an 
existing facility or if it is public property). 

 
Marginal opportunity cost is the market value of a resource in a perfectly competitive market 

situation where all alternative uses are properly considered. For those structural facility items which 
wear out over time and which must be replaced in some later years (but during the analysis period), 
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the analyst must be careful to use the factor prices and appropriate technologies for that later point 
in time rather than simply assume that the replacement costs will be equal to the initial ones. 
Factor prices are the opportunity costs of the material or labor inputs (and the material or labor 
inputs are often referred to as the factors of production). The use of marginal opportunity cost to 
value fixed resources again represents the use of social rather than private costs of resources. 

 
For example, by continuing to use land for infrastructure facilities, society as a whole foregoes the 

opportunity for alternative activities on this land; the net value of these foregone activities is 
represented by the opportunity cost of the land. It seems likely that the land acquisition costs employed 
in engineering cost studies are often below the proper opportunity cost. More specifically, in the 
former case, one often finds that engineers evaluate the cost of land used for facilities (especially 
that for existing facilities or that which is converted from other public uses) below the value which it 
would have had in alternative private, commercial, or other public uses (such as use for zoos, 
recreational areas, or schools).  

 
From an environmental perspective, land with vegetation provides carbon sequestration 

(thereby reducing greenhouse effects), urban cooling and possibly recreation.  Again, 
quantification of these benefits can be difficult. 

 
For transport services, fixed vehicle costs present a reasonably difficult problem because 

of the complexities of establishing the relationship between vehicle ownership and 
tripmaking on specific facilities. For example, as a new facility is built or an existing facility 
expanded, does increased automobile ownership result which otherwise would not have 
occurred? Or do people merely make more frequent trips? How is ownership and usage 
related to the facility size? And so forth. In some situations the vehicle ownership costs could 
be regarded as variable rather than fixed costs (i.e., they would be regarded as separable with 
respect to changes in output), while in others it would be more appropriate to regard them as 
being fixed. For instance, that portion of vehicle ownership costs which does not depreciate 
with use (i.e., that portion which is not variable with tripmaking or mileage) could be 
regarded as fixed in those instances where output increases merely represent more frequent 
tripmaking by the same vehicle owners. By contrast, if increases in output are generated by 
new tripmakers and if they require additional vehicles to be put into use, the vehicle 
ownership costs might be regarded as variable with respect to output. The latter type of 
situation would be more appropriate for work-trip commuting, for example, and in those 
instances where a constant and repetitive day-to-day or week-to-week pattern is followed by 
the same group of travelers. Also, the relative ease and quickness with which travelers can 
switch over to other modes, or from driver to car poolers and can sell used cars probably 
induces drivers to take a longer-term view of their private variable costs rather than simply 
to account for the day-to-day out-of-pocket travel expenditures (in time, money, and 
effort).  At any rate, for our purposes, it will be assumed that the vehicle ownership costs can be 
placed on a variable "per vehicle trip" basis, along with the vehicle operating and maintenance costs.7 

Variable user travel time, effort, and hazard costs at different levels of tripmaking (or output) and 
with facilities of varying capacity are components of the "user costs" described in Chapter 2. At this 
stage we will not dwell on the difficulties of properly assessing these cost components other than to 
emphasize the importance of doing so and to note the extent to which the total costs hinge on their 
measurement. While research on the value of travel time is far from complete or even reliable, it 
appears reasonable to state that some analysts have concluded that commuter travel time savings 
are valued at about one-quarter of the individual's wage, and intercity trip time savings are even 
higher valued. In the former case the travel time cost component would represent at least 25% of the 
total door-to-door trip cost for downtown commuter trips (with full parking and vehicle ownership 
costs, as well as others, included) and an even larger proportion of total door-to-door trip costs for 
urban trips in general. 
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Note that price and fares are not included in this list of total costs. Fares simply represent a 
transfer of wealth from users to facility operators, not a net loss to society. Similarly, for all of 
these cost items, no taxes should be included other than to the extent that they are representative 
of and proxies for other resource costs (such as those for policing or administration). We exclude 
such transfer payments to simplify calculations. An alternative approach would be to include such 
transfer payments as a cost to users and a benefit to recipients (i.e., providers or governments). In 
examining the difference between benefits and costs in order to evaluate investments, these transfer 
payment benefits and costs would cancel out: 

(Benefits + transfer payments) - (costs + transfer payments) = benefits - costs 

Thus, entirely omitting transfer payments simplifies the analysis. 

Back to top 

4-2    THE FUNCTIONAL FORM OF COST RELATIONSHIPS 

Beyond noting or assuming an approximate form for the cost functions to be employed, no major 
attempt will be made here to describe them accurately or specifically (other than for the discussion of 
special topics).8 Needless to say, the formulation to be used will be an oversimplification but, 
nonetheless, will still be sufficiently realistic to properly portray cost functions for a wide range of 
circumstances. Chapter 12 discusses the various methods which are used to formulate and to 
estimate cost functions. 

 
As an initial point, the cost function is very much dependent upon the technology and level of 

usage or output. By technology, we mean both the nature and extent as well as the manner in which 
facilities and services are operated. Advanced technology, more capacity, or more usage implies the 
commitment of extra resources and thus of extra costs. Mathematically, one may speak of costs as a 
function of the technology, capacity, and output or usage. Further, the cost function has a direct and 
important relationship to the time dimension or, more specifically, to the time available for adjusting 
the technology and operations. For example, over a short period of time or, as an economist would say, 
over the short run, only relatively minor adjustments or additions can be made to the technology 
(i.e., to the existing facilities, rolling stock, type of operation, etc.), and thus increases in output or 
usage will result mainly in extra costs for increased wear and tear, energy consumption, congestion, 
and the like. Over the long run or over a fairly long period of time, the technology can be 
substantially altered (e.g., both the type of and usage of technology can be changed, rights-of-way can 
be acquired or abandoned, rolling stock can be replaced, and fleets can be increased or decreased, etc.), 
and thus cost changes can stem from changes in either the technology or level of output or usage. As a 
consequence, it will be necessary to make a distinction between short-run and long-run cost functions. 

 
Another way of thinking about the distinction between short-run and long-run cost functions 

would be as follows: A short-run cost function describes the relationship between cost and output for 
a particular facility and its operation and thus can be used for determining the actual day-today 
operating conditions and costs; the long-run cost function by representing the relationship among 
costs, output, and facility size or capacity describes the costs to which one can adjust or adapt over a 
long time frame and thus aids importantly in the investment planning process. Accordingly, it is 
useful to think of the short-run cost function as an operating function and the long-run cost 
function as a planning function. 

 
Put differently, long-run cost functions are used to help determine which technology should be 

employed, how large a facility to build, as well as to aid in the process of deciding whether any 
facility should be built and, if so, when it should be provided. By contrast, short-run cost functions 
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describe the costs which will stem from operating a given facility at various volume levels and 
thus are used to help decide which level of output or volume is most appropriate for that specific 
facility and operation. 
Some examples might be helpful in illustrating the differences. For an airport, changes in 
operating rules (e.g., takeoff and landing priorities, hours of operation, and ground traffic control) 
would be considered in a short-run cost function. Major runway or terminal investments would be 
considered in long-run cost functions. For transit services, changes in routes and schedules are 
short-run decisions, whereas capital construction projects (e.g., subway investments) are long run. 
Purchases or leasing of additional vehicles might or might not be included in a short-run cost 
function, depending upon the analysis purpose and the flexibility of such changes. 

Back to top 

4-3 SHORT-RUN COST FUNCTIONS 

Let us characterize the short run cost function for some given facility and technology as follows: 

 
That is, given some facility, the short-run total costs during some year t will consist of fixed- and 
variable-cost components, or costs which are fixed or variable with respect to changes in output 
or volume q. For a given facility, some factors of production, such as rights-of-way, maintenance 
facilities, garages, and rolling stock, are fixed over the short-run, regardless of whether q is large or 
small. Other factors of production, such as fuel, tire wear and tear, and user travel time, will vary 
or change as q rises or falls and thus are variable in the short run. Also, the fixed costs are 
common to and inseparable among all units and levels of output q 

. 
One might ask: What is the appropriate value or cost to be used for the fixed factors of production? 

Should it be the book value? The undepreciated balance? The value of any outstanding bonds? The 
replacement cost? Simply, the appropriate value for the fixed costs (from the standpoint of resource 
costs to society, which is the viewpoint being considered here) is the value of the fixed factors of 
production in their best and highest alternative use; usually this is termed the foregone opportunity 
costs of the fixed factors of production and denotes the value of the opportunities which we must 
forego if we utilize the fixed factors of production for this particular facility. 

 
However, appropriate assessment of the opportunity value of existing facilities requires 

consideration of the principle of sunk costs. Suppose, for example, a new fleet of buses was 
purchased for $2 million only one year ago with funds obtained from revenue bonds; assume further 
that only part of the revenue bonds has been paid off, the remainder being $1.9 million. Would the 
remaining $1.9 million in bonds need to be considered when we were estimating the opportunity value 
of the buses and considering the economic desirability of continuing to operate the bus fleet rather 
than (say) abandon bus service altogether? If our concern and point of view is the economic welfare of 
society as a whole, then consideration of any remaining revenue bonds (as an economic matter to the 
public at large, and aside from legal commitments) is irrelevant; the original resources which were 
committed when the vehicles were purchased are sunk or irrevocably expended. The only question 
now is what is their value in the best alternative opportunity, whether higher or lower than the book 
value or the value of the remaining bonds. Also, money payments made by users or others to pay off 
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remaining revenue bonds only represent a money transfer (from those making payments to those 
holding the bonds) and do not represent any net economic gain or loss for society. 

 
Another example of sunk cost may be helpful. Some years ago, a large Middle-Atlantic city carried 

out planning and engineering studies, as well as constructed an experimental facility, to test the 
feasibility of building a rubber-tired rapid transit line. Also, a busway was built which could then be 
incorporated into the rubber-tired rapid transit facility if, subsequently, it were to be built. Following 
this initial work, the public transit authority decided to reevaluate the rubber-tired rapid transit 
alternative and to compare its costs and benefits with those stemming from construction of a 
conventional rapid transit line, a light-rail transit line, or an express bus facility instead. In turn, the 
question arose: Should the costs already incurred (for planning, engineering, right-of-way 
acquisition, construction, etc.) be included within the benefit-cost analysis? The answer is: NO. The 
prior costs represent the value of resoures which were irrevocably committed in earlier years, an act 
which cannot be altered. Thus, the prior dollar payments are sunk costs and inadmissible for our 
purposes. However, to the extent that the facilities which remain from those earlier-year expenditures 
do have value in alternative uses today, then such an opportunity value should be included as part of 
the costs. Also, if the earlier-year expenditures reduce the costs for completing another alternative, 
then that difference should be reflected. But, in any case, the specific dollar payments made in earlier 
years are irrelevant today and hereafter. 

 
A final technical problem remains for discussion before any more detailed characterization of the 

cost functions is attempted. This problem regards specification of the time interval for the output 
measure. Costs can be correctly computed only by relating the output or flow levels for some 
specified (albeit arbitrary) time interval to the particular characteristics of that facility and by 
accounting for changes in factor inputs and their prices (or opportunity costs). In other words, given 
the output or flow pattern for (say) each hour over time (assuming that this is the most appropriate 
unit time interval for output as related to the facility and its performance characteristics), the costs 
for the pattern of flow, flow rate, and flow mix can be determined. Each different pattern of flow and 
flow rate may have a different total cost. As a consequence, cost functions of the sort to be used 
here are appropriate or accurate only for the implied flow pattern. 

 
To be more specific, it is necessary to use flow or volume per hour (or some fairly short time 

interval) as the output measure for situations because of hourly fluctuations in demand and because 
a larger unit time interval (such as volume per day) would not permit a realistic assessment of the 
actual service conditions. For example, a volume of 50,000 vehicle trips per day on a four-lane 
highway will not permit determination of the congestion and travel time costs without first 
specifying the hourly pattern of flow. Spread uniformly throughout the day, 50,000 vehicle trips per 
day would cause little or no congestion and the daily travel time costs would be small, but if four hours 
a day had flows of 6000 vehicle trips per hour and the remaining 26,000 trips were spread uniformly, 
the total daily travel costs would be much larger. By use of this unit time interval for the output, it is 
thereby implied that the hourly flow remains constant over the short-run time period (say a year) for 
which the total costs are aggregated. 

 
In turn, the simplest (though still arbitrary) procedure for placing the fixed costs on the same 

hourly output time interval basis as the variable costs is by making use of capital recovery factors, 
which are defined as follows: 

 
 
Use of this factor implies that the discount rate remains constant over the n year analysis period. 
With varying discount rates, the analysis is more complicated, but one may still obtain a uniform 
allocation of fixed costs over time. Chapter 8 will discuss the selection of an appropriate interest 
rate for this purpose. 

 
in which (A\P, i, n) or crf ijn  is the capital recovery factor for a n year 
analysis period and a discount rate of i (expressed as a decimal fraction). 
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The capital recovery factor is equivalent to a sinking fund factor plus interest; when multiplied 

times fixed costs, the product will be equal to the equivalent uniform annual fixed costs. Use of 
this procedure is tantamount to regarding the product of the capital recovery factor and fixed 
costs as the annual income stream which is foregone by virtue of using the fixed factors of 
production in the fashion described rather than using them in the "best other alternative use." 

 
Finally, if the time interval for the output or volume is, say, an hour, the annual fixed costs can 

be converted to an hourly basis by dividing the equivalent annual payment by the number of hours 
in a year. 

 

That is,  

where 

 



 9 

EAFCxt = equivalent fixed costs for facility x during year t or (A\P, i, n) times the opportunity value 
of the fixed factors of production 

Figure 4-la illustrates the short-run total cost function shown by Equation (4-1), as well as its 
variable- and fixed-cost components. For most public transport facilities the short-run total 
costs will tend to increase with q at an increasing rate—as indicated in Figure 4-la—if user time, 
effort, and inconvenience costs are included along with those for constructing, maintaining, and 
operating the physical guideway and rolling stock. 

Back to top 

4-3-1 SHORT-RUN UNIT COST FUNCTIONS 

Figure 4-16 illustrates various unit cost functions which can be derived from the short-run 
total cost function. The three unit cost functions are, respectively, sratcXft(q), the short-run 
average total cost at flow q; sravcx,t(q), the short-run average variable cost at flow q; and 
srmcXft(q), the short-run marginal cost at flow q. Mathematically, these unit cost functions can be 
represented as follows: 

 
The derivatives in Equations (4-6) and (4-7) represent an approximation since, in actuality, q can 
only assume integer values and thus the cost function is discontinuous. Appendix I describes both 
the derivative and difference functions. 
The short-run average total and average variable cost functions are straightforward, definitionally, 
and thus need little further explanation. Graphically, the former may be viewed as the slope of a 
line from the origin to the short-run total cost function, while the latter may be viewed as the slope 
of a line from the threshold on the vertical axis (or point where the short-run total cost function 
intersects the vertical axis) to the short-run total cost function. Put differently, if travelers—whether 
using transit or private autos—generally experienced the same (average) time, discomfort, effort, and 
expense when making trips and generally made or perceived no money payment other than to cover 
maintenance and operating costs, then they would be subject to short-run average variable costs. If, 
however, fares for transit or tolls for highway facilities include a surcharge to exactly cover the fixed 
construction and facility costs as well as the variable operating costs, then private user costs would 
equal the short-run average total costs. 
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The short-run marginal cost function, however, is less straightforward and for this and other 
reasons deserves more attention. This function defines the short-run marginal cost at flow q, an 
amount which also is (approximately) equal to the slope of the short-run total cost function at flow q 
(i.e., its derivative). A better definition is that the short-run marginal cost is equal to the increase in 
short-run total cost which occurs when the flow q is increased by one unit That is, srmcXit(q) is equal to 
the increase in short-run total costs for facility x which occurs when the flow q increases from q - 1 
to q. Algebraically, this is 
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Referring to Figure 4-26, it is apparent that short-run marginal cost srmcXit{qi)—as indicated by 
the heavy vertical bar—is equal to the increase in either the total costs or the total variable costs 
which resulted from a unit increase in the flow rate from qx - 1 to qu the latter being equal to the 
shaded area in Figure 4-26. 
 

Also, in this discussion of short-run costs, another identity should be mentioned, and that pertains 
to the relationship between short-run marginal costs and short-run variable costs. As pointed out, 

marginal costs represent the increase in total cost which stems from a unit increase in output or flow 
rate. But since only the variable costs can change during the short run, the marginal costs reflect 
only changes in the total variable costs or in SRVCx(q). As a result, short-run total variable costs 
with a flow rate of qx are simply the sum of short-run marginal costs experienced at all flow levels 
between 0 and qx. Mathematically, this is 

 

since, when q is zero, SRTC x (0) is equal to F x  (the fixed costs) and SRVCx{0) is equal to 
zero. 

 
The identities shown in Equations (4-11) and (4-12) can also be illustrated by the simple 

example shown in Figure 4-3. If the flow rate were 4 vehicles per hour (say), then 

 
the last of which follows from the definition of short-run average variable cost shown in 
Equation (4-5). 

 

 
Since increases in short-run total cost can stem only from changes in variable costs (as the fixed 
costs, FXft, are indeed fixed or invariant with respect to q), it should be clear that 
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It is important to give meaning to the short-run marginal cost and the above relationships; 
indeed, they represent more than mere mathematical abstractions and underlie the reasoning 
and push for the replacement of existing facility pricing policies with marginal cost pricing. 

 
First, most public highways presently use an approximation of short-run average variable 

cost pricing. That is, travelers when using highways are faced with user costs (including uniform 
fares, other money outlays, travel times, and discomfort levels) which, when combined, are 
approximately equal to short-run average variable costs. This situation is roughly equivalent to 
using a short-run average variable cost pricing policy as a means for governing the amount of 
use of highways. Of course, this observation is only approximately true. To some extent, 
highway construction costs are charged to users as part of gasoline taxes, thus pushing user cost 
above short-run average variable cost. But the opportunity cost of land is usually undervalued 
and pollution costs are not included. Users of privately operated, unsubsidized transport services 
generally incur short-run average total costs; otherwise the private firm would find that their 
own costs exceeded their revenue. Before the advent of extensive subsidization of operating 
expenses, transit systems also used an approximation of short-run average variable cost pricing. 

Second, if we wanted to use short-run marginal cost pricing—that is, to have travelers face the 
short-run marginal costs rather than short-run average variable costs—then at a flow level of say q i 
a congestion toll or fare equal to srmcx>t(qi) - sravcx,t{qi) would have to be imposed (see Figure 4-
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26). Moreover, all of the qx travelers would each incur the marginal cost price, which is simply equal 
to the average time, effort, discomfort, and money expenses each face or perceive [or sravcXyt(qi)] plus 
the congestion toll surcharge, the total being their user cost. 

At this point we might ask: Why should travelers pay a marginal cost price instead of the long-
standing average variable cost price? And, why should each of the q i travelers and not just the q ith 
traveler pay the same marginal cost price of srmc^Cgi)? The rationale is as follows: 

1. If the flow rate (measured in, say, they otherwise would. The combined increase in travel time, 
crowding, and discomfort which is experienced collectively by all q± users (when the q\t\\ person is 
allowed to jump onto the bus or highway) is equal to the short-run marginal cost of srmcXjt{qx). 
That is, the short-run marginal persons per hour) using a transit line or a highway is allowed to 
increase by one additional person per hour, then the users of the transit line or highway will all 
experience slightly higher delays, crowding, and discomfort than cost indicates the additional costs 
which accrue to everyone as a result of adding one additional passenger. If you will, they indicate the 
social costs stemming from the added rider, while the average variable costs simply represent the 
private costs, the latter of which would permit riders or drivers to ignore the costs imposed on 
others as well as themselves. (The difference between the social and private costs are equal to the 
extra congestion and other such costs, or the extra costs imposed on other travelers when additional 
travel is made.) 

2. When the Qith rider or driver (per hour, say) is added to the transit line or highway, we are not 
simply adding another rider or driver at the end of the hour or at the end of the line; rather, we are 
increasing the flow rate and thus are "packing in" more riders or drivers per hour onto the same 
number of buses or lanes of highway. Thus, the extra congestion or crowding results from a higher 
flow rate (or, say, the number of people an hour) and not from adding another rider or driver at the 
end of the line. Congestion or crowding is a group phenomenon which results from the size of the 
group collectively. And no one member of the qx group of riders or drivers is any more or less 
responsible for the last increment of conges tion—as measured by the short-run marginal cost or 
srmcXit{qi); this last increment of cost is caused by the collective action of all q i travelers. In short, 
it would inappropriate to charge the first rider on a bus (or first driver getting onto the highway) 
an amount equal to srmcx>t(l), the next one an amount equal to srmc Xft (2),..., the next to last one 
an amount equal to srmcXjt(qi- 1), and the last one an amount equal to srmcXjt(qi). 

3. This discussion of marginal and variable costs is also relevant for power generation and 
telecommunications.  Telecommunications is often charged with a flat rate independent of usage.  In 
contrast, power is often charged by an average rate of generation and transmission.  However, in the 
power generation markets, providers are paid the marginal cost of generation at any particular time.  

Back to top 

4-3-2    AN EXAMPLE OF SHORT-RUN COSTS 

A specific example may be helpful. For this purpose let us assume that the variable costs for vehicular 
traffic on city streets can be represented by the following linear short-run average variable cost 
function: 

 
which vary with speed, and t(q) is the travel time per mile for a flow rate of q. Throughout this 
example, the subscripts x and t (to represent the facility and year) will be dropped for convenience. 
Also, let 

 
where srauc(q) is the short-run average cost per mile at flow rate q, T is 
the parameter value for operating costs (dollars per mile) which do not 
vary with the flow rate or speed, v is the parameter value for travel costs 
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where Vmax is the travel speed at very low volume levels and d is a speed reduction parameter for city 
streets; this function is appropriate only for values of q less than Vmax/d. 

 
This results in short-run average variable cost of 

 
Since the total variable costs, or SRVC(q), are equal to q times srauc(q), and given the definition 
for short-run marginal costs as shown in Equation (4-7), we get 

 
 
 

For illustrative purposes, let us use the following parameter values: 
 

 
in which both are measured in cents per vehicle-mile. Also, 

 



 15 

The two unit cost functions, sravc(q) and srmc(q), are plotted in Figure 4-46 and the total variable 
cost function, SRVC(q), is shown above in Figure 4-4a. 

 
Suppose that in this particular situation, the flow rate was to increase marginally (or by one unit) 

from 1999 vehicles per hour to 2000 vehicles per hour. How would this marginal increase change the 
various costs? What would the unit costs be, and how should they be interpreted? 

 
First, using Equations (4-19), (4-20), and (4-21), the unit costs and associated trip times for the two 

volume rates would be as shown in Table 4-1. As a consequence, to add one more vehicle per hour 
onto the roadway—and thus to slightly increase congestion on it—would increase the average travel 
time per mile t(q) by a tiny increment, or from 299.8 to 300 seconds per mile. Thus, each person 
would suffer a slight increase in his delay and discomfort portion of the average trip cost, an increase 
which is reflected by the increase in average trip cost or sravc(q) from 35.35 to 35.37 cents per mile. 

TABLE 4-1.   Illustration of Short-Run Average Variable Cost, Marginal Cost, 
and Travel Time on a Roadway 

Hourly Flow Rate (q) 
1999 2000 

Short-run average variable cost, 35.35 35.37 
sravc(q), in cents/vehicle-mile 

Short-run marginal cost, 74.16 74.26 

 

 



 16 

srmc(q), in cents/vehicle-mile 
Travel time, 299.8 300.0 

t(q), in seconds/mile 

However, even though each individual vehicle experiences only a 0.2-second 
increase in average travel time, in total the extra time for all 2000 vehicles amounted 
to an extra 0.2 seconds for each of the first 1999 vehicles (or a total of 399.8 
seconds) and 300 seconds for the 2000th, or 699.8 seconds in all. The extra vehicle 
which entered the flow is unaware that an extra 399.8 seconds in delay to the other 
1999 travelers has resulted from his entry—since he feels only 300 seconds or the 
average travel time; thus, time added to others can be regarded as external to 
individual users. 

 
Second, what gives rise to the marginal cost of 74.26 cents per mile for the flow rate 

of 2000 vehicles? And what does it mean? Recall that the marginal cost is equal to 
the increase in short-run total cost (or, equivalently, to the increase in the short-
run total variable cost) which occurs when the flow rate is increased by just one unit. 
Thus, when the flow rate is increased from 1999 to 2000 vehicles per hour, the 
additional cost to all q vehicles—or extra total cost—will be about 74.26 cents. This is 
the accumulated extra cost which is experienced, collectively, by all 2000 vehicles 
and represents the combined user cost of the extra 0.2 seconds which is added onto 
each of the first 1999 vehicles plus the cost of the 5-min trip to the 2000th tripmaker. 
The disutility experienced by the first 1999 vehicles—or the difference between srmc 
(2000) and sravc (2000)—is of course not felt by the 2000th vehicle; it is an external 
cost and in the absence of a congestion toll will be ignored by any individual vehicle in 
the flow. 

 
One might ask: Who is responsible for the marginal cost? Using our same example, 

we noted that the marginal cost associated with a flow rate of 2000 was 74.26 cents. 
Since it is the extra total cost which was added when the 2000th vehicle entered the 
flow, we might be tempted to say that the last vehicle arrival, or 2000th vehicle to 
enter the flow, caused this extra cost and thus was responsible for the additional cost. 
However, this would not be correct. This marginal cost stemmed from a unit increase 
in flow rate. Specifically, in this case, it is the extra cost which occurred when 2000 rather than 1999 
vehicles jammed onto a highway facility during an hour, without regard for when during the hour 
"the" extra vehicle arrived. In short, neither the position in line nor which vehicles were there first is 
pertinent. The extra cost stemmed from the extra congestion occurring when 2000 rather than 1999 
vehicles used the facility. Also, if the first 1999 vehicles had not been there, the "last" vehicle would 
not have "caused" the congestion (in total) to increase as indicated by the marginal cost. Each and 
every one of the 2000 vehicles contribute equally to the occurrence of the congestion and to the 
value of the marginal cost at the margin. 

Back to top 

4-4   LONG-RUN COST FUNCTIONS 

The "fixed capacity" cost relations discussed in the previous section should be regard as short-run 
cost functions since it is assumed that the fixed capacity (i.e., amount of guideways, rolling stock, 
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etc.) can not be altered so as to change the overall travel cost function during the time interval 
represented by the short run. Thus, in the short run only the congestion and other such variable 
costs will vary with changes in usage or flow levels. Over the long-run, however, the facility capacity 
and cost relationships can be altered (both upward and downward), thus changing the short-run total 
cost function. Occasionally, long-run cost functions may be called planning cost functions since 
they incorporate planned changes in facilities and operations. A long-run cost function represents 
the minimum cost of serving a particular volume q. That is, among the various technological options 
available, we assume that—as a planning matter—we can choose the technological alternative to 
serve a desired volume at least cost. We emphasize that in the long run facilities can be completely 
altered and rebuilt. The long-run or planning curves will be designated by the prefix Ir and short-run 
or operating ones by the prefix sr; capitals will be used for the total cost curves and lowercase for the 
unit cost curves. 

 
Let us consider the long-run cost relationships (or planning cost functions) in two steps; first, while 

analyzing the cost functions for facilities of just three facility capacity levels and, second, while 
considering the entire range of capacity possibilities. The first of these conditions is shown in Figure 
4-5 in which facility (0) is assumed to represent the cost conditions for the smallest possible facility. 

Several comments are in order regarding these three facility sizes (or plant sizes, in the jargon of the 
economist). First, the fixed cost (Fo) for the smallest facility does not represent the initial capital 
outlays (or book value or outstanding bond value) for that facility but is the opportunity value of the 
facility land and other fixed factors of production; simply, Fo, represents the value of the required 
fixed facilities and land in their highest other use and thus the opportunity value which must be 
foregone if they are retained in transport service. Second, for these three cases it would be less costly 
to expand the smallest facility to the level of facility 1 if the flow q were expected to be between qe 
and qf and if the smallest facility were not rejected. In short, here we are merely examining which 
alternative is less costly at specified levels of output; none are examined in terms of overall feasibility. 
Similarly, among the three cases, facility 2 is the less costly for expected flows above qf. 
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Figure 4-5. Cost functions for three facility sizes, (a) Total cost functions. (6) Marginal and average total cost functions. 

Summarizing these comments, the heavy line in Figure 4-5a, or LRTC(q), defines the long-
run total cost function which is applicable for facility expansion and planning purposes. That is, 
over the long run we can expand capacity such that the total costs for flow q are defined by the 
heavy line; thus, the long-run function informs us about the trade-off between fixed and variable 
costs or, if you will, between capacity and congestion costs. Of more significance, the slope of this 
heavy total cost line—or, the derivative of the long-run total cost function with respect to flow q— 
can be defined as the long-run marginal cost curve or lrmc(q) and is shown as a "sawtoothed" 
heavy solid line in Figure 4-5b. The dashed portion of any of the marginal cost curves together 
with its solid line portion defines the short-run marginal cost for the particular facility to which 
it refers. For example, suppose that the existing facility were expanded to the level of facility 1 
because of long-run demand expectations as related to long-run total cost conditions. Once the 
facility has been expanded to that level, though, only its short-run marginal cost curve, or 
srmci(q), is relevant for determining the day-to-day cost changes associated with changes in 
flow q. 

 
Definitionally, the long-run and short-run marginal cost curves are somewhat similar. The 

long-run marginal cost is equal to the increase in total cost which stems from a unit increase in 
flow rate, over the long run. Thus, it tells one about cost increases stemming from changes in 
capacity or congestion (as they jointly interact). As flow, and thus congestion, builds up on a 
low-capacity facility, it increasingly becomes cost-effective to increase the capacity; then, just 

 



 19 

after an increase in capacity, the congestion and long-run marginal cost is low until once again 
the flow builds up. 

 
Analytically, we get 

 
where LRTC(q) = long-run total cost for a volume of q 

lrmc{q) = long-run marginal cost for a volume of q Irate(q) = long-run average 
total cost for a volume of q 

The discontinuities for the lrmc(q) function, which occur for flows of qe and qf in Figure 4-56 
deserve explanation. If the flow rate were expected to be exactly qe , then LRTC(qe ), 
SRTC0 (qe), and SRTdiqe)would all be equal. Thus, in terms of short- or long-run total costs, 
the planner would be indifferent between facility 0 and facility 1. However, at flow q e , the short- 
and long-run marginal cost would be equal to srmco(qe) = lrmc(qe) if facility 0 was in place, 
but would be equal to srmci(qe) = lrmc(qe) if facility 1 were built instead. 

 
For the situation shown in Figure 4-5, the long-run incremental costs of expanding facility 

capacity and output beyond some nonzero output level can be determined simply by summing 
the long-run marginal costs between the before and after output levels. Whereas marginal costs 
represent the extra total costs which are incurred when the output is increased by one unit, 
incremental costs represent the extra total costs which are incurred when the output is 
increased by more than one unit. As an example, let us determine the incremental costs (i.e., the 
additional costs) which result from expanding the output level from qd to qg (where 0 < qd < qe 
and q g >  qf). The long-run incremental costs for the extra flow, or LRICdg, will be as follows: 
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After substituting Equation (4-28) into equation (4-27) and substituting the sum into (4-25), the 
incremental costs incurred when the output is increased from qd to qg are 

 
Thus, with the above formulation, only variable costs are involved in adjusting facility capacity 
and expanding the output level beyond some nonzero output level (over the long run). However, 
this is not to say that consideration of the fixed costs associated with different levels of output is 
unimportant or that they are not involved. Rather, the fixed costs are directly related to a 
determination of the lowest cost technology, of the appropriate cost function for various levels of 
output, and, therefore, of both the long-run and short-run marginal cost curves. Furthermore, 
the fixed costs are involved importantly in matters of both economic and financial feasibility, in 
matters of pricing policy, and in matters of facility abandonment; these problems will receive 
detailed treatment in later chapters. Also, while the formulation in Equation (4-29) did not 
explicitly include the fixed costs, or changes in fixed costs, it must be emphasized that they are 
incorporated, albeit implicitly. First, it must be recalled that long-run cost functions do not make 
any distinction between fixed and variable costs since both can be varied over the long run. 
Second, and referring to Equation (4-25), we can rewrite that expression if we substitute for 
LRTC(qg) and LRTC(qd) as follows: 

 
where the short-run marginal cost functions are summed from q - 1. 
 

Thus, it is apparent that the long-run cost functions do account for changes in both variable 
costs and fixed costs. The quandry revolves around the fact that the formulation shown by 
Equation (4-29) includes only long-run marginal costs—since the short- and long-run marginal 
costs are equivalent for the volume ranges indicated—while in Equation (4-30) the ranges include 
both short- and long-run marginal costs and thus necessitate the inclusion of fixed costs. 

 
The cost functions characterized thus far, and shown in Figure 4-5, were those for highly 

indivisible technologies for which the expansion possibilities were greatly restricted and "lumpy." In 
simpler terms it was implied that capacity and service (which are joint products) can be expanded 
only in large increments or in large jumps. More realistically, though, if one considers the entire 
range of design and operational features which can be altered by the engineer and which affect 
either capacity or travel conditions (speeds, accidents, etc.), in addition to the variability with 
respect to number of vehicles or passengers using the facilities, it seems more reasonable to regard 
transport technologies as being highly divisible and as being capable of expansion in small if not 
virtually continuous increments. For perfectly divisible technological situations, in which a virtual 
infinity of options are available, the inclusion of the cost functions for all cases would result in the 
long-run marginal cost (or long-run total cost) curve being changed from the sawtooth (or scalloped) 
character shown in Figure 4-5 to the smooth curves of Figure 4-6. Importantly, the short-run 
marginal cost and short-run average total cost curves would remain (shapewise or in form) much 
the same as before, 
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Figure 4-6. Long-run cost functions with nonconstant returns to scale, (a) Total cost functions: T = threshold cost; 
SRTCx(q) and LRTC(q) are tangent at point A. (b) Unit cost functions. 
except of course there are more of them; the short-run curves are also shown in Figure 4-6 for some 
facility x. 

 
For the general long-run cost situation illustrated in Figure 4-6, increasing returns to scale (or 

economies of scale) are exhibited for output levels below q0, and decreasing returns to scale (or 
diseconomies of scale) are exhibited for output above q0. In the former case the long-run average total 
costs are falling as output increases and in the latter they are rising. Also, in situations such as this, 
the long-run average total costs will continue to fall until they reach a minimum—at output level q0—
then will begin to increase. At the point when the long-run average total costs are at a minimum, they 
will be equal to the long-run marginal cost. [They are equal since the slope of the long-run total cost 
function at q0 is exactly equal to the slope of a line from the origin to LRTC(q) at volume equal to q0. 
Recall that the slope of the LRTC(q) function is equal to the long-run marginal cost and that the 
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slope of a line from the origin to the LRTC(q) function is equal to the long-run average total cost.] No 
particular significance should be attached to this minimum average total cost point, however. While it 
is the point at which the unit costs will be lowest, it should not be regarded as the "optimum" 
situation or as the most cost-effective point— unless the expected demand and output will be at level 
ot q0 and constant. We shall consider this point more fully below. 

 
To reemphasize, the long-run cost function is developed by determining the total cost of the lowest 

cost alternative at each and every output level. Thus, it represents the costs to which we can adjust or 
adapt over the long run. For instance, at an output of q a there are numerous technologies and 
operations available for producing an output of level qa. One of these alternatives will have the lowest 
total cost for producing an output of q a and its cost is equal to LRTC(qa). In this case, as shown in 
Figure 4-6, facility x is the facility having lowest total cost at an output of qa; thus, if we were to 
expect an output of level qa, then facility x would be the most cost-effective facility. For this situation 
the following conditions would hold: 

 
 

divided by the output qa; or, put differently, the slope of a line from the origin to either SRTCx(qa) 
or LRTC(qa) is coincident. The third condition holds true since the SRTCx(q) function is tangent 
to the LRTC(q) function at output qa and since, therefore, the slope of two functions will be identical 
at that point. Finally, the last condition holds since the short-run marginal cost is always equal to the 
short-run average total cost at the minimum cost point for the latter. 

 
For the situation depicted in Figure 4-6, it should be noted that the long-run marginal cost 

decreases until output reaches a level of qc and increases thereafter. That is, lrmc(q) is at. a 
minimum at an output of qc. Graphically, this means that the slope of the LRTC(q) function 
gradually decreases as we move from an output of 1 unit to qc units (which is the inflection point) 

and then begins to increase. Or, analytically, the first derivative of the LRTC(q) function with 
respect to q decreases until the output is qCf at which point it begins to increase [i.e., the second 
derivative of LRTC(q) with respect to q changes its sign at an output of qc]. 

 
As mentioned before, some analysts often take a particular interest in the output level which 

affords the minimum average total cost, incorrectly believing that this necessarily represents the most 
cost-effective situation. Suppose, for instance, that output were expected to be at a level of q a (and to 
remain constant). In this case facility x would be preferred since it would permit the total costs—
during both the long and short run—to be minimized. Once facility x was adopted and built, however, 
one often is tempted to maintain that it should be operated at its minimum average total cost level, 
which in this case would be output level qb. But this higher output level for facility x would represent a 
misuse of resources. That is, if the long-run demand were such that output level of qb rather than qa 
were to be accommodated, then lower total costs for that level of output could be achieved by 
expanding the facility capacity rather than by operating facility x at its short-run minimum average 

 
The first condition holds because the two cost points are coincident: 
facility x is the facility having the lowest total cost at output qa. The 
second condition holds since the average total cost is simply the total cost 
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total cost output level. This can be seen simply by comparing sratcx(qb) with Irate (qb) and noting that 
the latter is smaller, thereby indicating that total cost savings would accrue to the qb tripmakers if 
the facility were expanded still further (instead of operating facility x at a higher output level than 
qa). 

 
The problem of determining the long-run total cost function, as shown by LRTC(q) in Figure 4-6a, 

is simply one of determining the most cost-effective (or least-cost) technology for each level of 
output to which one can adjust over the long run. It is of course comparable to the usual engineering 
design problem in which the least annual cost design solution is sought by comparing various 
pavement types or thicknesses, and so forth, and by making trade-offs between technologies, 
between materials and labor, or among facility, vehicle operating, and user travel costs until the least 
costly design is determined. While most engineers make these sorts of calculations within the 
context of benefit-cost analysis, here it will be assumed that the long-run cost functions represent 
the minimum 
cost possibilities for the specified levels of output and thus that no other (profitable) engineering 
design changes can be made for the specified output and time period conditions. 

 
The difficulties and complexities of converting the required input of material and labor resources 

into costs will not be subject for discussion here except to mention two aspects: (1) it will be 
necessary to account for absolute or relative changes in the cost of labor or material inputs that occur 
over time and (2) it will be necessary to distinguish between market prices and opportunity costs 
where they differ. Regarding the latter aspect, on occasion market prices may overstate or 
understate the value which the forfeited resources have or would have in alternative opportunities or 
uses; in these instances market prices will be replaced by "shadow prices" or prices which are more 
appropriate measures of the real opportunity cost to society of the inputs. Chapter 12 discusses the 
various methodologies which are available to estimate cost functions. 

Back to top 

4-5 Problems 
 

P4-1. A public agency runs buses from downtown to the airport, hourly, between 8 am and 9:30 pm (28 
trips per day), 365 days a year. The existing bus is unreliable and the agency is considering leasing a 
replacement with either a new or second hand minibus. Costs for the various options are summarized in 
the following table. 
 Existing Bus Used Mini Bus New Mini Bus 
Annual Lease Cost ($/yr)) 0 5,000 20,000 
Maintenance Cost ($/yr) 25,000 8,000 3,000 
Operating Cost – Wages and Fuel 480,000 440,000 400,000 
Seating Capacity 40 20 20 
 
Fare: $8.00 
 
a) Construct a short run total cost curve per bus trip 

i) Existing Bus 
ii) Secondhand Mini Bus 
iii) New Mini Bus 
 

b. Are there variable costs with respect to passengers? 
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b) Define algebraically and sketch the long run total cost curve. 
 
c) Assume that the agency wishes to keep the fare constant. Furthermore, the 
demand is roughly 8 per trip. Does the agency currently cover costs? 

Back to top 
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In addition to the costs associated with infrastructure services, there are benefits resulting. Indeed, a 
major task of planners is to insure that the benefits of infrastructure service exceed the costs. The 
assessment of economic benefits is intimately related to the specification and measurement of 
demand functions. As noted in Chapter 2, our knowledge about demand is meager and our accuracy in 
predicting demand changes is poor, especially over a long time period. To make any progress in the 
investment planning and pricing process, however, we need to understand the sources of benefits. 

5-1    DEMAND AND USER BENEFIT FUNCTIONS 

In Chapter 2, we noted that a demand function expresses the dependent relationship between the 
quantity of service desired and the price of service, where the price includes all the private time, 
effort, and money expenses incurred by customers. A demand function may also be interpreted and 
used to indicate the willingness of customers to pay for service. This willingness to pay is the primary 
measure of the (individual) value or benefit derived from a particular service. 

 
The use of "willingness to pay" as a measure of user benefit requires some discussion. First, we 

must distinguish between what customers actually do "pay" and what they would be willing to "pay." 
For example, and referring to Figure 5-1, if the price or user cost were pB and if qB voume were 
demanded, the value of the service for the customer at the "margin" (i.e., the qBth customer) can be 
determined; that is, the marginal  person having the lowest service value among those purchasing the 
service just broke even, paying exactly as much as the service was worth to him or her. If the price 
increased, the qth customer would forego his or her purchase, as might others because the value or 
"willingness to pay" for the service is less than its cost. Obviously, this same value also serves as a 
measure of the amount which each of the other (or qB - 1) customers does pay, as distinct from the 
total amount that they would be willing to pay. No more than qB services would be demanded because 
the fixed price (pB) is higher to those not buying than its value would be to them; thus, for price pB, 
those not buying would find that their position on the demand function is to the right of and below 
point C. Thus, user cost serves as a lower bound on the amount that customers will pay. 

 
For all those actually purchasing services, other than the one at the "margin," it is reasonable to 

expect that they would accrue some value or benefit over and above the price they must pay. In the 
terms of the economist all consumers, except for the customer at the margin, would accrue a surplus 
or value in excess of the price paid. 

 



The additional value or benefit over and above the price paid is termed consumer surplus by the 
economist. That is, an individual will usually be willing to pay a little more than he or she was 
actually charged or than the payments in time, effort, and money; consequently, the customer usually 
will receive a little extra value, an amount equal to his consumer surplus. The total consumers' 
surpluses accruing to the qB users when the price is pB (from Figure 5-1) would be equal to the area 
HBC. Note, further, that if the price were lowered to pA, the consumers' surpluses would be increased 
to the level of area HAD; the extra consumers' surpluses resulting from the price change would be 
equal to the difference between the two areas, or BADC. 

 
At this point it is important to distinguish more precisely between the term benefit (and "user 

cost") as commonly defined by many planners and engineers and as used here. These distinctions 
are essential to a full understanding of all that follows. 

 
First, the economist (usually) defines user benefit as being equivalent to the value which 

customers expect to receive from purchasing service, as measured by the gross amount which 
customers would be willing to pay for the service. Referring to Figure 5-1, for a price of pB, customers 
would be willing to pay amounts as indicated by the area under the demand curve to the left of 
point C. More specifically, if the price were pB, the total benefit or value accruing to the qB customers 
would be equal to area HOFC or the entire area under the demand curve and to the left of point C. If 
the price were lowered to pA more volume would be demanded and the total benefit or value accruing 
to qA customers would be equal to area HOGD. 

Changes in benefits due to a price change can also be estimating from the demand function.  
If the price drops from pb to pA then the change in customer benefits is indicated by the area 
BADC.  If the ‘price’ in Figure 5-1 is just the monetary price, then the change in revenue to the 
service provider would be the area  BOFC minus AOGD. 

As a numerical example, suppose we wish to measure the change in net user benefits 
accompanying an increase in the frequency of service on a transit route. Increased frequency of 
service can result in reduced waiting times and crowding, so that average user cost declines. Suppose 
further that equilibrium volume and price were 1000 trips per hour at an average price of $2.10 before 
the change and 1150 trips per hour at an average price of $1.70 after the change. These two situations 
correspond to points C and D in Figure 5-1. If we assume that the demand function is approximately 
linear between these points, then the change in net user benefits (equal to area BADC in Figure 5-1) is 



ANUB = area ABCE + area CED 
= 1000(2.10 - 1.70) + 1/2(1150 - 1000)(2.10 -1.70) 
= $430 (5-1) 

 
In this discussion of net user benefits we should emphasize that examination of changes in net 

user benefits may be insufficient to reveal the desirability of different investments when they are 
considered in isolation. In particular, problems of interpretation and analysis arise in two situations. 
First, if the price change discussed above is accomplished by changes in the monetary charge for 
service, then the change in net user benefit is equivalent to the change in net social benefit only if 
the reduction in the monetary revenue is accompanied by an equivalent change in the real cost of 
providing the service. A second circumstance in which exclusive attention to changes in net user 
benefit is inadvisable is when changes in external benefits occur. For these more general cases the 
best method of analysis is to examine the difference between total benefits and total costs, or for the 
changes in these quantities, to evaluate a change. This more general analysis is described below. 

 
Returning to the main discussion, the essence can be summarized as follows. The demand 

function can be regarded as a schedule which indicates in descending order the value of the service 
to those choosing to pay the indicated price. Since the q^th customer will be willing to pay (at a 
maximum) a price of p(q) to make the purchase, the value of the purchase to him or her is just 
equal to p(q). If we start with a simple linear demand function, 

 

in which p(q) is the price which the qth customer will be willing to pay (at a maximum); thus, this 
is his trip value. This linear demand function is often used as an approximation to more general 
functions for the purpose of net benefit evaluation. 

 

The service value—that is p(q)— is equivalent to the marginal benefit, or mb(q), where marginal 
benefit is defined as the increase in total benefit which is accrued when the volume is increased by 
one unit (from q - 1 to q units per hour). Or, stated differently, 

 
where TB(q) is the total benefit accruing from a volume of q units per hour. Accordingly, 

 
Also, it can be seen that 

 
For the linear demand function shown in Equation (5-2), the marginal benefits are 

 
and invert it to find price as a function of volume, we get 

 



 
Total user payments for a volume of q, or TUP(q) can be calculated more directly as price times 
the quantity demanded: 

 

 

Total user payments and benefits associated with a linear demand function at various volume 
levels are shown in Figure 5-2. In any particular situation or application, of course, the flow level 
which would actually be observed is the equilibrium flow determined by the interaction of the 
demand and price functions. 
 

 
 
Total user payments for a volume of q, or  

 
 

 

or, for the linear demand function, 

 



  As a numerical example, suppose that q = 100 — lOp or mb(q) = 10 - q/10. At a volume 

of q = 80, total benefits are TB(80) = (80)(100) /10 - (802 + 80)/2 • 10 = 476. Price with q = 80 is p 
= 100/10 - 80/10 = 10 -8 = 2. Net user benefits at a volume of q = 80 are NUB (80) = TB (80) -TUP 
(80) = 476 - (80) (2) = 316. With a price reduction from p = 2 to p = 1, volume increases to q = 100 - 
10 • 1 = 90, total user benefits are TB (90) = 491 and net user benefits are NUB (90) = 401. The 
change in net user benefits is ANUB = NUB (90) - NUB (80) = 401 - 316 = 85, whereas the change in 
total user benefits is ATB = TB (90) - TB (80) = 491 - 476 = 15.  

 
One final observation with respect to the willingness to pay for services and individual incomes 

should be made. In general, individuals who have higher disposable incomes or greater wealth would 
be willing to pay more for their services than would individuals with lower incomes. If the full value 
(in contrast to cost) was extracted from each user (via some form of variable price), the individual's 
disposable income would be reduced and his remaining purchases would be valued lower than they 
otherwise would be. Consequently, the individual willingness to pay for service depends—to some 
extent—on the prices charged for goods and services and the resulting effect on disposable income. 
Fortunately, this effect can generally be ignored in infrastructure services since most demand 
functions represent only a small fraction of the income per individual. In what follows we shall 
ignore this secondary income effect. 
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5-2   TOTAL BENEFITS 

The guiding principle in assessing the economic benefits (or costs) of new investments is to sum or 
aggregate the individual changes in welfare of all affected individuals. These changes in welfare can 
be measured as the value—in money terms—placed on them by the affected individuals. For 
infrastructure service customers, the value of this welfare is indicated by the total area under the 
demand curve, defined above as total user costs plus consumer surplus. Included in this total are 
benefits to users on competing services, as discussed below. 

 
While the benefits accruing directly to users form most of the economic benefits of facilities, several 

other categories of benefits have been suggested. First, the producer's surplus or profit associated with 
extra sales or rent resulting from increased service has been included in some studies. These changes 
are extremely difficult to meaningfully measure. Moreover, it is likely that any such increased sales 
or land values would have occurred without improvements in the system (although the sales and 
land values may have occurred somewhere else in the urban area or nation). That is, infrastructure 
improvements often concentrate economic activity which would otherwise have occurred anyway. 
No net social benefit can be attached to this transfer of activity since other areas lose to the same 
extent that a particular area may gain. 

 
A second external benefit for infrastructure systems is that they possess an insurance value. For 

example, a transit system may be valued as a back-up mode of travel in case of an auto breakdown, 
even though an individual might never actually use the system. This "insurance" value is quite 
difficult to measure. In essence, it requires assessing user benefits in different scenarios (such as a 
hurricane) multiplied by the expectation of the scenario occurring.  Nevertheless, prudent planners 
often make such insurance investments, particularly since complete loss of infrastructure services 
may be catastrophic.  For a service such as provision of municipal water, this loss value can be 
captured in the regular demand function.  In particular, the consumer surplus associated with the first 
units of water might be quite large indeed. 

 
As a final note, investments in infrastructure facilities may serve environmental and social 

objectives other than increasing net economic benefit. In particular, investments may be used to affect 
a redistribution of income from wealthier to poorer individuals. A planner may consider this objective 
by weighting benefits accruing to poorer individuals higher than the benefits or value to wealthier 
members of society. We shall consider objectives of this sort and the related analysis in Chapter 10.  
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5-3    BENEFITS ASSOCIATED WITH DIFFERENT FACILITY SIZES 
 
   To illustrate the change in equilibrium volume and the associated benefits that accompany 
changes in facility capacity (or service capability), the relationships shown in Figure 5-3 will be 
helpful. Improvement of facility or seervice A to the level of B will drop the equilibrium price 
from pA to pB and will induce more volume; that is, the quantity of service demanded will 
increase from a volume of QA to qB. It may be helpful to point out that the volume qA 
which formerly used facility A and now uses facility B may be regarded as the "diverted 
volume" and that the volume increase may be termed the "induced" or "generated" volume.  

 



Figure 5-3. Equilibrium conditions for different facilities. Note: System A, existing facility before 

improvement; system B, existing facility after improvement. 
 
As for the benefits associated with these two facilities, and the implied pricing policy, they can be 

determined in the fashion suggested earlier. For system facility A, and its equilibrium volume and 
price levels of qA  and pA, respectively, the total travel benefit (for qA trips) would be equal to area 
AFOC, while that for facility B (and qB trips) would be equal to area BGOC. The additional or extra 
benefit accruing to travelers from the improvement would be equal to the difference between the 
total benefit for B and that for A, or would be equal to area ABED. Also, the net user benefit (or 
difference between total user benefits and user payments) before improvement would be equal to 
area ADC and after improvement would be area BEC. The difference between these two totals, 
or the change in net user benefit, would be equal to area ABED; as noted before, it is equal to the 
change in consumers' surpluses.  

 
Also, it is well to note that the continuing customers accrue a larger increment in net benefit 

than do the new or induced customers. Specifically, each customer among the volume qA will 
experience a net benefit increase of pA - pB  from the improvement and as a group will find their net 
benefit increased by AHED; by contrast, the first additional or new customer will receive an increase 
in net benefit (from improvement) that is slightly less than pA - pB and the last additional customer 
(i.e., the qBih ) at the margin will receive no increase in net benefit. The induced customers (qB - QA) 
will each receive an increase in net benefit that averages \{pA ~ PB), assuming that the demand 
curve is linear or nearly linear in this range. As a group, their increase in net benefit will be equal to 
the triangle AHB.  While we speak of distinct customers here, the induced or new demand might 
actually represent additional purchases for existing customers, but the point is that the new 
purchases have less customer benefit or value. 

 

The above point is emphasized as infrastructure planners often attribute the entire unit increase in 
net benefit (or, pA - pB) to both the former and induced dustomers, a practice which is incorrect and 
which will overstate the increase unless the demand happens to be perfectly inelastic. The case of 
perfectly inelastic demand is illustrated in Figure 5-4. Such a case appears to be unrealistic but 

 



nevertheless is commonly implicit in many economic analyses. conducted for public transport 
alternatives. While analysts do not explicitly assume that the demand is perfectly inelastic, it is the 
practical result of assuming that the equilibrium flow or actual volume after improvement will be 
identical to the volume before improvement. 

 

 
Turning now to the longer-term effects of shifts in demand, as related to changes in facility 

capacity or service, these can be determined from the curves in Figure 5-5. (In this situation the 
comparative relationships are shown from the end of year 0 through the end of year 5. We will ignore 
the circumstances while facility A would be in the process of being improved to the level of facility 
B.) The year-by-year equilibrium conditions can be determined for the two alternatives, as well as the 
benefit and net benefit circumstances. Also, the functions shown in Figure 5-5 can be used to describe 
the increases in volumes.  

 



Figure 5-5. Equilibrium conditions (by year) for unimproved and improved system or facility. Note: D 

t is the demand curve for the tth year and q x>t is the equilibrium volume for facility x during year t. 
 

Specifically, if facility A were improved to the level of B and opened for usage at the end of year 0, 
the volume which would have used facility A (had it not been improved) or qAfi is diverted to facility 
B; this volume or qA>0 would be the so-called diverted traffic.5 An additional volume of traffic will be 
induced to travel because of the improved service conditions (as measured by the drop in equilibrium 
price); this increment of volume will be equal to qB,o – q A,O and is equivalent to the so-called 
induced volume. The additional increases in volume from year to year (i.e. following the end of year 
0) can be regarded as the normal demand growth for facility B; during the first full year, the normal 
growth for B would be q B , i -  q B,O while the increased flow from the end of the year 0 to the end of year 5 
or qB}5 - qBf0 is the normal traffic growth during the first five years of facility B. 

 
Suppose that we wanted to measure the change in net user benefits (i.e., the increase in consumers' 

surpluses) which stemmed from the improvement of facility A to the level of facility B. In such an 
instance we should measure these changes year by year and then accumulate them over the planning 
horizon (which in this case is 5 years). Also, the year-by-year amounts should be discounted to their 
present value to account for the time value of money, a point which will be ignored for the moment 
but discussed fully in Chapter 8. Some analysts incorrectly suggest—by implication—that one should 
measure the change only during the design year (or last year of the planning horizon) and then 
treat this as occurring during all years. For example, it is obvious (at least in this instance) that the 
increase in consumers' surpluses in year 5—or area JKMN—is hardly equal to that occurring during 
any other year. Also, do not make the mistake (as some do) of treating area JKMP as being equal to 
the change in net user travel benefits which would be accrued, rather than area JKMN. 
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5-4    DEMAND AND BENEFIT MEASUREMENT IN CHOICE SITUATIONS 

In Chapter 3 demand functions were formulated to represent the conditions for choice situations in 
which the decision to use one service or another, such as private automobile or bicycle, is 
dependent upon the price of the service in question as well as that of the competing service. In turn, 
it is useful to indicate how to estimate the change in benefits and consumer surpluses when choice 
situations exist. Such situations are common with competing servers, as in the case of deciding which 
airport or telecommunications company to use. 

 
Let us assume that customers are choosing between two competing alternatives (say, between 

two modes or two times of day) and that they consider the price of both alternatives when 
deciding whether or not to make a purchase as well as which alternative to select. Then, an 
appropriate set of linear demand functions for alternatives x and y would be as follows: 

 
where qx and qy represent the hourly volume to be demanded for choices x and y, respectively, 
when the price of choice x is p x and price of choice y is py. The coefficients α, β, and γ are the 
parameters of the demand functions x and y. For analytical convenience and simplicity in 
illustration, we have used a linear demand model and a binary choice situation. 

 
The above demand functions can also be used to determine the  benefits and net user benefits 

which are associated with different price levels. To illustrate this application, however, let us 
restate the demand function shown in Equation (5-11) as follows: 

 
in which q x\py is the quantity of mode x trips to be demanded at price px, given that the price for 
mode y is py. Also, ax\py is the transformed value of the intercept, given the mode y price of py. As 
such, the cross-effects of the competing mode price are included. In effect, then, ax\py is equal to 
αx + γxPy- (Referring to Figure 3-3, a graphical representation of the above function would be the 
trace which results if a plane perpendicular to the py axis were passed through the surface 
shown.) This form of the demand function is plotted in Figure 5-6 in two-dimensional form for two 
different levels of price py, as well as the corresponding one for qy\px, or the quantity of 
alternative y  to be demanded at price py given that the mode x price was px. It can be seen that 
increases in py lead to demand increases for alternative x due to shifts in demand from 
alternative y to alternative x. By the same token, it can be shown that an increase in p, would 
lead to an increase in the demand for alternative y (and vice versa with respect to price 
reductions). 

First, can these demand functions—when there are competing choices-be used to determine 
total benefits, total revenues, consumers' surpluses, and total costs? Simply, they would be used 
exactly as described previously. For instance, if the (equilibrium) prices for alternatives x and y, 
respectively, were 12 and 10 cents per unit, then the applicable demand functions for the two 
alternatives would be qx\py = 10 and qy\px = 12. The equilibrium volumes for alternatives x and y 
would be 150 and 100 units per hour. In turn, the total benefits, total revenues, and so forth, could be 
calculated by separately computing these totals for each alternative, one alternative at a time. For 
instance, the consumers' surpluses for alternative x would be equal to the area under the demand 
curve (qx\py = 10) but above the line where px is equal to 12. Those for alternative y would be equal 



to the area under the demand curve (qy\px = 12) but above the line where py is equal to 10. And so 
forth. Second, how we can use these functions to determine the consequences (such as the change in 
benefits or consumers' surpluses, etc.) which stem from a price change for one (or more) of the 
competing choices? 

 

Let us again make use of the choice situation illustrated in Figure 5-6. Initially, assume that 
alternative x has a price px which is equal to 12 cents per unit and that the price for alternatives y is 
equal to 10. Then, let the price py of alternative y drop 5 cents per unit. As a result of this price 
reduction, the demand function for competing alternative x will shift downward and to the left, as 
indicated, and become q x\py = 5. (Of considerable importance for this initial example, we assume that 
the reduction of volume for qx from 150 to 90 units per hour will have no effect on the price of 12 
cents per trip.) The demand function for alternative y will remain as before {qy\px = 12) since the 
price of its competing alternative x remains unchanged. 

 
As a result of the drop of py, more volume accrues to alternative y and thus more total benefits 

will be obtained. Moreover, the increase in consumers' surpluses for alternative y users will be equal 
to the shaded area in Figure 5-6b. This area—the increase in consumers' surpluses for alternative y 
users—represents the total change in consumers' surpluses resulting from the price reduction since the 
alternative y demand function embodies the effect of alternative y price changes on both entirely 
new customers and those shifting from alternative x (given, of course, that the price of alternative x 
remains fixed at price px of 12 cents per unit). That is, the dotted area in Figure 5-6a does not 
represent a loss or decrease in consumers' surpluses for alternative x users since some of those 
former alternative x users chose to shift over to alternative y and thus to better themselves once the 

 

 



price of mode y was dropped. The remaining alternative x users are no better and no worse off after 
the price drop for alternative y than before; and their consumer surpluses remain unchanged. 

 
The foregoing example (illustrated in Figure 5-6) can and often will represent an oversimplification 

of the "real world" and of the difficulties of measuring the full-scale effects of price changes (or 
service improvements) for many competing choice situations. To illustrate, we will consider a more 
complex situation, as illustrated in Figure 5-7. In this case recognition is made of the fact that in 
some competing choice situations changes in the equilibrium flow rates will lead to price changes for 
all of the competing alternatives and thus to shifts in the demand functions for all of competing 
alternatives (in contrast to the previous example in which the demand function or price changed for 
only one of the competing alternatives). 

 

Again, the price functions shown in Figure 5-7 embody the total time, effort, and money expenses 
for the infrastructure service. For transportation, the price varies with changes in the flow rate, 
thereby indicating changes in crowding, discomfort, and delay. And, since a price change for one 
alternative will change the usage level of the competing alternative—because of the demand cross-rela-
tions—it will lead to both a shift in the demand function and change in price for the competing 
alternative, and vice versa. For example, suppose the competing choices are two modes of travel.  If the 
price function for mode x is lowered (either as a result of a fare or toll drop or as a result of some 
service improvement which lowers the travel time and thus trip price)—from px(qx) to PX(QX)— the 
demand function for mode x will shift downward from qx\p*y to Qx\p*y and that for mode y will shift 
downward from qy\px to Qy\Px. However, the demand function for mode x shifted downward not 
because of the price drop in its own price but in response to the price drop for its competing mode y. 
Also, p* and q*x—in lowercase—represent the equilibrium price and volume levels for mode x prior to 
the price change, while Px and Q*x—in uppercase—represent the equilibrium values after the price 
change; a similar type of notation applies to the equilibrium values for mode y. Accordingly, we can 
see that a price reduction can easily lead to multiple effects, especially for transport facilities (and 
whether highway or public transit ones). We suspect that the illustration in Figure 5-7 would be 
typical in that price reductions to one of two competing modes would tend to reduce trip prices for 
both modes and thus to change consumer's surpluses for both modes. 

 



Figure 5-7. Illustrative changes in equilibrium consumer surplus in a choice situation. (a) Before improvement of mode x. 
(b) After improvement of mode x. 

 
Specifically, all former users of modes x and y, as well as some entirely new tripmakers who were 

induced to travel because of the price reductions, will be better off after the price reduction (or service 
improvement) to mode x, which in turn leads to a drop in the equilibrium price for mode y as well. 
However, it is not entirely clear how much each user will gain from the price reductions. For instance, 
as the price for mode x goes from p* to P* and that for mode y goes from p* to P*, some portion of 
mode y's former users—an indeterminate amount—will continue to use mode y and each of these will 
gain (or accrue extra consumer surplus) by an amount equal to p* - P*; the other users of mode y (or 
remainder of Q*) consist of former mode x users and entirely new tripmakers, each of whom gain less 
than that amount. (They obviously gain something; otherwise, they would not have changed their 
travel patterns after the price drop.) It would appear that the increase in consumers' surpluses to the 
mode y users would be equal to the shaded area in Figure 5-7 b. The situation for mode x is similar. 
Again, the mode x users—which in total are Q*—are made up of three groups: former users of mode x 
who remain on mode x after the price drop; some users who shifted from mode y to mode x; and 
entirely new users who were induced to travel by the price drop. Each of the first group (i.e., the 
former mode x users) gain by the amount of the price drop, or p* - P*, while each user in the other 
two groups gains by less than that amount. Again, the specific number in each group is indeterminate, 
but even so we might estimate that the aggregate increase in consumers' surpluses for the mode x 
users would be equal to the crosshatched area in Figure 5-7b. 

 
In practice, analytical rather than graphical solutions for equilibrium volumes and changes in 

consumers' surpluses are likely to be required in such complicated situations. Section 3-4 

 

 



introduced some relevant techniques; Section 11-2 also discusses analytical techniques that are 
applicable. 
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5-5 Problems 
 

P5-1. Given the following demand function for landfill service: 
 

p(t,q) = a + q* b/ nt 
Where 
q = amount of waste disposed in the landfill (cu yd/household/year) 
p = price in $/cu yard/household/year 
nt = number of households in the community in time t 

= no exp( -kt) 
t = time (years) 
k = growth factor 
a, b are parameters 
a = $225/cu yd!household year 
b = -125/cu yd2/year 
no = 50,000 households 
 
For the present year (to with no households = 50,000,  
a. Derive the functions for the total user benefit and total user payment. 
b. Determine the equation for the point elasticity of demand as a function of price. 
c. lf the unit cost function is: p = 110+0.0024 q 
d. What is the equilibrium price and usage and the consumer surplus? 
 
P5-2 If the population growth is 1% per year (ie. k = 0.01) in P5-1, assuming the same cost function, 
determine the change in consumer surplus, total user benefit and total user payment for the first year. 
Discuss your results. 

Back to top 
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CHAPTER   6 

PRICING AND ECONOMIC EFFICIENCY IN THE 
SHORT RUN 
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In this chapter we consider the economic effects of different pricing and operating policies for infrastructure 
facilities which, during the short run, can be regarded as fixed with respect to the amount of capacity and the 
technology employed. The short run represents the period of time in which changes in facilities cannot be 
accomplished due to the delays of construction or purchasing. The managerial problem in the short run is 
how to manage and price the existing resources and facilities in the most advantageous manner. More 
particularly, a manager should ask how will different pricing policies affect the usage of a particular facility or 
operation, and, in turn, its benefits, costs, and revenues? Subsequently, which policy will lead to maximizing 
the net economic benefit to society and what are the implications of implementing such a policy (e.g., subsidy 
requirements, incidence of the benefits and costs among users, or the financial situation of the operating 
agency)? Or, for private providers, which policy will lead to increased profits? 

 
Throughout this initial discussion of pricing and efficient utilization measures, the costs of implementing 

different pricing or control schemes will NOT be included or considered; "costless" pricing and control mecha-
nisms will be assumed, thus ignoring any delays or inconveniences to riders or drivers that may result from 
collecting fares, instituting toll gates or installing control devices, and neglecting any capital or operating 
expenditures for the fare, toll collection, or control devices. In Chapter 13 this assumption will be relaxed and 
the consequences or costs of instituting and implementing different sorts of pricing or control schemes will be 
explored. 

 
Three basic assumptions underlie the entire discussion and should be emphasized: (1) goods and services 

throughout the economy are priced at marginal cost; (2) the commitment of resources to the infrastructure 
sector will not affect prices for the remainder of the economy or have feedback effects upon either the 
infrastructure demands or the costs of providing infrastructure services; and (3) the marginal utility of income 
is equal for all customers and is constant over time (i.e., an extra dollar is worth the same to 
everybody and for all price levels). In addition, it will be assumed that customers are homogeneous 
with respect to their travel time, effort, and money expenditures. As noted in Chapter 2, the last is 
not a necessary assumption, but it does simplify the discussion. In application, a heterogeneous 
population may be assumed (as in Chapter 13). 

 
Also, the economic efficiency objective function is presumed to be a maximization of total net 

social benefits in this chapter. Obviously, this objective function in no way involves the consideration 
of conflicting or overriding social or political criteria which call for a different income redistribution 
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and the like. Nor does this objective consider the financial implications of the various short-run 
pricing and operating policies which are discussed. Certainly, these other considerations are of 
concern to operators. For simplicity, we have chosen to initially discuss the various situations 
encountered in making short-run decisions from the viewpoint of economic efficiency alone. Other 
objectives will be discussed in Chapters 9 and 10, and the practical difficulties of different short-
run pricing strategies will be considered in Chapter 13. 

 
To structure the discussion, we shall concentrate upon three prototypical situations. The first, 

which is common for high-density situations, is that in which average total travel costs are 
increasing with output increases; we term this case one of (relatively) high demand. In the low-
demand case average total costs are falling with higher volumes. A specialized case is also considered, 
that of a backward-bending cost curve which may occur in transportation services with very high 
volumes and an uncontrolled transport facility, such as an unsignalized roadway, which undergoes 
capacity reductions at high volumes.  
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6-1    BASIC ECONOMIC PRINCIPLES FOR PRICING AND OPERATING 
FACILITIES IN THE SHORT RUN 

For constant-demand situations both intratemporally (e.g., hour to hour) and intertemporally (e.g., 
year to year), the incremental benefit-cost principle is of primary importance in this short-run 
analysis and may be stated as follows: extra volume should be encouraged so long as the marginal 
benefit associated with extra volume is equal to or greater than the marginal cost incurred for extra 
volume; or more simply, one should continue to increase output until the marginal benefit is just 
equal to the marginal cost. In analyzing the extra benefits, it is necessary to note that the demand 
function (or, alternatively, the quantity demanded vs. "willingness to pay" curve) in its inverse form 
approximates the marginal benefit curve; that is, it describes the increase in total benefit which 
results from increasing the hourly volume q by one customer. Marginal benefit is not equivalent to 
the marginal revenue (or marginal payment) which results from uniform prices; the distinction will be 
made more precisely later within this section. As noted in Chapter 5, for a linear demand function, as 
shown in Equation (5-2), the marginal benefit for the qth customer or mb(q) is 

 
where p(q) is the price which the qth customer is willing to pay and α and β are parameters based 
upon income, population, and so forth. As shown in Equation (6-1), the price which the qth 
customer is willing to pay is equal to the marginal benefit or mb(q)— that is, it is the benefit 
added by increasing the output q by one more unit. In Figure 6-1 the equality of marginal 
benefit and marginal cost occur at a volume of qA. 

 
Also, it should be reemphasized that our essential concern is not focused simply on the 

extra facility costs which must be incurred to expand or increase output, but on all extra costs 
associated with increases in output (to include increments in cost for facilities or vehicles and 
those for personal travel time and effort). Thus, our marginal benefit and marginal cost 
functions encompass all benefits and costs as described in the previous two chapters. 
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While the principle of setting marginal benefit equal to marginal cost was stated above in the context of 

providers concerned with maximizing net social benefit, it is important to note that this result can be achieved 
with private, profit-seeking firms acting in an environment of keen competition and in the absence of market 
imperfections such as external benefits or costs. This conclusion is one of the most important results of 
classical microeconomic theory and is the basis of Adam Smith's assertion of an "invisible hand" which directs 
individuals through the marketplace for the advantage of all. 

 
To develop this result, suppose that four firms are interested in providing a market with virtually identical 

services (Figure 6-2). In this case the volume served by each of the four potential providers must be summed to 
indicate the market or total volume q*, so that q* = q1 + q2 + q3 + q4 For a market with perfect competition 
and identical services, the various providers would be forced to offer the same price to customers. If one 
provider charged more, then customers would move to its competitors. Likewise, a lower price would attract 
customers from competitors. Moreover, each provider would charge a price such that the price equaled their 
short-run marginal cost at the volume each served. In Figure 6-2, for example, firm 1 serves q1 trips at a 
price p* with p* = srmc1(q1). 

 
The result that the equilibrium price equals short-run marginal cost for each provider occurs due to the firm's 

attempts to maximize profits. If the equilibrium price exceeded a firm's short-run marginal cost, then the firm 
could reduce its price, attract additional volume, and still have the incremental revenue exceed its incremental 
costs. Profits would then increase. Conversely, if the equilibrium price was less than a firm's short-run marginal 
cost, then a firm should try to reduce its volume since it would be losing money on the marginal travelers. 
Indeed, firm 4 should not offer any service at the equilibrium price p * since costs would exceed payments at any 
volume level. Thus, in Figure 6-2, firm 2 serves q2 trips, firm 3 serves q3 trips, and firm 4 has no volume. 
Note, by the way, that firm 3 only covers its short-run variable cost [since p*qt = qt• sravcd(qt)], whereas 
firms 1 and 2 have payments exceeding variable costs. 

 

It is the competition among firms for patronage in the situation depicted in Figure 6-2 which leads 
inexorably to the condition in which marginal costs equal marginal benefits (or p*) for each firm. Since this 
is socially desirable in the sense that net benefits are maximized, it is a powerful argument in favor of free 
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competition. Moreover, there are equally strong incentives to insure that least-cost operation policies are 
chosen (which is implicit in our definition of short-run variable costs) and that efficient investment occurs. 
Unfortunately, there are various imperfections in markets which tend to reduce the efficiency of free 
competitive markets. Notable in the case of transportation services is the effect of increasing returns to scale. 
In this case equilibrium prices equal to short-run marginal costs will result in deficits to individual providers; 
this case is discussed below. 
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6-2   PRICING AND OPERATION IN HIGH-DEMAND SITUATIONS 

 

Turning first to the short-run situation for a particular facility x, typical cost and benefit functions might be 
as shown in Figure 6-1. The demand and short-run average total cost functions intersect to the right of the 
minimum average total cost point, so this is termed the high-demand case. In the short run the fixed costs will 
remain the same at high- or at low-volume levels; clearly, in the short run and over a time period too short to 
abandon, contract, or expand the facility, they should not affect the level of output if one is concerned with 
maximizing the total net benefit from use of the facility (i.e., without regard for matters of cost and benefit 
incidence and income distribution). 

 
The only costs that are affected by the output level in the short run are the variable costs; the marginal 

cost curve or srmcx(q) measures the increase in total costs with increases in output. Up to an output level 
qA (i.e., from q = 1 to q = qA), and for the cost and demand (or marginal benefit) conditions of Figure 6-1, 
each additional output unit or successive increase in the output level will add more to total benefits than it 
will add to total costs; that is, mb(q) > srmcx(q) for q < qA. Thus, total net benefits will continue to 
increase up to level qA and will be equal to 
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where TNBx(qA) are the (hourly or daily) total net benefits for facility x when the output level is q A. 
However, for an output above qA, the marginal costs or srmcx(q) will always exceed the marginal benefit 
mb(q), thus decreasing the total net benefit. Thus, while each added customer (above q A but below qc) would 
privately gain from making the trip, the amount he or she would gain would be less than the increment in 
costs imposed on society and would reduce the total net benefit. That is, left to his or her own devices, each 
new customer would consider only the short-run average variable cost and would ignore the extent to which 
he added congestion to others. The marginal cost represents the accumulated value of the overall costs or 
delays to others as well as himself if an additional unit is purchased. 

While, in the short run, total net benefits when maximized need not be positive in order for 
maximum efficiency to be achieved, they will be positive in cases of high demand if the facility 
is operated efficiently [i.e., maximize volume such that mb(q) > srmcx(q)]. Also, for this 
high-demand case, the total net benefits will always be positive for flows equal to or less than qB 
(since the marginal benefit will be equal to or greater than the short-run average total cost). 
They may still be positive at even higher flows—because of the consumers' surpluses—but the 
actual result will depend on the exact nature of the demand and cost functions. 

 
Other aspects are important. If the output level were increased beyond qA to qB, the total 

costs for qB would still be less than the total benefits for qBi and would be 

 
The total benefits would exceed the total costs to the extent of the consumers' surpluses. 

 
While for the cost and demand relationships in Figure 6-1 output at qB would cause no 

apparent loss to society (i.e., total net benefit would still be positive), there would be a loss for 
society relative to the cost and benefit situation for output at qA. In this case the net loss from 
increasing output from qA to qB or incremental total net benefit (ITNBx AB) would be 

 
Since mb(q) < srmcx(q) for q > qA,  the incremental total net benefit is negative. 

 
The losses occurring when output exceeds the flow rate at which the marginal cost is equal to 

the marginal benefit can also be illustrated graphically, as shown in Figure 6-3. For each and 
every additional unit of output above qA, the extra cost is somewhat larger than the extra benefit. 
As a consequence, if the output were to increase to qc, the loss in total net benefit—as compared 
with that which would be obtained with an output of qA and mb(q) > srmcx(q) for all units of 
output—would be equal to the hatched area in Figure 6-3. Algebraically, this area is calculated 
as the difference in marginal benefits and marginal costs summed at each intermediate volume 
level: 
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If customers are charged their short-run average variable costs or sravc x(q), as occurs for 

roadway travel, then the flow will stabilize at qc with a price equal to sravcx(q c). As a consequence, 
if we are to maximize net benefits, some device or mechanism must be used to insure that output is 
limited to qA and to insure that customers are "segregated" in the fashion indicated by the demand 
curve. Specifically, to induce the most economically efficient result, we must insure that customers 
having  value or benefit below the benefit or trip value at the margin do not travel in place of 
others who have values which place them above the level at the margin. Referring again to Figure 
6-3 and Equation (6-2), the total net benefit would be maximized only if the output were q A and if 
restricted to travelers having values equal to or higher than p(qA) or mb(qA) = srmcx(qA).  Of 
course, this sort of segregation is not done in practice. 

 

At least theoretically, a price mechanism—such as special tolls or fares-would appear to be the 
most suitable instrument for effectuating this type of control; in fact, not to use such a device 
would be to admit, if not guarantee, that the facilities would not actually produce the maximum 
total net benefits. Furthermore, it should be clear that more than the economically efficient 
output level is involved here; it is assuring, in addition, that the expected or anticipated benefits 
do occur. In other words simple volume controllers could limit the flow using a facility to its 
"correct" output level, but could (and probably would) result in the actual total net benefits being 
lower than expected or potential total net benefits because the "wrong" (i.e., lower valued) 
customers could get there first and preempt the space. Until later chapters, the problems, costs, 
and interactions of effective price mechanisms will be ignored; they are hardly trivial or "costless." 
Also, this is not to suggest that the use of prices does not aid in other important economic planning 
matters, particularly of a financial nature. 
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If customers are only charged their short run average costs, sravcx(q), as occurs with roadway 
travel, then the price function will be sravcx(q) and "supply" and demand will interact to bring 
about equilibrium flow and price levels of q c  and p(Qc) = sravcx(qc)9 respectively. Thus, a 
variable cost pricing policy will cause facilities to be overutilized and total net benefits to be less 
than their maximum value in this high-demand case. Contrarily, a marginal cost pricing policy—
in which the price function will be srmcx(q)— would c au se  t h e  eq u i l i b r i u m f l o w an d  p r i ce  
l e ve l s  t o  b e  q A  an d  P(qA) = srmcx(qA), respectively. However, if travelers are to be faced with a 
price equal to srmcx(qA), then a surcharge or congestion toll will have to be imposed—since without 
a toll and with a flow of qA each user will individually "feel" a cost of only sravcx(qA). Thus, the 
congestion toll for marginal cost pricing would be as shown in Figure 6-4, or algebraically as 

 
in which qA is the output level at which the marginal benefit equals the marginal cost. Remember 
that the toll is only one component of the trip price, the other being sravcx(qA) which is perceived 
by each traveler as travel time, effort, and cost, aside from the toll. Note that a congestion toll 
would insure that only those travelers having a trip value (or marginal benefit) at least as high as the 
marginal cost, srmcx(qA), would choose to travel, thus insuring that total net benefits would be 
maximized. 

 

Referring to Figure 6-4, it might seem, at first glance, that a simpler and better way of 
insuring that output did not exceed qA would be to use physical control devices of one sort or another, 
instead of congestion tolls. That is, simply restrict the volume entry rate to qA vehicles per hour. The 
problem with such a solution is that some travelers with trip values [mb{q) values] lower than 
srmcx(qA) could gain entry to the facility and thus force off some customers with higher purchase 
values. As a consequence, total net benefit would not be maximized. (Obviously, one can argue for a 
physical control and "first-come-first-served" type of policy on the basis that it "seems to be fairer"; 
but the fact remains that, as an economic efficiency matter, it would be less desirable.) 

 
While the price mechanism serves other important purposes in economic planning, it does occupy 

a central role in assuring that facilities are utilized most efficiently (in economic terms); secondarily 
(perhaps), its usage impinges on matters of "simple justice" and of insuring (as a matter of fairness) 
that wherever possible the costs incurred to provide transport services are paid for by those using 
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and enjoying the benefits of such service. (This secondary rule is not an economic efficiency matter, 
though hardly unimportant as a practical matter.) However, an important pricing rule is that only a 
single uniform price should be charged for the same or identical services, thus disallowing the use of 
discriminatory pricing (i.e., "charging what the traffic will bear" or charging different prices for the 
same service according to the value of the service). In brief, this pricing rule insures that output is 
continually increased until the marginal cost and benefit are equal for the last trip and that 
transport facilities and services are efficiently utilized. Clearly, there are exceptions with respect to 
discriminatory pricing, some having the full sanction of state and federal regulatory agencies. Governmental 
agencies permit if not "force" discriminatory pricing in certain instances to insure that particular services 
(which are deemed to be "publicly desirable" or "in the public interest") continue to be provided even though 
they may be unprofitable. Discriminatory pricing is discussed further in Chapter 9. 
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6-3    PRICING AND OPERATION IN LOW-DEMAND SITUATIONS 

For the low-demand case in Figure 6-5 the best output level from the standpoint of maximizing total net 
benefit—during the short run—would be that corresponding to an equality between marginal benefit (as 
represented by the demand curve D'Df) and short-run marginal costs, or mb(q) = srmcx(q), and thus 
output equal to qH. Since the fixed costs cannot be altered in the short run, they do not affect decisions 
in the short run with respect to the proper level of output. At the same time, though, it should be evident 
that private firms could not long endure a short-run marginal cost pricing solution in cost and demand 
situations of this sort; that is, from the standpoint of financial feasibility, marginal cost pricing with a uniform 
price of srmc(qH) would produce total revenues that are less than the total costs (including normal return 
on capital). That is, srmc(qH) is less than sratcx(qH). Specifically, the total net payment loss at an output 
level of qH and price equal to srmcx(qH) would be 

 

If either government agencies or private firms held a monopoly position and desired to maximize total 
net payments, then output could be adjusted to the level at which marginal payment was just equal to marginal 
cost, or qF, by charging a price of ap(qF). In the latter instance total net benefit would not be maximized (in the 
short run), but financial feasibility would be assured as total payments would exceed the short-run total costs 
(with normal return on capital included). Alternatively, financial security (though less than maximum total net 
payments or benefits) could be maintained by adopting average cost pricing and adjusting output to level qG by 
charging a price of ap (qG) = sratcx(qG). While it is obvious that in either of these cases total net benefits would 
not be maximized and that the economy would suffer (to the extent of the loss or decrease in total net 
benefits, relative to the maximum which could be obtained), no subsidy would be required and no 
threat of financial infeasibility would result. It is obvious that in the absence of competition a price 
anywhere between ap(qE) and ap(qG) would result in financial feasibility and thus provide no long-
run financial problem for a private or public firm. 

 



 6-9 

Four other aspects arise and should be considered. One, is this short-run picture shown in Figure 
6-5 typical of the long-run expectations? Two, should one consider the use of subsidies to make up 
the difference between total costs and total payments at an output of qH and with a price of ap (qH)? 
Three, should some sort of discriminatory pricing or perhaps a multipart tariff be employed such that 
payments and costs will be balanced? Four, can important inconsistencies develop between the 
private and public sectors of the economy? 

 
To properly answer these questions requires us to first consider whether the facilities are operated 

under competitive or noncom-petitive (e.g., monopolistic) conditions. For the latter, which was 
discussed previously, firms or agencies could operate the facilities and price the services so as to be 
financially feasible—though less than desirable from the point of view of maximizing total net benefits. 
Moreover, and referring to Figure 6-5, it is evident that without subsidies from one level of government 
or another, no facility could afford (financially) to operate at an output level above qG and survive 
over the long run. As a consequence, no private firm could or would provide transport services in 
such a situation unless it could price so as to maintain output below qG or unless it was assured of 
sufficient subsidies to cover the expected losses. 

 
However, under competitive conditions, the low-demand case is even more difficult. Briefly, in 

this instance, it can be shown that private or public firms would be "forced"—in the short run—to 
provide service at the level of output qH and at a price ap(qH) = srmc(qH). As a consequence a 
disastrous long-run financial situation would develop since the total payments would be below total 
costs. Thus, when competition can be anticipated, private firms would never allow themselves to 
enter such a market in the first place—or if they entered it unwittingly, they would abandon the firm as 
soon as possible. Essentially, this is what happened with many transit firms throughout the country 
over the last three to four decades, as demand dropped from the high- to low-demand case. 

 
However, if the demand and cost conditions are such that short-run and temporary financially 

infeasible conditions will be overcome over the long run, then short-run marginal cost pricing should 
be pursued for maximum economic efficiency, and no conflict will exist between economic 
efficiency and financial security. However, assuming this is not the case, the other aspects are open for 
consideration. In general, from the standpoint of economic efficiency, the "correct" solution is to 
price at marginal cost and subsidize the facility or venture, whether it be a public or private project. 
Thus, one might be led to conclude that subsidization of the losses is preferable and warranted (aside 
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from distributional matters). However, such a position overlooks the inconsistencies with respect to 
private and public sectors that do exist and without doubt will continue to exist. 

 
As a practical matter private industry does not, upon finding itself in a decreasing return-to-scale 

situation (such as shown in Figure 6-5) and being faced with competition, usually or even often 
undertake the program because the overall net benefits to society are enhanced, nor does it try to 
obtain the necessary subsidy from local, state, or federal sources. As a consequence, to consistently 
subsidize just public programs, aside from other social or political criteria, would in all likelihood 
bring about a double standard with respect to economic planning and produce unknown consequences 
with respect to overall economic efficiency. Also, and in contrast to the situation for externalities, it 
seems reasonable to argue (somewhat heuristically) that a policy which endorsed the subsidy of all 
public and only some private programs having increasing returns to scale would virtually assure 
overinvestment in the public sector and less than optimum allocation of resources. These 
qualifications make it difficult to reach any general conclusions regarding the desirability of always 
subsidizing public projects having increasing returns to scale and emphasize the necessity of a 
more comprehensive analysis than can be undertaken here. 

 
The other means to be used for overcoming financial infeasibility in falling cost situations (such 

as that shown in Figure 6-5) are discriminatory prices or multipart tariffs. While a variety of these 
practices can be and often are used successfully to eliminate financial deficits, it should be 
recognized that their usage forces abandonment of the "equal-price-to-all" rule and, as a consequence, 
makes it impossible to conclude in general that the resultant project will or will not produce optimal 
efficiency. 

 
Finally, for the low-demand case (in which the demand function does intersect the short-run 

average total cost function, though to the left of the minimum average cost point) depicted 
graphically in Figure 6-5, it can be shown that short-run marginal cost pricing will bring about 
positive total net benefits even though total net payments will be negative for the most efficient 
pricing case, or when the price is ap{qH) = srmcx{qH). Simply, at a flow of q G the total net benefits 
would be positive and equal to the consumers' surpluses since, at that point, the average payment or 
ap(qG) would be equal to the average cost or sratcx(qG); also, since mb (q)>srmcx(q) for q from 
qG to qH, the total net benefit would increase and thus still be positive. 

 
However, if the demand were so low that the demand function at all points lies below and thus 

does not intersect the short-run average cost function, then no a priori statements can be made about 
whether the total net benefits are positive or negative, even though they would be maximized by 
marginal cost pricing. Figure 6-6 illustrates this very low-demand case. It can be seen that even 
with no competition and a price which maximized total net payments the facility would still prove to 
be financially infeasible. That is, with output at qr—at which point mp(qi) = srmcx(qi)—and a 
market clearing price at p(qi) = apiq^, the total net payments would be maximized but would still 
be below the total costs, indicating financial losses over the long run. Thus, there is no uniform 
price that would permit a firm or agency (without competition) to cover their costs. Given that we 
had such a facility (at least for the time being), we know that a price p(qj) = srmcx(qj) would 
maximize total net benefits 
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during the short run, even though sustaining financial losses. The question is, then, during the 

short run, would the total net benefits be positive, thus indicating economic feasibility for this 
facility? (If not, the facility can be regarded as both economically and financially infeasible, 
indicating that abandonment is desirable as an economic matter.) The answer to this question is 
ambiguous. In brief, without knowing the exact cost and demand functions, we do not know a 
priori whether the following difference representing total net benefits is positive or not: 
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6-4   SOME DILEMMAS CONFRONTING MARGINAL COST PRICING 

An earlier section showed that the total net benefits—or, if you will, the "size of the economic pie"—
would be maximized if a marginal cost pricing policy were adopted. That is, greater economic welfare 
would exist, without regard for who receives the benefits or who pays the costs. As a theoretical 
matter, and given all the assumptions noted previously, this conclusion is correct. But even so, 
there are some disturbing features which accompany this policy, both of a practical and of a 
theoretical nature. 

 
First, since many if not most facilities now and for years on end have operated with average 

variable or average total cost pricing, a sudden switch to marginal cost pricing would cause prices to 
increase (sometimes sharply) when there is high demand (i.e., when demand is sufficiently high that 
the demand function intersects the average total cost function to the right of its minimum average 
total cost point). An example would be the peak electricity demand periods when the most 
expensive generating plants are called into service and represent the marginal cost of production 
in the peak. In turn, these price increases could have disastrous economic consequences for firms 
which earlier made location or expansion decisions in the face of an expected continuance of the 
former pricing policy. Thus, one should ask: Do regulatory agencies have an obligation to protect 
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the general public against ruinous or financially harmful pricing policy changes when the public at 
large had little reason to expect a change in what had become a long-standing pricing policy? 

 
Second, some analysts have noted that a switch from average cost to marginal cost pricing would 

increase prices and thus tend to work to the disadvantage of low-income classes; this would be 
especially true in situations where there is high demand. While this observation is correct, it should 
also be pointed out that marginal cost pricing would produce more total net benefits than would 
average variable cost pricing and thus potentially could help both the well-to-do and less well-to-do 
more than would otherwise occur, depending, of course, on the distribution of the extra total net 
benefits.  

 
Third, a particularly disturbing feature of the imposition of marginal cost pricing would arise in 

circumstances when high demand exists and (for whatever reasons) the capacity is regarded as fixed 
both during the short and long run. For instance, in the central cores of large cities, many, if not most, 
analysts regard its highway and street system as "impossible to expand," regardless of cost or benefit. 
This would be the case (other than for minor additions) in downtown Philadelphia, Chicago, 
Boston, and San Francisco, to name but a few pertinent examples. In cases such as these, it is 
reasonable to assume that the high-demand case is common and that the marginal costs—at current 
and expected future levels of demand—would be considerably higher than average total costs, as 
illustrated in Figure 6-1. Accordingly, to invoke marginal cost pricing would result in large profits 
over and above total costs, a profit which could be exploited year after year, especially if demand 
increases in response to growth in income and population. While this solution may be desirable 
during the short run, the fact remains that public transportation agencies could exploit their 
monopoly position (with respect to the control of both pricing policy and expansion of capacity) and 
continue to reap the profits of applying a short-run policy over the long run with capacity being fixed, 
regardless of the desirability of expanding over the long run. As we will see in the next chapter, serious 
distortions could result from such an action. 

 
Fourth, an interesting paradox arises from the imposition of marginal cost pricing in place of 

average variable cost pricing, especially as applied to both highway and transit facilities. The paradox 
applies to high- or low-demand situations and holds so long as the average variable cost is mono-
tonically increasing. For this discussion let us make use of the situation depicted in Figure 6-7. 

 
As the hourly flow rate on a highway or on a bus line (each having a fixed number of lanes or 

scheduled buses, respectively) increases, then the average travel time, discomfort, and effort will 
gradually increase due to congestion [indicated by the average variable cost function or sravcx{q)]. 
That is, each additional bus rider or each additional highway vehicle, when added to the previous 
flow (during the same hour), will cause all the previous riders or vehicles to be delayed and crowded 
just slightly more than they previously were delayed and crowded. The difference between the 
marginal cost and average variable cost curves, or srmc x{q) -sravcx(q), reflects the extra delay 
imposed on the former users or patrons by the one additional user. 

 
Let us assume that either the highway or bus line is now operated with average variable cost 

pricing. Thus, the equilibrium flow and price would be qc and sravcx(qc). That is, each person in the 
total flow of qc would 
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experience the same average travel time, discomfort, and so forth, equal to sravcx(qc). Subsequently, 
it is argued that marginal cost pricing should be used instead on the grounds that total net benefits 
would be increased. Earlier, it was shown that the increase in total net benefits to be accrued (i.e., 
the loss in total net benefits to be avoided) would be equal to area KBJ on Figure 6-7, or 

 
Paradoxically, though, it can easily be shown that with marginal cost pricing all users will be 
worse off than they would be with average variable cost pricing. Consider three groups: the tolled, 
the tolled off, and the untolled: 

1. The Tolled.    If marginal cost pricing is imposed, a congestion toll 
equal to srmcx(qA) - sravcx(qA) will be charged, bringing the total price, 
P(QA), to srmcx(qA) and resulting in a reduced flow rate of qA. While all 
of the   qA  users  having a trip  value which  is  at  least  as  high  as 
P(QA) = srmcx(qA) will be willing to pay that price—rather than forego the 
trip—the fact remains that each of the qA users are worse off than they 
were with average variable cost pricing. Simply, their trip price is now 
P(QA) = srmcx(qA) rather than the lower price p(qc) = sravcx(qc) they 
paid with the former pricing policy. Another way to look at this is as 
follows: The price increase has resulted in reducing the consumers' sur 
pluses for the qA users by an amount equal to area GHLB in Figure 6-7. 
While some people argue that those paying the toll really would be better 
off after the pricing switch, because of the reduction in congestion, you 
will find that such an argument is fallacious. Specifically, congestion did 
drop after imposing the congestion toll, but only by an amount equal to 
the drop in average variable cost or sravcx(qc) — sravcx(qA)—an amount 
which is considerably less than the extra congestion toll required to bring 
about that reduction in congestion. Put differently, the tolled group of qA 
users had to J)ay tolls amounting to area GIMB in order to reduce their 
congestion by an amount equal only to area HIML. In short, the tolled 
users are worse off after marginal cost pricing. 
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2. The Tolled Off.   The users who were tolled off (i.e., those who 
formerly traveled but who are unwilling to pay the congestion toll and 
higher overall price)—or qc - QA users—are clearly worse off after the 
change in pricing policy. They were "forced" to move from a preferred situation into one which is 
clearly less preferable (otherwise they would not have been traveling on this facility prior to the 
price change). The extent of their losses (by having been tolled off) is indeterminate without knowing 
about their choices after being tolled off, but it can be said that they will lose, though no more than 
an amount equal to their consumers' surplus losses or area BLJ. 

3. The Untolled. Even untolled users of transport facilities are made worse off by the shift to 
marginal cost pricing. (Untolled users are those travelers on travel facilities to which some tolled-off 
users divert after the change to marginal cost pricing.) That is, when the tolled-off users switch to 
second-best travel modes or routes after the price change, congestion and crowding is increased for 
both the untolled and tolled off, relative to the situation which existed prior to the price change. 

Consequently, all groups of users—the tolled, the tolled off, and the untolled—are worse off after 
the imposition of marginal cost pricing. With all users preferring average variable to marginal cost 
pricing, how can we claim that marginal cost pricing will increase total net benefits to society ? The 
answer to the riddle involves the congestion toll revenues which were collected from the toll users. 
That is, the congestion toll revenues—in total equal to area GIMB —represent benefits stemming from 
the price change, and they can be distributed to society in whatever fashion is desired. Moreover, it 
can be proved that the congestion toll revenues are larger than the combined consumers' surplus 
losses to both the tolled and tolled off. That is, it can be proved that area GIMB is larger than the 
sum of area GHLB (the consumers' surplus losses for the tolled) and area BLJ (the maximum 
consumers' surplus losses for the tolled off). 

 
As a final note, there may be adverse systematic effects which occur due to the imposition of 

efficient pricing on a single facility. These systematic effects may severely reduce the net benefit of the 
shift to efficient pricing. In particular, the losses to the untolled, the users of alternative services 
which become more congested, may exceed the net benefits (equal to the area GIMB less GHLB and 
BLJ). For example, improving the traffic signal timing at one intersection may result in increased 
congestion elsewhere.11 While such systematic effects may be small in practice, shifting to marginal 
cost pricing on a single facility rather than for all facilities should be undertaken only with due care. 
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6-5    PRICING IN BACKWARD-BENDING OR CAPACITY-REDUCING 
SITUATIONS 

Throughout the discussion in this chapter, as well as that in Chapters 2 and 3 on cost and price 
functions, it has been assumed that both the congestion and average variable cost functions for 
facilities are well behaved and that both travel time and average variable cost increase without 
limit as the volume using them increases. For unsignalized roadways, this is not the case.  Similar 
capacity reductions can also occur with congestion on tele-communications. 

One representation of a non-backward-bending function would be as follows: 

 
where rmin is the travel cost per mile at low or near-zero volume levels, v is a value of time parameter, 
p is a speed reduction parameter which is assumed to be greater than 1, and Sx is a constant for 
facility x. Figure 6-8 depicts such a non-backward-bending function. 
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Figure 6-8. Approximate relationships for travel time and average variable cost for non-backward-
bending or non-capacity-reducing facilities. 

 
Non-backward-bending situations would appear to be typical (in form) for those transport facilities 

whose capacity or output is not reduced when the input flow rate approaches or exceeds the capacity 
or maximum output rate. For example, as the passenger input flow rate (or arrivals per hour) for 
scheduled buses, trains, or planes exceeds the maximum capacity, queues and delays build up 
continuously—so long as the arrival rate is sustained. The situation is similar at signalized traffic 
intersections. Importantly, though, the output rate or capacity of such facilities is not affected or 
reduced by the input rate. 

 

Nonsignalized and uncontrolled highways and expressways have design characteristics 
which permit backward-bending or capacity-reducing situations to develop; that is, once the 
entering or input traffic volumes reach or approach some critical level, intervehicle behavior 
is such that shock waves and stop-and-go traffic flow result. This intervehicle behavior often 
reduces the effective traffic-carrying capacity of the roadways. Capacity reduction can continue 
so long as the input rate is sustained at or above some critical level. Referring to Figure 6-9, the 
dashed position of the curve illustrates flow and capacity reduction behavior for capacity-
reducing types of facilities only after input volumes have approached or exceeded the 
maximum or critical flow rate q m and caused shock wave action.  

Shock waves occur when vehicles jam up momentarily. As the entering or input volume approaches the 
facility's critical output rate, shock waves build up, causing the average travel time to increase and the 
output rate to decrease. Whereas a flow rate of qx vehicles per hour (referring to Figure 6-9) could be 
handled with an average travel time of tx if shock waves could be prevented, it is evident that once the 
waves do build up, the facility's output capacity would be reduced and the travel time would increase to 
t{. Certainly, this extra delay is inefficient, and thus it is important to use devices of one sort or another 
to prevent shock wave action and avoid capacity-reducing situations. The objective would simply be to 
prevent the input volume rate from approaching "too closely" the capacity volume rate at the bottleneck 
section. One simple device for insuring that the input rate is properly controlled would be to install 
volume entry controllers (such as stop lights) which could insure that the entering volume was reasonably 
uniform and did not exceed (or approach too closely) the output capacity, the point at which shock waves 
build up. Another device which could be used would be tolls, as is sometimes suggested by economists. 
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6-6 SUMMARY REMARKS ABOUT PRICING IN THE SHORT RUN 

First, pricing is a short-run matter even though it does affect the long-run economics of facility 
expansion or abandonment. Simply, the fixed costs cannot be affected during the short-run; they 
can be changed or avoided (whichever is most desirable, economically) only over the long run as we 
decide to expand, contract, or abandon facilities. Thus, from day to day we need not consider the 
fixed costs since we cannot change or affect them during the short run. Only variable costs and thus 
marginal costs need to be considered, along with marginal revenues and marginal benefits, as we 
examine the wisdom of adopting one short-run pricing policy or another. 

While the long-run decisions about the proper facility size clearly do affect the long-run 
economics and finances, once we have made this long-run decision, we then should proceed to price as 
wisely as possible day to day and to maximize either net benefits or net revenues, day to day, given 
that prior planning decision. The prior decision (in a sense) is "spilt milk"; thus, if we maximize in 
terms of profitability or economic welfare each day thereafter, then we will maximize and do our best 
over the long run as well (again, so long as we continue to operate a given facility). 

 
Second, even in those difficult low-demand situations when agencies or firms are faced with 

competition, we should not lose our perspective when examining the economics of adopting marginal 
cost pricing and then of ending up with a price or average revenue below the average total cost. Why 
so, we should ask. Typically, for most public transport facilities (especially urban ones), the marginal 
cost curve will always lie above the average variable cost curve—much as shown in Figures 6-1 and 6-
5. As a consequence, to invoke marginal cost pricing means that the marginal cost price or average 
revenue will exceed the average variable cost and thus contribute something to overhead as well. That 
is, our day-to-day revenues will more than cover our day-to-day out-of-pocket (or variable) costs and 
at least help cover some of the overhead or fixed costs as well. In turn, if our long-run planning shows 
that this situation will continue to repeat itself, day after day and year after year, then we have a 
clear signal (as a financial feasibility matter) to resort to abandonment or government subsidy for 
long-run survival. 
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6-7 Problems 
 

P6-1. Suppose you have short run cost curves as shown on the figure below. 
 

 
 
a. Draw a demand curve that would have price = short run marginal cost above the short run 
average total cost.  Indicate the amount of profit above costs that would be received by the 
service supplier. 
 
b. Draw a demand curve that would have price = short run marginal cost for which total user 
benefits exceed the short run total costs.  Indicate the benefits and costs on the graph. 
 
c. Draw a demand curve that could not cover the short run average total costs if all the users were 
charged the same price (that is, in the absence of price discrimination). 
 
d. Draw a demand curve that has total user benefits less than total costs at all price levels. 

 

Back to top 



Chapter 7 7-1 

CHAPTER   7 

INVESTMENT AND OPERATIONS PLANNING FOR 
ECONOMIC EFFICIENCY IN THE LONG RUN 

Contents 
7-1    Economic Principles For Planning To Achieve Economic Efficiency .................................. 2 
7-2    Planning With Flexible Policies Or Highly Divisible Facility Sizes And Increasing Returns 
         To Scale .................................................................................................................................. 3 
7-3    Planning With Highly Divisible Facility Sizes And Decreasing Returns To Scale .............. 8 
7-4    Economic Planning For Highly Indivisible Cases ................................................................. 9 
7-5    Economic Planning For Nonconstant Or Fluctuating Demand Cases ................................. 11 

7-5-1    Intertemporal Demand Changes And Long-Run Planning .......................................... 12 
7-5-2    Intratemporal Demand Fluctuations And Long-Run Efficiency .................................. 17 
7-5-3   Joint Consideration Of Intertemporal And Intratemporal Demand Fluctuations ........... 20 

7-6    Decision Analysis With Uncertainty ................................................................................... 20 
7-7    Concluding Remarks ........................................................................................................... 22 
7-8    Problems .............................................................................................................................. 22 
 
 
Economic planning is generally concerned with alternative investments and operating policies (such 
as planning system extensions and scheduling the service frequency for transit systems). It is 
undertaken to answer two questions: 
1. Is any facility or service economically desirable and if so, 
2. Which facility, vehicle fleet, or operating policy is the most desirable? 
In this chapter we shall discuss the relevant principles for answering these questions from an 
economic perspective. As in the last chapter, the single criterion for judging the desirability of 
particular alternatives will be their net social benefits. For example, we shall conclude that 
investments which do not have positive net social benefits are not justifiable and should not be 
undertaken. Generally, the principles we shall discuss are aimed at insuring that the net social 
benefits from any action are both as large as possible and nonnegative.  We will consider additional 
objectives in following chapters. 
 

In evaluating alternative plans, it is necessary to assume a particular pricing policy in order to 
determine the resulting benefits and costs. As discussed in the previous chapter, different pricing 
policies can have important effects on volumes and the level of net social benefits derived from the 
operation of a facility or service. Consequently, we shall presume a pricing policy in order to 
evaluate alternative plans in this chapter. By pricing policy we do not imply a particular price level 
but rather a policy such as setting price equal to the short-run marginal cost of a facility or service. 

 
Throughout the chapter we shall mention some financial implications of the investment policies 

resulting from our concern with economic efficiency. Those enterprises which pursue investment, 
pricing, and operating policies so as to maximize net social benefit may find that they accumulate 
excess profits or incur financial losses. In addition to presenting the financial implications of such 
policies, this discussion is intended to provide some perspective for the discussion of multi-objective 
or multi-attribute planning in Chapter 10, in which the financial situation of public enterprises, as 
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well as the net social benefits, will be considered for planning decisions. Also, Chapter 9 deals with 
financial implications in more detail. 

 
The discussion in this chapter will generally proceed from simpler to more complicated situations. 

Initially, we shall assume that demand for a particular service is constant and represented by a 
single aggregate demand function (see Chapters 2 and 3). With this assumption the case in which 
facility size or service is highly flexible is considered; for example, this case may arise when service 
frequency decisions are considered. Situations in which facility size is highly indivisible are then 
discussed. This is a more common case for roadway and other infrastructure investment decisions. 
Following this, we relax the assumption of a constant demand function and consider cases in which 
demand fluctuates (as with peak and off-peak demands) or changes over time (as with annual growth 
or shrinkage in the demand level). In each of these situations we shall draw a distinction between 
cases in which competition for a provider does or does not exist. Both of these cases are relevant for 
different types and environments of infrastructure providers. The following chapter will consider the 
problem of evaluation for discrete projects in more detail. 

Back to top 

7-1    ECONOMIC PRINCIPLES FOR PLANNING TO ACHIEVE ECONOMIC 
EFFICIENCY 

The two major principles to be employed in economic planning are as follows: 
1. Any acceptable service or facility must have net social benefits which 

are positive; that is, total benefits from the alternative must exceed 
total costs. 

2. An existing or planned service should be improved or expanded so 
long as the extra or incremental social benefits resulting from the 
improvement exceed the extra costs, subject to satisfying the  
positive net social benefit condition in 1. 

These two principles should be applied to any planning situation in which changes in facilities or 
operations are considered. For example, a transit agency might possess a fixed fleet of vehicles and 
undertake a planning study to determine what frequency of service to offer during off-peak periods; 
in this case service should be offered as long as the net benefits are positive, and the frequency 
should be increased as long as the incremental benefits exceed the incremental costs. In a larger 
context the transit agency might use these principles to determine the appropriate fleet size to 
operate, that is, the extent to which investments in vehicle purchases should be undertaken. 

In the literature of economics, investment or planning decisions of this type are referred to as 
long-run decisions, in the sense that changes to infrastructure or operating policies are expected to 
require a significant period of time to effect. However, the planning horizon can vary greatly in 
different situations. For power generation operation, schedule or frequency-of-service decisions, 
changes may be accomplished in a few weeks. For de novo construction of facilities, railways or 
roadways, a decade or more may be required to implement a desired change. What is important is 
that, in the long run, some infrastructure construction or operating decisions may be implemented so 
as to change, if only in part, the system costs and operation. In contrast, the short run is restricted—
for the most part—to situations in which only operating policies and pricing decisions may be 
altered. 

 
As discussed in the previous chapter, pricing decisions for a transportation system are generally 

based upon variable costs and benefits during the short run, which is the period in which a facility or 
service cannot be altered. Economic planning is more broadly concerned with both variable and fixed 
costs. Clearly, pricing decisions do affect investment decisions since, for instance, higher prices 
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decrease system usage, total costs, and benefits. However, investment planning must also consider 
the total net benefits so as to insure that system operation and construction is beneficial. It is also the 
case that investment decisions will profoundly affect the nature of the short-run cost functions and 
thereby alter the appropriate price levels. Planning studies must a priori assume a particular pricing 
strategy in order to evaluate alternative investments or policies. And, the incremental benefits and 
costs of expanding a facility are estimated with the assumption of a particular pricing policy (or, 
alternatively, the assumption of complete insensitivity of demand to price). Once a particular facility 
is constructed, the assumptions on which the planning study were made may change and the 
pricing policy for the facility may be different than that originally envisioned. Principles for such 
changes in pricing policies were discussed in Chapter 6. 
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7-2    PLANNING WITH FLEXIBLE POLICIES OR HIGHLY DIVISIBLE 
FACILITY SIZES AND INCREASING RETURNS TO SCALE 

With flexible operating policies or facility sizes, we assume that a wide range of technological 
alternatives are available for consideration and implementation. As discussed in Chapter 4, 
there is a total cost curve associated with each alternative in which costs generally vary with 
volume. The total cost curve associated with any one facility or service option is called a 
short-run cost function, since we have defined the short run as the period in which facility or 
service changes are prohibited. When a planner considers a wide range of technological options 
over a fairly lengthy period of time (so that any necessary changes may be accomplished), we 
can define a long-run total cost curve which represents the minimum cost incurred to serve any 
given volume q, or by LRTC{q) in Figure 7-la. This long-run total cost curve represents the 
envelope of the various short-run cost curves associated with each alternative, and each point 
on the long-run curve represents a particular facility size or service alternative. Clearly, no 
short-run total cost curve may lie below the long-run curve (else we could change the facility to 
reach the situation of lower costs). (Other long-run cost functions are defined in Section 4-4.) 
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It is neither necessary nor generally correct to assume that the long-run total cost function 

exhibits constant returns to scale. Constant returns to scale would be illustrated by a horizontal 
average cost curve and a straight (constant-slope) total cost function which passes through the 
origin. In Figure 7-16 we illustrate the case in which economies of scale exist between volume levels 0 
to qmin, while diseconomies of scale exist for higher volumes. "Economies of scale" refer to the slope 
of the average total cost curve, which, as shown in Figure 7-16, is falling in the region of 
scale economies (i.e., increasing returns to scale) and rising in the range of scale diseconomies (i.e., 
decreasing returns to scale). With economies of scale long-run average total cost becomes lower as 
volume increases. 

 
For this initial discussion it will be assumed that the demand function will remain constant 

(represented by either DD or D'D'), both from hour to hour and from year to year. While analysis 
for both demand cases will be discussed, it is clear that this assumption of constant demand is unreal-
istic. Nonetheless, the guiding principles remain valid, whether or not demand is constant. We shall 
discuss demand changes in later sections. Also, to clarify the linkages between short-run and long-
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run analysis, the appropriate short-run cost functions for (just) two facility sizes—A and C—are 
included in Figure 7-1. Facility A is the facility of least total cost for an output of q A and facility C is 
the facility of least cost for an output of qc- As such, these two facilities make up two points on the 
long-run cost functions, while the short-run cost functions for A and C represent the day-to-day 
costs which would result if one or the other were actually built and operated at various output levels. 

 
For the cost functions shown in Figure 7-1 a, we should first note that some minimum level of 

nonseparable or fixed costs (equal to F) must be incurred before even one unit of flow is possible. 
These nonseparable threshold costs represent costs which do not vary with output but are required 
to acquire land and vehicles or construct a facility and thus provide the minimum level of facilities 
required to permit any level of movement. While these threshold costs are fixed with respect to the 
output level q (and are nonseparable among them), they are not fixed over time, since they can be 
avoided over the long run simply by abandoning the entire facility and providing no service. Recall 
that these are the opportunity costs, and where they apply to an existing facility, they are not 
equivalent to the original capital outlays—or to the opportunity costs of resources foregone at the 
time of construction— but are equal to the current alternative opportunity value. The original outlays 
are "sunk" and irrecoverable; at this stage the only thing that matters is what other uses can be made 
of the existing facility, land, structures, and so on. As a consequence, not to abandon the facility 
entirely would be to forfeit these alternative opportunities and thus to incur these costs. 

 
Since the threshold costs of F vary over the long run (that is, they can be avoided over the long 

run), they must be considered in matters of long run economic efficiency, as well as in those involving 
financial feasibility. As we shall see, the threshold costs are not directly involved in a determination 
of the proper price but only in ascertaining the overall or aggregative economic and financial 
feasibility. 

 
More simply, over the long run the sum of both the long-run marginal costs and threshold 

costs must be exceeded by the total benefits accruing from usage if the investment is to be 
regarded as economically feasible or desirable from a public point of view. 

 
For a single optimum facility size or service and for most efficient usage of it, the necessary 

relationships and conditions between costs and benefits are as follows: 

 

and q0 is the optimum output level. For the time being, we ignore problems of discounting costs 
and benefits to present-day values in this equation; this subject will be covered in Chapter 8. For 
economic efficiency in the long run, we require that the equilibrium output or volume be such 
that the marginal benefit equals the long-run marginal cost: 

 

This condition insures that additional facility expansion or service improvement will not have 
extra costs larger than extra benefits. In rare cases more than one volume level will result in the 
equality of marginal benefits and long-run marginal costs. In these cases all the planning 
options for which this is true may be compared in the same manner as discrete planning options, 
as discussed in Section 7-5. Similarly, facility contraction or service degradation should be 
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undertaken whenever the losses in user benefits are less than cost savings. In addition to this 
condition, we require that total benefits exceed total costs: 

 
It can be concluded that the most economically efficient (nonzero) level of output will be that at 
which the marginal benefit (as defined by the demand curve) is just equal to the long-run 
marginal cost. The use of the word nonzero is crucial as will be explained in succeeding 
paragraphs. Also, it is important to note that this full statement with no further qualification 
applies to well-behaved functions; otherwise multiple equalities and ambiguous answers can occur. 
 
Turning first to the low-demand case (in which increasing returns to scale exist), which occurs 

with the demand function DD in Figure 7-1, one would conclude that the most efficient (nonzero) 
output level would be qA and that the proper facility would be A, that is, the facility with lowest 
total cost for an output of qA. This follows since each increase in output from q = 1 up to level qA 
has marginal benefits which are at least as large as the long-run marginal costs. The next key 
question (from an overall economic feasibility standpoint) is: Do the marginal benefits in total at 
the optimum nonzero output level exceed the long-run total costs? In this case, as shown in Figure 
7-1 with demand curve DD, it is clear that the total benefits do exceed the total long-run costs since 
at the lower output level qF the demand curve intersects the long-run average cost curve. In other 
words for output level qF we know that total benefits would exceed total costs (by an amount equal to 
the total consumers' surpluses for qF), and from output level qF to q A, the total net benefits increase 
still further since the marginal benefits exceed or equal the long-run marginal costs for each unit 
increase in output between qF and qA. However, if the demand curve had fallen below the long-
run average cost curve at all output levels (i.e., for very low demand), then without actually 
summing the benefits and costs, it would not be possible to tell whether the total net benefits were 
positive or negative. 

 
If the demand function were below the long-run average total cost curve at all points, and if the 

resulting total net benefits were negative, then for that demand case no facility would be 
economically feasible and thus no facility should be built, assuming that no external benefits accrue 
due to construction or operation of the facility (as discussed in Chapter 1). Similarly, any existing 
facility which has negative total net benefits should be abandoned as soon as is practicable, again 
from a long-run economic point of view. That is, while fixed costs for an existing facility can be 
ignored in the short-run and only variable costs need to be covered by short-run prices, as a long-
run proposition they should not be ignored, at least not as long as the maximization of economic 
welfare is the criterion for investment planning and operations. 

 
As for matters of pricing and financial feasibility, the principles are identical to those outlined 

for the short-run case. First, both pricing and financial feasibility pertain only to the circumstances 
for a specific facility and do not involve the long-run cost functions, once the facility or service has 
been chosen. Second, with a single uniform price and with short-run marginal cost pricing, the best 
price for facility A (and demand DD) from the standpoint of economic efficiency would be p(qA) = 
srmcA(qA) = mb(qA). This price, or the average revenue at flow qA, clearly falls below sratcA(qA), the 
short-run average total cost for a volume of qA, and thus would result in a financial deficit or total 
net revenue loss of qA times the difference between sratcA(qA) and srmcA(qA). In this case the 
financial problem is that discussed in Chapter 6: Should the project be subsidized? Should multipart 
prices be used to make up deficits? And so forth. As before, one might conclude (in the absence of 
more comprehensive analyses) that, unless all private and public projects falling into this category 
are subsidized to the extent of the deficits, no public project should be subsidized on these grounds 
(again, aside from other criteria and distributional matters). 
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One difficulty with this "simpleminded" view, of course, is that less-than-competitive private 

industries faced with this particular increasing returns to scale and demand situation could find such 
a project (as facility A) financially feasible even when using uniform prices; that is, they could 
undertake project A, restrict output or flow to a level of qB or below, and set the price at p(qB) > 
sratcA(qB), thus cover all costs and maintain financial feasibility. (Other financially feasible 
options exist as well, i.e., financing other facilities of least cost for output levels below approxi-
mately qp). However, if this were done, then society would "lose" potential gains in two senses. One, 
for an output level of qB or lower, facility A would not represent the lowest cost facility since facility 
A has higher long-run total costs than do other facilities for a flow level of other than qA, Two, if 
facility A were built and operated at a flow of qB, then extra total net benefits equal to the following: 

 

would be forfeited relative to those which could be gained with short-run marginal cost pricing. 

 
The circumstances described in the foregoing paragraph sometimes give rise to the plea for 

multipart prices or some form of price discrimination. The private firm would also prefer to 
produce at an even lower output level than qB since profits would be increased still further. 
Further, one can argue that private firms in many instances use product differentiation and "subtle" 
mark-ups for products in the higher-quality portion of the range as a means of price discrimination 
and a way of covering deficits which would occur with a uniform price (at marginal cost) for each 
different product. Also, since a (noncompetitive) industry certainly would tend to undertake the 
project (and gain profits from so doing and producing at level qB or below), two obvious questions 
arise: 

1. Why don't governments always subsidize such situations? 
2. Should not public investments of the same sort (i.e., increasing 

returns and sufficiently high demand to be sure that total benefits 
exceed total costs) always be undertaken? 

As for the first question, some would argue that most of the projects or situations of this sort fall 
(only) within the public sector or are taken over by the government, thus permitting them to be 
consistently subsidized. However, it is difficult to argue the validity of this view; further, it is 
hardly possible to argue that government policy follows a consistent and "proper" marginal cost 
pricing policy even for publicly owned facilities. As for the second question, and when faced with the 
fact that private industry sometimes will undertake projects of this sort (and that they seldom will 
price at marginal cost and be subsidized to the extent of the long-run losses), it is difficult to gauge 
whether the adoption of such public investments and use of marginal cost pricing will enhance 
economic efficiency. Again, we are confronted with second-best considerations and can reach no 
general conclusions. 

 
A final point to raise with regard to competition is that of the attractiveness of the market for 

competing providers. Will new firms attempt to provide competing services in the presence of 
increasing returns to scale? As we discussed in Chapter 6, competition and profit seeking act to reduce 
competitive prices to the level of short-run marginal costs. In this case private firms would hesitate 
to enter a market with increasing returns to scale since marginal costs are less than average costs. 
Even if a monopolist or single provider raised prices well above the level of short-run marginal cost, a 
new firm might hesitate to enter the market for fear that subsequent price reductions would result in 
unprofitable service. 
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7-3    PLANNING WITH HIGHLY DIVISIBLE FACILITY SIZES AND 
DECREASING RETURNS TO SCALE 

For the high-demand case illustrated by curve D'D' in Figure 7-1, we should consider two 
situations. First, what is the economically efficient facility, volume, and price for a single provider? 
Second, what would be the result of multiple providers and competition in such a market? 

 
For a single provider attempting to maximize net social benefits, the conclusions for the increasing 

returns-to-scale case (discussed in the previous section) hold. Charging a price p(q) equal to srmc c(Qc) 
and Irmc (qc) will maximize the difference between benefits and costs. Since the unit price or 
average revenue is greater than the short-run average total cost (which includes an allowance for 
normal profits on capital) "excess profits" and revenues to the extent of the difference will accrue. 
But these excess profits would hardly induce expansion beyond this point for economic efficiency or 
financial reasons, either in the short run or long run; in both instances the marginal costs exceed the 
marginal benefits and marginal revenues from higher output, thus reducing total net benefits to 
society and total net revenues. This suggests that neither public agencies nor profit-maximizing 
private firms should expand further. 

 
With competition between providers, each firm selects a facility and service alternative, incurs 

costs, and charges a price for service. The total volume is equal to the sum of the volumes served 
by each provider. In this competitive case we can directly examine the complete market for service. 
With the high-demand situation in Figure 7-1 (demand function D'D'), there may be potential 
benefits from having more than one provider enter the market so as to have two (or more) 
providers operating at lower long-run average total costs than Irate (qc) (such as at the volume t7min). 
Since new entrants might have lower costs, they could charge a lower price than lrmc(qc). 
Unfortunately, for the situation illustrated in Figure 7-1 there is insufficient volume to have two 
providers both serve <7min trips. A detailed analysis of the market shares and costs of multiple 
providers—similar to that of the divisible case described below—would be required to determine if 
net social benefits increase or decrease with more than one provider. For the low-demand case (DD 
in Figure 7-1) the larger provider would have lower costs and thereby be able to drive competitors 
out of the market and discourage new competitors from entering the market. 

 
The conclusions in this and the previous section can be summarized by stating the necessary 

conditions for economic efficiency and feasibility: 
1.    Total benefits must equal or exceed costs: 
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Generally, if mb(q) > lrmc(q) it is desirable to expand the facility size. While these conditions 
will hold for the optimum facility, it is of no little importance to emphasize that it is assumed that 
the demand is constant over time and that short-run marginal cost pricing is utilized. 

 
Let us suppose, however, that because of revenue or other restrictions, some policy other than 

marginal cost pricing is applied. First, such a policy would prohibit achievement of maximum net 
social benefits (aside from considering the implications of implementation costs and benefit trade-
offs, a matter which will be discussed in Chapter 11). Second, with other than short-run marginal 
cost pricing, the conditions stated in Equations (7-6), (7-7), and (7-8) would not necessarily hold true 
when selecting the optimum facility (that is, the optimum given the actual pricing policy to be 
invoked). Rather, a more complex procedure would be required in order to determine the facility 
affording/maximum net social benefits, given the pricing policy adopted. Such a procedure is 
described in a later chapter. 
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7-4    ECONOMIC PLANNING FOR HIGHLY INDIVISIBLE CASES 

In the case of highly indivisible alternatives we assume that capacity cannot be expanded in 
extremely small amounts, but only in fairly large increments which lead to abrupt changes in the 
long-run cost functions. Assume (for simplicity) that only two technological options are available or 
possible and that the appropriate cost functions for these two capacity levels are those in Figure 7-2. 
Such cases might include alternative roadway sizes, power generation technologies or port operations 
technology. While the basic principles remain much the same as before, some ambiguities arise 
because of the "sawtoothed" and "scalloped" nature of the long-run marginal and average total cost 
functions, requiring analysis of incremental rather than marginal benefits, revenues, and costs. 

 
The overriding economic efficiency principle is as follows: Expand facility size or improve 

service so long as the marginal or incremental benefits (whichever apply) associated with expansion 
are at least as large as the long-run marginal or incremental costs (whichever apply), provided that the 
long-run total net benefits are nonnegative. In competitive situations this rule also holds as long as 
the demand function is estimated for the individual provider. 
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Consider the above principle as applied to the lower-demand case (with curve DD) and to the 
higher-demand case (with curve D'D') in Figure 7-2. For the latter the situation is quite 
straightforward and clear-cut at least in terms of economic efficiency. Each unit increase in output 
for q = 1 up to q = qe has a marginal benefit which is at least as large as the long-run marginal cost; 
that is, for q = 1 to q = qe, the mb(q) exceeds or equals lrmc(q). Also, the total net benefits for output 
qe will be positive; this follows since the total net benefits at output q d clearly are positive—to the 
extent of the consumers' surpluses, since ar(qd) is equal to Irate (qd)—and since mb(q) > lrmc(q) for q 
= qd up to q = qe. 

 
However, the higher-demand case would present difficult problems for private firms which were 

faced with competition. In such a case competition would "push" the price below long-run average 
total cost or to a price p(qe) = ar(qe) = lrmc(qe) = srmc2(qe), therefore producing long-run defi cits 
and indicating that firms would not attempt such an expansion. On the other hand, with no 
competition and for the illustration as scaled, firms would find the situation profitable but at a lower 
level of output, one at which the marginal revenue equals the long-run marginal cost. It is also worth 
noting that for the diagram as drawn and scaled it appears that a profit-maximizing firm without 
competition would not expand beyond facility 1. As noted above, however, this would not be socially 
desirable. 

 

Figure 7-2.    Illustration of a highly indivisible long-run situation. 
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The lower-demand case (with curve DD) is less straightforward and obvious than the first. In 
this situation it is clear that expansion at least up to an output of qa is desirable (economically), 
since the marginal benefit is at least as large as the long-run marginal cost from q = 1 to q = qa 
and since the total net benefits are positive. The next question, however, is not so easy to answer: 
Should we expand from facility 1 to facility 2 and expand output from qa to qc? The answer is 
affirmative if and only if the incremental benefits are at least as large as the incremental long-run 
costs. Thus, to justify expansion to qc, we must satisfy ourselves that the following inequality holds: 

 
In this instance the exact shapes of the demand and cost functions will be required in order to 
determine the answer. 
 

Finally, it should be noted that similar kinds of situations can arise with respect to the 
determination of the financial prospects for facility expansion. In noncompetitive situations, if the 
marginal revenue function were to intersect the "sawtoothed" long-run marginal cost function in 
much the same fashion as did the DD demand function, then it would be necessary to examine 
both the marginal and incremental revenues and costs. In such situations the use of benefit-cost 
analysis and (perhaps) multiobjective decision making should be used as described in the following 
chapters. That is, we would compare the time stream of benefits and costs for both the larger and 
smaller facilities and then select the alternative with greater net social benefits. 
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7-5    ECONOMIC PLANNING FOR NONCONSTANT OR FLUCTUATING 
DEMAND CASES 

Thus far the discussion has dealt solely with long-run economic planning for cases in which demand 
curves are constant, both from hour to hour and year to year. Needless to say, this is a gross 
oversimplification and to some extent weakens our ability to apply the straightforward deterministic 
approach which was outlined in the previous sections of this chapter. The principles with respect 
to the justification of extra capacity and output—and their costs—remain unchanged, however. The 
difficulties and complexities arising from considering the highly dynamic nature of investment 
planning and fluctuating demand make it necessary to place the investment planning problem 
within the more usual type of benefit-cost analysis framework in which particular facility designs, 
staging plans, and pricing policies are analyzed and evaluated with respect to their year-by-year costs 
and benefits (or revenues, where necessary). The benefit-cost analysis and evaluation procedure 
which will be followed throughout the remainder of this text employs the net present value (or net 
present worth) method. We shall use the terms net present value, net present worth, and total 
discounted net benefit interchangeably. Other analysis options include benefit-cost ratio, internal 
rate-of-return, or equivalent annual cost methods (as discussed in Chapter 8). 

 
In the remainder of this section benefit-cost analysis procedures will be applied to design situations 

involving three different types of demand fluctuations: first, with respect to intertemporal (or year-to-
year) demand changes, while assuming there are no intratemporal (or hour-to-hour) demand 
fluctuations; second, with respect to intratemporal demand fluctuations, while assuming there are no 
intertemporal changes; and third, with respect to both (that is, joint) intratemporal and 
intertemporal changes. 
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7-5-1    INTERTEMPORAL DEMAND CHANGES AND LONG-RUN PLANNING 

The essential questions of planning are: how much and what type of investment to undertake now in 
light of the available technology and our expectations about present and future costs, demands, and 
benefits. To begin to answer this question, we must first determine a time or planning horizon in 
which costs and benefits will be considered. In addition, we must consider alternative staging 
strategies within this planning horizon. For example, we should explicitly consider the possibility of 
delaying facility construction. To conduct the analysis, we require knowledge of year-to-year demand 
expectations, year-to-year cost functions for each staging plan and alternative investment, and year-
to-year discount rates, all properly accounting for the uncertainties of man and nature and for 
divergences between market and opportunity values. Further, there are problems involving the extra 
delays, interruptions, and other such costs occurring during construction and maintenance periods, 
and there are the practical considerations of workable pricing mechanisms, and of steady versus 
fluctuating prices and so forth. 

 
Our general procedure for considering these problems will be to sum the (discounted) annual 

consequences of each specific investment and staging plan (that is, each alternative) over the entire 
planning horizon. The analysis will be identical to that in the previous section except that we must 
consider each year of the planning horizon separately, and we must explicitly consider different 
implementation schedules over time. As a result, the calculations are more numerous, but the 
essential principles and approach remain unchanged. 

 
While it is necessary to anticipate and account for the entire stream of expected future costs and 

benefits in the process of making decisions about today's commitments, once a decision is made 
about present actions, there is clearly no firm commitment being made with respect to future ones. 
One commitment does not require the other, after the fact; on the other hand, the earlier action can 
and probably will affect later actions, even in the face of changes in expected benefits or costs, if 
for no other reason than because of the fact that earlier commitments (usually) can be regarded as 
sunk or irrevocable. 

 
Another important aspect based upon the analyses and conclusions earlier in this chapter is that 

is not necessary to place fixed and variable costs on commensurate scales with respect to specific 
time intervals and their output levels. That is, while resources committed for fixed factors of 
production during (say) year t can be placed on a commensurate time value of money scale with 
commitments made during other earlier or later years, such fixed costs are nonseparable with respect 
to the output level during year t or succeeding years. Thus, they need not be "spread" or averaged 
over the volume occurring during year t and the remaining years during the planning horizon. It will 
be necessary to deal with fixed or nonseparable costs in terms of their relationship to facility size 
and output capacity and the time period in which they are committed. 

 
The long-run economic objective (while assuming no intratemporal demand fluctuations and thus 

that flow throughout the tth time period or year is constant) is to determine the investment plan which 
will maximize the (expected) total discounted net benefits resulting over an rc-year analysis period 
(or n-year planning horizon), subject, of course, to the restriction that the total discounted net benefits 
are positive. In short, the null alternative (which will produce total discounted net benefits equal to 
zero) is always preferable to a plan which will result in negative total discounted net benefits, aside 
from social or other external considerations. Also, as detailed throughout the preceding sections, the 
best pricing policy (from the standpoint of economic efficiency and maximizing total net benefits) 
will be to adopt marginal cost pricing. Again, for this initial discussion, the implementation of one 
or another pricing policy is regarded as "costless" (at least on a relative basis). Satisfying this 
longer-term problem, given (just) intertemporal demand fluctuations, can no longer be regarded as 
a straightforward or deterministic problem. Rather, it must be characterized as a compound decision 
problem based on expectations of future costs and benefits for each alternative. Thus, the decision 
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problem may be formalized as a decision tree or dynamic programming problem. Also, it must be 
recognized that the costs and benefits during any future year t will be dependent or conditional upon 
the prior staging plan or actions which were taken during years 1 to t - 1. 

The problem can be formulated as follows: Let 

NSC(xt\xi,.. .,xt-i) = nonseparable or fixed costs incurred at start of year t for 
plan x t given that plans x u..., xt-i were adopted in previous 
years (written 
xt\xh.. .,£t-i) 

SRVC(qt, x t \x t , . . . , x t - i )  = total variable costs incurred for output qt 
during year t for plan x t\x l9 ... ,x t-i 

srmc(qt, x t \ x i 9 . . . , x t - i )  = short-run marginal cost at output qt during 
year t for plan x t \ x l 9 . . . 9 x t - \  

mbt{qt) = marginal benefit during year t at output qt 

Then, for efficient utilization and maximum total net benefits during year t for plan 
xt9 given the adoption of plans X i 9 . . . 9 x t - i  during prior years, 

Equilibrium price = p t (xt\xu- , . 9 x t - i )  (7-10) 
= srmc(Qt,xt\xl9...9xt-i) (7-11) 
= mbt(Qt) (7-12) 

where 

Qt — equilibrium flow or output during year t for plan xt\xx,.. ,9xt-i 

These equilibrium flows and prices for this simple intertemporal demand case (while ignoring 
intratemporal fluctuations) could be determined analytically by setting the appropriate marginal 
benefit and short-run marginal cost expressions equal to each other and solving for the equilibrium 
flow (and then back-substituting to find the price as in Chapter 3).  

For example, using Equations (4-18) and (5-3) for plan xt\xl9.. ,,xt-i during year t, we get 

 

 

 

This expression can be solved for the equilibrium flow Qt. Then, if Qt is back-
substituted into either Equation (4-18) or (5-3), the equilibrium price can be 
determined. 
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in which SRVC, TB, and TR are the total variable costs, total benefits, and total revenues, 
respectively, during the tth year for the equilibrium flow and staging plan indicated in the 
argument; also, in these equations k t is the number of time intervals during year t having 
equilibrium flow Qt and assumes that the flow throughout the year is constant. Consequently, if the 
output or flow units are trips per hour in year t, then the time interval would be an hour and k t 
would be equal to 8760. 

 
For computational convenience, analysts typically assume that the variable costs, benefits, and 

revenues occur at the end of the year during which they are incurred or accrued (i.e., at the end of 
the tth year); this is in contrast to the nonseparable (or "fixed") costs which are assumed to be 
incurred at the start of year t. 

 
Once the costs, marginal benefits, and revenues have been enumerated—for all years during 

the n -year planning horizon and for all plans or combinations of facility size and staging sequences—
it will then be possible to reduce the costs and benefits to a comparable time base (in order to account 
for the time value of money) and to compare alternative facility plans and staging sequences. For 
this purpose the year-by-year cost and benefit totals in Equations (7-14) to (7-16) together with the 
nonseparable costs will be discounted, totalled, and compared in two ways. First, increments of 
expenditure and benefit will be compared working backward from year n to insure the economic 
feasibility of increments. Two, those plans for which all increments of expenditure during the n 
years are economically justifiable will then be compared in terms of their accumulated n-year total 
net benefits (discounted to the present). This procedure is outlined as a two-step procedure for 
computational reasons. That is, if the analysis is made incrementally—as will be detailed—the 
computations can be foreshortened relative to a procedure whereby every plan is discounted to the 
present. 

 

 

Also,  
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Figure 7-3.    Illustration of alternative facility and staging plans. 

 
To illustrate the above points, consider the simple example shown in Figure 7-3 in which four 

different facility sizes or expansion plans are analyzed for the planning horizon of 2 years (i.e., 
through year 2). The first step of the analysis would be to examine the incremental costs 
andbenefits from the start of year 2 to its end. Thus, for each of the four plans, the year 2 variable 
costs and benefits will be discounted to the start of year 2, netted, and compared with any 
nonseparable (or fixed) costs incurred at the start of year 2. All plans for which the incremental (or 
second year) benefits do not exceed the incremental costs will be rejected; recall in this regard that at 
the end of each year throughout the planning horizon the facility can be abandoned, thus reducing 
from that year forward the total net benefits to zero (which clearly is preferable to negative total net 
benefits). In turn, each of the plans which was not rejected upon examination of the last increments 
will be analyzed in terms of the incremental costs and benefits during the nth and n - lth years 
combined. The total net benefits computed before (i.e., the total net benefits discounted to the start 
of the nth year, or second year in this case) will be added to the benefits accruing during the n - lth 
year; the n - lth-year variable costs will be subtracted from these total 2-year benefits and the net 
will then be discounted to the start of the n - lth year and then compared with the nonseparable 
costs (if any) which were made at the start of the n - lth year. Again, all plans for which the net of 
these benefits and costs (or total discounted net benefits for the last 2 years) are not positive will be 
rejected. Finally, all plans having positive total discounted net benefits can be compared to determine 
which is the most preferable (i.e., which plan accrues the largest total discounted net benefits). 

 
If overall financial feasibility for the total n-year period is also a requirement for alternative plans 

and projects, as might be recommended for increasing returns cases, the year-by-year revenues and 
costs for the best plan (i.e., for the plan having the highest total discounted net benefit) can then be 
discounted and totalled; if the total discounted net revenues for the best plan are positive, then both 
economic and financial feasibility requirements will be satisfied. 

 
The year-to-year discounting (working backwards from year n) required for the incremental 

benefit and cost analysis can be accomplished by successively applying a 1-year discount factor as 
follows: 

 
where i is the interest rate expressed in decimal form. For example, if the benefit and cost 
increments for the last or nth year of the planning horizon are to be placed on a comparable time-
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value basis (which we will assume to be the start of the nth year), the total net benefits discounted 
to the start of year n would be as follows: 

 
where TDNBn(xu. . . , x n )  is the total net benefits discounted to the start of year n for the staging 
and facility plan shown in the argument of the expression. 

 
More generally, for carrying out the incremental analysis the total net benefits for years t 

through n when discounted to the start of year t would be as follows: 

 
For those cases in which financial feasibility is also required, the factor for discounting revenues 

or costs accrued or incurred at the end of the tth year to their present value would be 

 
Applying this factor, the total net revenues for the n-year planning horizon, all discounted to the 
start of year 1, would be as follows (for staging plan x u . . . , x n ) :  

However, when t is equal to 1 in the summation [Eq. (7-21)], the argument (x t \x i , . . . 9 x t - i )  simply 
becomes xu and when t is equal to 2 in the summation, the argument becomes x2\x1. 
 

The benefit-cost (or, more specifically, net present value) procedure outlined above will permit 
the analyst to examine the economic and financial feasibility of investments and increments of 
investment. Furthermore, this procedure will permit the analyst to take into account the alternatives 
of doing nothing now (or later), of abandoning existing facilities at any time during the planning 
horizon, and of withholding expansion or investment until a later year. (Specifically, requiring 
increments of investment as well as the overall investment to have total discounted net benefits equal 
to or greater than zero implicitly accounts for these alternatives.) However, the extent to which the 
procedure will lead to the "optimum" investment and staging program depends on the ingenuity of 
engineers, planners, and designers and their ability to create "useful and worthwhile" designs, to 
estimate the best expansion plans and the best technology for providing services, and to determine 
the plan for which extra benefits just equal the extra costs for the last increment of expenditure. 
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Finally, it should be noted that this procedure with the accompanying pricing policy requires the 
use of prices which can (and probably will) vary from year to year; the degree to which they would 
vary depends on the lumpiness or divisibility of the technology, on demand shifts from year to year, 
on the staging plan, and on the nature of the returns to scale (i.e., are they constant, increasing, or 
decreasing?). 

Back to top 

7-5-2    INTRATEMPORAL DEMAND FLUCTUATIONS AND LONG-RUN EFFICIENCY 

The problems of peak loads or intratemporal demand fluctuations complicate investment, pricing, and 
efficiency planning enormously but are of great importance. In this section both simple and complex 
peak-load situations will be treated, though in all cases it will be assumed that intratemporal demand 
functions change only from hour to hour and remain constant from day to day and from year to 
year; also, intratemporal demand cross -relations generally will be ignored. 

 
The first case to be discussed will be that in which the demand fluctuations during the day can be 

characterized by two demand functions, one for the demand during np peak-load hours and a 
second for the demand during n0 off-peak-load hours; the demand during each hour of the peak 
period will be identical, and that during each off-peak period hour will be identical. This does not 
imply that the peak period must consist of np consecutive hours, however; for example, if np were 5 
hours, the morning peak load could be 2 hours long and the afternoon peak load could be 3 hours 
long, with each peak-load hour having the same demand and equilibrium flow. As noted above, the 
hour-to-hour demand cross -relations are ignored. That is, it is assumed that travelers, when deciding 
whether to travel and which hour to select if one does travel, will consider only the price of travel 
during the hour in question. For instance, when deciding whether to make a trip during the peak 
period, the traveler will consider only the peak period price rather than consider the off-peak period 
price as well. In essence, this is to assume that the peak and off-peak periods are not competing 
choices for potential travelers. While this assumption is clearly unrealistic, its use does permit us to 
depict the situation graphically and with less complexity than would otherwise be necessary. Chapter 
5 provides an explanation of the appropriate treatment for competing choice situations. 

 
Let us assume that we are confronted with the long-run cost functions and peak and off-peak 

period demand functions shown in Figure 7-4. Note that the long-run marginal cost is assumed to be 
constant, thus indicating that (for the total cost functions as shown) the long-run average total cost 
is continually declining. Two possibilities for the Irate function are indicated on the diagram. Using 
the long-run economic efficiency principles outlined earlier, we can see that the "best" facility would 
be that for which total cost was lowest when the output was q0 if the demand were constantly at Do 
but that the "best" would correspond to output qp if the demand were constantly at Dp. Moreover, 
it can be shown that in either of the two cases the total net benefits would be positive when the 
Iratc(q) function applied; however, total net benefits may or may not be positive when the Irate'(q) 
function was appropriate. 

 
With fluctuating demand, determination of the best facility size cannot be made by simply 

examining the long-run marginal cost curve. We might attempt to choose the best facility for one 
particular period (such as the peak travel period), but this policy may result in much lower net 
benefits than might be obtained from intermediate facility sizes. The relevant principle is to 
determine the net benefits during each period for the various facility sizes and then to choose the 
facility which maximizes the total nonnegative net benefit, which is the sum of all individual 
periods' net benefits. 

 
In general, for any facility x the daily total net benefits can be computed as follows when there 

are r different demand periods: 
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where Fx is the hourly fixed cost for facility x, mbh(q) is the hourly marginal benefit during the hth 
demand period for a flow of q, and qh,x is the hourly equilibrium flow for the hth demand period with 
facility x. In this equation the hth demand period includes kh hours of flow. This formulation of 
total net benefit applies regardless of whether there are constant, increasing, or decreasing returns to 
scale. The planning problem is to identify the facility size, x, which maximizes the total nonnegative 
net benefits. 

 

 
For situations in which facility sizes are discrete, a planner need only calculate the total net 

benefits for each possible facility size and then choose the facility with the largest nonnegative net 
benefits. In situations of perfect divisibility the same principle exists, although the method of 
identifying the best facility is more difficult due to the large number of alternatives. Under certain 
circumstances a planner may simply follow the procedure of continuously expanding the facility 
size until the long-run incremental total net benefit due to expansion is zero; the incremental benefits 
may be calculated from Equation (7-22) for each change in facility size, such as from facility x to 
facility y: 
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The conditions under which this guideline may be employed require that only one optimum facility 
size exists. As long as a single optimum short-run price exists and equilibrium volumes increase 
with increased facility size, this condition will occur. With the possibility of more than one 
facility size for which the total incremental net benefits are zero, it is necessary to identify each of 
these facilities and then directly compare their total net benefits to determine the best facility. 

 
While the approach described above insures that the best facility size will be chosen, it does not 

insure that the best facility will be either economically desirable or financially feasible. To be 
economically feasible, the facility must have total benefits larger than total costs; that is, 

 
Figure 7-5.    Cost and demand relations for two-period intratemporal demand case and for two facility sizes. 

In some cases a financial constraint may be imposed so that total payments might be required to 
exceed costs: 

 
In addition, financial requirements for operators might be imposed; this possibility is discussed 
further below. 
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7-5-3   JOINT CONSIDERATION OF INTERTEMPORAL AND INTRATEMPORAL DEMAND 
FLUCTUATIONS 
In most instances the analyst should take account of both intertemporal and intratemporal demand 
fluctuations in his search for the "best" investment and staging plan. To undertake such an 
assignment, a benefit-cost analysis and decision-tree approach comparable to that outlined for the 
intertemporal situation in Section 7-5-1 or Chapter 8 would be suitable.  

Back to top 

7-6    DECISION ANALYSIS WITH UNCERTAINTY 

There is an additional and very important consideration which should be included in the analysis of 
investment and staging plans which was outlined in the previous section. As we noted in 
Chapter 3, estimates of system or service usage which will occur in the future have a great deal of 
uncertainty associated with them. Moreover, estimates of the costs of construction and operation in 
future years are also uncertain. This uncertainty complicates the analysis, but a reasonable and 
prudent planner can and should consider its implications in making investment decisions. 

 
It should be apparent that different alternatives will be more or less desirable as the expected 

volume or associated costs change. For example, smaller facilities would likely be more desirable 
than larger ones when the underlying demand for a service is lower than originally expected. In 
addition, more flexible services and systems are likely to be more beneficial when a great deal of 
uncertainty accompanies estimates of volume levels and costs. With a more flexible system, it is 
possible to make decisions to change the scale of service at a later date in light of the actual changes 
in volumes or costs. 

 
One tedious but straightforward manner in which to consider such uncertainties is to estimate 

the expected net benefits of an investment and staging alternative. This procedure requires 
identification of the various possibilities or conditions which are likely to occur and determination 
of a probability or chance that each of these conditions might occur. These different conditions might 
correspond to different growth rates in population or economic activity. The total net benefits 
resulting from each investment and staging alternative under each condition or possibility is then 
calculated using the method described in Section 7-5. Subsequently, the expected net benefits are 
calculated by summing the net benefits under each condition multiplied by the probability that 
the condition occurs: 

7-26 
where z is a particular condition, m is the number of possible conditions, Pr{z) is the probability 
that z will occur, and total discounted net benefit TDNB (•) is as defined in Section 7-5. Note that 
the sum of the probabilities associated with all the possible conditions must equal 1. 
 

An illustration of this procedure appears in Figure 7-6 for the case in which two different 
conditions might occur in year 2. These two conditions might occur if a major industrial plant had 
some chance of locating within the study area, so the analysis is conducted under the assumption 
that the plant will not be present (z = 1) and that the plant will be (z = 2). 
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Figure 7-6.   Alternative facility and staging plans for a two-year horizon with two possible exogenous 
events. 

In this analysis, the decision is whether to implement alternative A or JB in year 1 and, in year 2, 
whether to switch to alternative B from alternative A (if it was chosen in year 1). Another example in 
which two alternatives might be considered is the case in which an economic recession may or may not 
occur. The net benefits resulting from each of the future conditions are estimated, along with the 
probabilities for all z, and then the expected net benefits are calculated using Equation (7-26). 

 
Uncertain events which may occur during the planning horizon may make subsequent changes in 

the investment and staging plans desirable. For example, future planned expansions might be 
cancelled if the growth in system usage was much lower than expected. The analysis should be 
conducted based upon the assumption that such cancellations might occur given the outcome of events 
up until that point in time. Such changes are simply a realization that decisions deferred to a later 
date may take advantage of knowledge developed in previous periods. Selling unneeded vehicles is a 
practical example of a rational response of this type. Thus, the costs associated with low-volume 
situations would likely be lower for investment alternatives which carry with them the possibility of 
flexible operations and cost reductions. 

 
In many cases it may be adequate to consider the result of a few extreme cases of cost and 

demand function shifts, and then interpolate to find intermediate values. Even in planning situations 
in which a full-scale analysis of the type illustrated in Figure 7-6 would be too costly to be practical, 
planners should realize that investment plans which incorporate a certain amount of flexibility in 
operation under different conditions are likely to be more effective than rigid alternatives. 

Back to top 
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7-7    CONCLUDING REMARKS 

The earlier sections of this chapter outlined the interactions among cost, demand, and pricing under 
very idealized circumstances, but nonetheless provided a general framework to guide the designer 
and planner in his search for better designs and technologies. Furthermore, in these introductory 
remarks the conflict between economic efficiency and financial feasibility which can exist was noted, 
along with some of the reasons for permitting one aspect or another to override. 

 
However, once it becomes necessary to account for the demand fluctuations that invariably exist, 

either intertemporally (year to year) or intra-temporally (hour to hour or season to season), or both, 
the last of which is usually the case, the idealized and deterministic structure for decision making on 
questions of the best investment and output level does not appear suitable. Rather, in its stead, it 
becomes necessary to detail particular plans and to analyze their particular consequences on the more 
usual benefit-cost basis. The details of this type of analysis were introduced to permit full 
accounting of the time-value aspects as well as intra-temporal and inter-temporal demand 
fluctuations (while ignoring crosselasticities, however). Finally, it should be noted that feasibility 
analysis was mainly considered in this chapter for marginal cost pricing, though some of the 
ramifications stemming from other policies were noted. Further, no note was made of the practical 
difficulties or costs of implementing such a pricing policy or of the distributional aspects involved. 
These issues will be considered in Chapter 13. 
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7-8 Problems 
 
P7-1.  You are responsible for conducting a preliminary analysis of alternative wastewater treatment 
facilities for a community. At the moment, a plant exists which is not meeting the desired treatment 
reliability standard (defined below). This existing plant will be scrapped when a new plant is finished. 
 
Your community bas defined a planning horizon and made projections of the level of demand over the 
twenty-year planning horizon for treatment plants. You may assume that the value of plants is zero after 
twenty years, and that plants are paid for and commence operation in the current year. For the planning 
horizon, the annual demand (q) for the first decade is: 
 

q = 11- 0.8p  
 

and for the second decade: 
 

q = 15-p  
 

The costs of constructing and operating plants of different sizes and types are summarized in Table 1; 
annual costs do not include inflation. These plant types correspond (roughly) to different chemical 
treatment plants and different agricultural re-uses. For your analysis, note that costs depend upon design 
capacity as well as usage. 
 
A major goal in introducing a new wastewater treatment plant is to improve the reliability with respect to 
meeting relevant federal regulations. In particular, assume that your recommended plant must meet a 
constraint on treatment reliability, where reliability is defined as the probability of meeting the federal 
standard. In all cases, plant reliability is given by the formula: 
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R= .99 -.04 (q/D)^a     for  q<D 
 

where R is the reliability, D is the annual design capacity and exponent parameter a depends upon the 
alternative constructed. In this case, alternative 1 has a parameter a = 3 whereas alternative 2 has a = 4. 
 
Alternative Capital Cost Annual Operating and 

Maintenance 
1 10 + 3*D 0.1*q 
2 16 + 1.6*D 0.08*q 
 
Fees during the life of the plant will be constant at $2 in real dollars. Using a discount factor of 6% and 
assuming an inflation rate of 1%, answer the following questions: 
 
a. Determine the necessary design capacities to meet federal standards for each alternative given that R 
has to be greater than or equal to 0.97. 
 
b. Which alternative is preferable? 
 
c. At the price of $2.00, what would be the change in net social benefit with a reliability standard of .95? 
 
d. Suppose you finance the plant with a twenty year uniform payment bond with an interest rate of 8%. 
What is the annual capital payment? 
 
e. With the uniform payment bond, project the system revenues and plant costs over the 20 year planning 
horizon. 
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CHAPTER    8 

BENEFIT-COST ANALYSIS FOR MUTUALLY 
EXCLUSIVE ALTERNATIVES-PRINCIPLES AND 
METHODS 
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The subject of benefit-cost analysis—whether termed that or an engineering economy study or an 
alternatives analysis or a feasibility analysis—is not a new one. While the "names" have changed, the 
substance and the content have remained unchanged for many years. Nor have the principles changed.  

 
Benefit-cost analysis is little different from long-run economic planning as discussed in previous 

chapters. The principles to be used are virtually identical, the major difference being that in benefit-
cost analysis only a subset of specific alternatives is analyzed. That is, benefit-cost analysis is 
directed solely at the analysis of a specific set of technological or facility alternatives while long-run 
economic planning as discussed earlier is directed at identification of the best alternative among a 
much wider range of technological possibilities. Further, benefit-cost analyses will tend to be much 
more detailed than the more general long-run economic planning and to take account of other 
important aspects—such as variation in demand, either from hour to hour (or intra-temporally) or 
from year to year (or inter-temporally). 

8-1    PROPER SPECIFICATION OF MUTUALLY EXCLUSIVE ALTERNATIVES 

The essential questions for benefit-cost analysis are directed at analyzing the economic desirability 
of mutually exclusive alternatives. The term mutually exclusive implies that one and only one of the 
alternatives can be undertaken. Importantly, when a list of mutually exclusive alternatives has been 
specified for analysis, the null or "do-nothing" alternative should always be part of the process. The 
null alternative is simply that of doing nothing. More precisely, it is providing no infrastructure 
service and thus incurring no costs and accruing no benefits. When an entirely new facility is being 
proposed, there seems to be no misunderstanding about the existence and treatment of the null 
alternative. But when an agency is considering the improvement of services on an existing facility or 
service, the analyst often and incorrectly specifies the null alternative as the "status quo" or existing 
alternative. Sometimes this is done implicitly by virtue of simply analyzing the incremental benefits 
and costs between the existing facility or system and its improvement. This is tantamount to 
assuming that the existing service will be continued or improved, regardless of its economic merits. 
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There is one exception to our definition of the null alternative which occurs occasionally in the 
case of disinvestment in existing facilities. In such a case abandonment may involve shut-down or 
demolition costs and, thus, the null alternative as defined above is not available. Examples would 
include nuclear power plants (with high waste disposal costs) and mine closures (with acid drainage 
issues).  These cases are relatively rare, however, since most facilities will have some salvage or 
residual land value to offset some or all of the demolition costs. 

 
Also, the usual practice is to overlook consideration of the null (or do-nothing) alternative, as 

previously defined. That is, most analysts treat the existing (or status quo) alternative as the null 
alternative. In this instance the analyst has implicitly concluded that the benefits associated with the 
use of the existing system do outweigh the costs of operating and maintaining it (to include the 
foregone opportunity value associated with its fixed way and facilities). In practice, this is equivalent 
to saying "No facility or system, once built and in operation, can be abandoned— regardless." In a 
rapidly changing society and economy constantly bombarded with new technology and developments, 
it would be hard to justify such a position. While we seldom question the wisdom of abandoning 
obsolete plants and facilities if privately owned, we nonetheless see no contradiction when we take an 
opposite view with respect to abandoning obsolescent publicly owned systems or facilities. The 
difference in viewpoint is neither defensible nor understandable. 

 
The proper specification of mutually exclusive alternatives can also be explained by example. 

Suppose, for instance, you had attempted to carry out a benefit-cost analysis for BART (the San 
Francisco Bay Area Rapid Transit System) prior to its construction. Most analysts would simply 
analyze the extra costs incurred to build and operate BART as compared to the extra benefits 
stemming from its operation. Other planners would argue that by virtue of building BART certain 
additional highways would not have to be built, and thus that an additional benefit item for BART 
would be the avoided costs of additional highway construction. In either case the full set of mutually 
exclusive alternatives has been mis-specified. For the first the existing highway and transit facilities 
(prior to BART) are implicitly assumed to be the null alternative and thus their benefits and costs 
are ignored. In the second case two mutually exclusive alternatives are improperly intermeshed. In 
contrast, the proper list of mutually exclusive alternatives (involving the existing highway and transit 
system, BART, and new highways) might be as follows: 

Null Alternative: abandonment of existing transit and highway system, as well as no BART and 
no new highways. 
Existing (or Status Quo) Alternative: existing transit and highway system without either 
BART or new highways. 
New Alternative 1: existing transit and highway system plus BART but no new highways. 
New Alternative 2: existing transit and highway system plus BART and some new highways. 
New Alternative 3: Improved operating and pricing strategies for the existing transit and 
highway system. 

In turn, the benefits and costs for each of these mutually exclusive alternatives (other than the null, 
which has zero benefits and costs) should be evaluated. 

 
The acceptance or rejection of one alternative is not dependent upon another. That is, if one does 

not build one alternative, such as "New Alternative 1" above, then one does not have to build 
highways or some other transit system instead. Nor does the construction of BART mean that some 
new highways are necessarily avoided or "saved." 

 
A story involving former Secretary Robert McNamara highlights this principle. As the story goes, 

one day McNamara's son informed his father (a champion of benefit-cost analysis) that he had 
saved a dollar by walking home from school rather than taking the bus, whereupon his father 
asked why he hadn't decided not to take a taxi home and thus to save $10.00 instead.  
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8-2    BASIC PRINCIPLES UNDERLYING BENEFIT-COST ANALYSIS 

The benefit-cost analysis principles are designed to determine whether any of a set of mutually 
exclusive alternatives is economically worthwhile and, if so, which of the alternatives is the most 
desirable in an economic sense. Benefit-cost analysis methods are used to insure that (1) no project 
will be considered economically acceptable unless its total net benefits are positive and (2) the project 
having the highest nonnegative total net benefits is selected as the best. 
 
The analysis methods are designed to take account of the time period in which cost 
commitments are made or benefits accrued, and to insure that costs incurred or benefits 
accrued during different time periods are placed on a commensurate value scale. In essence, 
this is simply to recognize the "time value of resources" and the fact that resources 
committed in the present or near future are more costly than those committed farther in the 
future. 

Back to top 

8-2-1    DEFINING THE PLANNING HORIZON OR ANALYSIS PERIOD 

All alternative projects must be analyzed for the same analysis period or planning horizon if we are 
to properly account for reinvestment of any earnings or benefits accrued prior to the end of the 
analysis or planning period, especially when one project may have a shorter terminal date than 
another (whether replaced or not). Briefly, the analyst is concerned with (1) examining the benefit 
and cost conditions which are expected to occur over the same analysis period or planning horizon for 
all alternatives, regardless of when or whether certain capital items are to be replaced or terminated 
early, and (2) determining whether any initial capital outlays should be made at the present and, if 
so, which level of outlay is best based on expected future benefits and costs. For the first, if one 
project among the set of alternatives is terminated early, the analyst must concern himself with the 
other opportunities that are available for using the capital funds (which would have been used for 
replacement) and what returns (i.e., benefits or revenues) can be accrued from them. Similarly, when 
benefits or revenues are accrued in early years, either prior to the end of the analysis period or prior 
to the end of any project's terminal date, the analyst cannot ignore the problem of properly accounting 
for the reinvestment (or use) of the early-year benefits or revenues for the remainder of the analysis 
period. Some of these matters will be clarified in later examples (Sections II-3 and II-4). 

 
There are many ways of designating the analysis period and insuring that alternative projects are 

properly compared with respect to the costs and benefits. For one, we can simply adopt an arbitrary 
length of time over which the cost and benefit circumstances are to be analyzed. This period might 
be chosen to seem suitable in terms of the service or physical lives of the facilities involved or in terms 
of other appropriate aspects.  For example, sixty years might be used for buildings or pipelines 
whereas five years might be used as a planning horizon for wifi electronics. 

 
For another, we may—again, arbitrarily—set the analysis period or planning horizon to be equal to 

what we believe to be "the foreseeable future," or the period of time over which we can comfortably 
or fairly reliably predict benefits and costs.  

 
A third (and common but undesirable choice) is to set the analysis period equal to the least 

common multiple of the physical or service lives of the alternatives being compared. (For instance, if 
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alternative 1 will be replaced at the end of 5 years, alternative 2 at the end of 15 years, and 
alternative 3 at the end of 25 years, the least common multiple will be 75 years.) The problem with the 
third approach is not so much with the length of time established but with the analysis method 
usually (though admittedly not necessarily) utilized in combination with the "least common 
multiple" approach. Specifically, it usually is employed when the costs are to be expressed in terms 
of equivalent annual costs computed by multiplying the initial capital outlay (for each alternative) 
times the capital recovery factor for its service or physical life. Accordingly, use of this approach 
results in the implicit assumptions that (1) capital items will always be replaced at the end of their 
initially designated service life (for however many times as are necessary over the "least common 
multiple" life) and (2) the replacement costs of the capital items in future years will be exactly the 
same as they were when the project was initiated. Inasmuch as these two assumptions appear to be at 
odds with real-world considerations (such as changes in the future with respect to the service lives, 
factor prices, and appropriate technology), a different and simpler analysis method seems more 
appropriate. Briefly, it appears more straightforward to arbitrarily designate the analysis period 
(according to our expectations about the "foreseeable future"), and then to estimate the year-by-
year cost outlays, whether for initial purchase or replacement and whether service lives change or 
not, as they are expected to occur over the planning horizon. By so doing, future cost outlays can 
easily reflect changes due to variations in factor prices or in the technology employed. 

 
For cases in which discount rates are significant  (as described below), the value of benefits and costs over 

a lengthy period of time are lower, so the designation of a planning horizon is less important for the eventual 
decision of the best alternative. 
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8-2-2   ESTIMATING BENEFITS AND COSTS 

Once the alternatives have been specified, estimates must be made of the year-by-year volume they 
will experience and, in turn, the year-by-year costs and benefits associated with that pattern of usage. 
Importantly, the values for these items should be measured in constant dollars and thus not reflect 
inflation or deflation. It is possible to conduct an analysis in inflated or nominal dollar amounts. 
However, use of such nominal dollar amounts typically requires applying an inflation factor during 
the forecasting phase and then removing the inflation during the evaluation phase. It is 
analytically simpler and conceptually clearer to simply restrict the analysis to costs and benefits as 
measured in constant dollars. 

The yearly costs and benefits calculated for a project should represent the actual benefits and costs 
resulting from the project with respect to the viewpoint adopted for analysis. As an example, 
suppose that the federal government is considering an investment, and so a national viewpoint is 
adopted. In this case dollar amounts which do not represent a commitment of goods or services may 
be excluded from the benefit and cost totals since they represent a transfer payment. No tax 
payments should be included within the totals in this case unless such taxes represent the 
payments for services associated with the construction, maintenance, operation, or usage of the 
alternative being analyzed. If for example extra police were hired by the local government to provide 
control or security for the alternative, and the costs thereof were to be borne by the local 
government and paid out of city taxes, then any city tax payments to that extent should be included 
as a cost item. By contrast, any local property taxes levied against motor vehicles probably 
should be excluded. Chapters 4 and 5 discussed the definition and measurement of such benefit and 
cost items. 

 
The costs and revenues associated with borrowed money deserve particular attention in specifying 

and determining the time stream of costs and benefits. Borrowed money has an economic 
opportunity cost since these funds cannot thereby be used for alternative investments. Some projects 
require borrowed money during the construction phase or later when replacing equipment and 
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repairing facilities, such funds then being repaid from later project revenues or from other internal 
earnings (such as tax revenues) available to the firm or agency sponsoring the project.  

TABLE 8-1.   Example of an Alternative's Benefit and Cost Stream with and without 
External Borrowing Costs 
 Cash Flow without 

Borrowing 
Borrowing Cash Flow Combined Cash Flow 

Year Benefit Cost Revenue Cost Benefit Cost 
0 (Present) 0 600 600 0 600 600 
1 512 100 0 412 512 512 
2 512 150 0 237 512 387 
3 400 250 0 0 400 250 
4 560 800 0 0 560 800 
5 800 500 0 0 800 500 
Note: Dollar amounts are in thousands of constant dollars. A 6% borrowing rate is assumed for 
financing. 
 

As an example, suppose a 5-year project has an internal cash flow stream without considering 
financing as shown in the first few columns in Table 8-1 and assume the initial outlays are to be 
financed by borrowing $600K in year 0, an amount which is paid back in the next 2 years from 
project net revenues including a 6% interest charge on unpaid balances. The combined cash flow for 
the project, including external financing revenues and payments, is shown in the final two columns 
of Table 8-1. While an additional capital infusion of $240K is required in year 4, in this example it is 
assumed that the added capital is obtained from internal sources or retained earnings rather than 
from external borrowing. Obviously, though, other financing schemes could be considered, thereby 
leading to different combined cash flow streams; more attention will be devoted to this prospect in 
Section 9-4 of Chapter 9. 

 
To determine the economic acceptability of a project and the best among a set of mutually 

exclusive projects, the benefit-cost analysis must consider the total cash flow stream of benefits and 
costs, to include any borrowing costs and revenues if those are relevant to the entity conducting the 
benefit cost analysis. 

.  
With the estimation of the time stream or benefits and costs for each alternative, we can define 

CXtt = expected costs or outlays (whether capital or operating) for alternative x during year t 

and 
BX}t = expected benefits from alternative x during year t. 

The stream of costs and benefits over n years might be as shown in Table 8-2. In turn, two 
other items of information must be specified: (1) the planning horizon or analysis period (n in 
Table 8-2) and (2) the minimum attractive rate of return (MARR, or, say, "cutoff rate") or, 
equivalently, the opportunity cost of capital. 

Back to top 
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8-2-3   SETTING THE OPPORTUNITY COST OF CAPITAL OR MINIMUM ATTRACTIVE 
RATE OF RETURN 

For all benefit-cost analysis methods it will be necessary to specify an interest rate (or discount rate), 
directly or indirectly. Often, and especially when using the internal rate-of-return method, the 
interest rate to be specified is referred to as the "minimum attractive rate of return" (MARR), a 
rate which reflects the interest which can be earned from other alternative opportunities which are 
foregone. This term is equivalent to that used by economists, that is, the opportunity cost of capital 
or an interest rate with reflects the earnings which will be foregone from other investment 
opportunities if the capital is to be committed to a project in question. To a large extent the 
specification of an "appropriate" interest rate, MARR or opportunity cost of capital is arbitrary and 
thus open to question. As a consequence, it may be desirable to carry out the analysis for a range of 
interest rates (which may reflect private market rates, on one extreme, and judgments about the 
social rate of discount, on the other); this range may vary widely, perhaps as much as from 2 to 20%. 
Given this wide range of possibilities, and the different judgments with respect to private versus 
social rates of discount, it seems appropriate to discuss the basis of these possibilities and differences. 

 For projects involving United States federal dollars, the discount rate to be used is set by the 
Office of Management and Budget (OMB).  The OMB typically recommends a discount rate based 
upon the federal market borrowing rate.  Many private companies adopt a similar strategy, using 
their own borrowing rate plus a few percentage points in many instances. 

 The discount rate can be thought of as an embodiment of a time preference for consumption 
versus investment or saving. Resources can be consumed (or enjoyed) now by the current generation 
or conserved for future use by either the current or future generations; put another way, programs 
can be undertaken principally for the benefit of the current generation or they can be conducted 
mainly in the interest of future generations. On the one hand the discount rate reflects the 
strengths of peoples' individual preferences with respect to foregoing today's enjoyment until next 
year, with a higher rate expressing a higher preference for consumption and enjoyment now relative 
to that at a later date. Suppose, for instance, your personal rate of time preference was 10%. Such a 
rate of time preference implies that a dollar of enjoyment or consumption 1 year from now is worth 
10% less than a dollar of enjoyment now; or stated somewhat differently, you will be willing to 
forego a dollar's worth of enjoyment today only if you can receive at least $1.10 worth of enjoyment 1 
year hence. On the other hand the discount rate also reflects the productivity of alternative 
investments. That is, if you forego consumption and enjoyment today, the resources which you 
otherwise would have consumed could be invested in alternative opportunities and thus earn more 
resources for more consumption and enjoyment in later years. If, for instance, the rate of productivity 
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for some investment is 15%, then each dollar invested now rather than consumed will result in $1.15 
worth of resources being available for consumption or reinvestment 1 year hence. In turn, the market 
discount or interest rate (in a perfectly competitive economy) would be determined by a balance 
between individual's time preferences with regard to substituting future consumption for present-day 
consumption and the productivity of alternative investments. Individually, and thus collectively, 
people would continue to invest (and thus forego consumption until a later date) so long as the rate 
of productivity for increments of investment was larger than their rate of time preference for 
increments of present versus future consumption. The market discount rate would be determined 
by that rate which just balances these two rates—that is, when the marginal rate of productivity (or 
rate of productivity from the last dollar of investment) is equal to the marginal rate of time 
preference (or rate of time preference for the last dollar of foregone consumption). 

 An alternative approach to using market rates of interest to determine a discount rate is to 
decide upon a ‘social’ or ‘collective’ discount as a political decision.  An often used example to 
illustrate such collective action and social considerations would be the California redwood trees. 
On the one hand purely economic considerations (in all likelihood) would indicate the wisdom of 
chopping down the commercially important Sequoias and using the wood for homes and 
furniture, in addition to lumber by-products. To do so, however, would mean that many future 
generations as well as some members of the current generation would completely forego the 
opportunity of enjoying the beauty, majesty, and grandeur of these giants for perhaps four to five 
centuries. As a consequence, some argue that it is socially desirable to forego some of our economic 
gains merely to preserve this option for those yet unborn and unable to express their preferences in 
the marketplace. 

Another matter to be considered in the selection of the "proper" interest rate is that of risk.  Two 
aspects of risk (and uncertainty) might be accounted for: (1) the uncertainties of estimating 
accurately the future costs and benefits of a project and (2) aversion to assuming risk on the part of 
individuals or organizations. While the uncertainties of cost and benefit prediction are often 
implicitly accounted for by increasing the discount rate over what it would be with no risk or 
uncertainty, a more appropriate way of handling the problem would be to incorporate the 
uncertainties into the computation of the year-to-year estimates of cost and benefit and to use the 
expected values. With uncertainties varying from year to year and generally increasing over time, 
these adjustments should clearly be made year by year rather than on some arbitrary, constant, and 
overall interest rate increase basis. Furthermore, this type of treatment will permit differentiation 
between uncertainties (or risks) and the time value of money, rather than combine the two aspects on 
some implicit and unidentifiable basis. 

 
In addition to accounting for inaccuracies in estimating costs or benefits because of risk or 

uncertainty, it may also be necessary to make adjustments for "risk aversion"—either in 
calculating the true market value aside from "risk aversion" or in specifying a proper discount rate 
where "risk aversion" is preferable. Risk aversion applies to the preferences of individuals (or firms) 
with respect to undertaking investments with differing degrees of risk; some people, for example, are 
"risk avert-ers" and are unwilling to invest in situations unless there is minimal or no risk, regardless 
of how high the expected return might be, while others or "risk takers" would hesitate to invest in 
situations unless there is at least some chance of a very large return (relative to the expected return). 

 
More specifically, risk averters generally would be unwilling to undertake investments unless the 

quoted return is higher than the expected return (or so-called risk aversion premium), while 
risk takers might be willing to invest in situations having quoted returns less than the 
expected rate if high returns were a reasonable possibility. A simple example of the latter 
would be gamblers who are willing to place bets in a house crap game (e.g., on each roll 
of the dice, those betting on "boxcars" or 12 receive a payoff of 30 to 1; however, they can 
expect a payoff only once every 36 rolls, thus producing a negative expected value). 
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As noted earlier, in practice, an analyst may have little choice in the discount rate used for 
analysis: the applicable rate is often prescribed by a decision maker or a higher level of government. 
In the absence of such restrictions, analysts would be well advised to conduct their analyses at 
different discount rates to determine the sensitivity of investment choices to the discount rate. 
Sensitivity analysis of this type is described in Chapter 10.  
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8-3    BENEFIT-COST ANALYSIS METHODS 

Among the many available benefit-cost analysis methods, the following will be discussed: (1) net 
present value (or net present worth) method; (2) benefit-cost ratio method; and (3) internal rate-
of-return method. For these methods discounted benefits and costs will be used; however, 
since some analysts use equivalent annual costs and benefits instead, the distinction between 
the two measures will be discussed below. Also, a later section (14-1) will touch upon another type 
of analysis procedure, the cost-effectiveness method. 

 
Economists almost universally find the net present value method superior to all others, both 

because it is simple and because it is unambiguous in indicating which alternative has the highest 
economic potential. None of the others is so straightforward. 

  
Throughout, the following terms and definitions will be used: 

i = interest or discount rate (i.e., the minimum attractive rate of return or opportunity cost of 
capital), expressed in decimal form 

n = length of analysis period or planning horizon, in years  
Cx,t = expected costs (capital or operating) to be incurred for project x during year t 

Bx,t - expected benefits (or revenues) to be accrued from project x during year t 
For convenience it will be assumed that the benefits or costs, Bxt or CXtt, occurring during year t will 
be accrued or committed in lump sum at the end of year t. Typically, for other than the "do-nothing" 
or abandonment alternative (i.e., the alternative for which C X t t - =  Bxt = 0 for all t), there will be some 
initial cost outlays at the beginning of the first year (i.e., when t = 0), although the benefits or 
revenues will not usually (but not necessarily) begin to accrue until at least a year later (i.e., when t > 
1). In any case, though, the formulation is perfectly general and will apply to all situations. The cost 
and benefit streams during the n-year planning horizon for any project x will look as shown in Table 
8-2. 

 

A year-by-year cash flow tabulation of the benefits and costs for all alternatives (where, say, there 
are m alternatives and thus x varies from x = 1, 2,..., m) could be displayed in much the same 
manner as that indicated for project x in Table 8-2, and then ordered for analysis. Commonly, the m 
alternatives are ordered in ascending order such that the alternative having the lowest initial cost in 
year t = 0 is the first or alternative 1 (i.e., x = 1 corresponds to the lowest initial cost alternative), the 
alternative having next lowest initial cost in year t = 0 is that for which x = 2, and so forth, until 
the alternative having highest initial cost in year t = 0 is alternative m (i.e., x = m for it).  
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8-3-1    DISCOUNTED VERSUS EQUIVALENT ANNUAL COSTS OR BENEFITS 

Calculations for all benefit-cost analysis methods can be carried out while using either discounted or 
equivalent annual costs or benefits. While the final decisions—as to which alternatives are 



Hendrickson and Matthews 8-9 

worthwhile and which is the most economical—will not differ for the two measures of costs and bene-
fits, numerical results will not be the same. However, since some analysts and textbooks stress the use 
of one method, and others emphasize the second, it seems useful to review the two techniques. At the 
outset, though, we should note that for most benefit-cost analysis the use of discounted benefits and 
costs will be simpler and require fewer calculations. 

 
With either discounted or equivalent annual costs and benefits, the objective is simply to account 

for the time value of money. That is, the objective is to account for the fact that a dollar of 
resources expended today is more costly than one expended in later years. Similarly, a dollar of benefit 
accrued today is more valuable than one to be accrued in some future year. 

 
The first and simplest way to account for the time value of money and to place all present and 

future costs or benefits on a commensurate value scale is to discount them to their present value or 
present worth (i.e., their value today or at year t-0). Thus, the discounted value of the costs or 
benefits occurring in some year t for alternative x would be as follows: 

[PVCx,t] t = (P\F, i, t)Cx,t = {pwf’i,t)CX,t (8-1) 

and 

[PVBx,t] t = {P\F, i, t)BXft = (pwf’ i,t)B,>t (8-2) 

where [PVCX,t]t is the discounted present value of the costs during year t, [PVB x,t]t is the 
discounted present value of the benefits during year t, and pwf’i,t or (P\F, i, t) is the (single 
payment) present value factor for a cost or benefit occurring during year t when the interest rate 
(or opportunity cost of capital) is i. The present value factor is: 

 
This formulation assumes annual compounding of interest at a per annum rate of i (though i is 
expressed in the formula as a decimal fraction).  

For a project x the discounted values for a stream of costs and benefits occurring over n years 
such as those shown in Table 8-1 would be 

 
where [TPVCXfn]i and [TPVB Xtn]i are the total discounted costs and benefits, respectively, for an n 
-year period and interest rate i. 

 
The second way to account for the time value of money and to place all present and future 

costs or benefits on a commensurate value scale is to convert the stream of costs and benefits 
to an equivalent annual cost or benefit figure. Essentially, the problem is to determine an equal 
annual amount which is exactly equivalent to either the year-by-year cash flow stream or the 
discounted value as computed by Equation (8-1), (8-2), (8-4), or (8-5). This is entirely analogous 
to the procedures used to determine the equal payments which are charged by banks or credit 
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firms for mortgages or installment loans, though usually the creditor will make monthly rather 
than annual payments—the latter being the case here. 

 
The most straightforward technique for determining the equivalent annual cost or benefit 

for a stream of benefits and costs would be to multiply the total discounted costs or benefits, 
as computed with Equation (8-4) or (8-5), times the capital recovery factor. Thus, 

 
where crfi,n or (A\P, i, n) is the capital recovery factor for an interest rate i and an n-year analysis 
period, and [EACx,n]i and [EABx,n] i respectively, are the equivalent annual cost and equivalent 
annual benefit for n and i. 

 
The capital recovery factor used in Equations (8-6) and (8-7) can be computed as follows: 

 
However, the capital recovery factor shown in Equation (8-8), as well as its use in (8-6) and (8-7), 
applies only to equivalent annual payments and to annual compounding of interest. 

 
An example using both the discounted and equivalent annual payment methods of representing a 5-
year cash flow stream for an interest rate of 5% is shown in Table 8-3. Essentially, we can represent 
the 5-year cash flow stream of costs shown in column 2 either by the total discounted cost of $542.13K 
in a lump sum now or by an equal amount of $125.22K in 5 successive years beginning 1 year from 
now. That is, if we determine the present value of the five equal annual payments, as shown in 
column 5, the total discounted value is $542.14K, the small $0.01K difference being due to rounding. 

 

TABLE 8-3.   Discounted and Equivalent Annual Costs for a 5-Year Cash Flow Stream and an Interest Rate 
of 5% 

Cx,t [PVCx, tt]b% [EACX,t]5% Present Value 
Costs Incurred Discounted or Equivalent Annual of Equivalent 

Year          at End of Year Present Value Cost for the Annual Cost 
t          t for Alternative x of CXjt                           5-Year Stream       in Year t 
0 $200K $200K 0 0 
1 60K 57.14K $125.22K $119.26K 
2 70K 63.49K 125.22K 113.58K 
3 80K 69.11K 125.22K 108.17K 
4 90K 74.04K 125.22K 103.02K 
5 100K 78.35K 125.22K 98.11K 

Total $542.13K $542.14K 
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The two methods for placing present and future costs or benefits on a commensurate value scale, as 
described above, are entirely general and will apply to any stream of costs or benefits. It will apply 
whether or not there are any costs or benefits occurring in year 0 or now, as well as in situations 
when the year-to-year costs or benefits vary, as they did in Table 8-3.  
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8-3-2    NET PRESENT VALUE METHOD 

With the net present value method the stream of benefits and costs are discounted to their present 
value or present worth (that is, to their value now) and then netted to determine the resultant net 
present value. Thus, for any alternative x the net present value for the n -year analysis period when 
the interest rate is i or [NPVXtn]i would be 

[NPVx,n]i = [TPVBx,n]i-[TPVCx,n]i (8-10) 

 

 
Note: (P\A, 5%, 10) = uniform series present value factor = 1/(A\P, 5%, 10). Also, it can be shown 
that (A\P, 5%, 10) + (P\F, 5%, 5)(A\P, 5%, 10) = (A\P, 5%, 5). To show this, substitute for the 
capital recovery factors using the formula given in Equation (8-8). Hint: (1 + i)10 - 1 = [(1 + i)5 
+ 1][(1 + i)5 - 1]. 

 

The net present value must be determined for each alternative from x = 1, 2,..., m. All 
alternatives which have a nonnegative net present value can be regarded as economically feasible 
while the best alternative will be that having the highest nonnegative net present value. 

 
The method is straightforward and will guarantee that public or private agencies maximize net 

social benefits, however these are measured and for whatever planning horizon or interest rate is 
chosen. Where the opportunity cost of capital (i.e., the interest rate for other foregone investments) 
is unknown or subject to question, the calculations can be repeated for different rates and the final 
results compared for similarities or differences in ranking or acceptability. Also, if the net present 
value increases when moving from a lower initial (or total) cost alternative to a higher initial (or 
total) cost one, then one may be certain that the discounted incremental or extra benefits outweigh 
the discounted extra costs; otherwise the net present value would not have increased. 

Back to top 
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8-3-3    BENEFIT-COST RATIO METHOD 

In some sense the benefit-cost ratio method— when properly applied—is little different than the net 
present value method. The identical benefit and cost measures are used to compute the benefit-cost 
ratios and proper interpretation will invariably lead to the same decisions about which alternatives 
are economically feasible and about which one is the best, economically speaking. The only 
differences are that extra computations are required for the benefit-cost ratio method and that proper 
interpretation of the ratios is confusing in some cases. 

 
To begin, one may order alternatives for analysis in a number of different ways, though we will 

assume that alternatives are placed in ascending order with respect to the initial-year cost or Cx>0 for 
x = 1,2,..., m. After the alternatives are ordered, there are two steps in applying the benefit-cost 
ratio method. 

The first step is undertaken in order to determine whether any alternative is economically 
worthwhile. Simply, we determine the benefit-cost ratio for the lowest-ordered alternative as 
follows: 

 
[BCRhn]i is the benefit-cost ratio for alternative 1 over an ft-year analysis period for an interest rate i. 
If the ratio is equal to or larger than 1, then alternative 1 can be regarded as acceptable. That is, if 
the ratio is at least as large as 1.0, then we know that the total discounted benefits are at least as 
large as the total discounted costs and that the net present value is nonnegative. If, however, the 
ratio for the lowest cost alternative is less than 1.0, then it will be rejected and the ratio will be 
computed for the next higher initial cost alternative. This process is repeated until we identify the 
lowest ordered alternative having a benefit-cost ratio equal to or greater than 1.0. If all alternatives 
have ratios less than 1.0, then all should be rejected, economically speaking. Let us assume, 
however, that alternative x is the lowest-ordered alternative having an acceptable benefit-cost ratio; 
thus, 

 
Put differently, we know that it is better to undertake alternative x than any of the lower-ordered 
alternatives. 
 

The second step is to determine whether or not it is worthwhile to undertake an even higher-
ordered alternative. That is, we must justify any additional increments of cost. For this purpose we 
compute the incremental benefit-cost ratio for the additional expenditures. Pairwise comparisons 
are made between successively higher-ordered alternatives, starting with the lowest-ordered 
alternative which is acceptable, as indicated by Equation (8-13). Specifically, for an M-year analysis 
period and an interest rate of i, the incremental benefit-cost ratio for the increments in benefit and 
cost between the lowest-ordered acceptable alternative x and the next higher-ordered one will be 
[IBCRx/x+,ln]i, where x/x + 1 simply means alternative x + 1 as compared to alternative x, as follows: 

 

If the incremental ratio is equal to or larger than 1.0, then alternative x + 1 will be more 
desirable than alternative x and, in turn, the incremental ratio will be computed for alternative x + 2 
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as compared to x + 1. On the other hand, if the incremental ratio for alternatives x and x + 1 is less 
than 1.0, then alternative x + 1 will be rejected and the incremental ratio for alternative x + 2 as 
compared to alternative x will be computed, As we shall later see, however, the above rules strictly 
apply only when both the numerator and denominator are positive. 
 

TABLE 8-4.    Example for the Benefit-Cost Ratio Analysis Method Benefits and 
Costs of Alternatives (in $1000s) 

Alternatives 
1 2 3 4 

Cxfi 50 55 60 65 
[TPVBXfn]ia 175 258 360 320 
[TPVCx,n\ib 180 200 300 250 
[BCRXtn]ie 0.97 1.29 1.20 1.28 
[NPVx,n]id -5  58 60 70 

"Present value of benefits. 
6Present value of costs. 
cBenefit cost ratio = [TPVBX,n] t/[TPVCx,n]£. 
dNet present value = [TPVBXtn]i - [TPVCxJi. 
 
Pairwise comparisons are continued until we identify the highest-ordered alternative which 

satisfies both of the criteria set forth by Equations (8-13) and (8-14). Importantly, do not use the 
highest benefit-cost ratio—as computed by Equation (8-13)—as the criterion for choosing the best 
alternative. Choosing the alternative with the largest ratio results in maximizing the return per 
dollar of cost, but this is not the same as maximizing the net present value or benefits less costs. 

 
For incremental ratios one should not be confused by the fact that the numerator and/or 

denominator of the incremental benefit-cost ratio will sometimes be negative but should recognize 
that in such cases the criterion (of being at least as large as 1.0) can change. Specifically, when both the 
numerator and the denominator are negative, the next higher-ordered alternative is preferable to the 
lower-ordered one whenever the incremental benefit-cost ratio is equal to or less than 1.0, but when 
just the denominator is negative, the higher-ordered alternative is always preferable; when just the 
numerator is negative, the lower-ordered alternative is always preferable. The example shown in 
Table 8-4 will highlight these principles. 

 
Four alternatives have been analyzed and have initial-year costs, as well as total discounted costs 

and benefits, all as shown in Table 8-5. The analysis should proceed as follows: 
1. The benefit-cost ratio for the lowest-ordered alternative (x =1) is 0.97 or less than 1.0 and, 

therefore, it is rejected, according to the criterion in equation (8-12); 
2. The benefit-cost ratio for alternative 2 is 1.29, thereby indicating 

that alternative 2 is the lowest-ordered acceptable alternative; 
3. The incremental benefit-cost ratio for alternative 3 as compared to 

alternative 2 is equal to ($360 - $258) divided by ($300 - $200) or 
1.02; thus, alternative 3 is more desirable than alternative 2, using the 
criterion shown in equation (8-14); 

4. The incremental benefit-cost ratio for alternative 4 as compared to 
alternative 3 is equal to ($320 - $360) divided by ($250 - $300), or 
-$40/-$50, which is equal to 0.8; however, since both the numerator 
and denominator are negative and since the incremental ratio is less 
than 1.0, alternative 4 is preferable to alternative 3. (More simply, in 
this case the benefits were reduced when we moved from alternative 3 
to alternative 4, but the costs were reduced even more, thus resulting 
in overall economies and a gain in net benefits.) 
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Overall, alternative 4 is the highest-ordered alternative for which both sets of ratios satisfied the 
criteria and therefore is the best or most economically acceptable alternative. Moreover, we should 
note that the alternative with the highest benefit-cost ratio (alternative 2 with a ratio of 1.29) is 
clearly not the best alternative. In fact, to have used the highest benefit-cost ratio as the choice 
criterion would have resulted in foregoing two alternatives which would have brought about higher 
total net benefits. Note, further, that both the net present value and benefit-cost ratio analysis 
methods would have resulted in the choice of alternative 4 as the best alternative, the difference 
between the methods being simply that the latter requires more computation and is less 
straightforward in application. Properly and fully applied, though, the benefit-cost ratio method will 
always identify the most economical alternative. 

Back to top 

8-4. Problems 

P8.1 Suppose an agency has an opportunity to make a new investment with benefits and costs over a six 
year planning horizon as follows: 
Year Benefits Costs 

0 0 600 
1 200 150 
2 250 180 
3 300 200 
4 360 250 
5 350 200 
6 360 200 

a. At a 3% (0.03) discount rate, is this investment economically worthwhile? 

b. At a 5% discount rate, is this investment economically worthwhile? 

c. What is the Equivalent Uniform Annual Value of this investment at a 5% discount rate? 

 

P8.2 Suppose a farmer is considering a bid to turn some land in a wind farm for generating electricity.  
The farmer would provide the land in a twenty year contract and receive a portion of the electricity sales 
from the wind turbines.  The wind farm would preclude continuing to use the land for farming. 

a. What alternatives might the farmer define to perform a benefit/cost analysis of this bid? 

b. What are the primary benefit and cost categories for each alternative? 

Back to top 
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CHAPTER    9 

THE FINANCIAL IMPLICATIONS OF PRICING 
AND INVESTMENT DECISIONS 
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The financial implications of pricing and investment decisions are another widely discussed 
aspect of planning for infrastructure. Consideration of economic efficiency—which has been discussed 
in the previous three chapters—may result in policies which imply either financial deficits or profits to 
service providers. Even if the net social benefits of an investment are positive, there is no guarantee 
that service providers will experience a financial profit. The existence of financial deficits is of great 
interest to decision makers and the public, so it is worthwhile to consider both the financial 
implications of different policies and the impact of decisions which are intended to maximize the 
financial profits to a firm or agency.  Moreover, private firms providing infrastructure services are 
motivated by profit maximization rather than increasing overall economic efficiency. 

From a social perspective the question of financial deficits or profits to specific organizational 
entities is secondary to the broader question of whether or not any particular facility or activity has 
social benefits in excess of social costs, that is, positive net social benefits. If this is the case, it may be 
possible in some cases to cover the deficit of the service providers by taxing the beneficiaries. 
Assessing the extent of benefits to individuals and collecting a tax may be exceedingly difficult and 
very expensive, however. There are not only practical but theoretical difficulties in assessing taxes in 
direct proportion to benefits. In particular, such charges must be assessed so that individuals do not 
perceive a connection between the tax and their benefits or usage of a facility, else the tax will 
change the level of demand. 

 
Public transportation provides a relevant example of concern for deficits, arising from the desire 

to restrict the amount of subsidy which is derived from general tax revenues. Of course, any form of 
taxation is politically undesirable and costly in the sense of both financial and economic losses to the 
economy as a whole. Moreover, with a restriction on the total level of public spending (as often occurs 
at the local level of government), funds spent on public transportation cannot be spent on other socially 
desirable projects. The most common result of this concern with financial deficits is the imposition of 
a budget target on public transportation providers. For example, in making investment decisions and 
programming for a budget, public transportation agencies might be prohibited from incurring a defi-
cit which is larger than some set amount of public funds. 

 
A second reason for a concern with the financial implications of different policies arises from 

arguments of equity. Many accept the fairness principle that the actual beneficiaries of a service 
should pay the costs of the service, rather than the public as a whole. This principle has been 
embodied in such financial devices as the federal highway trust fund, which disburses funds for 
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roadway construction and improvement which are derived entirely from roadway users' taxes. Since 
the users of a transportation facility incur costs in addition to tolls, fare, and taxes, it seems 
reasonable to include these payments in the analysis of such overall equity and to consider whether 
total user payments exceed total social costs of providing a particular service or facility. 

 
We shall distinguish two separate areas for the analysis of the financial implications of pricing and 

investment decisions. The first is concerned with the relationship between total user payments for 
service and overall social costs. While this concern is not directly related to the financial situation 
of providers such as transit operators, it is quite relevant to the principle or belief that beneficiaries 
of services should pay the total cost of providing service. The most important question in this regard 
is whether or not the total user costs or payments (which are equal to the price multiplied by 
volume) exceed the total social costs of a service. Since the social benefits of a service include both 
the total user payments and the value of consumers' surpluses, social benefits would exceed social 
costs if user payments exceed social costs. 

 
The second level of analysis with respect to financial implications concerns the financial profit 

or loss of particular service providers. One might ask, for example, if the revenues derived from tolls 
or fares (equal to the volume multiplied by the fare) exceed the costs incurred by the service provider. 
The level of such revenues and private costs may comprise only a small portion of the total social 
costs and benefits of a service, but the financial deficits of service providers must be covered from 
general tax revenues or other sources. A second question in this analysis concerns the possible profits 
which might be earned from pricing and investment decisions which are intended to maximize 
financial profits. 

 
The plan of this chapter is as follows. First, we shall discuss the relationship between user 

payments and social costs, including the case in which decisions are intended to maximize the level 
of net user payments. Following this, we shall consider the implications of pricing and investment 
policies which are intended to maximize the financial profits of service providers. Maximization of 
net user payments, financial profits, or net social benefits alone represents single -objective planning 
and decision making. An alternative approach is to consider more than one objective in making 
decisions. One technique for such consideration is to set a target for one objective—such as the budget 
target mentioned above—and then make pricing and investment decisions so as to maximize net social 
benefits while insuring that the target is met. For example, planners might wish to maximize net 
social benefits while requiring service providers to break even financially (i.e., have revenue equal to 
their own costs). Pricing and investment planning with this type of strategy is discussed in Section 9-3. 
General techniques for considering more than one objective directly will be considered in Chapter 10. 
Before taking up that subject, however, this chapter closes with a discussion of the problem of financial 
objectives and the analysis of risky investments. This final section is intended to provide some 
perspective concerning financial analysis and concerns when the result of undertaking particular 
investments is uncertain. 
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9-1    USER PAYMENTS AND COSTS 

Before discussing financial analysis for service providers, it is useful to consider the relationship 
between the total user payments and the costs incurred in providing a facility or service. Recall that 
different pricing policies and price levels affect total net benefits to the extent that the quantity 
demanded and thus output, costs, and benefits are affected. Total net benefit will be maximized at an 
output level equal to qA in Figure 9-1, where the marginal benefit is equal to the short-run 
marginal cost, or 



 9-3 

mb(qA) = srmcx{qA). 
 

The total user payments (equal to the total amount of user cost incurred in travel) are 
similarly related to the output level, but bear a different relationship to pricing policy and are 
maximized under different output and pricing conditions. To illustrate this relationship, a marginal 
payment curve is shown in Figure 9-1. The marginal payment curve indicates the increase in total 
payments which results from increasing output level by one unit. In calculating changes in the total 
payments for a given service, it must be kept in mind that volume can be increased only by reducing 
price, and, therefore, that the extra payment by an additional customer must be balanced against the 
reduction in unit price for each of the previous customers. To calculate total payments, and in turn 
marginal payments, the demand curve DD may be regarded as an average payment curve; that is, the 
demand curve expresses the average payment (i.e., price) per customer or ap(q) to be obtained from q 
customers. Thus, 

TUP(q) = q*a p(q) (9-1) 

where TUP(q) is the total payment from q customers including all components of the price 
(money, travel time, effort) valued by the customers. For a linear demand function in which 
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Figure 9-1.   Short-run cost and demand relations for a fixed facility and high-demand under noncompetitive conditions. 

 
Taking the derivative of TUP(q) as expressed in Equation (9-3), the marginal payment 
curve is 
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for a linear demand curve. This marginal payment function is plotted in Figure 9-1. 

 
Several things are worth noting about the marginal payment function. First, the marginal 

payment can take on both positive and negative values; the former indicates that as output 
increases—which can occur only if the price is reduced for a given service and demand 
curve—will lead to total payment (or user cost) increases so long as mp(q) is positive. 
Negative values of mp(q) indicate that total payments will be decreased if price is reduced 
and thus output is increased; accordingly, when mp(q) is negative, total payments can be 
increased only by increasing the price and reducing output. Also,  the positive and negative mp(q) 
values will correspond, respectively, with the elastic and inelastic regions of the demand function. Lastly, 
the marginal payment will be zero (meaning of course that a small price change will not 
affect the total user payments) whenever the demand is unit elastic with respect to price 
(i.e., when ep = -1). 

 
From arguments similar to those for maximizing net benefits, total net payments (equal to 

the difference between total payments and total social costs) are maximized by restricting 
flow to the point at which the short-run marginal cost equals the marginal payment or 
srmcx(q) = mp(q). In Figure 9-1 maximum net payments are equal to the area of the 
rectangle hjlk, or 

[mb(qD) - sratcx(qD)]qD                       (9-7) 

To achieve an equilibrium flow rate of qD, a toll equal to mb(qD) minus sravcx(qD) would be 
required, assuming that without a toll individuals each have user payments equal to the 
short-run average variable cost or sravcx(qD). However, it should also be clear from the 
discussion within Chapter 6 that it would not be possible to restrict output to qD and to 
maximize total user payments with a price of ap(qD) unless there was no competition. 

 
Why should a planner be interested in changes in total payments? While the marginal 

payments curve does not have the normative or theoretical significance that the marginal 
benefit function has (which was discussed above), or the practical financial significance of 
the marginal revenue function (which is discussed below), there are a few circumstances in 
which changes in total payments may be of interest. The first is the case in which 
consumer surplus is excluded from consideration, that is, the benefit is assumed to be equal 
to the user cost incurred in travel. This approach may be appropriate if the consumer surplus is 
negligible (i.e., with a perfectly elastic or a horizontal demand function) or unmeasurable. Excluding 
the consumer surplus, the most advantageous flow level is that which maximizes total net payments. 
A second circumstance in which total payments may be of interest is in the analysis of the 
incidence of costs and the degree of subsidy provided to various groups. 

 
In some cases total payments may be less than the total social costs of providing a particular 

service. This certainly would be true for the very low demand case shown earlier in Figure 6-6. 
Under certain conditions this will also hold true for the low-demand case described in Chapter 6 and 
deserves further attention since it may be common for many public transport facilities. For low-
demand cases the demand function will intersect the short-run average total cost function to the 
left of its minimum average total cost-point. It is difficult, of course, to say with any precise-ness 
how typical this case really is. It would be our guess that commuter railroads, rail transit systems, 
and some toll roads may find this representation appropriate. Clearly, if total payments are less than 
total costs, the facilities will not be financially feasible in the sense that toll or fare revenues cannot 
cover operating and fixed costs. However, these facilities may still be economically justifiable since 
total benefits may still exceed total costs. 
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The discussion above pertains to maximizing net user payments given a particular facility or 
service and in the absence of competition. The relationship of user payments to costs over the long 
run in which facility size can be altered can also be of interest. In particular, we can consider cases of 
increasing or decreasing long run returns to scale. 

 
Figure 9-2 shows the low-demand case in which increasing returns to scale exist (i.e., a falling 

average cost curve). In this instance the marginal payment function mp(q), which represents the 
increase in total user payments which accompany a unit change in volume, would be as shown in the 
figure. Each unit of increase in capacity and volume up to qF will result in extra total payments in 
excess of the long-run marginal costs because in the range of volume from 0 to qF the marginal 
payment [mp(q)] is equal to or greater than the long-run marginal cost [lrmc(q)] . A  p r i c e  
s e t  e q u a l  t o  t h e  a v e r a g e  p a y m e n t  a t  q F  s o  t h a t  p(qF) = ap(qF) = mb(qF) would result in 
total payments which are larger than long-run total costs. At a different price and volume, however, it 
is possible to have situations in which payments would not exceed costs. In particular, maximum net 
social benefits occur with an equilibrium price of p(qA) and volume qA. Thus, the preferable facility 
size would be that which has the least total costs for an output level of qA, and, in this situation, 
total payments would be less than total costs. However, we should also point out that the former 
result [with an output of qF and a price of p (qF)] could only occur in the absence of competition and 
that the latter result [with an output of q A  and a price of p(q A )] would be an unlikely outcome 
unless subsidies were provided. 
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Next, we examine the results for high-demand cases having decreasing returns to scale (or rising 

long-run average total costs), as shown in Figure 9-3 for the D'D' demand case. Under these 
circumstances, and in the absence of competition, capacity and output could be expanded up to level 
qa at which point the marginal payment and long-run marginal cost would be equal or mp {q G) = 
Irmc {q G). The market clearing price for these conditions would be p(qG) = ap(qG), an average payment 
which is above the short- and long-run average total cost. The facility of lowest long-run total cost 
for an output of qG would be built and operated at that level. Again, though, less than the best facility 
and output level—from the standpoint of maximum long-run total net social benefits—would result; 
that is, a facility of capacity and output equal to qc would be more desirable economically with a 
price p(qc) = ap(Qc) = lrmc(qc) = srmc(qc)> 
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With the possibility of competition, the excess returns obtained in Figure 9-3 at a volume of qG 

would offer a (perhaps irresistible) temptation to competitors. At volume qG average payments p(qG) 
are substantially greater than average and marginal costs. Competitors could introduce lower prices 
and thereby attract some profitable volume. 

As a final note, all the preceding discussion can be applied to strictly financial analysis with a 
suitable substitution or redefinition of the demand and cost functions. Financial analysis in this 
sense is concerned with the money revenues and the private costs incurred by the provider. In essence, 
demand functions estimated with respect to monetary charges can be substituted for those estimated 
with respect to total user cost or price, as illustrated in Figures 9-1 to 9-3. Chapter 3 described the use 
and analytical difficulties of such specialized functions. Similarly, and as discussed below, cost 
functions can be defined with respect to costs incurred by providers rather than total costs to users 
or society. With these provisions and changes, financial analysis to maximize money profits can be 
conducted as described in the next section. 

Back to top 
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9-2    PROFIT MAXIMIZATION AND FINANCIAL IMPLICATIONS FOR 
SERVICE PROVIDERS 

Analysis of financial implications to service providers is similar to the analysis of net user payments 
presented in the previous section. However, the analysis must be undertaken for a different set of 
demand and cost curves, namely, the demand function with respect to strictly monetary price D(f), 
and the costs which are incurred by the service provider alone. Complications also arise in the 
analysis with respect to competing providers and investment planning. 

 
Development of demand curves as a function of price was discussed in Chapter 3. By considering 

the volume which will result at different price levels, it is possible to construct a demand function 
which indicates the equilibrium volume at each price level. In developing this curve, however, it is 
important to consider equilibrium changes in volume since, as the fare changes, the volume using a 
service changes and other components of user cost (such as travel time) can and often will change 
and, in turn, affect the demand and equilibrium volume level. Thus, the variation in other 
components of user cost must be considered in the prediction of actual volume changes due to price 
changes. 

 
Cost functions for service providers may be developed in a manner similar to the development of 

social cost functions in Chapter 5. Included in such functions are the components of total costs 
which are incurred directly by the service provider, such as wages or maintenance expenses. In 
addition, transfer payments from the service provider should also be included as a cost item since 
these payments do represent a financial expense even though they are not a social cost. Examples 
of such transfer payments include bond payments and taxes. We shall call the total costs incurred by 
a service provider a private cost function, from which we can calculate marginal and average private 
costs at any volume level in the same way that marginal and average social costs were calculated 
from the social cost function. 

 
Demand functions with respect to money price or fare and private cost functions for one facility size 
are shown in Figure 9-4. The curves are all short-run functions since a change in the facility size 
would alter other components of user cost and shift the expected volume at any fare level. Thus, 
while the demand function with respect to user price is stable for a specific facility type and size, the 
demand functions defined with respect to fare would shift as the facility size or service is altered. 
Moreover, and as discussed in Chapter 3, the effects of changes in usage and thus in travel time 
and crowding for the situation depicted in Figure 9-4 can be incorporated in the demand function 
D(f) for the facility shown in Figure 9-4. 
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Figure 9-4. Private costs and equilibrium demand with respect to fares for an unprofitable service. The addition of p to the 
notation for the cost functions [e.g., srmpc(q) rather than srmc(q)] denotes a private rather than social cost function. 

 
The private financial effect of any pricing and investment decisions may be calculated after 

private costs have been estimated. Total revenue is simply the product of the equilibrium volume and 
the fare or toll charged for service. Private costs are indicated by the private total cost curve at any 
particular volume level for whatever facility size or activity level is chosen. 

 
In a manner analogous to the identification of prices which maximize total net payments or total 

net benefits, it is also possible to identify the price level which will maximize financial profits to the 
service provider. In the absence of competition the price level should be set such that resulting volume 
has the marginal private cost equal to the marginal revenue. In Figure 9-4 price should be set at f(qp) 
while volume is qp. Volume increases above qp would result in marginal and incremental costs larger 
than the incremental contribution to revenue. A volume level below qp would result in the provider 
receiving less total net revenues. With a volume of qp we have the profit maximizing volume for a 
monopoly supplier, that is, a supplier without competition. (Figure 9-4 depicts the very-low-demand 
case.) 

 
Figure 9-4 illustrates a case in which revenues cannot cover the total costs of operation since the 

price [f(qp)] which results in the maximum profits is less than the average total private cost at 
volume qp. Over the long run a private operator would not attempt to operate service under these 
conditions without receiving some form of subsidy or attempting some sort of value of service 
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pricing. In the short run, however, the operator would find the operation profitable since the fares 
would more than cover the short-run total variable costs and thus contribute something to 
overhead. The long run is, of course, a different matter, during which the operator must abandon the 
service, obtain a subsidy, or change his pricing policy. With competition, the operator—in the 
short run-would have little choice but to set his price at f(q b) = srmpc (qb) until such time as he could 
abandon the service or obtain a subsidy. In this case the provider would have total revenue in excess 
of his total short-run variable costs, but the excess would contribute far less to covering overhead 
than would the former noncompetitive pricing case. 

 
One possibility for a pricing change is to charge differential fares so that travelers who value a trip 

highly would be required to pay more, while others would pay less. A pertinent example would be 
higher fares for long trips (e.g., zone fares). In this way some of the consumers' surpluses may be 
extracted by the operator. With sufficient differentiation the average fare may be high enough to 
cover costs. Unfortunately, this type of differential pricing is often impossible or impractical (as 
discussed in Chapter 13). Moreover, we should not overlook the fact that an operator would not be 
able to extract either a maximum profit fare of f{qp) or a higher differential fare unless he found 
himself in an uncompetitive (or monopoly) situation and was able to take advantage of it. As in the 
case in which net user payments were maximized, it should be clear that operations to maximize 
profit generally do not result in the maximization of net social benefit. 

 
Figure 9-5.    Private costs and equilibrium demand with respect to fares for a profitable service. 
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In contrast to Figure 9-4, demand cases in which profits could be obtained are not 
uncommon in public transportation, especially facilities in high demand such as urban 
turnpikes, bridges, or tunnels. An example is illustrated in Figure 9-5. In the absence of 
competition and in pursuit of maximum profits, a private operator could set the fare level at 
f(q1) and accumulate a profit of the fare minus his average costs, or f(q1) minus sratpc(q1), 
from each traveler. Price regulations have often been advocated in such cases to reduce the 
amount of such profits and increase net social benefits by restricting the fare charged for 
service. Alternatively, with the possibility of new service operators, competition would also serve 
to reduce the fare level and drive the fare to f(q2), a situation which would still be profitable for 
the operator. 

 
Figure 9-6 illustrates the situation with the same demand curve as before, but with the 

existence of two operators offering identical service (and the same service as was offered 
originally) and having marginal cost functions as shown. In the absence of collusion between 
the operators, each one would be willing to offer a lower fare to attract new travelers, but only so 
long as the fare charged exceeded their marginal private costs. 

 
This conclusion stems from the fact both firms must charge the same price, or f(qc), and 

therefore each firm faces a horizontal and constant marginal revenue function [i.e., ar(q) = mr(q) = 
f(q) is constant and the same for each firm]. In the figure the competition for travelers would result 
in a fare level of f(qc), with one provider serving a volume of qi and a second provider serving a 
volume of q2 for a total volume of qx + q2 = qc-Also, in this case both firms would have total revenues 
exceeding their total variable costs. The excess for provider 1 would be equal to q \ - f c  minus the 
sum of its short-run marginal private costs from q = 1 to qx. 
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Investment decisions which are intended to maximize the profitability of an operator must 
also consider the shifts in demand due to variations in components of user cost other than 
fare changes. For example, expansion of a service or facility will generally result in a higher 
quality service to users, and the expected volume at any fare level would increase. The 
profit-maximizing investor must consider the trade-off between extra costs incurred in 
expansion and the additional volume, and hence revenue, derived from service improvement. 
Necessary conditions for the most profitable investment decisions in the case of a highly 
flexible facility or service options are dependent upon the interrelationships among the 
demand, marginal revenue, and marginal cost functions and upon the pricing policy and 
degree of competition.  

 
As a simplified example, suppose that a single service provider (with no competition) 

estimated that demand functions during two equal periods of the year were qx = 700 - 250/i 
and q2 = 900 - 210/2 where q1 and q2 are the volumes per hour in periods 1 and 2, respectively, 
and f1 and f2 are the corresponding monetary charges. Further, suppose that the variable pri-
vate cost in each period is $1.80 per trip and annual fixed costs are $180 per hour. To 
maximize profit in each period, we wish to find the volume at which (short-run) marginal 
private cost equals marginal revenue. Using Equation (9-6) with mr(q) substituted for mp(q), 
the two marginal revenue functions are 

 
In each case short-run marginal private cost, srmpc (q), is $1.80 [since srmpc (q) = sravpc 
(q) when the latter is constant], so the profit maximizing volume in period 1 is found by setting 
srmpc (qi) equal to mr(^i); thus 

 
which occurs at a monetary charge of f1* = $2.30 per trip. Similarly, the profit-maximizing 
volume in period 2 is qt = 270 with a charge of f2* = $3.00   per   trip.   Average   revenues   
per   hour   are    [($2.30) (125)    +  ($3.00)(270)]/2 = $548.75, which exceed costs [of $180 
+ $1.80(125 + 270)/2 = $535.50] by $13.25 per hour. This excess represents a profit for the 
service. 
 

As a side note, suppose that the service provider is prohibited from charging different tolls in the 
two periods. In this case we can construct an average demand function of q = (700 + 900)/2 - [(250 
+ 210)/2]/ = 800 - 230/ for an average hour during the year. With this demand function an analysis 
similar to that above reveals a profit-maximizing charge of $2.60, with average volume of 200 and 
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period volumes of qi = 50 and q2 = 350. Average revenue per hour is then $520, which is less than 
average cost per hour (180 + 360 = $540) by $20 per hour. Consequently, the restriction to a uniform 
charge implies that the service will operate at a loss. 

Back to top 

9-3    ECONOMIC EFFICIENCY WITH A BUDGET TARGET 

Whenever financial deficits to service operators are a concern, decisions concerning pricing and 
investment policies for public transportation are generally undertaken with a budget target or 
constraint. In these cases a maximum allowable deficit is agreed upon prior to investment and pricing 
decisions, although the budget might be subsequently altered and the analysis conducted again if 
the original target was too constricting or additional funds were obtained. In this case 
transportation services should be operated so as to maximize net social benefits while staying 
within the financial target. Mathematically, the public service provider should attempt to choose 
fares and activity levels so as to maximize total net benefits: 

 

where f - q  is the total private revenue and SRTPC(q) is the total private cost. The value B 
represents the allowable budget deficit. If B =0, then the provider must at least break even with 
fare revenue. 

 
A number of economists have considered the problem of pricing rules for public enterprises with 

such budget targets. With different services, fluctuating demand, or the ability to differentiate among 
users, the pricing rule to maximize net social benefits while attaining a budget target may be simply 
summarized: charge in proportion to what the traffic will bear. In brief, providers should recoup 
more costs in markets which are more insensitive to price changes. 

 

Recall that the price which maximizes net social benefits is that which equals short-run 
marginal costs. If the revenue resulting from such prices exceeds the deficit target plus the 
private costs of service, then additional charges are not required. In many cases, however, 
additional and higher fares would have to be imposed in order to meet the budget target. These 
additional charges should be concentrated in markets which have numerically lower (that is, less 
negative) price elasticities. 

 
Mathematically, the rule for setting additional charges as a proportion of price is that the 

additional charges should be inversely proportional to the elasticity of demand with respect to 
price for each service or in each period: 

 
subject to the budget target (stated as a negative deficit) 

 



 9-15 

 
where m, is the additional fare (above pt) imposed in period i , p t  is the original price in period i 
[equal to srmc(qi)], and e i is the elasticity of demand in period i. The same rule would be 
applied among n different traveler groups, services, or locales. 

 
In practice, this rule implies that periods (or markets) which are more sensitive to price 

changes should be charged less. Periods with equal demand elasticities should have equal 
proportional increases in the price level, implying that the absolute amount of excess or 
additional charges will be higher in periods which already have high prices. In the context of 
transportation, peak travel periods typically have little sensitivity to price changes (i.e., an 
elasticity near zero) and relatively high prices. Thus, excess fares imposed to meet a budget 
target should probably be concentrated during peak travel periods. 

 
Investment decision making should also consider the impact on budget targets and the 

additional or excess fares which must be charged in order to meet such budget targets. While 
more computations are required, it is possible to calculate the required prices for all alternatives 
[which would be m; + srmc(qi) for all i in each case] and then proceed with the same analysis as 
that in Chapter 7. 

As a numerical illustration, consider the two-period service described in the last section. For 
simplicity, suppose that no user costs exist other than the monetary charge for service. In this 
special case short-run marginal private costs equal short-run marginal costs to society. The 
charges which maximize net social benefit are found by identifying the intersection of the 
short-run marginal cost and marginal benefit (i.e., the inverse demand) functions. For period 
1 in the previous example this is 

 
implying that the most desirable volume is q1 = (2.80 - 1.80) 250 = 250 trips per hour, which 
occurs with a charge of $1.80 per trip. Similarly, the economically efficient volume in period 2 is 
522 trips per hour. Unfortunately, the service would operate at an average loss of $180 per hour at 
these volumes and their corresponding charges. To indicate which period should receive a greater 
increase in charge, note that the equilibrium toll elasticity in period 1 is ex = -β{p/q) = (-
250)(1.8/250) = -1.80, while the elasticity in period 2 is e2 = -0.72. Using the inverse elasticity rule 
[Eq. (9-13)], we expect that a greater increase should occur in period 2. Indeed, by trial and error or 
by analytical solution, the charges which maximize net social benefit subject to the restriction that 
the providers break even are $2.20 for f1 and $2.70 for f2 (to the nearest tenth of a dollar), so that 
the increase in the period 2 charge is about twice that for period 1. 
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9-4    FINANCING CAPITAL COSTS 

The preceding discussion concerned the relationship between revenues and costs for a facility or 
service once built and in operation. We should also deal with the financial problem created by 
capital costs or temporary deficits. A common example is that of new capital investments which have 
large construction or purchase costs in the initial years and have benefits and revenues which only 
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begin accruing after completion of the project's construction. With such an unbalanced cash flow 
stream the problem of financing the initial costs arises. An example appears in Table 9-1 in 
which the private expenses exceed the revenues in the early years of the project. This problem of 
financing capital outlays or temporary deficits is in addition to the problem addressed above, that 
is, to insure that revenues from user fees or other sources are sufficiently high to cover the private 
costs in the long run. 

 
There are many financial mechanisms available for handling cash flow imbalances. They include 

financing from current revenues (from other projects or general taxes), using working capital, 
issuing stock, initiating joint ventures with private firms, issuing revenue bonds, borrowing short 
term funds, receiving subsidies from other levels of governments (which simply shifts the financing 
problem to the other level of government), and so forth. Generally, the financing problem is one of 
insuring that adequate funds are made available at the lowest possible cost. 

 
As a general note, the cost of borrowing to finance a project depends upon the relative levels of 

the minimum attractive rate of return (MARR) and the borrowing interest rate. If the borrowing 
interest rate exceeds MARR, then it is preferable to borrow as little as possible since the interest 
rate paid for borrowed funds exceeds the return from alternative investments. In contrast, when 
MARR exceeds the borrowing rate, the net return from a project increases as the proportion of 
borrowed funds increases. This latter situation provides an incentive for "leveraging," in which a 
small amount of equity capital and a large proportion of borrowed money are used for projects. In the 
former case (when MARR is less than the borrowing rate), initial capital or other expenses covered by 
borrowed funds are generally repaid as quickly as possible and following that, "sinking funds" of 
accumulated or retained earnings may be established to cover any future periodic or rehabilitation 
expenses. 

 
An important initial consideration in planning a financial mechanism is to decide whether or not 

the alternative selected for implementation is to be financed as a separate entity or as part of an 
ongoing program of capital investment. For example, federal grants for some roadway projects are 
part of an ongoing program funded from the Highway Trust fund. Revenues derived from gasoline 
and other excise taxes are used to cover new grants each year on a pay-as-you-go basis without 
borrowing. Pay-as-you-go financing simply means that the year by year revenues (such as gasoline 
and excise tax receipts) must cover any additional year by year capital expenditures. At the other 
extreme revenue bonds may be issued which are pledged to be repaid solely from the revenue received 
by a new facility or service. 

 
For planning the financing of a particular project in isolation, its benefits and costs can be 

considered simultaneously with alternative financing schemes. Thus, a time stream of benefits and 
costs can be combined with the time stream of financing revenues and expenses; an example appeared 
in the two right-hand columns of Table 8-1. Otherwise, the alternative financing schemes can be 
evaluated separately in terms of their net present values. The alternative financing plan with the 
largest net present value can then be chosen. The net economic feasibility of the project— from the 
private or local viewpoint—can then be calculated as the sum of the net present value of the project 
itself plus the net present value of the financing scheme. However, if alternative investment plans are 
considered solely in terms of their internal benefits and costs, the implicit assumption is made that 
financing is accomplished without new borrowing or with borrowing at a rate equivalent to the 
MARR. Choice among financial schemes and project alternatives can then be made on the basis of 
maximizing net present value. 

 
As an example, suppose that we wish to consider financing the first two years' costs for a project 

with the cash flow stream shown in Table 9-1. To emphasize that our analysis is financial in nature 
and restricted to private costs and benefits, we label the cash stream as "revenues" and "expenses" in 
Table 9-1. With a MARR of 18% the basic project aside from financing has a net present value of 
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$152K. For simplicity in this problem, the cash streams in Table 9-1 are presumed to be in after-tax, 
constant dollar amounts. 

 
One possible alternative is to finance the project entirely from internal equity funds. With a 

MARR of 18% the use of internal equity funds implies that capital will be diverted from other 
projects which could earn a positive return at an 18% discount rate. With such internal financing the 
project's net present value is $152K, which is calculated with a MARR of 18% from the project's cash 
flow stream in Table 9-1. 

TABLE 9-1.   An illustration of Two Project Financing Alternatives 
Overdraft Financing Bond Financing 

Project Cash Flow   Loan Repayment Bond Repayment 
Year       Revenues   Expenses   Revenue    Expenses       Reven       Expenses 

0 0 700 700 0 800 100 
1 0 900 900 0 1000 100 

 
2 600 100 0 500 0 420 
3 600 100 0 500 0 420 
4 600 100 0 500 0 420 
5 600 100 0 500 0 420 
6 600 100 0 500 0 420 
7 600 100 0 67 0 420 
8 600 100 0 0 0 420 

Net Present Value at i = 18% 
152.34 116.61 106.07 

Note: Dollar amounts in thousands. Overdraft financing charge is 15% per year. Bond financing is at 12.3% 
plus expenses of issuing bonds, the latter of which are spread equally over years 0 and 1. 

An alternative financing scheme is to arrange a short-term loan or overdraft arrangement with a 
bank. As shown in the cash flow stream for the overdraft alternative in Table 9-1, this plan involves 
overdrafts until year 8. Interest charges on overdrafts are assumed to be at an interest rate of 15%. 
Note that all excess revenues in years 2 to 6, plus part of the year 7 revenues, are applied to repay this 
overdraft. The net present value of the overdraft is $117K evaluated at the MARR, so the combined 
net present value of the project together with overdraft financing is $152K + $117K = $269K. This 
alternative is preferable to equity financing since the firm is borrowing money at a 15% rate rather 
than diverting funds from other investment opportunities, which have a rate of return of 18% or 
more. 

 
Table 9-1 also shows a possible financing scheme with revenue bond financing. In this example 

bonds in the amount of $800K at the present and $1000K at the end of year 1 are issued at a rate of 
12.3% and repaid in years 2 to 8. However, there are expenses associated with preparing and issuing 
the bonds in this example. These expenses amount to $100K for years 0 and 1. With these 
issuing costs the combined net present value of the project together with revenue bond financing 
is $152K + $106K = $258K. Thus, overdraft financing (with a combined net present value of $269K) 
is the most desirable alternative financing plan in this example. In practice, a variety of other 
financing plans could also be examined. 

 
Note that the same results would be obtained if the project cash flow and the financial plan cash 

flows were combined and the joint or combined cash flow evaluated. For example, the sum of project 
and overdraft cash flows consists of net revenues of $433K in year 7 and $500K in year 8. This 
combined cash flow has a net present value of 
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NPV = $433K(P|F, 18%, 7) + $500K(P|F, 18%, 8) = $433K(0.3139) + 
$500K(0.2660) = $269K 

which is identical to the combined net present value of the two cash streams evaluated 
separately. 

 
Obviously, financing options can affect the choice of mutually exclusive alternatives, as well as their 
acceptability. As an example, consider the two two-year alternatives shown in Table 9-2. For a 
MARR of 10%, and ignoring financing, alternative II would be superior to alternative I; this same 
result would be obtained for any MARR < 10.62%. However, suppose that available cash is limited to 
$500 and that the remainder of each alternative's initial investment would be financed by borrowing 
money at an interest rate of 15%. In this case, both alternatives would require borrowed funds, 
though only one year would be required for their repayment for alternative I. With this 15% 
financing and ignoring any uncertainty in cash flows, alternative I is more desirable than alternative 
II for any positive MARR. This result arises from the financial "cost" of borrowing money; that is, 
for a MARR of 10%, the net present value of each alternative declined since the borrowing rate 
exceeded the MARR. 

 
 

Finally, we should note the effects of tax deductions and the like on financial analysis. For public 
agencies this is not necessarily relevant, but private firms can often realize tax benefits from capital 
investments in the form of depreciation allowances and investment credits which reduce income tax 
liabilities. This difference between public and private providers is the primary motivation for financial 
schemes such as private ownership of equipment with public agency leasing and operation. The 
private "owners" can take advantage of depreciation and other allowances and pass on some portion 
of these savings to the public agency operator in the form of lower leasing charges. In any event, 
financing alternatives should be evaluated after tax payments or savings are removed from the 
revenue or expense side of the cash flow profile. 

 
In contrast to the individual project finance discussed above, transportation investments are 

commonly treated as parts of ongoing programs of investments. The advantages of treating projects 
in this fashion stem from the pooling of risks and revenues which can occur. New projects can often 
be funded from current revenue rather than borrowing. Risks of failure can be spread among 
numerous projects, which also reduces the costs of any required borrowing. A disadvantage of such 
pooling is that new projects may not be sufficiently well scrutinized to insure that they are 
economically desirable on their own. 
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With consideration of multiple independent projects, the problem of capital rationing is 
encountered. That is, agencies or firms that are reluctant to borrow additional funds may set a 
maximum limit on the capital funds available in any year. Commonly, though, the projects identified 
as being economically desirable have capital requirements which exceed the available budget. In this 
case the projects must compete for the available funds. Economically, the decision rule in such cases 
is straightforward: implement that set of economically desirable projects which exhausts the capital 
budget and yields the highest total net present value. 
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9-5    FINANCIAL IMPLICATIONS OF RISKY INVESTMENTS 

As noted in Chapter 3, the usage of particular transportation services as well as the social costs 
incurred may be quite uncertain for future time periods. In Chapter 7 we argued that this uncertainty 
can be taken explicitly into account by considering the expected benefits and costs of different 
facilities (and associated staging plans), given some assumption concerning the uncertainty 
associated with the various volume and cost predictions. The uncertainty of volume levels and costs 
also has implications for the service provider's deficits or profits and deserves some discussion. 

 
Although the computations become more numerous and tedious, it is possible to calculate—at 

least approximately—the expected profitability of each investment alternative and staging plan 
given some assumption concerning the uncertainty of various levels of the demand function and 
costs. The procedure is identical to that described in Chapter 7, but using the revenue and private 
cost functions which were described above in this chapter. Basically, the expected profit of an 
investment alternative is the sum of the profitability under each possible condition multiplied by 
the (assumed) probability that the condition will occur: 

 

where TNP z  is the total net profit with condition z and m is the total number of possible 
conditions. Investment alternatives may then be compared on the basis of their expected net 
profitability in the same manner as in the deterministic case analyzed earlier. 

 
However, there is an asymmetry associated with budget targets which is not captured by this type 

of analysis. The consequence of falling short of a budget target (i.e., incurring a larger deficit than 
is anticipated) may be more severe than the benefits of realizing a budget surplus. As a result, 
managers might be interested in an indicator such as the chance or probability that the investment 
will result in budget deficits or in targets being exceeded. All other things being equal, managers 
would tend to prefer those projects which were less likely to have large budget deficits. 

 
Mathematically, this indicator might be calculated by noting all the conditions under which 

budget deficits would result and summing the probabilities associated with these problem 
conditions: 
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where y = l , . . . ,r  includes all the conditions which result in a budget deficit. Other indicators of 
the riskiness of a project might also be used, such as the expected amount of the deficit in cases in 
which deficit occurs or simply the variance of net profitability. Each of these attributes attempts 
to indicate the riskiness of particular investments and staging plans. 

 
It is possible to construct a single figure which might indicate both the expected net 

profitability of an investment and the risk associated with the investment. For example, 
conditions in which budget deficits occur might be weighted twice that of conditions in which 
profits occur. This construction is a simple example of the general scheme of weighting for 
multiple-objective planning which will be described in the following chapter. The point which should 
be emphasized, however, is that it is perfectly rational to consider the uncertainty associated with 
different investments as well as the expected net profitability. As a consequence, multiple-
objective planning—as described in the next chapter—is almost required in such situations. 
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9-6. Problems 

 
P9-1. Suppose demand for water supply with respect to monetary price is q = 200 – 0.01p where 

q is in thousands of gallons per month and p is in $ per thousand gallons.   
a. What is the price that maximizes water supply revenues? 
b. Suppose the cost of providing water is $ 20,000 per month.  If the water supply is 

operated to simply cover the cost of providing water, what price should be charged? 
c. What is the elasticity of demand with respect to price at the equilibrium found in part (b)? 
 
P9-2. Give three reasons that might be used to justify subsidizing the operation of public 

transportation in a metropolitan area. 

Back to top 
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CHAPTER    10 

MULTI-OBJECTIVE AND MULTI-ATTRIBUTE 
PROJECT SELECTION 
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Most of the previous discussion was directed at the problem of identifying the investment alternative or 
operating policy which would result in maximizing total net benefits. In practice, decision makers 
are concerned with other objectives as well. For example, we discussed the impact of various 
alternatives on the financial profitability of transportation services in the previous chapter since 
profitability or deficit limitation is often an objective in undertaking new services or continuing 
others. Another common concern in the selection of investments pertains to the incidence of the 
benefits and costs, that is, who actually derives the benefits of a service and who incurs the costs, in 
contrast to measuring total net benefits "to whomsoever they may accrue." That is, the costs or the 
benefits might be disproportionate distributed to particular individuals or groups, and such 
differences in the incidence of benefits and costs may greatly concern decision makers. 

 For many infrastructure services, a ‘triple bottom line’ approach is adopted by decision makers.  
The ‘triple bottom line’ includes economic, environmental and social impacts and is often considered 
with regard to sustainability.  An ideal investment would have positive impacts in each of these three 
areas.  A variety of metrics are used for these different impacts, including: 

• Economic: net social benefits; profit; tax revenues; risk of losses. 
• Environmental: greenhouse gas emissions; conventional air emissions (e.g. particulates, 

volatile organics); water pollution. 
• Social: jobs created; distribution of benefits and costs; safety risks. 

The planning challenge is to estimate these various metrics for proposed investments. 

In this chapter several techniques for dealing with multiple-objective and multiple-attribute project 
selection will be discussed. Cases with multiple objectives are those in which decision makers 
formulate more than one goal to be pursued when providing transportation services. Cases of 
multiple attributes arise when projects have numerous impacts and the valuation of these various 
impacts cannot be directly reduced to dollar amounts. Much of the discussion in this chapter will be 
concerned with the elimination of undesirable projects in light of the various objectives and 
attributes, rather than the selection of one "optimal" project. Multi-dimensional project selection 
methods do not present any magic procedure for avoiding the difficult problems of valuing different 
project attributes or of making choices when there are competing objectives. 
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10-1    DEFINITION, MEASUREMENT, AND PRESENTATION OF PROJECT 
ATTRIBUTES 

Previously, a single project attribute was generally used for comparing projects, namely, the total net 
benefits to whomsoever they might accrue. In Chapters 1 to 8 we discussed at some length the 
definition, composition, and measurement of total net benefits. For example, in Chapter 4 we 
described methods by which user costs could be identified and valued in dollar amounts. Before 
projects may be analyzed with respect to additional objectives or different attributes, it is necessary 
to undertake a similar process of definition for these additional objectives and attributes. 

 
A number of potential objectives have already been described. In Chapter 9, for instance, we 

discussed the calculation of the financial profitability of services. It is also possible to analyze revenue 
and financial costs for any particular group in a manner similar to that used for service providers by 
calculating the direct costs and revenue for each group. Groups of interest might be special user 
groups (e.g., the elderly, minority travelers, or residents of particular areas), competing service 
providers, or others. 

 
The calculation of total net benefits can also be restricted to determine the net economic 

benefits for any particular group. Such a calculation is similar to changing the unit, focus or "point of 
view" for analysis. Generally, benefits and costs are related to those individuals which had to risk 
their own resources in undertaking a project or service. By restricting the size of this analysis group, 
the net economic benefits to the group may be calculated in the same manner as for the overall total 
net benefits. As in the analysis of financial profitability, transfer payments to particular groups 
might be considered benefits in this analysis. The analysis of sunk and opportunity costs remain 
identical to the analysis for total net benefits, however. 

 
A notable example of differences between a general and specific analysis occurs for the case of 

federal capital grants. Revenues for such grants are derived from taxes or user charges which are 
imposed nationwide. For the nation as a whole, they represent a transfer payment from taxpayers to 
the local operating agencies and, thus, no overall net benefit. From the viewpoint of a locality, 
however, these grants represent a direct benefit which can be used to offset its real resource costs of 
construction. Thus, a calculation of the benefits and costs of capital investments from the national 
and from the local viewpoints are quite different. 

 
The discussion above has concentrated upon the calculation of attributes which might be directly 

related to goals or objectives, such as deficit limitation or increasing the net economic benefit to a 
particular local area or social-economic group. Multiple project attributes may also arise if it is 
impossible or inappropriate to develop dollar values for various impacts of particular projects. For 
example, it may be quite difficult to assign a dollar value to air pollutant emissions reduction or to the 
lives saved by a safety measure. In some cases the proper value to place upon a particular project 
impact may require a political decision, so an analyst should be reluctant to impute a particular 
dollar value without consulting with responsible officials. Even with only one objective (such as 
total net benefits), the difficulty of valuing various project impacts may make some form of 
multidimensional project selection analysis useful. Once again, however, such analysis requires that 
the various attribute measures be defined and quantitative measurements of individual project 
impacts made. 

 
One additional project attribute deserves mention here, even though it is often ignored in 

transportation systems analysis. This attribute pertains to the risk associated with particular 
projects. Estimates for many inputs to the analysis process outlined above are uncertain to some 
degree; that is, the analyst knows that various forecasts are likely to have associated errors. In 
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particular, estimates of travel volume over time, capital and operation costs, and technological 
possibilities have a substantial amount of uncertainty. Given this uncertainty, some projects may 
have a higher degree of flexibility or adaptiveness, so that the expected losses—in cases of 
detrimental outcomes—are significantly lower. These projects tend to be less risky than projects which 
have the possibility of large benefits in some circumstances and equally large losses in other 
circumstances. In general, decision makers are likely to prefer less risky projects. Measurement of 
project riskiness will be discussed below. 

 

Once the various attribute measurements are defined and measured for each project alternative, the 
impacts of particular projects may be summarized in tabular form. For example, Table 10-1 
summarizes measures of attributes of three separate projects (A, B, and C) for four separate 
objectives, namely, total net benefits, financial profitability of the service,  net economic benefits to 
elderly and handicapped individuals, and greenhouse gas emissions. Similarly, Table 10-2 is a 
summary of the multiple-attribute impacts of three alternative projects for which maximization of 
total net benefits is the only objective in project selection. In the latter case, however, the analyst has 
not put a dollar value on the total net benefits associated with pollution reduction and employment 
increases. Multi-objective and multi-attribute analysis may then proceed using the summary of 
project attributes contained in Tables 10-1 and 10-2. 

 
TABLE 10-1.   Example of a Multi-Objective Impact Summary for Three 
Alternatives 

Objective Alternative A Alternative B Alternative C 
Total Net Benefit ($ 000s) 250 200 150 
Provider Profit ($ 000s) -10 1 0 
Net Benefit to Elderly and Physically 
Handicapped ($ 00s) 

16 12 8 

Greenhouse Gas Emission Reduction 
(mt CO2Equivalent) 

20 10 9 

 
 
Before discussing such analysis procedures, a few notes about the formulation of objectives and 

attributes should be useful. First, to the extent possible, it is important to restrict the number of 
objectives and attributes which are considered. Each objective and attribute which is defined 
requires an additional impact calculation and represents an additional dimension of analysis. 
Decision makers will have difficulty in analyzing impact tables having more than one objective or 
attribute measure. Whenever reasonably possible, objective and attribute lists should be reduced in 
number.  One method to do this is place the attributes on a common metric such as dollar impacts.  For 
example, the health effects of conventional air emissions can be monetarized and included as an external 
cost associated with these emissions. 

 
Secondly, it should be obvious that the projects which perform relatively well in the largest number 
of objective or attribute categories are not necessarily the most desirable projects. In many cases one 
objective may be of great importance, while a number of other objectives are of secondary 
importance. Projects which have relatively good impacts for secondary objectives may be very poor 
overall. For example, project C in Table 10-2 ranks first with respect to both pollution 
reduction and employment improvement but is achieved at very high social cost relative to other 
projects. Similarly, selection rules which rank the various projects within each category and then sum 
these rank orders generally will not result in the most desirable project. This type of selection may be 
acceptable for athletic track meets, say, in which each category or event is valued equally, but this 
assumption is not necessarily a good one for transportation project selection, despite the fact that it 
has been used in practice. 
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TABLE 10-2.   Example of a Multi-Attribute Impact Summary for Three 
Alternatives 

Attribute Alternative A Alternative B Alternative C 
Total Net 
Benefita ($ Million) 

10 5 -30 

Greenhouse Gas Emssions 
Reduction (mt/day) 

22 10 23 

Employment Increase  5 5 7 
aExcluding air pollution reduction benefits and employment increases. 
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10-2    ELIMINATION OF INFERIOR ALTERNATIVES 

Once the impacts of each project are known for each of the various attributes, an analyst may 
proceed to eliminate inferior project alternatives. The previous section described the process of 
defining and measuring various project attributes, where a project attribute might be the value of 
some objective (e.g., total net benefit) or some project impact which cannot be directly valued in 
dollar amounts (e.g., lives saved or pollutant emission reduction). The result of the initial analysis is 
a table which summarizes the various measures for each project. 

 
To simplify the discussion, we shall assume that increases in each measure are desirable. For 

example, larger total net benefits and greater provider profits are generally preferable, all other 
things being equal. Impact measures for which increases are undesirable must be modified for the 
subsequent analysis by calculating their additive or multiplicative inverse and then using the inverse 
of the impact as the attribute measure. For example, rather than defining an attribute with respect to 
a service provider deficit (for which increases are undesirable), an analyst could define the project 
attribute with respect to service provider profit which is the additive inverse of the provider deficit: 

profits = -1 x deficits (10-1) 

and either profit or deficit may be negative in any particular case. Similarly, the impact measure of 
pollutant emissions should be defined as pollutant emission reductions to create an attribute measure 
for which increases are desirable. The specific type of transformation which is used is not important, 
although the transformation which is used will affect the subsequent analysis of trade-offs among the 
various attributes. Such positive transformations are useful in avoiding analysis errors. Importantly, 
we do not and should not assume that the dollar value of a unit increase in each attribute measure is 
constant over the entire range of the attribute. The first step in analysis is to eliminate inferior 
alternatives from further analysis. An inferior alternative is one for which some other feasible 
alternative has larger or equal values for each and every attribute measure. That is, an alternative is 
inferior if some other project alternative is equal or preferable for each objective or attribute measure. 
In Table 10-1, for example, alternative C is inferior to alternative B for each of the four objective 
measures and, consequently, may be eliminated from subsequent analysis. Similarly, in Table 10-2 
alternative B is inferior to alternative A. The argument for eliminating inferior alternatives is 
straightforward: We can always do better than inferior alternatives. By adopting B rather than C in 
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Table 10-1, we could increase each of our objective attributes: total net benefit (by $50,000), 
provider profit (by $1,000), and net benefits to the elderly (by $400). 

 
With only two attribute measures, inferior alternatives may be detected graphically. For example, 

Figure 10-1 illustrates five project alternatives (A to E) with their respective attribute measures 
indicated by the projection of their location onto the axes of the graph. Alternative A, for example, 
has a value of WA for attribute W and VA for attribute V. Any project which lies to the 
southwest of another project alternative represents an inferior alternative. Thus, in Figure 10-1, 
alternative C is inferior to A, and alternative E is inferior to alternative B. Mathematically, the 
same result may be obtained by noting that the inferior alternatives have equal or lower attribute 
values to some other alternative: 

 
In the literature of multiobjective and multiattribute analysis, inferior alternatives are also called 
dominated alternatives. While the terminology may differ in particular instances, the concept is 
identical: an alternative can never be the most desirable if some other alternative is at least as good 
with respect to every desirable attribute. Note that a particular alternative is only rejected (i.e., 
found inferior) if some particular alternative is superior. In Figure 10-1 alternative B has a lower 
value with respect to attribute W than does alternative A and, moreover, has a lower value of 
attribute V than does alternative D. However, since no one alternative is superior to alternative B 
with respect to both attributes, one cannot conclude that alternative B is not the best alternative; 
indeed, alternative B may represent the most desirable trade-off between the two attributes. 

 

 
For the five alternative cases illustrated in Figure 10-1, the three alternatives A, B, and D represent 

the set of noninferior project alternatives which are still to be considered. These three alternatives 
also reveal the range of possibilities available for achieving various values of the attributes. For 
example, the highest achievable value for attribute W is WA, while the highest achievable value for 
attribute V is VD. The problem of project selection has been reduced to choosing among three projects, 
with their associated attribute measures: A(WA, VA), B(WB, VB), and D(WD, VD). These three 
alternatives comprise the noninferior project set or frontier in this case. 
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With a large number of alternatives available, the number of noninferior alternatives is likely to be 
much larger, as in Figure 10-2. In this figure each point on the project possibility frontier represents 
a single alternative project, such as project P. Any alternative with attribute values lying to the 
southwest of some point on this curve represents an inferior and rejected alternative. The project 
selection problem is one of choosing some point on this noninferior project frontier. 

 
To avoid excessive calculations, it is often preferable to generate the noninferior project frontier 

directly, rather than to compare each alternative with all others and then reject the inferior 
alternatives. A useful procedure for generating the noninferior project frontier is to impose a 
constraint on all but one attribute and then to find the project which maximizes the value of the 
final attribute. For example, P is the project in Figure 10-2 which has the maximum value of 
attribute W, given that attribute V must equal Vo. Mathematically, this procedure may be represented 
as 

Maximize Wi for all projects i (10-3) 

subject to the constraint(s) 

Vk = Nk   for all other attributes k (10-4) 

where Nk represents the constant value of parameter k. By systematically varying the value(s) of Nk 
and finding the best project, the noninferior project frontier may be identified directly without 
comparing inferior alternatives. Mathematical details for the application of this procedure to linear 
problems are contained in virtually all texts describing the method of linear programming. 

Back to top 
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10-3    SENSITIVITY ANALYSIS 

The most common form of multiattribute analysis is a type of sensitivity analysis. In the context of 
multiattribute analysis, recall that an analyst is expected to define and measure various project 
impact attributes, as in Table 10-2. Each of these various attributes could be expressed on a single 
scale (such as dollar amounts) but only by virtue of assuming particular values for the attributes in 
dollar amounts. Sensitivity analysis may then be used to investigate how project ranking and 
selection would change if the dollar value of some particular attribute changed. 

 
To perform this comparison, the analyst first defines the range of values which the dollar 

valuation of an attribute might assume. Using the project impact table which summarizes the 
attributes of the project, a single figure of net benefits may be calculated for each project using each 
attribute value. Project comparison with the assumed attribute value may then proceed in the same 
manner as for single-objective analysis described previously. 

TABLE 10-3.   Attributes of Five Illustrative Projects 
Total Net Benefits Travel Time 

Excluding Time Savings Savings 
Project (TNBexclt) (At) 

A 200 10 
B 155 30 
C 120 35 
D 50 40 
E 20 42 

To illustrate this process, suppose that five project alternatives are to be compared with 
respect to their total net benefit. Unfortunately, the analyst is uncertain about the value to place 
upon travel time savings, although the value is expected to lie somewhere between $5 and $8 per 
hour. Project attributes are summarized in Table 10-3, and total net benefits for any assumed value 
of time may be calculated as 

 
where TNB are total net benefits, TNBexcL t are total net benefits excluding the value of travel time 
savings, vt is the assumed unit value of travel time savings, and At is the amount of travel time 
savings (in hours). Total net benefits for values of travel time between $5 and $8 are shown in Table 
10-4. Note that project B is preferable if the value of travel time is less than $7, while project C is 
preferable for values of travel time higher than $7. Projects B and C are equally preferable for a 
time value of $7. 
 

This process of sensitivity analysis will not generally result in identifying a single best project. In 
the case illustrated in Table 10-4, the analyst or decision maker must still determine if the actual 
value of time lies in the range for which project B is preferable or lies in the range for which 
project C is desirable. More careful empirical tests—such as those discussed in Chapter 3—may be 
required to limit the possible range in which the value of time actually occurs. However, this 
preliminary analysis has revealed that projects A, D, and E may be removed from further consid-
eration. In some cases it may also arise that one project is found to be superior throughout the 
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expected range of variation of the attribute value; in this case the most preferable project alternative 
has been identified. 

 

TABLE 10-4.   Analysis of the Sensitivity of Total Net Benefit to the Value of 
Travel Time Savings for Five Projects 

Value of Time vt ($/hour) 
Project 5 6 7 8 

A 250 26 270 280 
B 305a 335a 365a 395 
C 295 330 365a 400a 

D 250 290 330 370 
E 230 272 314 356 

a The most desirable project(s) at each value of travel time savings. 
 
This type of sensitivity analysis need not be restricted to a range of values for attributes, of course. 

A similar sensitivity analysis may be conducted for virtually any parameter or measure of project 
attributes. For example, the total net benefits of projects might be calculated for various discount or 
interest rates and the results summarized in a table similar to Table 10-4. This type of sensitivity 
analysis may be particularly valuable for investigating different assumptions about input parameters 
such as the increase in travel volume over time (due to changes in the underlying socioeconomic 
situation) or the change in operating costs over time. 

 
Analysis of different outcomes has been discussed in Chapter 9. In that discussion we assumed that 

the probability or chance that different outcome states (corresponding to different assumptions about 
input parameters or attribute values) might occur could be estimated either subjectively with historical 
data or through experiments. Without some estimate of occurrence probabilities, analysis can 
proceed no further than the construction of a summary sensitivity table (such as Table 10-4) and the 
determination of the project alternative which is preferable over any given range of input parameters. 
At this point the decision maker or analyst must assume the task of selecting a project (or selecting 
the do-nothing alternative) given the various possible outcomes. 

 
A sensitivity analysis may also be performed to obtain some appreciation of the risk impact 

associated with different projects. Numerous measures of risk have been proposed and used in 
different applications. The exact nature of the measure which is used should pertain to the costs 
associated with different outcomes. For example, in some transportation services, deficit operation by 
service providers may impose severe costs and/or result in service discontinuation. In such cases the 
range of outcomes for which deficits occur should be the focus in evaluating the risk of different 
projects. In other situations the variability in the total net benefits might be appropriate, indicated 
by the variance of total net benefits. Each of these measures indicates the relative cost due to project 
attribute variability. Clearly, the first step in constructing a measure of risk is the determination of 
project impacts in different situations by means of a sensitivity analysis. 

 
As a final note, some transportation studies report a somewhat different type of project sensitivity 

information. In the discussion above we attempted to compare the project attributes for various 
combinations of input parameter assumptions. It is also possible to calculate the rate of change in 
project attributes due to changes in particular input parameters. This may be done by using algebra or 
calculus, as 
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where S zy  is the rate of change of attribute z with respect to input parameter y and dz/dy at y = 
y0 is the first derivative of z with respect to y, evaluated at y =yo> Computerized linear 
programming packages will provide this sensitivity value automatically. 

 
The interpretation of this sensitivity measure is that changing the value of input parameter y 

by a small amount will result in a change in project attribute z of approximately Szy. One must be 
careful, however, in that the value of S zy is likely to change for different values of y and other input 
parameters. Thus, for large changes in the input parameter y or for simultaneous changes in 
numerous input parameters, S zy might not accurately reflect the true impact of a particular project. 
Since the input parameters to the analysis procedures represent forecasts which may have 
substantial errors, an analyst must use the sensitivity measure, Szy, with caution. 

Back to top 

10-4   THE INFLUENCE OF CONSTRAINTS ON ATTRIBUTES 

In many situations project alternatives may be unacceptable if they have an attribute which is 
valued less than some desired amount. These desired attribute values represent constraints on the 
range of feasible project alternatives, thereby restricting the range of the noninferior project fron-
tier. The most common constraints of this type have already been discussed at some length, 
pertaining to total net benefits and provider profitability.  Additional constraints may exist for 
items such as conventional air pollutant emissions. 

 
A common (and recommended) project requirement is that the total net benefits be positive: if 

no project alternative has positive total net benefits, then all projects should be rejected. Similarly, 
in the private sector of the economy, no project would be accepted if it would result in deficits; 
thus, projects are rejected if they have a negative present value after netting out revenues and 
private costs. 

 
Other project constraints may arise from regulatory requirements or legislative mandates. For 

example, specifications for the interstate highway system were constrained by the requirement 
that the system must be useful for national defense purposes, and the vertical clearances must be 
sufficient to permit defense vehicles to pass. Other requirements exist with respect to safety, 
environmental degradation, and other factors. 

These constraints on project alternatives are important in many situations. First, they must be 
explicitly considered in determining the range of possible projects. Second, they are useful in focusing 
attention on projects which are feasible/thereby restricting analytic efforts to a smaller range of 
possible projects. 

Back to top 
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10-5    PROJECT SELECTION WITH PREFERENCE SCALING OR WEIGHTING 
METHODS 

In the previous sections we outlined the process of summarizing project attributes, eliminating 
inferior alternatives, and conducting sensitivity analyses. After all these calculations, it is likely 
that more than one project is still viable, in the sense that the noninferior project set will have more 
than one feasible alternative. Since some selection among these project alternatives must be made, 
an analyst or decision maker is still faced with the difficult problem of trading-off or balancing 
competing objectives and alternatives, albeit with a smaller number of alternatives than were 
originally considered due to the elimination of inferior projects. Figure 10-3 illustrates the problem 
of project selection. In this figure three viable alternatives appear and only one can be selected. By 
selecting any one project, the decision maker must trade-off benefits with respect to different 
attributes. For example, by selecting project B rather than A in Figure 10-3, the decision maker is 
foregoing V A - VB units of attribute V but obtaining WB - WA units of attribute W. Similarly, 
selecting project B rather than project C results in an increase in attribute V of VB - Vc but a 
loss of attribute W of Wc - WB> Thus, in choosing any particular project, the decision maker is 
trading-off gains and losses with respect to the various project attributes and objectives. 

 

 
The process of project selection may be formalized and made explicit if weights or preferences 

among the various objectives and attributes are defined. For example, it may be that the decision 
maker would be willing to sacrifice a unit of attribute V in Figure 10-3 as long as such sacrifice 
would result in at least a two-unit increase in attribute W. In this case the trade-off between the two 
attributes would be 2 to 1. This preference may be illustrated graphically, as in Figure 10-4. The 
decision maker would be indifferent between each of the points along the preference lines in the 
figure since each point represents a trade-off of two units of attribute W for one unit of attribute V 
(or fractions thereof). Although the decision maker would be indifferent between points along each 
preference line, he would like to move outward, that is, move from line to line in Figure 10-4 as far 
to the northeast as possible. In the case illustrated the farthest project alternative is project B. 
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Note that project A would be rejected since more than twice as much of attribute W would be 
obtained for the foregone amount of attribute V or, mathematically, 

2VA + WA<2VB + WB (10-7) 

Similarly, project B is preferable to project C since 

2VC + WC<2VB + WB (10-8) 

With more than three objectives or attributes, a graphical analysis is not possible. However, 
project selection may be done algebraically by identifying the project which maximizes the sum of 
the various attributes weighted by their respective preference. Mathematically, this is 

 
where a* is the weight or preference given to attribute z,-. For the case illustrated in Figure 10-4 
we can arbitrarily give attribute W a weight of one, so that the weight or preference for attribute 
V is equal to two, and the project selection problem is 

max A = W + 2V (10-10) 

Note that this procedure is similar to that used in sensitivity analysis, although in this case the 
preference scale or weight in decision making is used to value each attribute, rather than an 
assumed attribute value such as the value of time. 

 
By explicitly defining the trade-off or weight to be assigned to each attribute or objective, it is 

possible to explicitly determine the most preferable project alternative, using Equation (10-9). 
Unfortunately, the determination of the proper weight to assign to particular attributes or 
objectives is arbitrary. The weight given to different objectives is likely to be a political problem, 
in the sense that observers with different viewpoints or convictions would be likely to have quite 
different preferences among objectives. For example, a local government official is likely to value 
net benefits to the locality far more than a decision maker who is primarily concerned with the total 
net benefits of projects to the nation as a whole. 

 
Three general approaches to obtaining appropriate weights for project selection have been used. 

First, explicit weights may be mandated or obtained by questioning decision makers. An example is 
the discount rate for valuing benefits and costs at different points in time.  The US Office of 
Management and Budget publishes the discount rate to be used for any project involving federal 
investment.  However, legislators and decision makers are often reluctant to indicate preferences in 
the absence of project alternatives or some required decision point. 

 
A second approach involves iterative questioning of decision makers, often called the Delphi 
method. An initial set of preferences is obtained from decision makers, and a sensitivity analysis is 
used to indicate the best project as well as the incremental changes in attribute values which are 
possible. The best project as well as feasible changes are then reported to decision makers, who 
may then indicate changes in their preferences. The primary goals of this approach are to inform 
decision makers about the consequences of their expressed preferences as well as to aid in developing 
a consensus within a group of decision makers who might have quite different preferences. 
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A third approach to the determination of preferences is to observe past choices. For example, 

suppose that a decision maker had chosen project B, given the choice of projects Ay B, C, or D in 
Figure 10-5. In this case we can conclude that the decision maker's preference between attributes V 
and W is such that B is preferable to A and B is preferable to C. As a result, the decision maker's 
trade-off between the two attributes lies somewhere between the slopes of the two possible preference 
indifference lines which are indicated in Figure 10-5; otherwise a different alternative would have 
been selected. This implies that a unit of attribute V is valued at somewhere between 1.35 and 2 
units of attribute W. With a large number of past selections to consider, it is possible to obtain a 
fairly good estimate of the decision maker's preferences as revealed by actual selections. 

 
This third approach to preference estimation has been applied to determine the weight given to 
different project attributes in highway location and the weight given to income redistribution. It is 
an approach which must be used cautiously, however. It may be that the decision maker's 
preferences are changing over time, so that past decisions do not indicate the actual preferences at 
present. Second, the decision maker may be considering additional attributes which have not been 
analyzed, such as political consequences; in such cases, inferences from past decisions would be 
erroneous. Third, the trade-off between attributes might be nonlinear, so that the preference 
between two objectives might depend upon the relative magnitude of the two attributes. Once again, 
a simple inference about preferences as in Figure 10-5 would be erroneous. 
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10-6    SUMMARY 

In this chapter we have discussed a general approach to project selection under conditions of 
multiple-objective and multiple-project attributes for which dollar valuation is unavailable. It is 
expected that this type of analysis would more likely be the rule than the exception in analyzing 
public projects. For private projects it also is the case that attributes of financial profitability and 
riskiness would be worthy of analysis in a multiobjective framework. Common objectives which 
might be expressed for transportation projects include total net benefit, net benefit to localities or 
particular groups, financial profitability, and others. Common attributes for which valuation in 
dollars may be difficult include lives saved, the extent of progressive income redistribution, pollutant 
emission reduction, travel time savings (in some circumstances), project risk, and others. 

 
Unfortunately, there is no straightforward procedure available to choose a single best project 

alternative unless responsible officials are willing to specify in detail their preferences among 
competing attributes. An analyst must typically resort to a report which summarizes the attributes of 
several viable alternatives and may make recommendations conditioned upon some assumptions 
about attribute valuation and trade-offs among competing objectives. Final project selection may be 
left to responsible officials. 

 
Two general types of techniques have been outlined here for the process of multidimensional 

analysis. The first concerns the identification of projects which are worthy of further consideration. 
Undesirable projects may be eliminated in three ways: as inferior to some other alternative, as 
inferior within the expected range of attribute values or outcome possibilities, or as a violation of 
particular constraints which are imposed upon the final project selection. Techniques for eliminating 
alternatives on these grounds were presented in Sections 10-3, 10-4, and 10-5. 

 
While the elimination of undesirable alternatives may seem like a roundabout method of 

approaching the problem of project selection, it serves to focus attention on a limited number of 
projects and may result in a single best alternative. The imposition of a requirement that the total 
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net benefit of projects be positive is particularly useful in this regard, as well as providing a prudent 
test of economic responsibility in transportation investment planning. 

 
The second technique for conducting multiattribute and multiobjective analysis is with the explicit 

incorporation of preferences or weights among the competing attributes and objectives. If decision 
makers mandate or indicate the appropriate weights to apply, then a single best project alternative 
may be determined using the process outlined in Section 10-6. Unfortunately, responsible officials 
are rarely amenable to quantifying their preferences in this manner. 

 
In general, then, the result of a multidimensional analysis is likely to be a set of viable project 

alternatives among which responsible officials must select. The attributes of these impacts may be 
summarized in tabular form and, in most cases, it is desirable to indicate the variation in these attri-
bute measures as assumptions concerning input parameters are altered by means of a sensitivity 
analysis. 
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10-7. Problems 

 
P10-1. Below is a table of net benefits, greenhouse gas emissions and conventional air emissions 

for different power generation alternatives.   
 Null Alternative Alternative B Alternative C Alternative D 
Net Benefits 
($ 000/day) 

0 25 10 5 

Greenhouse Gas 
Emissions (mt 
CO2E/day) 

250 200 50 50 

Conventional Air 
Emissions 
(mt/day) 

10 10 2 3 

 
a. Transform this table to show objectives that you are attempting to maximize. 
b. Are any alternatives dominated?  If so, which ones? 
c. Suppose greenhouse gas and conventional air emission reductions are both valued at 

$ 30/mt.  Which is the preferred alternative? 
 
P10-2.  Suppose you are considering investment in a wind turbine plus pump storage to 

provide power when the wind is not blowing. This would  provide power in a remote location.  
The alternative would be to invest in a diesel fueled power generator.   

a. What objectives and attributes might you consider for this choice? 
b. How would you estimate the values of the objectives and attributes? 
 

Back to top 
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CHAPTER    11 

THE ESTIMATION AND ACCURACY OF DEMAND 
FUNCTIONS 

Contents 
11-1    Statistical Estimation With Aggregate Data ........................................................................ 2 
11-2    Formulation And Estimation Of Disaggregate Choice Models........................................... 5 
11-3    Prediction With Demand Models ...................................................................................... 10 
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11-5    Accuracy Of Forecasts ....................................................................................................... 12 
11-6    Problems ............................................................................................................................ 14 
 
 
Demand functions are required to forecast the usage of infrastructure facilities and to calculate the 
customer benefits. A demand function relates the amount of purchases to socioeconomic conditions 
and the price of service. In any particular study an analyst must determine which socioeconomic 
factors are important, how to measure and value the relevant components of user cost, and what 
functional relationship exists between the various factors influencing the demand. In addition, some 
means of estimating the constant parameters associated with the demand function must be found. 

 
While the development and use of demand functions is a formidable task, a great deal of effort has 

been expended on these problems, albeit with mixed results. The literature resulting from these 
studies and experiments is correspondingly large. In this chapter we shall discuss the general 
approaches which have been used to estimate demand functions and to develop predictions. We shall 
focus upon the assumptions and use of these methods, particularly with respect to the accuracy of 
volume forecasts. Readers who must develop and estimate demand functions on their own should 
probe deeper into the literature. 

 
At the outset of our discussion of demand function estimation, we should note that alternatives 

to estimation exist and may be preferable in many instances. Observation and experimentation may 
be fruitful approaches to obtain the information required for price setting or evaluation of 
investments. For example, it may be easier and cheaper to experiment with different prices on a toll 
facility or electricity sale prices than to estimate a full set of demand and price functions. 
Evaluation of results may be conducted as illustrated in Chapter 5. Similarly, experiments with novel 
services on a small scale may indicate the effects of widespread introduction of such services. 
Comparison of proposed facilities with experience on similar facilities in other areas may also be very 
useful and quite inexpensive. 

 
However, an impetuous experimenter should be aware that straightforward empiricism has 

definite limitations. First, the results of particular experiments are likely to be specific to a certain 
location; in contrast to laboratory conditions, experiences in one location may not generalize to 
other situations. Second, the experiments may be expensive to perform, particularly since a 
sufficient period of time must be allowed during the experiment to permit individual customers to 
adjust their behavior to the new travel conditions. Moreover, once such adjustments are made, it 
may be costly (and perhaps politically impossible) to discontinue experimental services. Finally, it is 
nearly always useful to analyze situations using the concepts of demand functions in conjunction 
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with the knowledge of existing conditions and assumptions about the elasticity of demand. With 
relatively simple, "back-of-the-envelope" calculations, it can often be concluded that particular 
changes are undesirable prior to direct experimentation. 

 
The most notable example of "back-of-the-envelope" or sketch planning analysis is to make use 

of measured elasticity values. These elasticities may be estimated for particular groups or 
components of trip price. With the use of a measured elasticity value, eX, the percentage volume 
change resulting from a percentage change in an attribute x is 

 
where q and x are the average of before and after values. For example, with a transit fare 
elasticity of -0.3, a 10% increase in fare will result in about a (-0.3)(10) = -3% change in transit 
volume. Of course, this approach must be used cautiously since elasticity values are liable to be 
different over time or for different environments. Use of estimated demand functions may often 
be preferable. [Also, in equation (11-1), 100 *ΔX/X is equal to the percentage change in attribute x.] 
 

Before discussing the process and accuracy of volume forecasting, we will first review the 
approaches used for demand function estimation. In Section 11-1 statistical estimation using 
aggregate data is discussed, while Section 11-2 considers the technique of choice model estimation 
using disaggregate data. Prediction with demand models is considered in Section 11-3, followed by 
a discussion of systematic effects which may occur and might not be captured in traditional demand 
models. Finally, Section 11-5 considers the accuracy which may be expected from volume forecasts. 
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11-1    STATISTICAL ESTIMATION WITH AGGREGATE DATA 

In many instances the information available for demand analysis consists of aggregate observations 
of volumes and socioeconomic attributes for geographic areas (cities, census tracts, etc.), as well as 
information on costs (such as prices, time, etc.). Since the analyst is often interested in the total 
volume, it is natural to develop demand functions which are defined with respect to the attributes 
of these areas; this type of demand function uses data which are aggregated or characteristic of the 
area as a whole. 

 
The type of data used generally falls into three categories: (1) socioeconomic attributes of the area 

(population, employment, etc.), (2) cost of the service offered, and (3) costs of alternatives services. 
Each of these data types is then associated with a variable which appears in the demand function. For 
example, a typical demand function might be 

         
where qR is the annual number of railroad passengers carried between Boston and New York; w is 
real personal income per capita for the Boston and New York residents; fR, fB, and fA are the one-way 
fares on rail, bus, and air, respectively; and η, Κ, Ψ, Θ, and Φ are constant parameters to be estimated. In 
this case fR represents the travel cost on the mode of interest, and f B  and f A  indicate the travel cost 
on alternative modes bus and air. 
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Given a demand function such as Equation (11-2) and observations for the various variables for a 
period of years [qR, w, fR, fB, and fA in Eq. (11-2)], it is possible to estimate the values of the constant 
parameters (η, Κ, Ψ, Θ, and Φ ) by the use of ordinary least-squares regression or other econometric 
techniques. Taking the logarithm of the demand function (Eq. 11-2) results in an equation which is 
linear with respect to the various parameters and makes the parameter estimation relatively 
straightforward.  Standard computational programs to calculate these estimates are available on 
spreadsheet or statistical software. The values for the constant parameters which these programs 
determine are only estimates of the actual values of constant parameters. With only a small number 
of observations [i.e., only a few observations of w, fR, fB, and f A for Eq. (11-2)] or weak relationships 
between the volume and a particular variable, these parameter estimates may have a substantial 
amount of uncertainty associated with them. Fortunately, standard statistical tests are available to 
indicate the degree of such uncertainty, ceteris paribus. These tests are discussed briefly below 
and in Appendix II. 

 
Two types of observations are commonly used in the estimation of values for the constant 

parameters (η, Κ, Ψ, Θ, and Φ) in Eq. (11-2)]. The first consists of observations of each variable during 
various time periods, such as annual data for a period of many years; these data are referred to as 
time series observations. Alternatively, a series of observations on travel impedances, volume, and 
socioeconomic attributes may be gathered for a number of origin-destination locations at the same 
time; these observations are called cross-sectional data. Either type of data may be used, although 
the different types imply different statistical problems for calculation of appropriate parameter 
estimates. For estimation, the analyst must assume that the demand function [such as Eq. (11-2)] is 
either stable over time or stable between different geographic locations (i.e., stable over space) 
depending upon the type of data available for estimation. 

 
Unfortunately, it is difficult to provide firm guidelines concerning the number of variables to 

include and the proper form of the demand function itself. Those variables should be included which 
an analyst believes have important influences on demand and which can be measured. Generally 
speaking, demand functions must reflect many of the a priori assumptions of the analyst concerning 
an appropriate functional form and variables. As a result, the initial conceptualization of the problem 
of representing the demand function is likely to be one of the most important features in the 
estimation effort. In addition to the a priori hypotheses and assumptions of the analyst, the other 
determining factor of the form of demand functions is that of data availability; in most demand 
studies the available data are not as accurate or complete as the analyst would like. 

 
In the case of the demand function in Equation (11-2), a modeler might conclude that additional 

socioeconomic and cost factors might be important in explaining tripmaking by rail. For example, 
changes in the population and auto availability in the two cities are likely to be important 
determinants of travel by train. As additional explanatory factors are included, more of the 
variability in travel volumes is likely to be explained. However, additional variables may lead to 
statistical problems in estimation and to greater inaccuracy in making forecasts of volume. 

 
Once estimates of the various constant parameters for a demand function are developed, it is 

possible to calculate estimates of the volume of travel given a set of values for the explanatory 
variables [i.e., w, fR, fB, and f A in Eq. (11-2)] as well as the implied elasticity of demand. These 
estimates are made by substituting the values of the socioeconomic and impedance variables into 
Equation (11-2) and then calculating the resulting value of qR. In most cases, however, the user cost 
of travel depends upon the volume of travel, so that an equilibrium solution must be determined as 
described in Chapter 2. For example, parameter estimates for the model in Equation (11-2) might be 

 
With w = 8 (in thousands of dollars), fR = 20, fB = 22, and fA = 30, the estimated value of volume is 
qR = 25(8)1.02 (20)-0.3 (22)0.4 (30)°.1 = 411. 



 11-4 

 
Elasticity of demand with respect to the various socioeconomic and impedance attributes may 

be calculated as 

 
where x is any attribute of interest. As noted in Chapter 2, the multiplicative functional form 
assumed in Equation (11-2) has the characteristic that the elasticity of demand is constant 
throughout the entire range of volume, so a different elasticity need not be calculated for each 
combination of socioeconomic and impedance variables. Thus, for Equation (11-2), the elasticity of 
rail volume with respect to rail fare is 

 
which is -0.3 in Equation (11-3). 

 
Even without detailed knowledge of the various statistical tests which are available, a user of 

models [such as Eq. (11-3)] can perform some simple analytical tests. First, the influence of 
various variables can be derived from a priori knowledge of demand functions; the discussion in 
Chapter 2 concerning travel impedance and socioeconomic influences on travel demand is relevant 
in this regard. For example, all other factors being constant, an increase in the price or fare 
charged for a facility or service is expected to decrease the usage of that service. For Equation (11-
2) this observation implies that the parameter associated with the rail fare (or fR) should be 
negative, so that increases in the rail fare, fR, result in decreases in the volume of rail patronage, qR. 
Coefficient signs which are not consistent with a priori assumptions of this type are worthy of 
close examination. 

 
One statistic reported with nearly all estimation results is the estimated coefficient of 

multiple determination, r2. (Occasionally, the square root of this value is reported as the estimated 
"multiple correlation coefficient," r.) This statistic represents the proportion of variability in the 
dependent variable (usually volume of trips) which is explained by the socioeconomic and cost 
variables [such as w, fR, fA, and fB in Eq. (11-2)]. Values of r2 close to one imply that the 
relationship between the dependent variable [usually volume of trips, as in Eq. (11-2)] and the 
explanatory variables [the socioeconomic and impedance variables in Eq. (11-2)] is fairly strong. 

 
A third aspect of a demand model such as Equation (11-2) which might be checked is the degree of 

uncertainty associated with the estimates of the constant parameters. An indiction of this 
uncertainty is the t statistic associated with each parameter. A model such as Equation (11-2) is typi-
cally reported with t statistics appearing under each estimated parameter in parentheses, such as 

 
where, for instance, 2.4 is the t statistic associated with the estimate of the parameter η = 25, -1.8 
is the t statistic associated with the estimate of the parameter Ψ = -0.3, and so forth. These t statistics 
are of considerable value in assessing the statistical significance of the parameter estimates and in 
reaching judgments about the validity of the demand model. In general, the higher the t statistic, 
in absolute value, the more certain is the parameter estimate. Absolute values of t statistics higher 
than two generally imply that there is a probability of less than 5% that the parameter estimate is 
different from zero due to chance rather than in actuality. While a full-scale treatment of the 
subject is beyond the scope of this book, a brief overview appears in Appendix II. 
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11-2    FORMULATION AND ESTIMATION OF DISAGGREGATE CHOICE 
MODELS 

For discrete choices such as automobile purchases, travel modes or travel destinations, demand 
models based upon individual customer choices and estimated with disaggregate data have been 
developed and extensively applied. Disaggregate data consist of observations of alternatives 
available to individual customers and their choices. For example, a mode split model might use 
observations of a particular traveler's available travel modes, his socioeconomic situation, the 
impedance on the various travel modes, and the mode which the traveler actually chose. 

 
Choice models are based upon an explicit framework which is assumed for customer's decision 

making. First, the choices available to a customer must be defined as a set of mutually exclusive, 
collectively exhaustive alternatives. A customer is assumed to choose one and only one of the set of 
available alternatives. Second, an explicit functional form is assumed which indicates the manner 
in which various factors (user cost, socioeconomic characteristics, etc.) influence the desirability of 
an alternative. The functional forms used for disaggregate choice models may be similar to those 
used for aggregate models, although their interpretation and the estimation of parameters is 
somewhat different. Third, disaggregate choice models generally assume that there is some 
randomness associated with the desirability of various alternatives, so that the models attempt to 
determine the chance or probability that a particular alternative is chosen, rather than the single 
most likely choice. As a result, the output of a choice model is a series of probabilities or chances 
that particular individuals will select one or another alternative. These choice probabilities must then 
be aggregated or summed to determine the expected number of purchases (i.e., the number of 
individuals who choose any particular alternative). 

 
To illustrate the use of choice models, suppose that an analyst wished to model the choice between 

taking a high-speed toll facility or a toll-free but slower highway between a particular origin A and a 
destination B. In this situation two alternatives are available to travelers, corresponding to the two 
roadway routes. Among the factors which might influence the decision to take one route or the other 
the most important are the amount of toll, travel times on the routes, the automobile occupancy, 
and the income of the traveler. A functional form for the model which might be used in this 
situation is 

 
where Prk{toll route} is the probability of the kth traveler choosing the toll route; t toll and t free  are 
the travel times on the toll road and the freeway; wk is the traveler's income; ftoll is the charge on 
the toll road; nk is the number of individuals in the traveler's auto (who, it is assumed, split the toll); 
and τ, V, and ζ, are constant parameters. (A priori, we would expect Τ to be positive and both v and 
ζ to be negative.) 

 
The functional form used in Equation (11-7) is a linear probability model, which is 

distinguished by having the probability of choosing a particular alternative as a linear function of a 
number of factors. A more complicated and common form for a choice model is the logit function 
in which the probability of the kth traveler choosing the ith of n alternatives is 
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which means that three parameters (τ, v, and ζ) must be estimated. 

 
While more complicated than the linear probability model, the logit model has several 

statistical and conceptual advantages. Most importantly, the linear probability model does not 
necessarily restrict forecast probabilities to lie between zero and one, as they must by the 
definition of a probability. The logit model does result in this restriction, in addition to possessing 
an often observed S-shaped form (Figure 11-1). 

 

where Vt is a function indicating the desirability of particular alternatives (and is often called the 
"utility" of alternative i), exp is the exponential function (as described in Appendix I), and n is the 
number of alternatives available. For the case of the roadway choice problem described above, a 
possible logit model formulation might be 
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One other restriction imposed by the usual logit model may be less desirable. This is the 

assumption of independence of irrelevant alternatives (often abbreviated as IIA) which, in effect, 
assumes that random effects for different alternatives are independent. When some alternatives are 
similar in nature (as, e.g., carpooling and vanpooling), predictions of demand changes due to new 
policies may be somewhat inaccurate from the logit model without explicitly accounting for such 
similarities by including appropriate variables in the utility function or by using a hierarchy of 
choice models. For example, separate models can be estimated for the choice of mode among 
shared ride, transit, or drive-alone auto in urban areas, and then a choice model of shared ride modes 
among carpooling and vanpooling can be estimated. 

 
Other discrete choice model forms are also available for use, although they are more complicated. 

For example, a probit model permits a more general formulation of the random effects in the 
desirability of choices, but does not permit representation in a closed-form expression such as 
Equation (11-9). 

 
A choice model such as Equations (11-7) or (11-8) does not directly indicate the volume of travel 

on a particular alternative (such as the toll road or freeway). However, it is possible to arrive at an 
estimate of the overall modal split by summing or aggregating the probability of choosing a 
particular alternative over the entire population. For example, the number of individuals who will 
take the toll road can be calculated as 

 
where N is the total number of potential travelers. 

 
The aggregate price elasticity of travel on the toll road may be found by determining the volume of 

travel before and after a change, such as a toll increase, and by applying the formula for elasticity 
[Eq. (11-4)]. For an individual, the direct elasticity of demand for alternative i can be calculated 
from a logit model as 

 
where ζ f  is the constant factor for fare [which is ζ/(nkwk) for the toll road model in Equation (11-7)]. 
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Discrete choice models may also be used to indicate the relative weights which individuals place 

on different travel characteristics. For example, the model of Equation (11-9) suggests the 
desirability of the toll road might be represented as 

 
This suggests that there is some decrease in the toll (ftoll) which would exactly compensate for a 
unit increase in travel time (ttoll) so that the desirability or utility of the toll road is unchanged. 
This decrease in toll (Δf toll) could be calculated as 

 
which depends upon the number of occupants in the car (nk), the household income (wk), and 
the two parameters v and ζ. 

 
This method of examining the relative weights of different travel characteristics can be used to 

impute the value which individuals place on travel time or other characteristics. For example,  
Δf toll represents the amount that tolls would have to decrease to compensate a traveler for a unit 
increase in travel time. From this manner of examining trade-offs, values of travel time are 
derived, as described in the next chapter. 

 
As a numerical example, consider the choice of travel to work by transit or by automobile for an 

individual. For this choice an appropriate logit mode choice model might be 

 
using the model form of Equation (11 -9b), with the value of the relative transit desirability ( VT - 
VA) equal to 

 
VT - VA = 0.38 - O.OO81*OVTTT - 0.0033*IVTTT 

- 0.0014*f + 0.0328*IVTTA (11-15) 

where 0VTTT is out-of-vehicle transit wait and walk time (minutes), IVTTT is in-vehicle travel 
time on transit (minutes), f is transit fare (cents), and IVTTA is in-vehicle time on auto (minutes). 
With these coefficients, the value of in-vehicle transit time is 0.0033/0.0014 = 2.36 cents/minute or 
$1.41 per hour in 1978 dollars. The corresponding value of waiting time is $3.47 per hour in 1978. 
Inflating to 2009, in-vehcicle time would be $ 3.63 per hour and waiting time would be $ 8.95 per 
hour.  With wait and walk time for transit or OVTTT = 10 minutes, transit riding time or IVTTT = 
30 minutes, fare f = 75 cents, and auto riding time or IVTTA = 20 minutes, the relative utility of 
transit choice is calculated as 

VT - VA = 0.38 - 0.0081(10) - 0.0033(30) - 0.0014(75) + 0.0328(20) 
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= 0.75 (11-16) 

and the probability of taking transit is 

 
so that there is a 68% chance that this individual would take transit under these conditions. Using 
Equation (11-11), the fare elasticity of demand is 

€f = (-0.0014)(75)(l - 0.68) = -0.03 (11-18) 

suggesting that this individual would be quite price inelastic. 

 
The logit choice model also offers the possibility of directly estimating the change in net benefits 

to a traveler due to some environmental or policy change. This change in net benefits is 
calculated as 

 
in which Vjnew is the value of Vj after some change, Vjold is the original value of Vj, ln is the 
natural logarithm function (described in Appendix I), and n is the total number of alternatives 
available. This expression [Eq. (11-19)] simply represents a shortcut arithmetic way to evaluate 
the change in total benefits described in Chapter 4. 
 

As in aggregate demand models, choice models require the use of regression or other statistical 
estimation techniques to obtain appropriate values for the parameters of the model. For logit 
models the technique of "maximum likelihood" estimation is commonly used; computer software 
programs are available to perform such estimations. As in the case of aggregate demand models, 
parameter estimates are subject to considerable uncertainty, and most computer estimation 
programs report t statistics which may be used in the same manner as those described in Section 11-I. 

 
In addition to statistical tests on individual parameter estimates, users of choice models should 

also submit the models to a scrutiny for reasonable results. For example, an analyst should expect 
that toll increases would reduce the volume of travel on a toll facility. In the choice model volume 
reductions result from reductions in the probability that the toll road alternative is chosen. 
Consequently, we expect that as the toll increases in Equation (11-9), then Pr{toll road) should 
decrease, implying that the parameter £ should be negative. Model estimation which results in 
positive values of £ for Equation (11-9) should be subjected to close examination, if not constrained 
to a nonpositive value for ζ. 

 
Since choice models generally require more complicated functional forms and involve an 

additional step to aggregate the individual choice probabilities to obtain volumes, readers might well 
wonder what advantages these models offer. First, to estimate parameters for choice models using 
disaggregate data (which may be obtained from surveys), it is more efficient in a statistical sense to 
estimate a disaggregate choice model first and then find volumes, rather than to aggregate the data 
and then estimate an aggregate demand function. Second, it is hoped that choice models 
estimated with disaggregate data may be transferred over time or between areas without extensive 
re-estimation of parameters. 

Back to top 
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11-3    PREDICTION WITH DEMAND MODELS 

While the knowledge developed about travel demand and human behavior is one of the major benefits 
of using demand models, predictions of future volumes is the most common purpose for formulating 
and estimating demand models. Forecasts of volumes may be developed to investigate new managerial 
strategies such as price changes or for major investment planning studies which require forecasts 
many years into the future. With the use of system performance and demand functions, the general 
procedure for forecasting volumes was outlined earlier. 

 
This forecasting procedure consists of estimating the demand function which is expected at 

some target date, determining the system performance function based upon a particular 
investment and operating strategy, and then identifying the equilibrium volume and price of service 
by observing the intersection of the demand and performance functions. The future demand 
function will generally depend upon the expected socioeconomic data in the future period, so 
estimates of these factors must be prepared prior to the volume forecast. For example, using the 
model Equation (11-3), a future demand function might be 

 
where wy is the expected per capita income in year y and the f variables represent the expected 
fares on rail, bus, and air, respectively, in year y. 
 

For volume forecasts for the near future, it is possible and common to assume that relevant 
socioeconomic variables do not change or change by only a small amount; the price of service is 
likely to change more rapidly due to managerial changes or new investments. For long-term 
forecasts, however, it is necessary to make estimates of future population totals, employment 
levels, incomes, and other factors appearing in the demand model. Techniques for developing 
these socioeconomic forecasts will not be discussed here, although these techniques are similar in 
many ways to the procedure for estimating volume itself. In most infrastructure studies forecasts 
of relevant socioeconomic variables are obtained by extrapolating past trends into the future or from 
large econometric models of the national or regional economy. 

 
There is a great deal of uncertainty associated with these estimates of future socioeconomic 

factors. This comment is especially true of the estimates for per capita income and other variables 
representing economic activity. Even if a demand model is a completely accurate representation of 
infrastructure demand, some uncertainty will arise in forecasting solely due to the uncertainty 
associated with forecasts of socioeconomic variables which are input to the demand function. 

 
Analysts should also be aware of the limitations and uncertainties which may arise from the 

demand model itself. The uncertainty associated with estimates of constant parameters in demand 
models has already been discussed. In addition, it is useful to recall that demand models are 
calibrated on existing observations of travel volumes and conditions. Forecasts for radically 
different conditions would be significant extrapolations from existing conditions. As with all 
extrapolations, there is substantial uncertainty associated with forecasts for extreme conditions. 
This is particularly true for demand models since the functional form of these models is often 
determined from a priori assumptions with only limited data available for calibration and 
validation. Unfortunately, it is precisely for prediction in extreme cases that demand models would 
be most useful. 

Back to top 
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11-4    SYSTEMATIC EFFECTS 

The last few sections concentrated upon estimation and interpretation of individual demand 
functions. It is also prudent to consider systematic effects which may be important influences on 
volumes and equilibrium prices. These systematic effects include cross-relationships between 
facilities or over time, effects of auto availability, interactions between series of demand functions, 
and constraints on customer behavior which might not be adequately represented by a demand 
function. 

 
The existence of cross-relationships between facilities and over time has been mentioned in 

numerous places throughout this text. If the price of a service at a particular time changes, then 
volume may be diverted to or from other time periods or other facilities. As a result, there are 
cross-relationships between the price of service on a particular facility at different times. It is 
usually impossible to completely specify all the cross-relationships which exist and may be 
important; analysts must concentrate on the most important. 

 
One factor in travel demand modeling which deserves special attention with respect to systematic 

effects is the availability of automobiles. Auto availability has been found to be an important short 
run determinant of travel demand mode choice. Since only a limited number of automobiles are 
available within households, the allocation of these automobiles between household members may be 
an important influence on the types of travel which occur. For example, it has been found that 
incentives for workers to use public transit and share rides can induce shifts from the drive-alone 
commuting alternative. However, these shifts result in greater auto availability during the day for 
other household members, and their travel may increase as a result. Due to the shifting auto 
availability, the net impact of transit and shared ride incentives on total areawide travel is less than 
would be expected by just examining the change in commuting trips.  A similar ‘rebound’ effect 
occurs for tele-work from home: additional recreational or shopping trips may be taken instead of the 
regular commuting trip.  

 
A second point to note is that long run automobile purchases may be sensitive to changes in the 

price of travel. For example, an increase in travel cost may lead to lower automobile ownership which, 
in turn, further reduces the amount of travel. Automobiles purchased solely for commuting purposes 
might fall into this category; increased tolls or improved transit service may induce a switch to 
transit. While this type of change in automobile ownership may be small, it does have important 
implications for long-term changes in travel volumes on particular facilities. 

 
Many individuals have argued that changes in land-use patterns as a result of transportation 

investments or pricing strategies are likely to be quite large. However, the observed statistical 
relationships are quite weak between patterns of land use and most changes in the transportation 
infrastructure, particularly after a roadway network has been established. Even the effects on land 
use due to major new rapid transit systems are questionable. Therefore, analysts should be wary of 
assuming such relationships. 

 
Finally, users of travel demand models and volume forecasts should be aware that most modeling 

efforts involve a series of demand models. A classic example of model systems is the Urban 
Transportation Model System (UTMS) developed by the U.S. federal government. This model 
system involves a series of models including separate models for trip generation from an area, 
destination choice, route choice, and modal split between automobile and transit. These model 
systems can include a wider variety of factors and cross-relationships than single-equation demand 
functions [such as Eq. (11-2)]. However, relationships between particular models in the system may 
be inconsistent and result in significant inaccuracies. For example, the UTMS has been criticized 
because peaking factors, trip generation, and destination choice are not functions of travel price. 
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11-5   ACCURACY OF FORECASTS 

In previous sections and chapters we described many of the difficulties associated with developing 
accurate forecasts of future travel volumes and user costs. Some of these problems were related to 
conceptual mistakes and misapplications of the principles for demand modeling. Other problems 
would arise even if the existing theory and techniques for demand modeling were properly used. A 
summary of these problems appears below, followed by a discussion of the accuracy to be expected 
from particular studies. 

1. Ignoring the Elasticity of Demand with Respect to Price.    For analytical simplicity, many 
planning studies assume that volumes are constant no matter what changes are imposed on a system. 
While convenient, this assumption is usually incorrect and unjustifiable. 
 

2. Ignoring the Equilibration of Demand and Supply.    Demand is defined as a function of 
socioeconomic factors and user cost. At the same time, however, the elements of user cost are 
dependent upon the volume on a facility, as the performance or supply function associated with a 
particular facility implies. Interaction of these two functions should be 
analyzed in order to determine the equilibrium volume and user cost. Many studies of travel 
demand ignore the equilibrium aspect of this problem. Often demand is assumed to be independent 
of price or the user cost of travel is thought to be independent of travel volume. These assumptions 
simplify analysis and may be approximately correct, but they will generally result in inaccurate 
volume forecasts. Demand functions should be explicitly defined with respect to the variables to be 
included and the manner in which these variables influence the travel volume. 
 

3. Multiple Equilibria between Demand and Supply Functions.    For certain demand and facility 
performance functions, the possibility exists that more than one stable equilibrium solution may 
occur. In these cases an analyst might validly arrive at more than one forecast of equilibrium 
volume and user cost. If the functions are correct, either situation may 
exist in reality (or the equilibria may alternate). While the existence of multiple equilibria is 
unusual in travel demand studies, it cannot be ruled out on either theoretical or practical grounds. 
The net result is that forecasts in such situations are likely to be more uncertain. 
 

4. Uncertainty in Supply and Performance Functions.   While we have discussed the 
estimation of demand functions in this chapter, analysts should remember that forecasts of 
future travel volumes and costs depend upon the interaction of demand and performance functions. 
If these performance functions are incorrect or inaccurate, then the resulting volume forecasts 
will also be inaccurate. Unfortunately, it is difficult to be certain that the correct variables and 
functions have been used in particular cases. Generally, an analyst must rely on a priori 
assumptions consistent with theory and comparisons with existing conditions to assess the relevance 
of particular model forms. 
 

5. Inappropriate Data Used for Estimation.   Data used to calibrate the parameters of a demand 
function should consist of numerous observations of volumes, socioeconomic variables, and user 
costs for the same demand function. A set of observations of this type permit estimation of the 
parameters of the demand function and also offer an opportunity to check the accuracy of the 
function. In some cases, however, a set of observations may be used which arise from different 
demand functions on the same or similar facilities. In these situations the observations indicate the 
nature of the performance or supply function of the facility. This problem is known as the 
identification problem in the literature of econometrics and may be overcome by gathering 
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appropriate data. 
 

6. Measurement Error.   Even with appropriate data, measurement errors in the observations 
of volume, socioeconomic conditions, and user costs which are used for calibrating a model may lead 
to errors in parameter estimates and to incorrect conclusions concerning the proper form of the 
demand model. While better data gathering procedures can substantially reduce this problem, it is 
always likely to be present in demand modeling efforts. 
 

7. The Uncertainty of Parameter Estimates.   Virtually all demand models employ constant 
parameters which must be calibrated. The techniques available for estimation of these 
parameters are statistical in nature, so that the resulting values for the parameters are uncertain. 
In Appendix II we discuss statistical tests to use to indicate the extent of uncertainty associated 
with any particular parameter estimate. With additional observations of actual volumes and 
underlying conditions as well as strong relationships between explanatory factors and volumes, 
this uncertainty tends to be reduced. However, since the parameter estimates are always uncertain to 
some degree, the forecasts of volumes are also more uncertain. 

 
8. Extrapolation from Existing Conditions.    Demand modeling efforts are most helpful in 

providing forecasts for conditions which are dissimilar to existing conditions. Unfortunately, the 
only validation observations which are available for demand models pertain to existing conditions, so 
it is precisely for the case in which models are most useful that they are likely to be the most 
unreliable. Clearly, a correct and complete specification of the demand function would eliminate this 
problem. Unfortunately, existing theory and techniques are unable to ensure complete accuracy. 
 

9. Uncertainty in Future Socioeconomic Factors.   Demand models usually contain variables 
which indicate the socioeconomic conditions which influence demand. For forecasts of future 
volumes, it is necessary to first forecast future socioeconomic conditions and then to input these 
forecasts into demand models. There is some evidence that inaccurate socioeconomic estimates 
are among the largest sources of 
errors in volume forecasts for future years. While improvements in econometric models may reduce this 
problem, it is clear that future socio-economic conditions will always be uncertain due to unforeseen 
inventions, catastrophes, and so forth. 
 

10. Systematic Errors.    Clearly there are interrelationships between the volume on different 
facilities and at different times of the day. There are also interactions between the user costs, 
personal income,  and resources such as automobile purchases. Accurately representing all these 
interrelationships in one function or in a series of functions is likely to be difficult, if not impossible, 
in most instances. 

 
As a result of these difficulties, the forecasts of travel volumes and user costs which result from 

modeling efforts are likely to be quite uncertain. Before the entire procedure of quantitative demand 
forecasting is discarded, however, a few points should be made. First, forecasts for changes in the near 
future are likely to be much more accurate than are forecasts for the distant future. Fortunately, the 
planning horizon for many pricing policies and investments are within a five-year (or shorter) 
horizon. It is only major construction projects such as new airports, highways, or rapid rail transit 
systems which require forecasts over an extended period of time. 
 

Second, it is possible to obtain at least some idea of the range of outcomes which are possible 
due to major new investments. This range might be obtained by considering different scenarios for 
socioeconomic and investment changes which might occur as well as the uncertainty due to 
inaccurate functional specification and parameter estimates. Comparisons with other systems may 
also indicate the range of possible travel volume outcomes. For example, new transit systems are 
very unlikely to achieve passenger volumes per station which exceed those attained on existing 
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systems which serve dense urban areas. This commonsense observation is in contrast to a number of 
planning studies and forecasting exercises. 
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11-6 Problems 

 
P11-1.  Estimate a demand function for residential water consumption based on the following 
individual household observations and prices.  (Note: the form of the function is your decision, 
as well as the estimation method.  Please describe your assumptions and methods). 
 
1 $ 1.5/1000 gal. 12,000 gal. 
2 1.4 13,000 
3 1.6 12,200 
4 2.0 10,000 
5 1.2 14,000 
6 4.0 8,000 
• A. If you had data on the number of household members, the surrounding climate, and the 

household income, would they be helpful?  Could you incorporate them in your demand 
function? 

 
• B. Forecast the demand for residential water consumption for a small municipality with 

10,000 households and a price of $ 1.5 per 1000 gallons. 
 

• C. Suppose the price increased to $ 2.00 per 1000 gallons.  What would be the change in 
revenue and user benefit? 

Back to top 
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Cost and price functions are two of the essential tools used in pricing and investment analysis. These 
two functions relate the total and user costs of service to the volume of service. The definition and 
composition of these functions were discussed in Chapters 2 to 4. Here we shall consider the 
techniques used to estimate the magnitude of cost and price components as well as some of the 
practical problems which arise in the use and estimation of these functions, such as accounting for 
inflation. We should emphasize that the discussion in this chapter is meant to be illustrative of the 
general approaches used for cost estimation. A full treatment of this topic would require a text longer 
than this one, even for specific facility types. Thus, our intention is to provide a convenient 
introduction to the techniques and problems associated with the estimation and use of cost data. 

 
In the next section in this chapter we summarize the four most common techniques for 

estimating construction, operating, and external costs, namely the methods of engineering unit 
costs, statistical estimation, accounting cost allocations, and market equilibrium bids. One or a 
combination of these methods is generally used in the development of standardized cost models which 
are widely used for infrastructure systems. Of course, construction and facility operating costs are only 
two of the components of costs which must be considered by analysts; the user costs for items such as 
travel also constitute a major category. These user costs of travel include vehicle operating costs, as 
well as those for travel time and effort. While estimation of vehicle operating costs does not require 
special techniques, forecasting and valuing the travel time and effort incurred by users does require 
special attention. In Section 12-2 we describe the methods commonly used to estimate travel times on 
facilities, while in the following section we consider the problems of valuing travel time in dollar 
amounts. 

In the final two sections we discuss some of the difficulties which are commonly encountered in 
using price and cost functions. The discussion in Section 12-4 centers on the problems associated 
with defining the unit of time and volume for such functions, and that in Section 12-5 focuses on the 
impact of inflation and other problems associated with forecasting costs in future periods. 
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12-1    COST-ESTIMATION TECHNIQUES 

Virtually all cost estimation is performed with one or some combination of the techniques of 
engineering unit costs, statistical cost inference,  accounting cost allocation or market equilibrium 
bids. These four techniques are the basis for all the standardized cost models used in infrastructure 
studies. As a supplement, engineering judgment may be applied as a rough means of estimating 
costs, but this judgment typically relies on experience with the basic four methods. 

 
A fifth approach makes use of the microeconomic theory of production. Economists often define 

an initial relationship between the output of a process (such as vehicle-miles of service) and the 
necessary inputs of resources such as time, labor, capital, and so on. This functional relationship is 
termed a production function. By assuming a decision process in which the various inputs are 
combined to produce a given output, it is possible to derive a cost function from the underlying 
production function. As a parenthetical note, it is also possible to apply this approach to the 
development of appropriate demand functions by considering households or individuals as units of 
production. This is not a common method for infrastructure systems analysis, however. 
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12-1-1    ENGINEERING OR ACCOUNTING UNIT COSTS 

In principle, the use of engineering unit cost estimation is straightforward, although the application 
of the method is laborious. The initial step in the method is to break down or disaggregate a process 
(such as construction, maintenance, or facility operation) into a series of smaller subtasks or 
components. Collectively, these subtasks or components are required to complete or continue the 
overall process of construction or facility operation. Once the various components are defined, a unit 
cost is assigned to each and then the total cost of the process is determined by summing the costs 
incurred in each subtask or component. 

 
The level of detail in dividing the process into subtasks typically depends upon the stage at 

which the cost estimate is being prepared. During early planning stages less is known about the 
prospective design, so that the level of detail in defining subtasks is quite coarse. Cost estimators 
often refer to three distinct stages at which such divisions might be made and engineering cost 
estimates prepared: 

1. Conceptual estimate in the planning stage (often termed predesign estimate or approximate 
estimate). 

2. Preliminary estimate in the design stage (often termed budget estimate or definitive estimate). 
3. Detailed estimate for the final assessment of costs. 

An example of the subtasks and components which might be defined for the construction of a rapid 
transit line is shown in Table 12-1. Construction of the rail line requires a series of purchases and 
specific tasks, and all of these various components must be defined in categories such as those of Table 
12-1. The quantity of each purchase and the work entailed in each subtask must be estimated, usually 
using engineering principles, survey, or judgment. For example, soil borings are taken to help 
determine the underground soil and conditions to be encountered in tunneling, while route surveys 
are used to determine the amount of earthwork involved in laying out and preparing a roadbed, 
digging a tunnel, and so forth. 
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The breakdown in Table 12-1 might be appropriate for a preliminary planning study, for instance, 
while a much more detailed analysis of the labor and material requirements would be carried out 
during the engineering design phase (and prior to the preparation of contract bids). In the latter 
instance a take-off analysis would ordinarily be carried out from the blueprints in which the amount 
and type of each component of labor and material is enumerated (e.g., the number, type and size of 
reinforcing rods, I-bars, rivets, etc.) and then multiplied by its respective unit cost. In turn, 
allowances for "contingencies" are added to the accumulated cost estimates to allow for 
uncertainties (e.g., unexpected weather or soil conditions), inflation, and the like. 



 12-4 

TABLE 12-1.    Possible Project Components for Engineering Costing of a Rail 
Rapid Transit Line Construction 

Components Characteristics 
Fixed factors 

Land for right of way Area by location 
Guideway Dimensions, number of tracks, type 

of construction (at grade, subway, etc.), length by 
terrain and design standards 

Terminals and stations Number, size, design standards 
Maintenance facilities Number, capacity, design standards 
Control and signaling system Length of track, design standards 
Utility relocation Number, type, size, design standards 

Rolling stock 
Vehicles Number by type 

 
The development of cost estimates of this type requires a considerable amount of judgment to 

estimate the quantities of inputs. In particular, the amount of labor and time required to perform 
individual tasks depends upon workers' incentives and abilities, the effectiveness of management in 
organizing equipment, supplies and efforts, and the peculiarities of particular sites. Considering all 
these various factors requires considerable expertise. 

 
Along with the various components and the quantity of each component, the unit cost of the 

various purchases and subtasks must be ascertained. Examples of unit costs are the cost per foot of 
tunneling through various types of soil, the cost of coal or the cost per transit vehicle. Unit costs may 
be determined by reference to historical records, by inquiry among suppliers, by engineering 
judgment, or by statistical estimation. Unfortunately, unit costs may change significantly in the 
future or due to peculiarities at the construction site, so cost estimates will not always be accurate. 

 
With the various purchases and subtasks defined, the quantity of each estimated, and the various 

unit costs determined, the total cost for constructing or operating a facility may be calculated by 
summing all the component quantities multiplied by their respective unit costs. Often, a 
contingency amount is added to this total, representing unanticipated costs due to uncertainty in 
defining tasks, scheduling difficulties, and so on. A difficulty with the technique of engineering unit 
costs is the multitude of components which must be estimated and the seemingly endless ways in 
which the tasks can be broken down. Each of the components listed in Table 12-1 could easily be 
disaggregated into smaller components or tasks. For example, it is quite important to consider the 
type of soil or rock through which tunnels are constructed. Similarly, purchase of right of way may 
depend critically on the existing uses of land and particular lot boundaries. In most applications of 
engineering unit cost estimation for major transportation facilities, the number of components and 
subtasks is large, making the process of assembling cost estimates quite laborious. Since the cost of 
making estimates is so high, attention is often directed to only a few alternatives and the list of 
components or tasks is kept small. 
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12-1-2   STATISTICAL COST ESTIMATION 

An alternative (or supplement) to the technique of engineering unit costs is that of statistical 
estimation. Broadly speaking, statistical estimation of cost functions uses the same statistical 
techniques described in the previous chapter with respect to demand functions and reviewed in 
Appendix III. Cost functions developed with statistical techniques typically relate the cost of 
constructing or operating a facility to a few important attributes of the system. For example, 
the cost of operating a bus system might be assumed to be a function of the number of 
vehicles, total hours of operation, and miles of operation. 
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The role of statistical analysis is to best estimate the parameter values or constants in the 

assumed cost function. For example, the cost of operating a bus system might be assumed to 
be 

 
  Co = β1*V +  β2*H + β3*B      (12-1) 

where Co is operating cost, V is the number of vehicles, H is the annual bus hours of 
operation, B is the annual bus miles of operation, and β1, β2 and β3 are constant parameters to 
be estimated. Using statistical techniques, it is possible to estimate appropriate values for the 
parameters and β1, β2 and β3  with the use of a number of observations of actual bus system 
operations. Thus, statistical cost estimation relies on historical data of actual operations. 

 
The form of a cost function such as Equation (12-1) can be developed in a number of ways. 

By form, we mean the attributes which are included (such as V, H, and B above) and the 
functional relationship among the various attributes [which is linear in Eq. (12-1)]. The 
simplest method to determine a functional form is by assumption, based upon experience 
and engineering expertise. Most statistical studies of costs proceed in this manner, simply 
assuming that costs may be characterized by generally recognized attributes such as bus 
miles of operation, and so on, and that they are related in some (assumed) linear or 
nonlinear way. 

 
A second approach is analysis of the actual components of a system operation or 

construction. This approach is similar to that of engineering unit cost estimation, although 
in this case "unit costs" are estimated indirectly by applying statistical techniques to 
system observations. Moreover, the number of components used is generally much fewer 
than the comparable number of components used in engineering unit cost estimation. 

 
As an illustration of an engineering unit cost model with statistically derived estimates of 

unit parameter values, let us test a model of the form akin to that shown in Equation (12-1). 
Specifically, the parameters were estimated for all U.S. bus systems in 1980 having a fleet 
size between 125 and 250 vehicles. (The specific data are shown in Appendix III.) The 
resulting expression is 

           C o =      3* V+ 23*E + 97*A        r2 = 0.82                         (12-2) 
(0.13)      (2.79)   (1.02) 

in which Co is the annual system operating cost (in $l,000's), V is the average weekday 
operating fleet size, E is the equivalent full-time employee count, and A is the average bus age 
(in years); the t statistics for the estimated coefficients are shown in parentheses and serve as 
indicators of the uncertainty of parameter estimates. Lower t statistics imply greater 
uncertainty in these estimates, as described below. 

 
The low t statistics for operating fleet and vehicle age coefficients might lead one to test 

the statistical significance of two other simpler functions, of the following general form: 
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in which Y is the dependent variable (say, total annual system operating cost), x is the 
independent variable (say, equivalent full-time employee count), and a and /? are constant 
parameters to be estimated using least-squares regression. Both forms were tested using the data 
in Appendix III, with the following results: 

 
In both cases much of the variation is explained by the regression and it is obvious (from the t 
statistics) that the estimated coefficient for the employee count is highly significant 
statistically (i.e., significantly different from zero). Two other issues are of importance, however. 
One, how accurate—probabilistically speaking—are these cost estimators (i.e., the values of 
C0's)? Two, is it reasonable to conclude that the regression goes through the origin (i.e., that Co is 
equal to zero when E is zero)? Each of these issues is discussed in Appendix III. More broadly, 
the estimates of costs from any statistical cost function such as Equations (12-2), (12-5), or (12-6) 
are subject to uncertainty, both as to the appropriate model form and estimate of costs (Co). 
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TABLE 12-2.   An illustration of an Allocated Cost Function for Turnpike 
Expenditures 
Expenditure Item Allocation Factora Allocated 

Amount ($ M) 
Per Unit 
Amountb 

Administration VMT 1.7 0.0011 

Pavement Maintenance VMT 3.2 0.0020 

 ESAL 1.1 0.0018 

Other Maintenance VMT 3.2 0.0020 

Services and Toll Collection VMT 7.7 0.3182 

Traffic Control and Safety VMT 3.8 0.0024 

Major Repairs and Resurfaction VMT 7.5 0.0047 

 ESAL 6.0 0.0101 

Bond Payments and Interest VMT 2.7 0.0017 

 ESAL 10.8 0.0181 

Total  47.8  
aVMT: annual vehicle miles of travel; ESAL: annual equivalent standard axle miles of travel; 
V: annual vehicle trips. 
b Calculated as the allocated amount divided by the amount of the allocation factor, with VMT 
= 1583 million miles, ESAL = 595.9 million miles, and V = 24.2 million vehicle trips. 
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12-1-3   ACCOUNTING COST ALLOCATION 

To develop a cost function for ongoing operations, allocations of cost from existing accounts may be 
employed. While this procedure has been used in practice, it relies upon a very restrictive assumption 
concerning the form of the cost function. Since this assumption is not likely to be true except as an 
approximation for most transportation services, allocated cost functions should be used with caution. 

 
The basic idea in accounting cost allocations is that each expenditure item can be assigned or 

allocated to particular characteristics of service, such as vehicle-miles of operation or miles of 
pavement maintained. A possible list of such assignments for the case of a turnpike authority is 
shown in Table 12-2. In this list pavement maintenance expenditures are divided into components 
assigned or allocated to vehicle-miles of travel and the total volume of equivalent standard axle 
loads (ESALs) of travel on the turnpike. Toll collection expenditures are assumed to vary with the 
number of vehicles. By dividing the total of each expenditure category by the total of the allocation 
factor (such as number of vehicles or ESALs), the per unit allocated cost for each expenditure 
category is calculated. 

Ideally, the allocation factor should be causally related to the category of expenditures in an 
allocation process such as the one illustrated in Table 12-2. For the allocation of maintenance 
costs in this case, for example, statistical analysis has indicated that $1.1 million of expenditure is 
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related to the number of ESAL miles of travel. In many instances, however, a causal relationship 
between the allocation factor and the expenditure item cannot be identified or may not exist. 

 
Once the per unit allocations to each factor are calculated as shown in Table 12-2, a total cost 

function may be calculated by summing up each of the per unit costs. For example, the cost function 
corresponding to the example in Table 12-2 would be 

C = 0.0139* VMT + 0.03*ESAL + 0.318* V (12-7) 

In this case the turnpike expenditures have been allocated on the basis of annual ESAL miles of 
travel (ESAL), the total number of vehicles (V), and vehicle miles of travel (VMT). 

 
Note that the allocated cost function [Eq. (12-7)] assumes that the expenditure items allocated to 

each factor are strictly proportional to the level of each factor. That is, the function assumes that 
there are no economies of scale or nonlinear effects in any of the expenditure categories, such as toll 
collection. Thus, the cost function represents a linear approximation of what may be quite nonlinear 
relationships. Indeed, an increase in vehicles at toll booths with excess capacity available would be 
unlikely to increase toll collection costs, in contrast to the model assumptions. For this reason 
allocated cost functions should always be used cautiously in developing cost estimates or in 
estimating marginal or incremental costs. To the extent that the allocation factors are causally related 
to expenditure items or that a linear relationship is correct, then the allocated cost function will be 
an accurate representation of the true costs of operations. Unfortunately, this happy circumstance is 
not necessarily true. 
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12-1-4 Market Equilibrium Bids 

 
For some infrastructure services, market equilibrium bids from private providers can provide 

a means of estimating the costs of providing service.  For example, electricity grid managers 
may receive bids from different power generators to provide a specific amount of power for a 
bid price.  The accumulation of all the bids shows the cost of providing different amounts of 
power.     

 
Of course, in the case of market equilibrium bids, each of the service providers needs to 

estimate their own costs (including any desired profit) using the preceding methods. 
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12-2    ESTIMATING TRAVEL TIMES 

Travel times are important for transportation decision making, both for customers (travelers) and 
providers.  Included in both the price and user cost functions are all the various costs associated with 
vehicle operation (gasoline, maintenance, etc.) and the user costs for the time and effort involved 
in travel. In addition, the price function includes the amount of any tolls, parking fees, or fares 
which tripmakers must pay (as described in Chapter 4). Each of these various costs must be valued 
in dollar amounts. In this section we shall discuss techniques usually employed for estimating travel 
times over facilities. In the following section we consider the problem of valuing the estimated travel 
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times in dollars. Both subjects are important because changes in travel times represent a major 
impact of many transportation investment and pricing decisions. 

 
For existing facilities, travel times may be estimated by observing actual trip times on a facility. 

Unfortunately, for large transportation networks direct observation of each link under all conditions 
would be prohibitively expensive. Moreover, observations cannot be made of conditions which will 
exist after a proposed investment or policy change is made. As a result, models of transportation 
facilities and services have been developed to estimate travel times indirectly. These models are 
generally called performance functions, and they relate the travel time on a particular type of 
facility to the characteristics of the facility, vehicle fleet mix, and the volume of travel. For some 
applications performance functions may be developed which estimate separate types of travel time, 
such as the time spent in walking, waiting, and riding for a particular trip. 

 
An example of a performance function used for estimating the travel time on a roadway appears 

below: 

 
where t is the travel time per mile over the link, Vmax is the average speed on the link with very low 
volume, q is the volume actually using the link, and 8 is a parameter related to the capacity of the 
link. The travel times indicated by Equation (12-8) for different volumes are graphed in Figure 12-1. 
Another commonly used model for estimating travel time on a link is 

 
where t is the travel time, t0 is the travel time at low volumes, q is volume, and S and p are 
parameters specific to the roadway link. 

 
Both of these performance functions (and virtually all others) share some common 

characteristics. First, travel time on the facility or service is related to the travel time at very low 
volumes. Second, to capture the effects of congestion, each function includes the volume of travel 
as a variable. As the volume of travel increases, travel time increases, and this increase is generally 
in a nonlinear manner; at high volumes travel times may increase dramatically with a small amount 
of additional traffic. 
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This increase is especially notable in cases in which the volume entering a facility exceeds the 

capacity of the facility for a period of time, leads to a shock wave, reduces facility capacity, and 
increases delay. In this case and others a queue forms on the roadway. This shock wave and queuing 
phenomenon is not captured by the steady-state model in Equation (12-8) or (12-9), but was 
described in Section 6-5. 

 
Figure 12-2 illustrates the effect of queue formation. Appearing on this figure are the cumulative 

number of arrivals at the facility over time [A(O] and the cumulative number of departures from 
the facility [D(t)]. At any time t the queue length on the facility is given by the vertical distance 
between these curves, A(t) - D(t). The waiting time for an arrival at time t is given by the 
horizontal distance to the departure curve. The total waiting time in queue for all the users is given 
by the area between the A (t) and D(t) curves in Figure 12-2. 

 

A number of modeling techniques are used to develop performance functions such as Equations (12-8) 
and (12-9). These techniques include statistical estimation, simulation, and analytical models. 
Statistical estimation is similar in nature to the use of statistical techniques for demand and cost 
function estimation which were described earlier. Statistical analysis of observations of existing 
facilities and services can be used to infer the performance of all similar facilities and services. 
Simulation requires the use of a model or direct experimentation at different volume levels in order to 
observe the resulting travel times. The most common means of simulation involves large models 
formulated for manipulation by digital computers. Analytical models are based upon engineering or 
mathematical principles and vary substantially in their level of sophistication and accuracy. Simple 
analytical models involve little more than intuition, while others may employ stochastic processes and 
queuing theory. Finally, some of the most effective performance models are developed by using a 
combination of these methods. 
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Whichever method is used, the estimates of travel times developed from performance functions 

share some common features. First, the travel times are only estimates of actual times and, thus, 
are uncertain. As a result, the estimated costs associated with travel times will also be uncertain. 
Second, the actual travel times on a facility (and the estimated travel times) are likely to differ from 
the perceived travel times reported by travelers since they typically make errors in estimating their 
travel times. Finally, most performance functions estimate average travel times on a facility. Since 
there is likely to be considerable variation in the actual travel times, individuals may experience 
much shorter or much longer travel times. This variation in travel time is one aspect of the reliability 
of a particular transportation facility or service. Greater reliability is a desirable attribute in 
itself, but the estimation and valuation of system reliability is still in an embryonic stage. 
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12-3   VALUING TRAVEL TIME AND EFFORT 

Once estimates of travel time for particular facilities or services are made, it is necessary to value 
these times in dollar amounts in order to construct the social cost and price functions. This problem 
has received a great deal of attention in the transportation literature, particularly since a major 
impact of most urban transportation investments is that of reduction in average travel time. 

 
Observations of individuals in choice situations is one practical way in which estimates are made 

of the valuation or weight to place on different user cost components. For example, suppose that 
various individuals are faced with the choice between traveling on a turnpike with a toll or on a 
freeway which does not have a toll but is slower. In making a decision between these two alternatives, 
individuals must weigh the value of reaching their destination sooner (that is, a shorter travel time) 
against additional monetary expenses (that is, the toll charges). Illustratively, an individual might 
choose the tollroad if he pays only $1.00 and saves \ hour. At zero or very low tolls all or most 
travelers would be expected to choose the toll road, since their travel time would be lower. With very 
high tolls, travelers would be likely to choose the free road, since the extra travel time is less 
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costly (that is, valued lower) than the cost of a (high) toll. At some intermediate toll the traveler 
might be indifferent between the routes since the savings in time on the toll road would be just 
balanced by the payment of the toll. For example, this intermediate point might occur with a toll of 
$1.00 and a travel time savings of 20 minutes. In this situation the analyst would conclude that the 
motorist would be willing to pay $1.00 to save 20 minutes of driving time. In turn, many analysts 
(by imputation) use such data to estimate the value of other times saved, or 

 
where v is the implied or estimated value of saving an hour of driving time. Such imputed values 
should be scrutinized carefully rather than used haphazardly. 

 
In practice, a large number of similar observations would be used to derive an estimated value or 

formula for the value of time using statistical techniques. At the heart of these methods, however, 
are the individual observations of traveler preferences when faced with competing travel choices. 

 
A few comments may be helpful in interpreting estimates of travel time values which are derived 

from this type of analysis: 
1. The value of travel time is likely to vary according to the socioeco nomic conditions of the 

tripmaker. For example, it seems plausible to assume that high-income individuals would be willing 
to pay more to save time than would low-income individuals. To capture this effect, the value of travel 
time is occasionally modeled as proportional to income, so that the individual's value of time is a 
constant parameter times household income. With this formulation, high-income individuals have a 
higher expected time value than do low-income individuals. 
 

2. The value of travel time is likely to vary according to the characteristics of the trip itself. 
For example, time spent waiting outside a vehicle is likely to be valued higher than time spent 
riding in a vehicle (that is, individuals would be willing to pay more to avoid waiting or walking 
outdoors than to spend a comparable amount of time riding in a vehicle). In fact, waiting or 
walking time outdoors has generally been found to be valued at roughly 2.5 to 3 times more than 
comparable times spent in riding vehicles. In addition to the comfort and level of effort involved 
in different components of the trip time, other characteristics of the trip which influence the value of 
time include trip purpose (work vs. recreational, etc.) and the number of individuals traveling 
together. 
 

3. The value of travel time is likely to vary according to trip duration. For very long trips it is 
likely that small changes in travel times have little value. For example, a 5-minute delay in a 5-
day trip is not likely to influence travel choices to any great extent, but a 5-minute delay in a 10- 
minute trip may be quite irksome. To capture this effect, the value of travel time is 
occasionally modeled as inversely proportional to trip length, so that the individual's value of 
time is some constant parameter divided by the total trip length or time. 

This observation concerning the importance of trip duration may also be applied to minor 
changes in travel time. It is likely that individuals place very little value on saving very small 
increments of time, such as a few seconds or less than a minute. Moreover, the value of 1 second is 
likely to be less than ^ of the value of a minute and less than 3^0 the value of an hour. The 
implications of this observation for pricing and investment analysis will be considered in the next 
chapter. 
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12-4   TRANSPORTATION OUTPUT UNITS AND NONHOMOGENEOUS  
                  COSTS 

Specification of appropriate output units is of critical importance for cost, price, and demand 
functions for transportation services. Determining the appropriate units becomes particularly difficult 
and complex as the links being analyzed for possible improvement serve the traveler for only a 
portion of the entire door-to-door trip and as the links are utilized by travelers from a wide variety of 
origin and destination zones. In the text we have generally used vehicle or person trips between 
specific points at a particular time, but other units may be appropriate in specific cases. Since the 
choice of output units does affect an investment or pricing analysis, this issue deserves some discus-
sion. 

 
To properly specify the output units, four aspects of travel must be accounted for: (1) the trip unit 

(i.e., persons, vehicles and their classification, tons, etc.); (2) the origin and destination of the trip; (3) 
the links over which trip is made; and (4) the time interval over which the trips are made, as well 
as the time of day and time period or year during which they are made. 

 
The necessity for making the above distinctions is, of course, that cost and price-volume 

functions will vary from link to link and with changes in the trip unit and time interval, and that 
demand will vary for different origins and destination node pairs, times of day, and time periods, as 
well as for other factors. Determining equilibrium volumes and costs requires that the cost, price-
volume, and demand functions are all consistently stated in terms of equivalent output measures 
accounting for these four aspects. 

 
It is important to characterize the differences among individual travelers with respect to the way 

in which they perceive and evaluate certain travel costs (e.g., those for time, crowding, and 
discomfort) and with respect to auto purchases, car pooling, and other significant preferences and 
trade-offs. As noted above, there are wide variations in the manner and extent to which travelers 
consider and are affected by travel time and congestion, by vehicle ownership and accident 
payments, by inconvenience, by walking and waiting, and so forth. While it is clear that travelers 
whose trip value (i.e., the value of making a specific trip to some particular destination) is high will 
be willing to endure higher private travel prices in order to make the trip than will those with 
lower trip values, it cannot be assumed that those with higher trip values will necessarily regard the 
private inconvenience or discomfort of car pooling or of congestion as being more "costly" than will 
those travelers having low trip values. Thus, since the output consists of travelers having differ-
ent trip values and having different travel service preferences and since the trip values and travel 
service preferences are only partly dependent on income level, equilibration cannot be accomplished 
acccurately by simply stratifying demand and price-volume functions by income level. However, one 
might attempt to equilibrate demand and price-volume functions stratified by income level as a 
first approximation for more accurate estimates (which, say, are to be determined by iterative 
procedures). 

 
It appears that satisfactory treatment of these variations in travel price which are dependent both 

on the level of output and on the particular groups of people and goods involved in tripmaking 
require disaggregate forecasting models to accurately accomplish equilibration; and it would appear 
that iterative procedures offer the only hope for simultaneously satisfying the intricate demand and 
price-volume conditions. However, even these sorts of procedures may lead to multiple solutions and 
ambiguities. 

 
The type of analysis which is possible in this manner has been outlined in Chapter 3. Briefly, it is 

possible to identify equilibrium conditions and summarize costs using a series of 
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performance/traveler categories and separate performance functions for each link. For example, it is 
possible to stratify by trip purpose (as a proxy for time of day) and traveler groups, as well as travel 
time components such as waiting time, riding time, and reliability. Equilibration in this case requires 
a substantial number of iterations, which can best be performed on a computer. 

 
Of course, in many instances the desired accuracy of forecasts may not be sufficiently high to 

warrant such expensive analysis procedures. For example, minor highway investments might not be 
expected to alter the extent of car pooling, so auto occupancy might be assumed to be constant in 
such cases. In other circumstances input data are so uncertain that a detailed, disaggregate analysis 
might not enhance the accuracy of results, so simpler analysis methods might be used, such as the 
illustrative diagrams used throughout this text. 
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12-5    FORECASTING COSTS 

For the analysis of alternative investments it is essential to develop some estimate of the costs 
associated with the construction, operation, and use of facilities. In most cases preparing such 
estimates requires the use of forecasts of costs in future years. As we have emphasized in the foregoing 
discussion, any such forecasts of costs will be uncertain; the actual expenses may be much lower 
or much higher than those forecasted. This uncertainty arises from technological changes, changes in 
relative prices, difficulties in valuing travel time, inaccurate forecasts of underlying socio-economic 
conditions (which affect the volume and thus the user costs experienced), analytical errors, and other 
factors. While many of these factors are self-evident, a few deserve a brief discussion here. 

 
Changes in relative prices may have substantial impacts on the costs of particular alternatives 

which, in turn, may affect the final choice of a project. A most dramatic example of such a change 
was the increase in gasoline price in the 1970s and 2000s after several decades in which the relative 
price of gasoline had declined. This increase led to a series of important changes in the transportation 
industry (especially in the motor-vehicle and air sectors). Another cost component which has 
increased in relative price is that of construction costs, as evidenced by the increase in the construc-
tion price index compared to the consumer or wholesale goods price indices. Unfortunately, systematic 
changes over a long period of time for such factors are difficult to predict. 

 
The difficulties associated with valuing travel time have already been noted above. One special 

problem in forecasting travel time is the effect of incomes. Generally, higher-income individuals 
place a higher value on travel time savings, and it is generally expected that the average income of the 
population will be rising over time. Whether or not the value of time will increase correspondingly is 
debatable. 

 
Finally, errors in analysis also serve to introduce uncertainty into cost estimates. It is difficult, of 

course, to foresee all the problems which may occur in construction and operation of facilities. There 
is some evidence that estimates of public infrastructure construction and operating costs have 
tended to persistently understate the actual costs. This is due to the effects of greater than 
anticipated increases in costs, changes in design during the construction process, or overoptimism. 

 
In this discussion of the sources of uncertainty for forecasting costs, it is important to also note the 

effect of equilibrium volumes and user costs. The costs associated with a particular alternative are 
likely to vary with the volume which is attracted, and this volume is, in turn, dependent upon the 
price of service and underlying socioeconomic conditions. As we noted in the previous chapter, the 
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socioeconomic conditions cannot be forecast with certainty, so the demand function and, 
consequently, the equilibrium volume and costs are also uncertain. 

 
While forecasts of costs must be uncertain to some degree, there are a few factors which mitigate 

this problem. First, the use of a positive discount factor implies that costs which are incurred farther 
in the future are valued relatively less than costs which are incurred nearer the present. Forecasts of 
costs in the next few years are likely to be much more accurate, so the overall present value of 
costs is more accurate than it otherwise would be. Second, given that a number of alternatives are 
desirable (that is, have positive net present values), the analyst's problem is often one of choosing the 
best alternative. In this situation the comparison of the differences in costs between alternatives is 
important, and estimating differences in costs may be more accurate than forecasting their total. 

 
As a final note, the effect of inflation might be mentioned. The analysis of construction, 

maintenance, and operating costs or of travel time costs should be performed using real or constant 
value dollars. This may be accomplished by always making cost estimates in real dollars (that is, 
values in some particular year) and then discounting them to their present value or, less preferably, 
by making estimates for the dollar amounts actually charged (that is, including inflation) and then 
discounting these amounts back to the base year at a discount factor which includes not only the rate 
of time preference (or social rate of discount) but also the rate of inflation. The former method 
requires fewer calculations and is generally preferable. One qualification in this procedure should be 
noted, however: over the course of time the price of some factors relative to all others may change. 
This problem was discussed above. A change in relative price may also be reflected in a differential rate 
of inflation, so that, for example, the rate of inflation for construction may exceed the general cost-of-
living inflation. In discounting future construction costs, the specific rate of inflation might be used. 
Alternatively, the real increase in relative price of construction might simply be reflected in forecasts 
of increasing unit construction costs.1 
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12-6 Problems 

 
P12-1. Gillen and Levinson (Transportation Research Record 1662) estimated the following air 

terminal cost equation from observations obtained from a set of 22 airports for five years each: 
 
TC = 120,000 + 5.7*PAX – 0.00000014*PAX^2    R^2 = .82 
 
Where TC is total cost and PAX are annual passengers. 
 
a. Suppose you have an airport with four million passengers.  Estimate total costs. 
b. Again for the four million passenger airport, estimate average total costs and marginal costs. 
c. Are average costs rising or falling for this four million passenger airport with respect to passengers 

served? 
d. Suppose you are interested in estimating the total social costs of air travel.  What additional 

categories of costs should you include? 
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1 For those unfamiliar with inflation and discounting, see Cost Estimation 
(http://pmbook.ce.cmu.edu/05_Cost_Estimation.html) and Economic Evaluation of Facility Investments 
(http://pmbook.ce.cmu.edu/06_Economic_Evaluation_of_Facility_Investments.html).  

http://pmbook.ce.cmu.edu/05_Cost_Estimation.html
http://pmbook.ce.cmu.edu/06_Economic_Evaluation_of_Facility_Investments.html
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SOME PRACTICAL PRICING PROBLEMS 
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Our previous discussion dealt with pricing policies under somewhat idealized conditions. It 
may be helpful to reexamine some of the issues, policies, and underlying assumptions in light 
of more reasonable expectations and actual conditions. Unfortunately, our discussion will 
necessarily be in abbreviated form and in rather general terms. However, our conclusions are 
directly relevant to pricing practice. 

 
In the next section we shall compare four generalized pricing policies with the marginal 

cost pricing policy developed in Chapter 6 for the case of transportation facilities. These poli-
cies are uniform user taxes, variable tolls or fares, a free-fare policy, and, finally, a uniform 
fare or toll. Each of these policies is in use for various transportation services. Following 
these general comparisons we shall consider in detail the problem of determining the value 
of time in the development of marginal cost functions. Since marginal cost or congestion 
pricing is often advocated, we feel that it is worth dwelling upon some of the practical 
problems of its implementation.  

 
Following this section on transportation, we consider practical problems associated with 

pricing electricity supply to commercial and residential customers. 
 

13-1    A MORE PRACTICAL VIEW OF DIFFERENT PRICING POLICIES FOR 
TRANSPORTATION FACILITIES AND SERVICES 

Earlier, various pricing policies were examined under a very strict set of economic 
conditions which hardly correspond with the real-world situation. It was shown that for a 
"perfect economic world" use of a perfectly differentiated marginal cost pricing policy 
would maximize total net benefits. 

However, it was also noted that the general theory of second best (alone) weakens the 
validity of this conclusion and merits consideration of other pricing options before reaching 
any hard and fast decision about the best pricing policy. Moreover, there are several reasons 
marginal cost pricing may not be desirable.  First, costs associated with collecting tolls (even 
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with electronic toll collection) can be significant.  In contrast, collection of gasoline taxes is 
relatively easy.  Second, marginal cost prices are difficult to estimate given the uncertainty 
and variability in the value of time and other cost elements.  Third, customers may not wish 
to have prices varying, especially without foreknowledge of the variability. 

  
Accordingly, less than "perfectly" differentiated pricing policies probably will be selected, 

both for practical and real-world economic conditions. Among other possibilities, these can 
include uniform taxes, uniform fares or tolls, simple peak and off-peak differential fares or 
tolls, or more highly differentiated rate structures with fares or tolls varying during, say, three 
or four periods of the day and from season to season. Invariably, each of these pricing 
schemes involves price discrimination or subsidy of one sort or another and necessitates 
departure from the idealized conditions under which maximum efficiency can generally be 
anticipated. Thus the benefits and costs of these pricing possibilities will have to be 
estimated and compared in order to make any statements regarding the "best" pricing policy. 

 
For the analyses and comparisons in this discussion, let us assume that demand can be 

fully represented by a pair of peak and off-peak demand functions and that no other daily, 
seasonal, or year-to-year fluctuations occur. Also, it will be assumed that privately perceived 
travel costs are equal to the short-run average variable costs, exclusive of any user taxes, fares, 
or tolls. It is important to recognize that the representation of demand by only two demand 
functions (one for peak hours and another for off-peak) as illustrated in Figure 13-1 is 
unrealistic in two ways: (1) it assumes the equilibrium flow or hourly volume will be at one 
level during each hour of the peak period and at another level during each off-peak hour, 
when in fact we know that hour-to-hour flow varies considerably more for transportation 
facilities and (2) it assumes away the shifting peak problem by failing to include time-of-
day cross-relations. We consider these aspects below. 

First, the simple demand functions illustrated in Figure 13-1 are of the following form: 

 
where qh is the hourly demand during the hth time-of-day period and ph is the trip price 
during the hth time-of-day period. For simplicity, we assume that the functions are linear. 
With only two time-of-day periods (i.e., peak and off-peak) the end result after 
equilibrating the above two demand functions (qp and q0) with the corresponding price 
functions (for pp and p 0) will be equal hourly volumes of qp during each hour of the peak 
period and of q 0 during the off-peak period. More realistically, though, the demand 
throughout the day would be better represented by using a separate demand function for 
each time-of-day period, or, say, hour, as follows: 

 

in which q h is hourly quantity of tripmaking to be demanded during the hth time-of-day 
period. Importantly, however, the use of a simple peak and off-period rather than a more 
stratified representation of demand will not affect the generality of the results to follow. 
Thus, it seems preferable to use the two-period model for discussion. 

 
Second, the demand functions in Equations (13-1), (13-2), and (13-3) assume that the 

time-of-day cross-elasticities are zero. That is, they assume that price changes in one 
time-of-day period do not affect the demand in other times of day, and thus that shifting 
peaks would not occur. Contrarily, it is more realistic to expect that price changes in one 
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time-of-day period would more often than not affect the demand in at least one other 
time-of-day period. In short, the hourly demand during the hth time-of-day period should be 
represented as follows: 

 
in which h = 1, 2 , . . . ,  r. (In other words, there would be r time-of-day periods and r 
separate demand functions.) Use of this type of demand function with cross-elasticities 
was illustrated in Chapter 3. 

 
While it is certainly more realistic to incorporate both direct and cross demand relations 

within our demand functions, it would also seriously complicate the analytical and 
graphical presentations and thus cloud our discussion. It is for these reasons that we have 
excluded these more realistic conditions in the remainder of the discussion on the 
practicalities of various pricing policies. 

To examine the effects of instituting different pricing policies, the circumstances will be 
explored in detail for four cases, one in which a uniform user tax is imposed, a second in 
which differential or marginal cost fares or tolls are employed, a third in which there is no 
fare or toll, and a fourth in which uniform fares or tolls are used. The first applies only to 
public highways, while the last three apply with equal validity to public transit and highway 
facilities, as well as other transport situations. 

 
Essentially, the purpose in this analysis is to determine the total net benefits which result 

from the implementation of these four different pricing policies, but while also considering the 
extra costs and benefits of administering and implementing each of the policies. The 
mechanism which will be used to compare each of the four pricing policies will be a simple 
but still valid one; it will be to compare the benefit and cost totals for each policy with those 
for costless marginal cost pricing and thus to determine for each the loss in total net benefits 
which stems from considering the extra implementation costs. In turn, the pricing policy 
which brings about the lowest loss in total net benefits—relative to costless marginal cost 
pricing—can then be regarded as the best policy from an economic welfare point of view. 

 
Throughout this discussion the short-run marginal cost function srmcz{q) will be 

identical to that discussed previously in Chapters 2 and 3, representing the conditions for 
costless marginal cost pricing. This policy will be the base for our pairwise comparisons. That 
is, no implementation costs will be included in the base alternative. On the other hand, the 
srmc'z(q) function—that is, that with a "prime"—will represent the actual marginal costs for 
the actual pricing policy being tested, to include any and all extra administration and 
implementation costs. Similarly, sravcz(q) represents the actual variable costs faced by users 
for all but the user tax pricing policy. Also, and as before, the total net benefits for costless 
marginal cost pricing will be maximized when p(q) = srmcz(q) - mb(q). The resulting total 
net benefits when compared to the total net benefits resulting from each of the four policies 
to be tested will permit determination of the loss in total net benefits [relative to costless 
srmcz(q) pricing] for each policy. 

 
When comparing each of the four pricing policies to the costless marginal cost policy, the 

total (daily) net benefits for the base or costless srmcz(q) case will be as follows: 
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Where np is the number of hours in the peak period, no is the number of hours in the off-peak 
period, qp is the equilibrium volume during the peak period, q o is the equilibrium hourly 
volume during the off-peak period, mbp(q) is the marginal benefit during the peak period at 
a flow rate of q, mbo(q) is the marginal benefit during the off-peak period at a flow rate of q, 
and Fz,costless  are the facility z fixed costs for costless marginal cost pricing. 
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13-1-1    UNIFORM USER TAX PRICING FOR HIGHWAYS 

 
For analyzing the consequence of imposing uniform user taxes, a pricing practice common 
for public highways, the demand cost and price relationships might be as shown in Figure 
13-1 (for some facility z). First, the srmcz(q) and sravcz(q) curves are as described 
previously and include all costs for the facility and vehicles operating on the roadway, as 
well as all personal travel time and effort costs, exclusive of any user tax or toll. However, 
for this pricing policy these cost functions not only apply to the costless marginal cost 
situation but also to the actual circumstances for a uniform user tax pricing policy. That is, 
the variable implementation and collection costs for employing uniform user taxes are 
extremely small, negligible for all intents and purposes, since travelers experience no extra 
delays or running costs while paying them and since additional variable costs are not 
incurred (other than to a minor extent) in the process of collecting the user taxes. For 
example, the delays and costs associated with buying motor vehicle fuel would be virtually 
identical with or without local, state, or federal fuel taxes. This statement is reasonable at 
present and for internal combustion engines, but may not be true for large-scale adoption 
of battery-operated or electric automobiles. With the advent of battery-operated 
automobiles, a more complex pricing scheme would be required. This ease of collection is 
an important virtue of this pricing policy. Accordingly, for this pricing policy the srmcz(q) 
function is defined as being identical to the srmcz(q) function, and sravcz(q) is equal to 
sravc'z(q). 
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Second, the srtvcz(q) curve is equal to the privately perceived travel costs including 

uniform taxes and thus is equal to sravcz(q) plus the uniform user tax. Also, the srtvcz(q) 
curve is the appropriate price function for highway user tax pricing. 

 
For highways with these conditions and uniform user tax pricing, the equilibrium hourly 

flow would be equal to q2 during the peak period and to q i during the off-peak period. The 
former results from the intersection of the Dp and srtvcz(q) functions and the latter from 
the Do and srtucz(q) functions. Note first that this pricing policy—relative to a costless 
marginal cost policy—usually leads to overutilization during peak hours and to 
underutilization during off-peak hours. The total (daily) net benefits for the uniform user 
tax pricing policy and equilibrium flows of q2 and qx would be as follows: 

 
where FZ)UsertaX are the facility fixed costs for user tax pricing. 

In turn, we can compute the daily loss in total net benefits for user tax pricing relative to 
costless marginal cost pricing by subtracting the results in Equation (13-6) from those in 
Equation (13-5), the difference being as follows: 
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The loss in total net benefits for user tax pricing relative to costless marginal cost pricing 

can also be depicted graphically, as in Figure 13-1. The hourly loss during the peak period 
would be indicated by the crosshatched area in Figure 13-1, and that during the off-peak 
period by the dotted area, plus, of course, any extra fixed or user tax collection costs. While it 
is clear that some loss in total net benefits relative to costless srmcz(q) pricing would occur, 
it is not possible to state a priori what level of user tax would minimize the relative loss. To 
determine that level would require full knowledge of the demand and cost functions. 
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13-1-2    NONCOSTLESS MARGINAL COST PRICING FOR HIGHWAYS AND TRANSIT 

The problem of analyzing relative total net benefit losses is not so straightforward with 
respect to the implementation of a noncostless marginal cost pricing policy in which prices 
differ as marginal costs vary. First, there are a wide number of possible mechanisms and 
devices which can be used to implement such a policy. For highways they can vary from 
taxes imposed at the destination end of the trip, to parking surcharges, to vehicle meters, to 
electronic devices, to special licenses, to tollgates, and so forth. For transit there can be on-
board or centralized fare collection, manual or automated collection, and so forth. Second, 
for these sorts of situations it is vital to consider the collection cost possibilities over the 
long run. This would be particularly important in centralized fare or tollgate situations, 
since in the short run increased input volume can substantially increase waiting or 
congestion at the collection center or tollgates. Over the long run, of course, more toll 
booths, turnstiles, or gatekeepers can be added in those cases where the reduction in 
congestion costs will be more than off-setting. Of course, long-run circumstances will vary 
from one pricing system to another, but the principles for planning purposes will remain the 
same. 

 

In Figure 13-2 the cost and price functions are shown for a normal transit fare 
collection system or a highway tollgate type of operation which in the short run may seem 
to be the most costly type of system, but is not necessarily so in the long run. For example, 
vehicle meters or electronic monitoring devices may have quite low short-run marginal and 
average variable costs, but over the long run may have capital and maintenance costs (etc.) 
which exceed those for this seemingly more expensive technology. Also, let us assume that 
the number of fare booths, tollgates, or gatekeepers (etc.) being utilized represents the 
"optimum" for the demand and cost conditions portrayed. The  srmc' z(q)  and sravcz(q) 
curves, respectively, are the actual short-run marginal cost and short-run average variable 
cost functions for facility z including all the extra variable fare or toll collection costs and 
traveler delays which result from using differential tolls to implement a marginal cost pricing 
policy. The appropriate price function is equal to srmc'z(q). Accordingly, the equilibrium 
hourly volume during peak hours will be q2 and that during off-peak hours will be q1. 
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Figure 13-2. Cost and price functions for noncostless marginal cost pricing for public 

highways or transit. Dp = Demand function for hourly flow during peak periods; Do = demand 
function for hourly flow during off-peak periods. 
 

In mathematical terms the total (daily) net benefits for a marginal cost pricing policy and 
equilibrium flows of q2 and q\ will be as follows: 

 
where Fz, marginal cost are the fixed facility costs incurred for implementing marginal cost pricing. 

In turn, we can compute the daily loss in total net benefits for marginal cost pricing 
relative to costless marginal cost pricing by subtracting the results in Equation (13-8) from 
those in Equation (13-5), the difference being as follows: 

 
Also, the relative hourly loss in total net benefit during peak hours will be equal to the entire 
hatched area shown in Figure 13-2 and that during off-peak hours will be equal to the 
hatched area lying below Do, the off-peak demand function. 
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If you compare the graphic results in Figure 13-1 and 13-2 or those in Equations (13-7) 

and (13-9), you can see that the relative loss in net benefit from using differential tolls to 
implement marginal cost pricing is not necessarily less than the relative loss from using 
uniform user tax pricing. In some cases marginal cost pricing will result in reducing the net 
benefit losses (everything else being equal) and in improving economic efficiency more than 
uniform tax pricing and in other cases less. Thus, in contrast to the usual "pure theory" 
recommendations described in Chapter 6, it must be concluded that no a priori judgment 
can be made with respect to the "best" pricing policy for highways, at least between these 
two options. 
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13-1-3    FREE-FARE PRICING FOR HIGHWAYS AND TRANSIT 

Figure 13-3 illustrates those cases in which no toll or fare is charged and thus sravcz(q) is 
the appropriate price function. In turn, for either zero fare transit service or toll-free and 
taxless highways, the total net benefit would be as follows: 

 
Note that the fixed costs for this pricing policy would be identical to those for costless 
marginal cost pricing. In turn, by subtracting the results in Equation (13-10) from 
those in Equation (13-5), we can obtain the loss in total net benefits for a free pricing 
policy, relative to costless marginal cost pricing. Thus, 
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Graphically, the hourly loss in total net benefits during off-peak hours, relative to costless 

marginal cost pricing, would be equal to the dotted area in Figure 13-3 and the hourly loss 
during peak hours would be equal to the hatched area. 

 
Two important conclusions emerge. First, comparison of the relative losses in total net 

benefit for a free-fare policy (i.e., zero fare for transit and no taxes or tolls for highways) to 
those for marginal cost pricing will show that marginal cost pricing in practice will not 
necessarily be best, at least not on a priori grounds. While marginal cost pricing may turn 
out to be more efficient, such a conclusion must stem from a full-scale analysis of actual cost 
and benefit circumstances rather than pure theory. Second, for highways (but not transit) it 
can be shown that the relative losses for user tax pricing, or p(q) = srtvc(q), will be less 
than those for toll-free and taxless pricing. Put differently, it can be seen that the shaded 
areas (which represent the relative losses in total net benefit) in Figure 13-1 will be less than 
those in Figure 13-3. Since the user tax is virtually costless to administer and implement, to 
add a small tax onto the short-run average variable cost or sravcz(q) in Figure 13-3 will 
lead to a reduction in both peak and off-peak volume and to a reduction in both the peak 
and off-peak relative losses in total net benefits. To convince oneself of this, in Figure 13-
3 simply add a uniform tax equal to mbo(qo) - sravcz(q0). Then the equilibrium flow during 
off-peak hours would fall from qi to q0, thus eliminating all the relative losses during off-
peak hours; flow during peak hours, as well as relative losses, will also be reduced. 

Back to top 
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13-1-4    UNIFORM FARE OR TOLL PRICING FOR TRANSIT OR HIGHWAYS 

The cost and price functions in Figure 13-4 represent the situation in which a uniform 
daily fare is charged for transit or a uniform daily toll for highways. In this case the 
appropriate price function is srfucz(q). For highways the difference between this case and 
that for uniform highway user taxes is that tolls, unlike user taxes, are not costless to 
administer and, in addition, delay the users. The difference is reflected in the fact that the 
appropriate cost function for the uniform user tax case is the srmcz(q) curve and for the 
toll case is the srmcz(q) curve. (For transit there is no costless way to impose taxes or 
tolls on its users.) Given uniform fare or toll pricing for transit or highways, the total net 
benefits will be as follows: 

 
And, in turn, the loss in total net benefits for uniform fare or toll pricing relative to costless 
marginal cost pricing will be equal to the difference between the totals in Equations (13-5) 
and (13-12), as follows: 
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Also, for uniform daily fare or toll pricing, the loss in total net benefits relative to 

"costless" marginal cost pricing will be equal to the entire hatched area during each peak 
hour, as shown in Figure 13-4, while the loss during each off-peak hour will be equal to 
hatched area lying below the off-peak demand function (Do) plus the dotted "triangular"-
shaped area to the left of point B in the figure. 

 
In conclusion, if some fare or toll is to be charged (for whatever reasons), then it will be 

better to use differential tolls or fares (e.g., those resulting from marginal cost pricing as 
shown in Figure 13-2) than uniform daily fares or tolls. Visually, this can be seen simply by 
comparing the shaded areas (which represent the relative losses in total net benefit) in 
Figures 13-2 and 13-4; it should be apparent that those in the latter are larger, thus indicating 
the economic desirability of marginal cost pricing in preference to uniform fares or tolls. 
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Specifically, and referring to Figure 13-4, if the peak period price of p(q2) were raised to the 
level of A, then the relative losses lying above the peak period demand function (Dp) would 
be eliminated. And if the off-peak price oip{qx) were reduced to the level of B, then the losses 
included in the dotted area would be eliminated during off-peak hours. However, the 
conclusion that the use of peak and off-peak marginal cost prices is better than the use of 
uniform daily fares or tolls does rest on one relatively minor assumption, to wit: Implementa-
tion costs (including delays to users) for marginal cost pricing and uniform toll or fare 
pricing are virtually identical. 
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13-1-5    COMPARISON OF DIFFERENT PRICING POLICIES: A SUMMARY 

Among the four pricing policies examined, the following conclusions are obtained (again, in 
terms of maximizing total net benefits): 

1. For transit systems: (a) it is not clear whether a free-transit policy 
or a peak and off-peak differential or marginal cost price policy is best and 
(b) if some fare is to be charged for transit use (for whatever reasons), 
then it will be better to use a peak and off-peak marginal cost price policy 
than a uniform fare policy. 

2. For highway facilities: (a) it is not clear whether a highway user tax 
policy or a peak and off-peak marginal cost price policy is best; (b) a 
highway user tax policy is better than a taxless and toll-free policy; and (c) 
if some toll is to be charged for use of facilities (for whatever reasons), 
then it will be better to use a peak and off-peak marginal cost price policy 
than a uniform toll policy. 

Finally, if we extend the previous two-period (peak and off-peak) demand case, which 
consisted of only two demand functions, to a more realistic demand representation, as many 
as 24 time-of-day demand functions can be required (if the time interval for output were 1 
hour and if it seems reasonable to ignore the differences in minute-to-minute flow rates and 
travel costs within the hourly period). Thus, as many as 24 hourly toll rates would be required 
if more "perfect" price differentiation and marginal cost pricing is to be employed. An even 
more complex set of prices would result if the directional characteristics were taken into 
account (and thus if 48 different demand functions and fares or toll rates were employed). 
Also, the information needs and analysis required to fully characterize the 48 demand 
functions and to properly determine rates by hour and by direction may be so costly (in 
terms of data gathering, processing, and analysis) and the resulting rate and flow conditions 
so complex as to suggest the "desirability" of less than "perfectly differentiated" pricing. That 
is, for the above reasons, it may be appropriate to use simple peak and off-peak prices or, at 
most, only three or four fare or toll rates during the 24-hour day. 

As a final note, we should comment upon the financial implications of different pricing 
schemes. Due to financial restrictions for some facilities and services, sufficient revenue must 
often be raised from toll and fare charges in order to cover operating expenses plus 
repayment of construction funds. In these cases uniform or time-of-day differentiated tolls 
and fares must be set sufficiently high so as to generate the necessary level of revenue. For 
situations in which it is desired to have the toll and fare revenues just equal the costs in 
total, then the most efficient policy to adopt is the "inverse elasticity" pricing rule 
described in Chapter 9. In this case fares for time periods or groups with low elasticity of 
demand are set higher than the charges for groups or periods with more elastic demand. 
This type of deviation is appropriate for each of the pricing schemes discussed above. Of 
course, some concern for the practicality of differentiating charges or for the distributional 
impact upon different groups may provide reasons not to differentiate tolls in this manner but 
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to rely upon uniform increases in charges. Unfortunately, this type of modification results in 
higher social costs than would otherwise occur. 
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13-2 Price Setting for Electricity 

Pricing for electricity services has many similarities to the issues associated with 
transportation.  Demand varies from hour-to-hour (and minute-to-minute) as well as over the 
course of a year (for example, as air conditioning is phased in during the summer) and from 
year-to-year (as population and incomes change).  Electricity provision does not incur the 
travel time user costs, so that complexity does not have to be considered.  However, the costs 
of electricity provision will vary with usage and external factors that can be difficult to 
predict. 

With the exception of isolated locales, electricity is generally provided over a grid with a 
variety of heterogeneous power sources.  Commercial power generation may be obtained 
from: 

• Fossil fuel fired power plants, including coal, natural gas and oil.  These plants 
will vary in their costs, efficiency, pollutant emissions, and reliability.   

• Nuclear power plants.  These plants typically have high construction costs, low 
operating costs and problems of nuclear waste disposal.  They also have a risk of 
public health harm unless nuclear materials are secured in the event of extreme 
events such as earthquakes.   

• Renewable sources such as solar panels, tidal generators or wind turbines.  
These sources can be dispersed over wide geographic regions.  Solar and wind 
power generation can stop due to external factors such as clouds or lack of wind.  
As a result, electricity storage or alternative sources may be needed as back-up 
sources.  Storage technologies include pumped water storage or batteries. 

 

As demand is projected for an hour in the future, an auction takes place (either 
implicitly or explicitly) to identify the lowest cost power providers to meet the demand.  As 
expected demand increases, then higher and higher cost providers will be contracted to 
provide power and the cost of the electricity will increase.  If demand varies from the 
expected value, then backup power may have to be brought in on short notice.  Thus, the cost 
of providing electricity can vary significantly over time. 

Despite the variation in underlying costs, for reasons of simplicity and predictability, a 
large fraction of electricity sales are based on a fixed, average total cost for providing power.  
Customers contract for a fixed rate and have little incentive to avoid electricity usage during 
peak periods when generation costs are high. 

More sophisticated metering and communication devices provide a means of changing 
this fixed price paradigm.  With time sensitive meters, prices might vary with the underlying 
cost of providing service.  If usage is recorded per hour (or per minute), then customers 
could be charged the actual cost of service in real time.  Moreover, if the customers are 
informed of the typical or actual variation in cost, they could schedule activities to reduce 
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their electricity cost.  For example, electric dryers or dishwashers could be run during off-
peak, low cost periods.   

Another example of price variability might be electricity contracts that allow power to 
be interrupted.  For example, warehouse chillers could be stopped in the peak hour and re-
started as power availability returned and costs were reduced.  This type of contract provides 
flexibility for the power provider in the event of unforeseen power shortages. 

The variability in costs and the working of the power generation marketplace also 
provides information for power providers on potential investments.  For example, investment 
in new gas turbines could become profitable if peaking power needs seem to be high. 
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13-3 Problems 

P13-1. Taxi fares are typically charged as a fixed flag drop and the maximum of either 
distance or time of travel charges: 

F = Fo + Max{ a*X ; b*T } 

Where F is fare, Fo is initial, flag drop charge, X is distance, T is time and a and b are 
parameters set by a regulatory agency. 

a. Suppose a is $ 2.40 per mile and b is $ 24.00 per hour (or $ 0.40/min).  Graph the 
taxi revenue (in $/min) for carrying a passenger as a function of the average travel speed 
from 0 to 30 (in miles per hour), assuming that the initial flag drop is zero.  

b. Suppose you are taxi driver wishing to maximize your revenue per hour.  Would you 
prefer driving in congested or uncongested conditions?   

c. Suppose you are the regulator agency in charge of setting fares.  You have the 
opportunity to move to a new calculation formula which is: 

F = Fo + anew*X + bnew*T 

How might you set appropriate values of anew and bnew ? 

Back to top 
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As a means of pointing out some typical pitfalls and to summarize the analysis techniques discussed 
in detail earlier in the book, this chapter is intended to illustrate some practical problems in 
investment analysis. Our intent here is not to be encyclopedic. Indeed, the variety of environments and 
technologies for infrastructure would preclude anything but gross generalities if we attempted to 
comprehensively discuss the problems specific to each investment decision. Instead, we will outline 
the various steps which have been considered in past chapters and to describe some typical problems 
and mistakes which arise in practice. We conclude with some suggestions for innovations. 

14-1    DEFINING A POINT OF VIEW 

In order to properly account for costs and benefits, it is essential to adopt a point of view for 
analysis. The benefits and costs of infrastructure investments are likely to be widespread over 
individuals, space, and time. In defining a point of view, an analyst makes an implicit or explicit 
decision about the limits for determining what is considered a benefit and what is a cost. 

 
As an example, the viewpoint of a locality might be adopted for an investment analysis. From this 

perspective, subsidies received from the state or federal governments would be benefits. Any benefits 
received by visitors and residents of other localities might not be counted in this analysis since they 
would not benefit the locality directly; indirect benefits from such usage would be limited to profits 
and taxes from purchases made by such visitors. This local point of view clearly influences the type 
of projects which would be chosen. First, projects which primarily benefited local residents would be 
favored rather than regional facilities. Second, projects might be more capital intensive (that is, have 
higher initial costs) than they otherwise would so as to take advantage of capital subsidies from other 
levels of government. 

As an illustration of a local viewpoint, consider the decision between two capital and maintenance 
alternatives, as shown in Table 14-1. This is an example of a cost-effectiveness analysis using 
equivalent uniform annual costs. With a decision to provide lower capital cost equipment, higher 
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maintenance costs will be incurred, along with lower annual capital costs for replacement. The reverse 
is true for a more capital-intensive policy. The different policies are expected to have equivalent 
performance and usages, and therefore equal total benefits. As shown in the table, the lower capital 
cost policy has lower total annual costs ($1.6 million vs. $1.7 million). However, suppose that subsidy 
funds were available from higher levels of government such that 80% of capital investments and 50% 
of operating costs were subsidized. Treating these subsidies as a revenue benefit to the locality, the 
annual net cost for the two maintenance policies is such that the low maintenance cost alternative is 
preferred. Thus, from a national perspective, the high maintenance cost policy is more desirable (i.e., 
more cost-effective), but from the local viewpoint, the low maintenance cost policy is preferable. A 
similar analysis and results might occur if a private firm's viewpoint was adopted and differential tax 
rates on capital and operating expenses were applied. 

 
Because of these sorts of differences in results, it is imperative for an objective analysis to be 
consistent in defining a point of view for conducting an analysis. In this text we have generally 
advocated using the point of view of the individuals whose resources are invested or used by a project. 
In this case the subsidy funds received from the federal government in Table 14-1 would suggest 
that a national viewpoint should be adopted. However, other viewpoints might be applicable in 
particular cases, such as an international point of view. What is important is that the point of view be 
thoughtfully and clearly established by the analyst. Analyses which are ambiguous on this point—and 
many are—should be carefully examined for misleading results. 

 

TABLE 14-1.   An Illustration of the Effect of "Point of View" on a Cost-Effectiveness 
Analysis (in thousands of dollars) 
Item Low Capital and High 

Maintenance Cost 
High Capital and Low 
Maintenance Cost 

Annual Capital Cost 900 1200 
Annual Maintenance Cost 700 500 
Annual Total Cost 1600 1700 
Annual Subsidy   
Capital (80%) 720 960 
Operating (50%) 350 250 
Total Revenue 1070 1210 
Annual Net Cost to Locality 530 490 

 
Perhaps the most natural point of view to adopt in conducting an alternatives analysis is that of 

the provider organization or, more specifically, of the decision makers with the organization. For 
private providers, this practice is quite reasonable and acceptable; the public interest intrudes in 
such cases by tax policies, regulatory constraints, or other influences as well as by the congruence 
of private and public interests. Of course, there may still be a difference between the interests of 
company officials and that of shareholders. For public providers, the situation is different. To the 
extent that the organizational point of view is consistent with the public interest, then this practice is 
quite defendable. However, bureaucratic or political aggrandizement at the expense of a more general 
public interest is not desirable. 

 
These remarks also suggest a corollary for the higher levels of government which provide subsidy 

funds to localities or tax deductions to private firms. Differential subsidy or deduction rates can 
influence investment choices. In the form of tax deductions, such differential rates on, say, capital 
investments might be justified because private firms do not consider the external benefits of private 
investment. For subsidies to local governments, however, we believe that it is desirable to insist that 
the national point of view be adopted and that benefits and costs "to whomsoever they may accrue" 
be considered. 
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14-2    IDENTIFYING ALTERNATIVES FOR ANALYSIS 

Perhaps the most difficult step in considering transportation investments is that of generating a set 
of reasonable alternatives for analysis. Clearly, the best alternative chosen for implementation will 
be limited to one among the set of alternatives chosen for analysis. Consequently, an analyst would 
like a broad range of alternative technologies and project scopes. On the other hand, the number 
of alternatives to consider may grow very large, thereby greatly increasing the costs of an analysis if 
not making detailed analysis prohibitively expensive. Indeed, the various permutations of different 
facility sizes, operating policies, and pricing policies can rapidly grow to a very large number. 

 
A reasonable strategy to adopt in identifying alternatives is to use a hierarchical or iterative 

search procedure by which, first, the best alternative within broad technological options is found and, 
second, these best options for the different technologies are compared. In this process combinations of 
two or more investments should be considered as distinct alternatives and the interactions between 
such combined alternatives duly considered. In addition, the do-nothing or null alternative as well as 
the alternative of maintaining the status quo should be considered; the do-nothing or null 
alternative involves incurring no costs and no benefits through abandonment of facilities if necessary. 

 
As an example, suppose that one is considering the possible replacement of a waterway lock. In an 

initial analysis, the best alternative for the following set of options might be identified: 

• Improved operating policies to increase the lock efficiency.  

• Improved pricing policies for the lock.  

• Best alternative(s) for rehabilitation of the existing lock.  

• Best alternative(s) for replacement with a similar-sized lock.  

• Best alternative(s) for replacement with larger or smaller locks.  

• Best alternative (s) for relocation of the lock. 

Clearly, a large number of alternatives could be analyzed within each of these options. For example, 
replacement locks might be constructed by different methods and with different materials. 

 
Once a set of preliminary options has been identified, then these options, combinations of these 

options (such as improved operating policies and replacement with a smaller lock), as well as the 
null and the status quo alternatives, should be considered. 

 
This type of iterative process is intended to develop a set of "good" alternatives for detailed 

analysis. The tendency in many investment analyses is to slant the analysis by introducing one 
reasonable and numerous "strawmen" alternatives. These "strawmen" alternatives are chosen to 
suggest that a comprehensive analysis has been undertaken, yet these alternatives are often inferior. 
By pointing to the horrors of these undesirable "strawmen" alternatives, support for a desired 
investment might be assured. 
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One particular problem in identifying alternatives deserves mention. Infrastructure providers are 
often restricted to a particular technology and type of organization; in fact, it is common at the 
federal level to mandate an advocacy position for specific service. Although the provider may be 
restricted to particular alternatives, should a wide range of alternatives be examined? For example, an 
alternative to maintaining a navigable waterway might be the improvement of road and rail connec-
tions. However, the Army Corps of Engineers, which manages most U.S. water investments, cannot 
directly invest in general rail or roadway improvements. Should a wide range of alternative 
investments be considered in such cases? 

 
Our view would be Yes, a broad range of alternatives should be analyzed, even though their 

implementation might fall outside of the domain of a particular provider. Of course, in particular 
cases the alternative which maximizes net present value might be rejected due to constraints on 
agency action. But such constraints can be considered in the analysis process (as described in 
Chapter 10) and reporting their effect may influence the imposition of such restrictions. By 
analyzing a broad range of options, other private or public providers might be attracted to the alter-
native investments. More generally, political action might inspire such other organizations. An 
obvious example of the latter would occur in the case that private provision of public transit services 
(via taxicab or subscription bus in low-density areas, for example) might be permitted if a transit 
agency found that such private provision would be advantageous. A broader role for private 
investment can also be considered. In some countries major transportation facilities are constructed 
and operated by private providers under franchise. Construction and operating costs are covered by 
the user fees for the facilities. After a period of some years the franchises lapse and facilities revert to 
public ownership. 
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14-3    ESTIMATING THE COST FOR EACH ALTERNATIVE 

After identifying a point of view and each alternative, the next analysis step is to estimate the costs 
of the alternative over the relevant planning horizon. Methods for estimating such costs have been 
described in Chapter 12. Here we shall describe three common errors in preparing such estimates. 

 
First, it is conceptually and computationally simpler to prepare cost estimates in constant dollar 

amounts. This implies that the general effects of inflation are removed from the cost estimates. 
Occasionally, an analysis proceeds with some estimates in constant dollars and some in nominal 
dollar amounts. At best, the result is confusing, and at worst would be wrong if the amounts are 
intermixed. 

 
While this principle of using constant dollar estimates is straightforward, application can be 

exceedingly difficult since the cost of some items can increase or decrease over time at rates which 
differ from the general rate of inflation. Some notable examples of such differential cost changes 
include general construction costs (which have increased faster than the general rate of inflation) 
and electronic sensing and computing (for which remarkable cost reductions have occurred). Generally, 
corrections for such differential cost trends are to be avoided since a past trend may not hold in the 
future. In selected instances, however, some corrections might be desirable. 

 
A second and more common error in preparing cost estimates is to ignore the principle of sunk 

costs. As described in Chapter 4, resource commitments which have occurred in the past are 
irrelevant in considering alternatives except insofar as they influence future costs and benefits. In 
effect, past actions do not necessarily commit you to future ones. For example, suppose that a 
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technologically superior railroad engine were developed such that its capital investment plus 
operating costs were less than the operating costs of the existing fleet of engines. An objective 
analysis would suggest replacing the existing fleet with the new engines in this instance. However, a 
decision maker ignoring the principle of sunk costs might argue that the old engines should be 
retained during their serviceable life to insure that their "cost" was covered. Unfortunately, this 
argument results in higher costs for service now and in the future. While this example may seem 
contrived, it might be reasonably accurate for the case of diesel versus steam locomotives immediately 
after World War II, when the performance and cost savings of diesel locomotives might have 
suggested a more rapid conversion than that which actually occurred. 

 
As a third example of mistakes, it is important to insure that alternatives are considered in a 

consistent fashion in estimating costs. For example, maintenance costs for new equipment might be 
estimated by manufacturers. Since the range of maintenance problems is difficult to foresee and, 
perhaps, due to the optimism of the manufacturers, such cost estimates are often low. To compare 
these estimated maintenance costs without an adjustment to the historical average of maintenance 
costs for existing equipment results in an inconsistent treatment of alternatives. Alternatives should 
be compared on the basis of consistent and unbiased estimates to the extent possible. 

 
As a final comment, we cannot help but record with dismay the long history of "overoptimism" 

that characterizes the capital and operating projections which accompany feasibility studies for public 
project proposals in the transportation sector. It is all too obvious that the cost estimation models 
and techniques systematically lead to an understatement of the real costs and that insufficient effort 
is made to correct this bias. 
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14-4    ESTIMATING THE BENEFITS OF EACH ALTERNATIVE 

Benefit estimation is exceedingly difficult. For analysis of costs, accounting records are often available 
to check the accuracy of the past estimates. For some components of benefits, similar comparisons are 
possible. In particular, revenues and user payments can be obtained from accounting records and 
measurements. However, the amount of consumers' surplus as well as the value placed upon different 
components of user cost do not have such historical means of calibration. Consequently, the 
estimation of benefits is particularly prone to error. 

 
One category of error in estimating benefits can be easily seen. Some analyses include the "costs 

avoided" from other alternatives as a benefit of the alternative chosen. For example, analysis of the 
expansion of an existing airport might claim as a "benefit" the costs avoided by not build ing a new 
airport or an alternative to it (e.g., a new highway or railroad). This argument is very misleading. 
Indeed, the "benefits" of an airport expansion as calculated in this manner could be any amount; if 
the new airport which was not built had been located near the central business district of the 
metropolitan area, then the "costs avoided" by not constructing it would have been large indeed. 
More properly, the airport expansion should be compared with new airport alternatives as well as the 
null and status quo alternatives, without including "costs avoided." 

 
Another common error in estimating benefits occurs by assuming that there is necessarily a 

constant average benefit which accompanies usage of a facility. In particular, customers attracted by 
reducing prices are likely to have a lower average unit benefit than existed before. After all, if the 
benefit of the newly attracted customers was as large, then they would already have been using the 
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service. As a result, reports of usage figures without some consideration of the benefits actually 
received are difficult to interpret. 

 
Another error in estimating benefits is to implicitly assume that benefits for all alternatives are 

necessarily equal. In this case analysis of alternatives is simplified since only the costs of 
alternatives differ, resulting in the problem of "cost-effectiveness"' analysis. However, most invest-
ment alternatives do influence usage and the total level of benefits received. 

 
Perhaps the most common error which occurs in the estimation of benefits from infrastructure 

investment is that of overly optimistic volume forecasts. With high-volume estimates, benefit levels 
are correspondingly larger and more capital investment is justified than is desirable. Examining the 
historical record of volume forecasts, there appears to be a substantial bias towards overestimates for 
virtually all public projects. (A notable example of underestimates occurred for airplane and urban 
public highway use during the 1950s and 1960s, but more recent forecasts have been consistent with 
an optimistic approach.) The record of post-1950s quasi-private toll roads and public rail transit 
extensions or systems has been poor to dismal. Some corrections to typical forecasting methods are 
in order. 

 
The reasons for overly optimistic forecasts are varied, of course. Two of the most prominent are 

optimistic forecasts of growth in population or employment and a misunderstanding of the basic 
market served by a facility. For example, should one conclude that a doubling of the population in a 
metropolitan area will necessarily lead to a doubling of the market for transit patronage? While 
plausible on the surface, the historical record serves to contradict this assumption. In particular, the 
1950 to 1980 growth in metropolitan areas in the United States has largely been concentrated in the 
suburbs or in outlying portions of large central cities. By contrast, transit patronage is more closely 
related to downtown employment and population in the dense urban cores. As a result, 
increases in the size of the transit market are not generally proportional to increases in the 
metropolitan level population. 

 
A final error in benefit estimation deserves at least passing mention. This is the problem of failing 

to consider systematic effects which tend to dilute or reduce the benefits actually received from an 
investment. For example, the removal of a bottleneck along a roadway may lead to an increase in 
volume and to extra delays (relative to the prior situation) at some downstream point. That is, a new 
bottleneck may develop elsewhere along the roadway and either reduce or eliminate expected benefits. 
Also, in competitive situations, responses of competing service providers may result in similar benefit 
reductions. That is, a particular investment may induce or precipitate investments or service 
changes by competitors, thereby reducing the volume and benefits received from the original 
investment.2 To the extent possible, such reactions or systematic effects should be considered in the 
evaluation process as described in earlier chapters. 
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14-5    ALTERNATIVE SELECTIONS 

Once the alternatives are identified and their respective costs and benefits estimated over the 
planning horizon, the problem of project selection arises. Chapters 7 to 10 discussed relevant 
methods and criteria for choice. This section describes some typical mistakes which are made in the 
process. 
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Despite the great attention displayed to the mechanics of computing a project with the highest net 
present value, it is not unusual to find studies which misapply or misinterpret selection methods. In 
particular, cases in which negative benefits and negative costs appear when applying the benefit-cost 
ratio method have occurred. While rules exist for selecting the best project in such cases, they have 
often been misapplied in practice. Similarly, multiple internal rates of return may occur, and analysts 
often do not know how to select the best project in such cases. These difficulties are the reason that we 
generally recommend use of the net present value method in this text. 

 
A second general area which deserves attention is that of dealing with uncertainty. Many 

alternatives analyses proceed as if all estimates of volumes, benefits, and costs are known without 
error. This is far from true, so some consideration of the effects of such errors is advisable. Even 
without conducting a formal analysis to deal with uncertainty (as described in earlier chapters), 
one conceptual result can often be used. All other things being equal, it is generally preferable to 
select an alternative which permits a flexible response to changing conditions. For such alternatives, 
adjustments may be made in response to changing conditions. A good example of a flexible high-
capacity alternative might be the use of express buses on exclusive rights of way for urban mass 
transit rather than fixed-rail systems. 

 
The influence of budget or other financial constraints on services also deserves mention. With 

limited financial resources, particular investments are often competing for limited capital funds. To 
some extent, such problems may be alleviated by the use of borrowed investment funds; however, 
some agencies are restricted to a pay-as-you-go financing plan. More generally, it is important in 
selecting a project to consider the availability of investment funds throughout the construction 
period. Moreover, careful staging of project elements to achieve the highest benefits at lowest costs 
during early stages is important. There are numerous examples of projects which were delayed or 
terminated when half-built after the availability of construction funds was lost. 

 
Another common practice worthy of emphasis involves project selection on the basis of cost-

effectiveness measures (e.g., lowest cost per unit of output such as dollars per passenger trip or 
dollars per passenger mile), of lowest long-run average total cost, or of lowest total construction and 
user cost. For all such measures either the benefit accrued from improvement or the sensitivity of 
travel to improved service is improperly accounted for (or ignored altogether), thus leading to 
incomplete or misleading indices for making project choices or for assessing the economic feasibility 
of projects. 

 
Another problem having a significant impact upon investment analysis, especially with respect to 

the choice of possible alternatives, involves our attitudes about "accidents" and the value of "lost 
lives and limbs." It is clear that the social loss associated with "lost lives and limbs" is large. Yet, it is 
equally obvious that neither lives nor limbs are priceless and that society need not do everything 
humanly possible to avoid loss of life or limb, regardless of all else. If such a view were correct, then 
individuals in their everyday life would not voluntarily undertake activities in which they 
knowingly risk their life or limbs (e.g., skiing, hang-gliding, living in houses with steep stairs, driving 
fast, etc.). Similarly, if lives and limbs were literally priceless, society as a whole would not 
permit activities  (such as driving motorized vehicles) that posed any threat at all to human life or 
limbs. Thus, we should avoid treating the saving of lives and limbs as an end unto itself but instead 
must balance the net benefits of an activity or investment against the risks of loss to life or limb. 
Similarly, for investments intended to reduce accidents, we must assess their expected impact on the 
number and severity of accidents as well as the consequent value of lives or limbs saved. (Chapter 10 
dealt with relevant techniques in this regard.) 

 
As a final note, it is important to recognize that when conducting investment analysis some 

decision must be or is reached during the process. That is, to delay carrying out some project or 
improvement while we continue to study the matter is, thereby, to decide that for the time being the 
best decision is the status quo. Such a decision, however, should be made explicit rather than by 
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default. As a related matter, we would also point out that once a decision to undertake some long-
term project has been made, and once initial commitments have begun, there is no absolute or binding 
reason (aside from legal mandates which may or may not be insurmountable) which necessitates the 
completion of the entire program as initially envisioned. The completion of the 41,000-mile Interstate 
Highway System or the U.S. supersonic transport in the 1960s are two cases in point. Simply stated, 
the prior and heavy resource commitments in no way require that henceforth we must complete the 
full system; rather, in each future year following the initial decision, the decision to complete the 
system is an open one which is dependent on the more up-to-date forecasts of expected costs and 
benefits. If you will, this is to restate the relevance of the ages-old adage: Do not throw good money 
after bad. 
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14-6   SOME POSSIBLE INVESTMENT INNOVATIONS 

Before ending this chapter, we might note a few innovations which could be introduced into the 
transportation investment process. Again, these suggestions are intended as illustrations of the 
types of questions and analysis options which could be implemented in practice. 

14-6-1    USER FEE FINANCING 

Financing infrastructure investment by means of user fees has a number of desirable features. It is a 
practice which should always be considered and, more often than not, adopted. By user fee 
financing, we include excise taxes which go to support investment in facilities such as gasoline taxes 
or airline ticket surcharges. These taxes have the property that the users of the facilities directly pay 
for the construction and, usually, operating expenses. 

 
The justification for user fee financing is that the benefits for most infrastructure facilities are 

primarily (if not almost exclusively) received by the users. Thus, there is a certain fairness in having 
the users actually pay for the services. (If you will, the situation is no different than those in which 
home owners or renters, car owners or renters, and so forth, make user payments to cover the 
associated costs of such services.) Moreover, most user fees will increase the efficiency of use of the 
services by insuring that only those customers yielding benefits at least as high as the fees use the 
facility (for a detailed analysis of this point, see Chapter 3). With user fee financing, there is also the 
possibility of permitting private provision of services, which may often be more efficient and less 
expensive than requiring public provision of services. 

 
Of course, a disadvantage of user fee financing is that some desirable projects cannot be 

supported from such fees. That is, there might be no monetary charge which could pay for the 
services even though the total benefits exceed total costs; Chapter 7 describes several such cases. 
Even with price discrimination among different user groups, completely funding a facility or service 
from revenues may be impossible. 

 
However, the advantage of user fee financing is that a discipline is enforced upon infrastructure 

providers. Too often, projects have been built for which benefit estimates were exceedingly 
optimistic. With the imposition of the user fee financing requirement, such benefit estimates might 
be examined more closely. 

 
For cases in which it is socially desirable to encourage or allow certain needy or worthy groups to 

use services they otherwise could or would not afford, it is always possible to provide subsidies 
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directly to those individuals for use on either public or private services. A major advantage of these 
"user side" subsidies is that in the process of helping certain needy or worthy people we do not also 
help the less needy or worthy at the same time, the latter being the case with systemwide fare 
subsidies. 
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14-6-2   REHABILITATION INVESTMENT 

For the next few decades investment in restoration and rehabilitation of existing facilities is likely to 
be the largest component of U.S. infrastructure investment. In making such rehabilitation decisions, 
it would be desirable to conduct full-scale investment analyses. Too often, the tendency exists to 
simply replace a facility by one of the same size and capability, albeit with new design standards and 
construction techniques. 

In deciding on rehabilitation, some additional options should always be considered, including: 

• Abandonment. With substantial population declines occurring in some areas (e.g., central 
cities in the Northeast), many existing facilities might not how be necessary or might be 
combined with others. 

• Improved Operation. Some older facilities might be altered during reconstruction to 
incorporate new functions. For example, roadways and bridges might include provisions for 
reversible lanes or one-way toll collections (see Chapter 13). Automated controls for entering a 
facility or improving the facility service are also obvious candidates for new improvements. 

• Construction.    With   improved   operation,   congestion   tolls,   or reduced population 
sizes, smaller facilities might be more desirable.  

• Expansion.    Finally, expansion of a facility during rehabilitation is often a desirable 
alternative to examine. 

In effect, we suggest that rehabilitation investments be given the same level of analysis and attention 
as new expenditures. After all, there may be even a wider range of opportunities for improvement in 
such cases than for de novo investments. 
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14-7 Problems 

P14-1. An analyst concluded that replacing an existing bridge with a new bridge on adjacent land is 
justified.  The major benefit and cost items developed by the analyst are shown in the table below in 
dollar amounts for the current year. 
Benefits   
 Congestion Reduction (60,000 delay hours/yr * $ 10/hr * 20 years) $ 12,000,000 
 Sale of land from old bridge   1,200,000 
 Savings on maintenance of old bridge ($ 10,000/yr * 20 years) 200,000 
 Total of Benefits 13,400,000 
Costs   
 Construction cost of new bridge 10,000,000 
 Maintenance of new bridge ($ 5000 * 20 years) 100,000 
 Land acquisition (bridge built on publicly owned land) 0 
 Total Costs 10,100,000 
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Since benefits exceed costs, the analyst recommended construction of the new bridge.  Do you agree with 
the analyst’s summary of benefits and costs?  If not, adjust it to estimate the net present value of the new 
bridge, assuming the cost of bridge construction and the benefits due to congestion reduction are correct.  
Clearly explain your changes and produce a table similar to that above.   Do you believe the investment 
justified? 
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APPENDIX   I 

MATHEMATICAL NOTATION AND OPERATIONS 

Throughout this book concepts are explained verbally, illustrated graphically and by example, and 
formalized mathematically. These mathematical representations are intended as a form of shorthand 
to formalize the presentation and to summarize concepts. To the extent possible, the mathematical 
representations are restricted to simple algebraic expressions, although at times a calculus derivative 
is used in addition to simple difference operators. This appendix is intended to summarize the mathe-
matical notation used and to define various mathematical operations. 

I-1    PARAMETER AND VARIABLE NOTATION 

Variables are introduced throughout the book to represent different quantities for the variety of 
situations which may arise in practice or in planning. Generally, lowercase letters are used to 
represent unit quantities, such as price per unit (p), fare per person (f), or short-run average total 
cost in dollars per unit (sratc). Capital letters are used in two ways. First, variables referring to totals 
appear as capital letters. Examples include short-run total cost in dollars (SRTC) or net present 
value in dollars (NPV). As a second use, capital letters are used in figures to represent particular 
points. 

 
Parameters or coefficients represent numerical values in mathematical expressions, such as 

expressions representing demand, price, or costs. For application, these parameter values must be 
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estimated (using the statistical techniques described in Chapters 11 and 12 and in Appendix II) or 
assumed to have some particular value. In this book greek letters such as α, β, γ, Θ, λ, τ, ζ, and Φ are 
used to represent the true parameter values which must be estimated; Table 1-1 lists all such parameters 
used in the book. With this notation, a simple linear demand function (defined below) relating the 
volume to trip price might be represented as 

q=α - βp (1-1) 

where q is volume (e.g. trips per hour), p is price (in dollars per trips), and α and β are the 
coefficients to be estimated.  

 

TABLE 1-1.   Parameter Values and Uses 

Parameter 
Symbol 

Name Example Parameter Use 

α Alpha Demand or statistical function (Eq. 2-1 or II-l) 

β Beta Demand or statistical function (Eq. 2-1 or II-1) 

γ Gamma Demand function (Eq. 3-1) 

δ Delta Price/volume or user cost function (Eq. 2-13) 

ε Epsilon Elasticity (Eq. 2-8) 

ζ Zeta User cost function (Eq. 2-15) 

η Eta Demand function with respect to fares (Eq. 3-9) 

Θ Theta Demand function (Eq. 11-2) 

κ Kappa Demand function (Eq. 3-9) 

λ Lambda Demand function with respect to travel time (Eq. 3-19) 

μ Mu True variable mean value (Eq. II-16) 

σ Sigma Standard error 
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I-2    MATHEMATICAL FUNCTIONS 

One of the central purposes of this book is to describe the relationships between quantities such as 
volumes, prices, travel times, and others. To some extent, these interrelationships can be represented 
by mathematical functions which relate the value of some variable to other quantities. Simple 
examples include demand relationships in which volumes depend upon price (and other variables) or 
cost functions in which total cost depends upon volume (and other variables). Equation (1-1) above 
illustrates one such function relating volume and price. These mathematical functions can be 
illustrated graphically so they are also called curves, as in a "demand curve." 
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The mathematical functions of the natural logarithm, ln(y), and expo nential, exp(x), are also 
examples of such functions. These two functions are standard in virtually all mathematical texts. The 
exponential function of x, exp(x), is the value of e (equal to 2.71828...) raised to the power of x: 
exp(x) = ex = (2.71828.. .). The natural logarithm function is to find the value of the power on e 
which will equal a particular number y. Clearly these two functions are related: indeed, the 
exponential of the natural logarithm of y or exp{ln[y]} is y. In this book the logarithm and 
exponential functions are introduced since they are used in certain popular demand functions. 

 
To simplify mathematical expressions, it is often useful to introduce a shorthand or abbreviated 

notation for functions. We use two such conventions. First, we define functions of particular variables. 
For example, g(p) or g{p} might represent some function of price, such as g(p) = α - βp. In this 
notation the value of g(p) for some particular level of price is found by inserting the value of p into 
the expression a - βp with the use of appropriate values for the parameters a and β. In this functional 
notation we generally assume that the values of parameters (such as a and β) are constant in any 
particular application. 

 
As a second use of mathematical functions, we may use a particular variable to indicate a function, 

rather than an expression such as g(p). For example, sratc(q) represents the level of short-run 
average total cost at the volume level q. More formally, we know that short-run average total cost is 
some function of q. Our notation sratc(q) simply summarizes and emphasizes this dependent 
relationship between sratc and q. More succinctly, we may write an expression such as q\p0, which is 
the value of the variable q evaluated at price p = Po (i.e., the value of q given p = p0). 

 
Some terminology for mathematical functions is worth noting. A function relates the value of one 

variable, say y, to one or more other variables. For example, y = g(x, z) implies that y is a function of 
the variables x and z. In this case y is referred to as the dependent variable, whereas x and z are 
termed the explanatory or independent variables.  
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I-3    SUMMATION AND SUBSCRIPTS 

In adding up benefits, costs, revenues, and other quantities, it is often the case that we wish to add 
or sum values over all users of a facility or service. Alternatively, we often wish to indicate the 
values of variables-such as cost or benefit—for different service or facility alternatives. To simplify 
mathematical expressions in such cases, we introduce subscripts. A subscript is used to indicate a 
particular sales unit, person, or alternative. For example, mbi might represent the marginal benefit 
derived from the ith trip on a facility or service. As an alternative use of subscripts, SRTCx(q) would 
represent the short-run total cost of the xth service alternative at a volume of q. Generally, the 
interpretation attached to a particular subscript is defined at the time it is used. 

 
where mbt is the marginal benefit obtained from the ith trip. The symbol Σ indicates that the 
values of mb t are to be summed for i = 1 to i - q. On occasion, subscripts may become somewhat 
complex. For example, ε 1 p2 indicates the elasticity of demand on mode 1 with respect to the price 
on mode 2. When such complicated subscripts are used, they are introduced or reintroduced in 
each instance. 

To indicate summation over quantities, we use the symbol Σ. For exam-
ple, total benefits obtained from q trips might be represented as 
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I-4    DIFFERENCES, RATES OF CHANGE, AND DERIVATIVES 

In several places in this book it is useful to compare or to consider the marginal changes in 
different variables. For example, one might wish to compare the change in benefits with the 
change in costs due to the attraction of additional volume onto a facility or service. Indeed, such 
marginal changes are of such interest that several marginal functions are explicitly defined and 
discussed, including the short-run marginal cost function [srmc(q)] or the marginal benefit curve 
[mb(q)]. These functions are defined as the rate of change of a particular variable with respect to 
an explanatory variable such as volume (q). 

 
The difference between marginal and incremental changes also deserves mention. 

Technically, a marginal change occurs with a very small change in an explanatory variable. This 
small change is often referred to as "due to an infinitesimal change in the explanatory variable". 
An incremental change occurs with larger changes in the explanatory variable of more than one 
unit of volume. 

 
One notation to formalize these rates of change is that of the difference operator. For example, 

suppose that the variable y is a function (as defined above) of a variable x. Then the rate of 
change of y with respect to x is the change which occurs in y (say, the value y2 vs. y1) as x changes 
(from, correspondingly, x 1 to x2). In mathematical notation this difference is 

 
Clearly this rate of change may be different at different values of x. 

 
In many cases it is desirable to examine the rate of change in the dependent variable [which is 

y in Eq. (1-3)] for very small changes in the explanatory variable [x in Eq. (1-3)]. This situation 
would occur when marginal changes were being considered. In this case the calculus derivative is 
useful. It can be (loosely) interpreted as the change in the dependent variable as the change in x 
becomes very small: 

 
The notation ∂y/∂x indicates that the change in y is evaluated with all other variables held 
constant. In contrast, the notation dy/dx is used for calculus derivatives in which the effects of the 
changes in all other variables affected by the change in x are considered. 
 

The calculus derivative has three advantages for analysis purposes. First, it is very often easier 
to calculate and manipulate than the difference value [Eq. (1-3)]. Second, it can be illustrated 
graphically as the slope of a function at any particular point; this interpretation is illustrated in 
Chapter 4 in the definition of the short-run marginal cost function as the slope of the total cost 
function. Finally, it insures that comparisons between, say, benefits and costs, are conducted at 
the best or "optimal" point because all potential values of the dependent variable are 
considered. 

 
As an example, suppose we wish to find the marginal revenue function, or ∂TR/∂q, and we know 

that revenue is the monetary charge times volume: TR = fq. In this case 
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which uses the chain rule of calculus derivatives. 
 

General rules and procedures for obtaining the calculus derivative are beyond the scope of this 
work. Interested readers are urged to consult any introductory calculus text. 
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I-5 Measurement Units  
Most countries of the world use the International System of Units (SI) (popularly called the 
‘metric’ system) with the fundamental units of meter (m) for length, kilogram (kg) for mass and 
second (s) for time.  Forces are measured in Newtons (N) with units of 1.0 kg*m/s2.  Prefixes are 
commonly used to indicate decimal multiples or fractions of units as shown in Table I-2. For 
example, a kilometer (km) would be 103 meters (1,000 meters), while a centimeter (cm) would 
be one hundredth of a meter. 
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Table I-2: Prefixes for the International System of Units (Metric System) 
   
Factor of Increase Name Symbol 
1015 peta P 
1012 tera T 
109 giga G 
106 mega M 
103 kilo k 
Factor of Decrease   
10-1 deci d 
10-2 centi c 
10-3 milli m 
10-6 micro µ 
10-9 nano n 
 
 
In the United States, some calculations are done in SI units while most others use the traditional 
US Customary or ‘English’ system with fundamental units of foot (ft) for length, pound (lb) for 
force and second (s) for time.  There is not a standard set of prefixes as with the SI units nor is 
there a standard conversion scheme.  For example, 12 inches comprise a foot, and 5,280 feet 
comprise one mile. Numerous aids for unit conversions exist on the Internet.  For example: 
 
2.54 cm = 1 in 
1 acre = 4 046.856 422 4 square meter 
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I-6 Significant Digits 
 

Any estimate or measurement cannot be assumed to be exact.  The use of significant digits is a 
means to convey the level of uncertainty about measured or calculated numbers.  A significant 
figure is any digit used to write a number, except those zeros that are used only for the location 
of the decimal point or those zeros that do not have any nonzero digit on their left.  For example, 
0.0025 has two significant digits (25), whereas 0.00250 conveys that three significant digits are 
known.  Unfortunately, this rule does not permit identification of the numbers of significant 
digits in all cases.  For example, 40 might be one significant digit (with 0 indicating the decimal 
point location) or two significant digits (with 0 being the second significant digit).  In making 
measurements, the last significant digit is typically an estimate.  The table bellow gives some 
examples. 
 
Table I-3: Examples of Significant Figures 

Quantity Number of Significant Figures 
4784 4 sig. figures 

60 1 or 2 sig. figures 
31.72 4 significant figures 

600.00 5 significant figures 
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In conducting arithmetic calculations, the reported answer should not have more 

significant digits than the numbers used in calculation.  For example: 
 

589.62/1.246 = 473.21027 should be reported as 473.2 
 

reflecting the four significant digits in the 1.246 divisor.  Typically, for calculations involving 
multiplication and division, calculations are carried out using all digits, and then the results 
converted to the correct number of significant digits.  For addition and subtraction, results should 
not be reported for a greater accuracy than the numbers used in the calculation.  For example,  
 
435.2 – 35.18 = 400.02 should be reported as 400.0 since 435.2 is only known to the tenth’s 
place. 
 

Note that exact definitions are assumed to have an infinite number of significant digits.  
Thus, converting 5.89 minutes to seconds is: 

 
5.89 min * 60 s/min = 353 sec (with 3 significant figures). 

 
Since 60 seconds per minute is by definition. 

 
Another means of conveying accuracy is to include a value plus or minus (±) indicating a 

range of values which are equally representative of the reported value.  For example, 32.3 ± 0.2 
indicates that 32.3, 32.1 and 32.5 are equally likely values. 

Back to top 
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APPENDIX    II 

SOME SIMPLE STATISTICAL TESTS FOR 
EMPIRICAL FUNCTIONS 

For readers unfamiliar with statistical estimation, we provide in this appendix an introduction to 
simple tests and procedures to evaluate the validity and accuracy of particular empirical models. 
More detailed discussion and guidance may be found in standard texts on statistics or econometrics. 

II-1    ORDINARY LEAST-SQUARES REGRESSION 

For ordinary least-squares regression, we assume that the true relationship between the expected or 
average value of some dependent variable y or E(y\x) and the value of an explanatory variable x is 
linear, albeit with some random error and unknown parameters. For estimation, we obtain a sample 
of paired observations of the two variables; that is, given the value of the ith observation of the 
independent variable (xi), observe the value of the dependent variable (yi) which accompanies it 
for the n observations i = 1, 2,..., n. This sample of observations is used to estimate the function 

 
where Yt is an estimate of the true mean value of the dependent variable when the value of the 
independent variable is xt and a and β are the estimated parameter values. 

In essence, ordinary least-squares regression assumes that Equation (II-la) is an accurate 
model of the average values of y t . However, a variety of random errors or residual factors 
affect the observed values of yt so that the model is inexact in estimating observed values. This 
is expressed as a linear error or residual e,-; thus 

 

where yi is an observed value, ei is the residual error (which is unobservable), and α, β and xi  are 
as defined above. The residual term ei  is assumed to be the result of numerous small events 
which affect yi. The residual term is assumed to be normally distributed with zero average and a 
constant variance or variability for each value of xi. More formally, three assumptions are typically 
made. (1) The observed values of y( for all i are independent and normally distributed about the true 
mean value of yt and have an equal variance; that is, σ2 or Var[yt] is constant for all i and equal to σ2; 
(2) the true relation between the mean of y and value of x is linear; and (3) the error in measuring x is 
negligible. All of the following statistical measures and tests are based on these assumptions. 

 

 
Unbiased estimates of the parameters σ and β in Equation (II-l) are easily and efficiently 

determined by the method of ordinary least squares. For this method coefficients are chosen to 
minimize the sum of the squared differences between the estimated (or Yi) and observed (or yi) 
values of the dependent variable, which are the residual terms ei  in Equation (II-lb) for each 
observation. The resulting estimated parameter values are: 
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Similar estimation equations also exist for models with more than one explanatory variable, such 
as 
 

where x i  and z i are explanatory variables and α, β 1 and β 2 are estimated parameters. 

 

As examples of regression models, the following two models were fit to the transit cost data 
shown in Table II-l: 

C =  3.05 V + 22.98 E + 96.77 A    r2 = 0.82 (II-7a) 
(0.13)        (2.79)        (1.02) 

or 

C =  -7.83  + 2644 E    r2 = 0.80 (II-7b) 
(-0.01)     (7.57) 

where C = total annual operating costs of a transit system and V = number of 
vehicles in typical weekday operation 

TABLE II-1.Data Used to Estimate the Transit Cost Function Example 
Average 
Fleet Age 
(A yrs) 

Vehicles in 
Weekday 
Operation 
(V) 

Total 
Operating 
Costs (C 
$ 000s) 

Equivalent 
Fall-time 
Employees 
(E) 

8.7 184 $ 9922.7 437 
9.6 189 13990.5 520 
7.8 165 11264.0 499 
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14.9 190 13510.2 501 
9.9 167 16888.2 524 
6.1 167 10109.7 422 
6.8 105 6751.2 257 

15.7 98 7073.5 291 
11.0 157 11376.5 369 
4.3 93 7421.6 331 
6.1 124 6857.1 295 

10.2 121 9544.8 323 
11.7 80 7838.2 239 
4.1 89 6274.6 264 

10.7 105 7235.1 199 
11.3 78 4574.9 230 

In Equation (II-7a) C is the dependent variable and V, E, and A are independent or explanatory 
variables. In the alternative model Equation (II-7b) C is the dependent variable and E is the 
explanatory variable. The parameter estimates are as shown (3.05, 22.98, and 96.77) for Equation 
(II-7a) and -7.83 and 26.44 for Equation (II-7b). Below each parameter estimate is a t statistic in 
parentheses; this statistic indicates the reliability of the parameter estimate and is discussed below. 

 
Two tests on equations such as (II-7a) or (II-7b) can be performed immediately. First, are the 

magnitudes and signs of the parameters as we would expect? In the case of Equation (III-7a) 
operating costs would indeed be expected to increase with increases in fleet size, employees, and 
vehicle age. For Equation (III-7b), however, we would not expect negative costs for employment 
levels (i.e., values of E) less than 0.296, as the equation indicates. It is often the case that estimated 
equations are inappropriate over some range of the explanatory variables, as discussed further below. 
Second, the r2 value indicates the proportion of the variation in the observed values of the dependent 
variable (C) which is explained by the regression equation. In this case a relatively large proportion 
(80% or more) is explained by both equations. This degree of explanation is not surprising, however, 
given the limited number of observations (16) used for estimation. 

 
How reliable are the parameter estimates in Equations (II-7a) and (II-7b)? Is it reasonable to 

regard them as highly significant? Or should they be viewed as insignificant? Answers to such 
questions are invariably judgmental and hinge importantly on the available statistical information 
together with associated hypotheses. On the statistical side, determination of the t statistic which 
accompanies a parameter estimate is a first step for an answer. A t statistic is one indication of the 
relative uncertainty associated with a parameter estimate. This uncertainty arises because 
different sets of observations of the dependent and explanatory variables will have different residual, 
random errors, and consequently result in a slightly different parameter estimates. A t statistic 
indicates the likelihood of significant variation in the estimates from sample to sample. As such, a t 
statistic value presumes that the least-squares estimation model is correct. Formally, a t statistic for 
a parameter β is 

where β with a hat (^) is the parameter estimate, β is the true value of the parameter, SE{β} is the 
estimated standard error of the parameter, DF is called the degrees of freedom, n is the number of 
observations, and k is the number of parameters estimated in the regression equation. (In passing, we 
can note that the square root of the estimated variance of an estimate is the standard error. Thus, 
{Var [β]}1/2 = SE(β).) Though seldom stated as such, the t statistics shown along with parameter 
estimates—as in Equation (II-7)—are those which result from hypothesizing that the true value of 
the parameter was equal to zero. For this hypothesis the analyst is simply trying to establish the 
probability that the parameter estimate is different from zero or "significant," and thus β = 0 is 
hypothesized. 
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The t statistic shown in Equation (II-8) will be distributed as the Student's t distribution with n 
- k - 1 degrees of freedom, where n is the number of observations used for estimation and k is 
the number of estimated parameters. As shown in Figure II-l, this distribution can be closely 
approximated by the normal distribution when the sample size is large, but will differ 
substantially at the two tails or extremes when the sample is small. In turn, the probabilities 
that a t statistic will be above and/or below some critical t value or tc are given in Tables II-2 
and II-3 at the end of this appendix. Table II-2 shows the values of tc for different probability 
levels and degrees of freedom. When one is interested in the probability of being either above 
+tc or below -tC then a one-sided test applies and α 2 is the appropriate probability value. When 
one is concerned with the probability of being above +tc and below -tC then a two-sided test 
applies and a1 is the appropriate probability. Table HI-3 shows the probability of having a t -
distributed variable exceed a specified t value for different degrees of freedom. To find the 
probability that the absolute value of a t variable exceeds a particular value, the 
probabilities in Table II-3 should be multiplied by 2 to reflect the possibility of variable values 
being above t or below -t. These two tables provide identical information; one or the other may 
be preferred depending on whether a probability or a value of tc is desired. 
 

 
Two important uses can be made of estimated t statistics: (1) tests of the statistical 

significance of various hypotheses about the true parameter value can be conducted and (2) 
confidence intervals for the true parameter value can be determined. Each of these will be 
discussed in turn. 

Back to top 

II-2    SIGNIFICANCE TESTS FOR A PARAMETER ESTIMATE 

Given a parameter estimate (such as β^) and hypothesis about the true parameter value 
(denoted β), as well as its estimated standard error (SE{β 

}) and degrees of freedom (DF), the t statistic can be determined using Equation (III-8). In turn, 
we can ask: What is the probability that a t statistic of that magnitude or greater could have 
occurred by pure chance? Simply, for a one-sided test, 
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where F(x) is the probability that the t variable has a value of x or less. 

 
Suppose we want to test the null hypothesis that β is zero, the alternative hypothesis being 

that it is not equal to zero. For a t statistic of about 2.02, with DF = 40, and using Table II-2, we 
see there is a probability of about 0.025 that a t value so large would result from pure chance 
and a probability of about 0.05 that an absolute t value (i.e., greater than 2.02 or less than -2.02) 
this large would result from chance. Accordingly, we would tend to reject the null hypothesis and 
to regard the parameter estimate as statistically significant (that is, significantly different from 
zero). 

 
As a more specific illustration, consider the parameter estimate for the number of employees 

(E) in Equation (III-7a). In that instance, the parameter estimate was 22.98 and the t statistic 
(for the null hypothesis that the true parameter value was zero) was 2.79. (Since β/SE{β}) is 
2.79, SE{β} is about 8.24.) Also the sample size was 16 and there were 12 degrees of 
freedom. The probability of a t statistic of that magnitude or greater occurring due to random 
chance is about 0.008 (as shown in Table II-3), while the probability of an absolute t value so 
large would be 0.016. These results almost certainly would lead one to conclude that the 
parameter estimate was quite significant; put differently, there is good reason to reject the 
null hypothesis and therefore to infer that the true parameter is significantly different from 
zero. 

 
Of no little importance is the matter of deciding what probability or significance level (i.e., a 

level) is low enough to permit one to reject the null hypothesis. While it is common to use the 5% 
(0.05) acceptance or significance level as the cutoff point, it must be recognized that, for the most 
part, convention underlies this practice, While one certainly can be more comfortable when 
rejecting the null hypothesis at the 0.025 level rather than the 0.05 level, the fact remains that there 
is no rigorous basis for selecting one significance level over another, whether higher or lower than 
0.05. 
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II-3   CONFIDENCE INTERVALS FOR THE TRUE PARAMETER VALUES 

As noted earlier, the t statistic as calculated from Equation (II-8) will be distributed as the 
Student's t distribution with n - k - 1 degrees of freedom. Thus, using the notation given in Table 
II-2, there is a probability of 1 - a2 that 

 
where tc is the critical value of t for a significance (or probability) level of a2 with n — k — 1 degrees 
of freedom, as shown in Table II-2. Rearranging the above expression, we can then say that there is a 
probability of 1 - a2 that the true parameter value β lies in the range of 
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Equation (III-12) defines the 1 - a2 confidence interval for the true parameter value β. That is, 
there is a probability of 1 - a2 that the true value of β is larger than β^- tcSE{β^} but smaller than 
β^+ tcSE{β^}, where tc is the t value associated with the significance level of a2. Appropriate values 
of tc for different confidence levels and degrees of freedom are shown in Table II-2. As an 
illustration, consider the parameter estimate for the number of employee's in Equation (II-7a). In 
that case the parameter estimate is 22.98 and the t statistic (for the null hypothesis that the true 
parameter value was zero) was 2.79. (The sample size was 16 and there were 12 degrees of 
freedom.) Using the general formulation shown in Equation (II-8), we see that 

 
 

into Equation (111-12), we obtain the confidence interval for the true parameter value (β) with a 
probability level of 1 - a2. Thus, 

 
For a "95% confidence interval," or 1 - a2 = 0.95, the significance level a2 is equal to 0.05, and the 
associated tc value (for 12 degrees of freedom) is 2.18 from Table HI-2. Therefore, there is a 95% 
probability that the true parameter value is between 5.02 and 40.94, even though the single best 
estimate of the true value is 22.98. Another way of interpreting this information is to say that the 
absolute error associated with the estimated β value is less than 2.18 x 8.24 or 17.96 with a 
probability of 95%. 

Back to top 

II-4    ERRORS IN FORECASTS OF DEPENDENT VALUES 

In models of demand or costs, it is often the case that the level of demand or cost at some value of 
the explanatory factors is of interest. Such a forecast may be obtained by substituting values of 
the explanatory variables into the model with a set of estimated parameter values. For example, 
an estimate of C would be 2028 with a value of E = 77 for the model in Equation (II-7b): 

 
In this section we will consider how reliable such an estimate might be. It is of primary 
importance to estimate the error stemming from our regression equation (e.g., what is the 
probability that the error in our estimate, represented by the difference between Yi, (or Cest in this 
case) and the true value μ i , or Yt - μ i, is less than some specified amount). For this purpose, the 
estimated standard deviation of Yi or SE{Yi), provides an estimate of the error between the 
estimating regression and the true function. Specifically, the statistic [shown in Eq. (111-16)] below 
is distributed according to the Student's t distribution; thus, 

 

 
and, therefore, that SE0} is 22.98/2.79 = 8.24. Substituting this last value 
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has a Student's t distribution with n - k - 1 degrees of freedom (DF). In turn, and using the 
notation shown in Table III-2, we can say that for DF degrees of freedom, the probability is 1 - a2 
that the t statistic will fall between the associated plus and minus t c values, or 

 
Thus, there is a probability of 1 - a2 that the error from the estimating function (or Yt - μ i) will 
be less than ±tcSE{Yi), where t c  is the critical t value associated with a probability level of a2 
and DF = n - k - 1 degrees of freedom. Similarly, there is a probability of 1 - a2 that the true mean μ i  
will fall within the interval from Y i  - t cSE{Yi) to Y i  + t cSE{Yi}. This, of course, would be the 
confidence interval for the true regression value μ i with a probability of 1 — α2. 

 
To compute either the error or confidence interval at any probability level requires us to first 

calculate the estimated standard deviation of Yt or SE{Yi}. With a single explanatory variable 
[as in Eq. (II-la)], an unbiased estimator for the variance of Yt (which is simply the square of the 
estimated standard deviation) would be as follows: 

 

This latter variance estimator is an estimate of the variability of an individual observed yi value 
with respect to the estimated regression line. Recall that the ordinary least-squares regression 
technique assumes that the observed yt  values were normally distributed about the regression 
line. 

 

It can be seen [from Eq. (111-18)] that the variability of the estimate Y i , and thus its error, is 
dependent upon the value of xi as xi moves farther away from x bar (the mean observed value of 
Xi for all i ) ,  the variance of Yt and the error will increase. (That is, when Xi is equal to x bar, 
then the second term of Equation (II-18) or (II-19) drops out, thus minimizing the variance of 
Yt.) With more than one explanatory variable, calcuation of the variance of Y t  becomes 
more complicated. Using matrix notation, the estimated value of Var( Yi) becomes s2XF(X'X) -1XF 
where XF is a vector of forecast values of the explanatory variables and X is a matrix of all the data 
used in estimation.  These values are well within the capability of modern computers to compute, 
and most statistical analysis packages provide this capability. 
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The preceding discussion dealt with the difference between our estimate of the expected value 
of the true function and the expected value itself or Yt - μ i . In any particular case the actual 
observed value of the dependent variable (yt) would be the sum of the expected value (μ i) plus a 
random error term, the latter reflecting the random fluctuations of observed y t values about 
the expected value of yi. Again, our best estimate of the expected value of y i would be Yi, but the 
variance of the random error term, or s2, should be added to the variance of Yt to obtain the 
variance of any individual forecast value. (Here, the distinction is made between the variability of 
a single estimate and that of the average of all possible estimates.) 

 
To apply these error measures, let us make use of the estimated regression shown in Equation 

(II-7b). The first question will be: How good an estimate of the total annual system operating 
costs will result from using the regression? To repeat, there is a probability of 1 - a2 that the 
error from the estimating function (or Yt - μ i ) will be less than ±tc(Var[ Yi])1/2 = ±tcSE{ Yi}, where 
tc is the critical t value associated with that probability and DF = n - k - 1 degrees of freedom. To 
calculate Var[ Yi], we first need s2, x, Var[β^] or (SE{β^})2, x i  and n. As noted in the 
discussion following Equation (II-8), the value of SE {β^} is simply the estimated β coefficient 
value divided by the t statistic shown in parentheses below the coefficient; thus, for Equation (II-
7b) or (11-15), SE{β^} is 26.44/7.57, or 3.49. The square of this last value, or 12.2, is Var[β^]. The 
value of s2 can be calculated using the formulation shown in Equation (II-20); for the data in Table 
II-l which were used to estimate the regression, the s2 value is 2.32 x 106. Finally, using Equation 
(II-19), we get 

 
where x bar is 356.31. When xt equals x bar, then the value of Yt will be 9413 and that of SE{Yi} 
will be 381. 

 
In this instance, and using the data in Table II-l, we can say the following when xt equals 

x (or 356.31) and DF = 14: 

For a probability of 95% (or a2 of 0.05), the tc value is 2.15; thus there is a 95% chance that the 
estimated annual cost of $9,413 (in thousands) has an error of less than $819; or the 95% 
confidence interval for the true cost is from $8,594 to $10,232. 

For a probability of 90% (or a2 of 0.10), the tc value is 1.76; thus, there is a 90% chance that the 
estimated annual cost of $9,413 has an error of less than $671; or the 90% confidence interval for 
the true cost is from $8,742 to $10,084. 

These conclusions regarding a confidence interval for the expected value of yi are true for xi = x 
bar. A 95% confidence interval plot of the dependent variable in Equation (II-7b) is shown in Figure 
II-2; points on this were calculated in the same manner as for the case xt = x and with the use of 
Equation (II-21). As can be seen, the uncertainty associated with our cost forecasts becomes greater 
as we examine employee levels further away from the mean value of E in the estimation data. We 
should also mention that the confidence range shown in Figure II-2 assumes that a linear model 
relating cost to employee numbers [Eq. (II-7b)] is correct. 
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Whether or not this estimating function is considered to be sufficiently accurate to be used for its 

intended purposes depends, of course, on the particular circumstances (e.g., what levels of accuracy 
can be tolerated, what levels of employment are to be considered, etc.). Thus, at this point, the 
analysis ends and the judgment begins. 
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II-5    HYPOTHESIS TEST FOR ZERO INTERCEPT 

For the regression in Equation (II-7b), Yi is -7.83 when xi  is 0 (that is, C = -7.83 when E = 
0). Thus, it is apparent that this regression line almost goes through the origin as can be 
seen from Figure III-2. In turn, we can test the hypothesis that the true cost μi is 0 when x is 0. 
This test can be accomplished in several fashions. 

 
First, we can simply test whether or not the estimated parameter a is significantly different 

from 0. Following the procedure in Section II-2 the estimated parameter value is -7.83 with a t 
-statistic of -0.01 and 16 - 1 -1 = 14 degrees of freedom. With this t -statistic and degrees of 
freedom there is a greater than 40% chance that an estimated parameter of -7.83 or less 
arose due to random variations, even if the true parameter value was 0. Accordingly, there is 
little reason to reject the hypothesis that the constant parameter a equals 0. 

 
A second test is also possible using the hypothesis that cost, C, is 0 when employment, E, 

is zero. This test is slightly more powerful and robust than the single parameter test on a 
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since it also considers the uncertainty in the parameter β^. The test can be accomplished by 
making use of the relationship described in Equation (II-16). That is, for μi equal to 0, the t -
statistic shown below has a Student's t distribution with n - k — 1 degrees of freedom: 

 
Thus, the t statistic [using Eq. (111-22)] will be -7.83/1302, or -0.00601, for 14 degrees of freedom. 

 
From Table II-3 it can be seen that the probability of a t value being larger (in absolute terms) 

than -0.00602 due to pure chance is much greater than 84% (since for DF = 14 and t = 0.2, 1 - F(t) 
= 0.422 and, therefore, α2 = 0.844), thus leading one to conclude that there is very little reason to 
reject the null hypothesis (that the intercept is zero). Also, when Xt is zero, the 95% confidence 
interval for the true cost is -7.83 ± 2.15 x 1302, or from -2807 to +2791. 

 
In all, then, one might conclude that the estimator in Equation (II-7b) should be rejected in favor 

of an equation without a constant term, or Y = βx. When estimated, the result of this model is Y = 
26.42x. For the two estimators the sums of the squared residuals were virtually identical, as are the r2 
values and coefficients for the employee count. Moreover, the statistical tests for the two parameter 
regression [Eq. (III-7b)] strongly supported the null hypothesis that the regression goes through the 
origin. Given this conclusion, one would be inclined to say that medium-sized bus systems tended to 
have constant returns to scale with respect to the employee count, represented by a cost function of 
the form Y = βx. 

Back to top 

II-6   EFFECTS OF VIOLATIONS OF THE ASSUMPTIONS OF LEAST-SQUARES 
REGRESSION 

The foregoing discussion considered the reliability of the results of a regression expression under 
some fairly restrictive assumptions. In this section we shall briefly mention some common ways in 
which these assumptions are violated. 

Incorrect Model Form 
Any regression model must assume a particular algebraic form, even though the parameters of the 
model are to be estimated. An example of a model form is the linear equation (II-7a). It is often the 
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case that the model form chosen is inappropriate or incorrect. Poor statistical properties of a model 
are a primary indication of a poor model; such properties include large prediction errors and large 
confidence intervals on parameter estimates. Prediction of dependent variables outside of the range 
of data used for estimation is particularly prone to error with incorrect model forms. 

 
Multicollinearity 
It may be the case the particular explanatory or independent variables are highly correlated. For 
example, travel time and cost tend to be positively correlated since longer trips both take more 
time and cost more. The effect of such positive correlation is to make it difficult to disentangle the 
independent effects of the individual variables. An indication of such confounding problems occurs 
when confidence intervals for two or more explanatory variables are quite large. A correction for this 
problem is to gather more data in which the variables are not as highly correlated. 

Serial Correlation 
In estimation of models from time series or over space, it is often the case that subsequent or adjacent 
observations are similar in nature. While parameter estimates are not biased by this phenomenon, 
the standard errors of parameters are calculated to be lower than their true value. This bias in the 
estimate of parameter uncertainty occurs because there is less variation in the sample than would 
occur with a completely random sample. Whenever time series or spatially adjacent data are used, 
there may be a problem with serial correlation. There are sophisticated tests and corrections available 
to handle such problems; readers are urged to consult an appropriate statistics or econometrics text 
such as those cited earlier. 

Simultaneity 
As discussed earlier, there are both performance and demand relationships between the volume and 
price of travel on a particular facility. In estimating a function from a set of observations of volumes 
and prices, an analyst may be estimating a demand function, a supply or performance function, or 
some combination thereof. This is one form of the problem of identification, in which two or more 
relationships exist between dependent and explanatory variables. To determine which function is 
estimated in the simple case of volume and price observations, one must decide whether the set of 
observations trace out a demand or performance function. That is, if the demand function was 
constant and a series of policy changes affected the performance function, then the set of 
observations traces out the demand function. Conversely, a constant facility operation policy with 
changing demand results in identification of a performance function. In addition to these methods, 
direct experimentation or some sophisticated econometric techniques can be used to overcome the 
problems of simultaneity. 

Function Instability 
As noted earlier in the text, there is often no reason to assume that functions are constant over 
time or from one locale to another. Demand functions in particular might be expected to shift over 
time as population increases, auto ownership increases, or other changes occur. To the extent that 
these changes are not explicitly included in a model, then the demand function will be inappropriate 
if it is applied to the different conditions. 
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