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Abstract

Energy forecasts play a key role in development of energy and environmental policy. Evaluations of the accuracy of past

projections can provide insight into the uncertainty that may be associated with current forecasts. They can also be used to identify

sources of inaccuracies, and potentially lead to improvements in projections over time. Here we assess the accuracy of projections of

US energy consumption produced by the Energy Information Administration over the period 1982–2000. We find that energy

consumption projections have tended to underestimate future consumption. Projections 10–13 years into the future have had an

average error of about 4%, and about half that for shorter time horizons. These errors mask much larger, offsetting errors in the

projection of GDP and energy intensity (EI). GDP projections have consistently been too high, and EI projection consistently too

low, by more than 15% for projections of 10 years or more. Further work on the source of these sizable inaccuracies should be a

high priority. Finally, we find no evidence of improvement in projections of consumption, GDP, or EI since 1982.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Projections of future energy consumption play a key
role in many analyses of energy and environment. They
serve as a basis for planning within the energy industry;
for research questions regarding future energy produc-
tion, consumption, and environmental impacts such as
air pollution or climate change; and for evaluating the
need for and potential effects of energy and environ-
mental policies. A noteworthy example of a current
policy application is the evaluation of proposed climate
change policies. For example, estimates of the costs of
meeting the commitments agreed to in the Kyoto
Protocol range widely (Weyant, 2001) and depend
strongly on assumptions about what emissions would
be in the absence of policy, which in turn rely heavily on
projected energy use. Similarly, US climate policy
announced in 2002 by the Bush Administration calls
for an 18% reduction in the carbon intensity of
economic production within the US by 2012 (Bush
Administration, 2002). Evaluating what kind of action
might be necessary to achieve this goal requires a
ng author. International Institute for Applied Systems

splatz 1, Laxenburg A-2361, Austria. Tel.: +43-2236-

-2236-71313.

ss: oneill@iiasa.ac.at (B.C. O’Neill).

front matter r 2003 Elsevier Ltd. All rights reserved.

ol.2003.10.020
projection of energy intensity (EI) and fuel mix in the
absence of such a policy.
Analysis of the performance of past projections can

be instructive for two main reasons. First, it can provide
useful information for characterizing the uncertainty in
current projections. The typical magnitude of errors in
past projections over a given projection horizon can
serve as a guide in quantifying uncertainty over similar
time horizons into the future. Of course there is no
guarantee that the performance of current projections
will be similar to the performance of past ones, and
other sources of information should be, and generally
are, used to quantify uncertainties. Nonetheless, histor-
ical error analysis can be useful as a benchmark. A
second motivation for analyzing past projections is the
possibility of improving current projections. By identi-
fying sources of error, research can be focused on
improving the components of projections that would
have the largest payoff in terms of improved outcomes.
There are many examples of useful analyses of

forecast errors in the energy field and in other fields as
well, such as agriculture (McCalla and Revoredo, 2001)
and population. For example, errors in population
projections have been extensively analyzed (Keilman,
1999), and a recent NAS report (National Research
Council, 2000) encourages the use of such analysis
in informing judgments on uncertainty in current
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projections. The most recent probabilistic projections of
global population produced by the International In-
stitute for Applied Systems Analysis (IIASA; Lutz et al.,
2001) operationalize this recommendation. The authors
used the results of historical error analysis in UN
population projections to define lower bounds to un-
certainty in projected population size. Error analysis has
also identified key sources of errors in projected popula-
tion size. Bulatao (2001) shows that errors in baseline
data—the estimated population size, age structure, ferti-
lity, and mortality in the starting year of the projection—
play a key role. Thus, substantial improvements in
forecasts would be possible by improving the quality and
coverage of the data on which projections are based.
Several studies have analyzed the performance of

energy forecasts for the US or for the world. Smil (2000)
catalogues the many failures of long-term energy
forecasts, which he describes as having ‘‘missed every
major shift of the past 2 generations’’, including the first
and second oil crises, the post-1970 reduction in
electricity demand in industrialized countries, and the
cumulative contributions of energy conservation. Based
on this review, he recommends that efforts to forecast
the energy system be replaced by the development of
scenarios designed to explore alternative futures rather
than to predict the most likely one (see, e.g., Silberglitt
et al., 2003). Other studies focus on quantitative
analyses of errors in particular modeling efforts. For
example, the performance of projections of oil prices is a
particularly well-known example of the hazards of
forecasting. Following the 1979–1980 oil price increases,
most analysts expected steadily rising oil prices. In fact,
nominal prices fell to less than 50% their 1981 value by
1986 (Schrattenholzer, 1998), and projections of oil
prices for the year 1990, made in 1980 by a number of
models for the Energy Modeling Forum, were off by a
factor of 2–3 (Huntington, 1994). These projections
exhibit what demographers (Keilman, 1999) and others
call ‘‘assumption drag’’, or the tendency for forecasters
to be slow to incorporate new information (e.g.,
changing oil market conditions in the case of energy,
widespread declines in fertility in the case of population)
into their forecasts.
Error analysis for energy forecasting has also yielded

insight into sources of error. Huntington (1994) found
that the sources of errors in oil price forecasts over the
1980s varied with the time horizon of the projection.
Inaccuracies over the first half of the decade were driven
by model inputs, particularly inaccurate projections of
GDP and of expansion of non-OPEC oil supply.
Inaccuracies in the late 1980s were mainly due to
inadequate demand responses to price changes in the
models. The analysis also notes that in contrast to the
extremely inaccurate price forecasts, concomitant pro-
jections of consumption were inaccurate by only about
2%, demonstrating the price inelasticity of much of the
demand for oil. Linderoth (2002) examines errors in
forecasts of energy consumption made by the Interna-
tional Energy Agency of OECD countries over the
period 1978–1994. He concludes that inaccurate GDP
projections have been significant contributors to these
errors, and that energy price changes have also played a
significant role.
A handful of studies have focused on projections of

the US energy system. Craig et al. (2002) analyze
projections made before 1980, concluding that fore-
casters underestimated the importance of surprises such
as the oil embargoes of the 1970s and the subsequent
increase in energy efficiency. Projections of consumption
in the year 2000 were uniformly too high. Cohen et al.
(1995) analyze projections by the US Energy Informa-
tion Administration made between 1978 and 1993,
finding, as in other analyses, that price forecasts have
been far less accurate than projections of production or
consumption. In addition, they find that projections
greatly improved between 1978, a time strongly affected
by the oil crises, and the early 1980s, by which time the
effect of these disruptions had begun to dissipate. Most
large errors in early forecasts were due to combinations
of both high price assumptions (based on then current
experience with oil crises) and the assumption that
regulations then in place would remain so, when in fact
they were often drastically modified or repealed.
Shylakhter et al. (1994) analyzed projections by the
US Energy Information Administration made between
1983 and 1987 of 1990 US energy production and
consumption by sector in order to derive distributions of
errors. They then used those distributions to specify
uncertainty intervals for current forecasts. They find
that commonly assumed normal distributions of errors
substantially underestimate the frequency of extreme
outcomes in historical experience.
Since 1996, the EIA itself has analyzed the perfor-

mance of its own projections (e.g., Holte, 2001). Their
analyses find that changes in energy policies have had a
major impact on forecast accuracy, that price forecasts
have continued to be less accurate than forecasts of
production or consumption (and have typically been too
high), and that projections related to natural gas have
been less accurate than those related to other fuels.
Their methodology is to calculate mean absolute percent
errors in EIA forecasts for various quantities, and to
average these errors over all projections and all time
horizons.
In this paper, we analyze the EIA medium-term

projections of US energy consumption. The EIA has
published these projections in its Annual Energy Out-
look (AEO) each year since 1982. Because they were
produced within a single institutional setting, with a
relatively stable methodology (discussed in more detail
below), the AEOs provide a meaningful basis for error
analysis. The 20-year history of projections, and time
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horizons for individual projections ranging from 8 to 24
years, provides a sufficient basis for determining
indicators of average performance as a function of the
time horizon of a projection. The AEOs typically
contain a reference projection, as well as several
variants. Our aim is to analyze the accuracy of the
reference projections of total consumption, identify the
major sources of error, and look for evidence of
improvement in accuracy over time.
Our analysis differs from previous work in several

ways. First, we focus on quantifying errors and their
sources. In contrast, the aim of Shylakhter et al. (1994)
is to quantify the degree of overconfidence in uncer-
tainty ranges assigned by forecasters in past projections.
In examining sources of errors, we differentiate between
contributions from errors in baseline data, errors due to
cyclical (or inter-annual) variability in consumption that
projection models are not designed to forecast, and
errors in projecting the trend in energy consumption,
important distinctions that have not been made in
previous work. We also decompose errors into con-
tributions from errors in GDP growth and errors in EI.
While Cohen et al. (1995) also distinguish between these
two components, they use a more limited data set and
do not correct for baseline and variability errors. We
explicitly control for time horizon in assessing projec-
tions. In contrast, the EIA’s analysis of its own
projections (Holte, 2001) averages errors for a given
projection across time horizons, making it difficult to
compare different projections that may have spanned
different lengths of time or have different availability of
output data, and obscuring patterns in accuracy over
different horizons. Finally, the focus of our analysis is
on projections made since 1982, a period which has been
uninterrupted by major crises in the global or national
energy system. In contrast, other studies (Craig et al.,
2002; Cohen et al., 1995) include analysis of long-term
projections made before or during the crisis periods of
the 1970s, and therefore their primary conclusions are
based on the performance of models with respect to
these special conditions.
The paper is organized as follows: Section 2 describes

the models used by EIA and the data (model inputs and
projection results) on which the analysis is based.
Section 3 defines the measures of error we employ.
Section 4 reports our results, and Section 5 concludes
with a discussion and directions for future work.
2. Models and data

2.1. EIA forecast models: IFFS and NEMS

The US Department of Energy has been producing
energy projections since 1974. However, available out-
put from projections before 1982 is insufficient to add
meaningfully to our analysis. Between 1982 and 1993,
EIA projections were produced using the Intermediate
Future Forecasting System (IFFS) model. The IFFS is
an engineering-economic model of all US energy
markets. It can be considered a partial-equilibrium
framework that focuses on energy and excludes other,
non-energy goods and services produced in the US
economy. It represents the US energy system using four
end-use demand modules (residential, commercial,
transportation, industrial), two supply modules (oil
and gas, coal), and two conversion modules (electricity,
petroleum refining). Regional disaggregation varies by
module but is typically at the level of 10 federal regions.
In addition, a macroeconomic module allows for feed-
back between domestic macroeconomic indicators such
as GDP, and world energy prices. Macroeconomic
growth paths are determined beginning with an exogen-
ous growth case taken from simulations by Data
Resources, Inc., which is now part of Global Insight,
Inc. The module then calculates an adjusted growth
path that takes into account feedbacks from the energy
system by iteratively calculating first demand and prices
based on the macroeconomic indicators, and then using
a reduced-form representation of DRI models to
estimate the influence of energy price changes on the
macroeconomy. The world crude oil price is taken to be
exogenous, derived from a separate EIA projection
using a global model.
The National Energy Modeling System (NEMS)

replaced IFFS beginning with the 1994 AEO. The basic
structure of NEMS is similar to IFFS (Energy
Information Administration, 1994, 2003a). It generally
operates at the level of nine regions within the US
(census divisions), and one non-US region. NEMS
breaks down the energy system into the same demand
and conversion sectors as in IFFS, but adds two
additional supply modules for a total of four (oil and
gas, renewables, natural gas transmission and distribu-
tion, coal). The main difference from IFFS is that many
of these modules explicitly represent individual technol-
ogies (others, e.g. industrial demand and oil and gas
supply, use more limited representations), and that
provision is made for technological improvement over
time. The expanded capabilities of NEMS were moti-
vated by the technology policy and regulatory issues
that had arisen in the early 1990s, such as improvements
to the Clean Air Act Amendments of 1990, restructuring
of electricity markets, and the integration of renewable
technologies (Hutzler, 2003, pers. comm.). Similarly to
IFFS, a macroeconomic module allows for feedback
between domestic macroeconomic indicators and energy
prices. However, NEMS also allows for feedback
between world oil prices and energy supply/demand in
the US. An international module assumes a reference
non-US oil supply and demand, and then calculates a
world average oil price based on the assumption that
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marginal changes in non-US production come from
OPEC. Thus, the world price is determined in each time
step by forecasting based on the price in the previous
time step and the percent utilization of OPEC produc-
tion capacity. In turn, the new price, through its effect
on demand and oil imports, affects OPEC production
capacity.
The EIA uses NEMS to produce a reference forecast,

and additionally four variants assuming higher or lower
economic growth, or higher or lower world oil prices. In
addition, it produces a large number of special variants
testing sensitivities to individual assumptions or policies.
Our analysis is based on the reference forecast in each
AEO.

2.2. Data

The data set for our analysis consists of past
projections of US energy consumption, GDP, and EI
contained in the 1982–2002 AEOs.1 The time horizon
for projections varies with the projection; for example,
the 1982 AEO makes projections only until 1990,
whereas the 1998 AEO projects to 2020. The basic data
set is available in EIA’s 2001 Annual Energy Outlook

Forecast Evaluation (Holte, 2001), but this source does
not include values for all years in all projections. We
include additional data obtained directly from the
original AEO publications (Energy Information Admin-
istration, 1983–2003).2 Consumption data from AEOs
published before 1990 are adjusted to include consump-
tion of energy from dispersed renewables, to be
consistent with later projections (see Appendix A for
details).
Actual values for total energy consumption through

2001 were taken from the Annual Energy Review 2001
(Energy Information Administration, 2002), and a value
for 2002 was taken from the most recent available
Monthly Energy Review (Energy Information Admin-
istration, 2003b). EIA compiles estimates of the actual
quantities of aggregate consumption by summing
consumption in the residential, commercial, industrial,
transportation, and electric power sectors. Within each
sector, EIA collects consumption data by fuel type from
suppliers through required surveys.
The real GDP projections were taken from the

original AEOs, which report projected real GDP (in
units of US dollars expressed in terms of a particular
base year) along with projected implicit price deflators.
1An AEO does not exist for 1988 because of a change in the naming

convention. The 1989 AEO follows the 1987 AEO.
2 In some instances, the data within the AEOs are presented at 5-year

intervals, rather than annually for a set time horizon. The EIA models

produce annual projection values, though they are not always

published in the AEOs. AEOs 1996–2003 are available online at EIA’s

website http://www.eia.doe.gov/oiaf/archive.html. Previous AEO pub-

lications (1982–1995) are available in print or microfiche.
In order to compare real GDP projections across AEOs,
all projected real GDP values were converted from
various base years to 1996 dollars using actual 1996
chain-weighted implicit price deflators as reported by
the Bureau of Economic Analysis (2003):

GNP or GDPreal;baseyear¼1996 ¼ ðGNP or GDPreal;baseyear¼yyyyÞ

�
deflatoryyyy

deflator1996
: ð1Þ

Estimates of actual real GDP in chain-weighted 1996
dollars were obtained from the AER 2001 (EIA, 2002, p.
353) and are consistent with those published by the
Bureau of Economic Analysis (2003). For AEOs 1982–
1992, economic growth was measured in terms of GNP,
rather than GDP. For consistency, the actual historical
nominal values for GNP in those years were obtained
from the Bureau of Economic Analysis (2003). Projected
and actual values of EI are simply the ratio of energy
consumption to GNP or GDP for a given year.
3. Error definitions and decomposition methodology

We examine four error types using several different
measures of error. In defining them, it is useful to first
distinguish among various measures of time:
t
 Calendar year being projected

t
 Projection year

tb
 Base year of the projection

TH ¼ t � tb
 Time horizon
The base year, tb; is the most recent year in which
consumption is estimated from data rather than
projected with the model. It is often, but not always,
the same as the projection year, t; which indicates the
year in which the projection was made. For example, for
the 1989 AEO, the base year was 1988, so in that case
t ¼ 1989 but tb ¼ 1988: The time horizon, TH; indicates
the length of the projection. The projection for 1995
from the 1989 AEO has a time horizon of 7 years (1995–
1988), while the projection for 2000 has a time horizon
of 12 years.
The first type of error we focus on is visible error (V),

which indicates the difference between the projected
energy consumption and actual (observed) consumption
for a given year, or

VtðtÞ ¼ #EtðtÞ � EðtÞ; ð2Þ

where the subscript t is the projection year, #E is
projected energy consumption and E is actual energy
consumption. Visible error is most relevant to users of
projections who want to know how accurate they are; it
reflects the error the user actually ‘‘sees’’ in the
projection. But to understand the source of the visible
error, it is useful to examine ‘‘invisible’’ errors; i.e.

http://www.eia.doe.gov/oiaf/archive.html
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components of the visible error whose combined effect
produces the net visible error (Bulatao, 2001). Here we
decompose visible error in consumption in two different
ways. First, in Section 4.1, we decompose it into three
components of error in consumption: baseline error (B),
trend error (T) and variability (Var), so that

VtðtÞ ¼ Bt þ TtðtÞ � VarðtÞ: ð3Þ

Fig. 1 illustrates the relationship among these types of
error. The baseline error captures errors in the initial
estimates for energy consumption in the base year and is
calculated as

Bt ¼ #EtðtbÞ � EðtbÞ: ð4Þ

Projections that begin with inaccurate estimates of
consumption in the base year are likely to project future
consumption inaccurately even if the model is otherwise
very accurate. To account for this, we assume that the
baseline error is constant across all time horizons
for a given projection. For example, if the baseline
error is +X Btu (that is, the projection overestimates
consumption in the base year), then we assume that
consumption is overprojected by X Btu in all future
years. This is a simplification; in principle, it would be
necessary to rerun the projection model with corrected
baseline data but with assumptions and parameter
values otherwise identical to the original projection in
order to calculate the effect of the baseline error on the
projection over time. Since for practical reasons this is
impossible, we adopt the constant baseline error
assumption as a reasonable simplification.
The trend error measures the deviation of the

projection (corrected for baseline error) from the
historical trend. The rationale for this kind of error is
that the models used to project consumption are
designed to project longer-term trends in consumption,
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not inter-annual variability. A large visible error in a
given year could be generated from a short-term
fluctuation in consumption due to fluctuations in oil
prices, weather, or other factors, which the models do
not attempt to predict, and therefore in those cases the
visible error would not be indicative of the model’s
performance. To control for this possibility, we define a
trend in historical energy consumption, ET ðtÞ; as a linear
fit to annual consumption data (assuming a nonlinear
trend using polynomials had little effect on results, since
the 1982–2000 period saw a roughly linear increase in
consumption). Trend error is calculated as

TtðtÞ ¼ #EtðtÞ � Bt � ET ðtÞ: ð5Þ

Finally, variability error (Var) measures the deviation
of actual consumption from the historical trend:

VarðtÞ ¼ EðtÞ � ET ðtÞ: ð6Þ

Note that variability error is independent of the
projection: it is determined only by the difference
between actual consumption and the historical trend.
The second way in which we decompose visible

error is by expressing it as a sum of errors in the
forecasts of GDP and of EI (the ratio of energy
consumption to GDP). Since GDP forecasts are
essentially (although not completely) exogenous to the
EIA consumption forecasts, it is worth examining the
degree to which errors in consumption are due to errors
in forecasts of GDP, or to errors in forecasting EI (i.e.,
energy consumption given a particular forecast of
GDP). While the two components are not entirely
independent, since macroeconomic assumptions affect
the forecast of EI, a comparison of their errors can still
be informative. Section 4.2 reports the results of this
analysis.
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For both decompositions, we use different measures
to analyze each type of error:

* The percentage error (PE) measures the proportional
error at a particular point in time and provides a
sense of both the magnitude and direction of the
error.

* The absolute percentage error (APE) is used to assess
the magnitude of point errors independent of their
direction.

* The mean percentage error (MPE) can be a useful
indicator of bias, or the tendency to over- or
under-predict consumption. Because the MPE
averages over a signed quantity (i.e., PE), it is
affected by canceling. Positive errors will cancel
negative ones, yielding a small mean error even if
individual point errors are large. Thus, it is not a
good indicator of accuracy, but still yields useful
information on bias. The MPE can be calculated over
time within a given projection, or across projections
for a given time horizon.

* The mean absolute percentage error (MAPE) con-
trols for the offsetting of negative and positive
percentage errors and is therefore more informative
about the average magnitude of the errors, indepen-
dent of sign.

4. Results

4.1. Energy consumption

Fig. 2 shows the full series of AEO projections of total
consumption, compared to the observed values. Ob-
served values are taken to be the historical estimates
reported in the AER 2001. Considered as a group, the
projections appear to have tended to underestimate
actual consumption.
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Fig. 3 shows the mean percentage visible error
(MPEV) by time horizon. Recall that the MPEV is an
average of the signed values of the percentage errors
across projections, which allows for canceling of positive
and negative errors in individual projections. It there-
fore reflects whether projections in general have tended
to be high (positive MPEV) or low (negative MPEV) at
particular time horizons. The figure confirms that
consumption projections have indeed tended to be low
over time horizons of 5 years or more; at shorter time
horizons, the bias in the projections is essentially zero.
Fig. 3 also shows the mean absolute percentage visible
errors (MAPEV) in total energy consumption by time
horizon. This measure indicates how accurate, on
average, the EIA projections have been, independent
of whether they have been high or low, controlling for
time horizon. The mean absolute visible error is quite
low—about 2%—for time horizons up to 9 years, and
grows slightly to 3–4% for 10–13-year projections and
to 8–10% at a 14–15-year time horizon. However,
sample size (indicated in the figure as labels on top of
each bar) drops sharply with increasing time horizon;
results for 14- and 15-year horizons are based on only a
single projection and cannot therefore be considered a
reliable measure of forecast accuracy.
It is worth examining the contributions of component

errors to both MAPEV (as an indicator of projection
accuracy) and MPEV (as an indicator of projection
bias). Fig. 4a shows a decomposition of MAPEV into
baseline error, variability, and trend error. It shows that
baseline error makes a relatively small contribution to
the inaccuracy of the consumption projections. Inaccu-
racy in projections is mainly attributable to variability
and trend error. Over time horizons of about 7 years or
less, variability and trend error are each responsible for
about half the visible error in projections (i.e., each
contributes about 1 percentage point to the visible error
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of about 2%). At longer time horizons, trend error
grows to 2–3 times the size of variability. These results
are significant for at least two reasons. First, variability
error gives an indication of the irreducible component of
the error in consumption projections. Since the projec-
tion model is not designed to forecast inter-annual
variability, roughly 1% error (on average) in projections
is likely unavoidable, even if baseline and trend error
were reduced to zero. Second, the mean absolute error in
the trend (MAPET) is the measure that is most relevant
to evaluating the use of the projection model itself, since
it corrects for baseline error and is also unaffected by
variability error. Neither of these error types reflects
inaccuracies generated by the projection model. Thus, it
is MAPET that is most useful in, for example,
diagnosing sources of inaccuracies within the IFFS
and NEMS modeling systems. The figure shows that, on
average, MAPET behaves similarly to the MAPEV,
remaining quite low for time horizons of about 7 years
or less, and increasing at longer time horizons.
Fig. 4b, which decomposes MPEV, gives a sense of the

source of the bias toward under-prediction in longer-
term projections. It demonstrates that this bias is
primarily the result of under-prediction of the trend,
since it is only MPET that shows increasingly negative
values for longer time horizons. MPEVar is very small,
and MPEB is essentially zero, at all time horizons, since
baseline and variability errors show no systematic bias
and tend to cancel across projections. Thus, while
baseline and, especially, variability errors are partly
responsible for the inaccuracies in the EIA projections,
it is trend error alone—a direct reflection of the
performance of the projection model—that produces
the bias toward under-prediction of consumption.
In addition to investigating the sources of error

averaged across all projections, it is also worth examin-
ing whether later projections are more accurate than
earlier ones, due to improvements in data or methodol-
ogy, or as a result of the change in models from IFFS to
NEMS in 1993. To address this question, we examine
the accuracy of projections with equal time horizons
made in different projection years, using the trend error
as the best measure of model performance. For example,
Figs. 5a–c show absolute trend errors (APET) in
projections with 3-, 5-, and 7-year time horizons,
respectively. In general, there is no strong evidence for
improvement in projections over time. For 3-year
projections, trend error remains below 3% for almost
all AEO years with no clear pattern of change over time.
Similarly, for 5- and 7-year projections, there is no
unambiguous pattern of changes in trend error over
time. In addition, the accuracy of the projections does
not appear substantially different since 1994, when the
NEMS model was adopted, as compared to earlier years
when the IFFS model was used.
It is possible that projections could be improving not

through improvements in the accuracy of the projection
modeling, but through reduction of baseline errors.
However Fig. 6, which shows the baseline error for each
AEO year, demonstrates that there is no clear pattern to
baseline errors over time. In any case, the baseline errors
have been fairly low (o1%), and as noted above have
been only a minor contributor to projection inaccuracy.
Thus, our analysis of visible errors in consumption

indicates that the EIA projections have been accurate to
within about 2% over time horizons of less than 10
years, with errors climbing to about 4% at time horizons
of 10–13 years. Errors are mainly due to inaccurate
projections of the trend in consumption (with an
important contribution from variability error at short
time horizons). Consumption projections have also
tended to be too low, on average, and the source of
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this downward bias is downward bias in projections of
the trend. We find no evidence of improvement in
projections over time.

4.2. Gross domestic product and energy intensity

We next examine components of visible error in
projected energy consumption in a different way, by
decomposing it into contributions from errors in
forecasting real GDP3 and EI. EI is defined as the ratio
3An identical analysis based on nominal GDP—the metric used by

EIA in its own evaluations (Holte, 2001)—does not alter the

conclusions we reach, and produces only slightly different quantitative

results (slightly larger errors).
of energy consumption to economic production, and
thus total consumption is just the product of GDP and
EI. Fig. 7a shows that errors in forecasting GDP and EI
contribute about equally to, and are substantially
greater than, the errors in energy consumption forecasts.
MAPEV for GDP and EI are about 3–7% up to a 9-year
time horizon (compared to 0–2% for errors in energy
consumption), and grow rapidly to 10–20% beyond a
10-year time horizon (compared to 3–8% for errors in
energy consumption). This suggests that substantial
canceling of errors in GDP and EI occurs, so that the
smaller errors in consumption are the result of larger,
but offsetting, errors in GDP and EI.
Fig. 7b confirms this suggestion. It shows that, on

average, errors in GDP and in EI have been of opposite
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sign. GDP has generally been under-predicted in the
short term (time horizon less than 7 years), and over-
predicted in the longer term; the opposite is true of EI.
This general pattern can be explained by two factors,
demonstrated in Figs. 8 and 9. First, GDP projections
are too low, and EI projections are too high, in the short
term due to baseline errors. Baseline error in GDP has
been substantial and consistently negative (Fig. 8a) over
the entire period, while baseline error in EI has been
substantial and consistently positive (Fig. 8b). Note that
the reason the baseline errors in GDP and EI mirror
each other is that baseline estimates of EI are derived
quantities calculated as the ratio of the estimates of
GDP and energy consumption. Because the baseline
GDP errors are large and negative, and the baseline
consumption errors are small, the baseline EI errors are
large and positive.
Second, the reason that projections of GDP are too

high, and EI projections are too low, in the longer term
can be traced to trend error, and is therefore due to the
performance of the projection models themselves. Trend
error in GDP grows substantially at longer time
horizons (Fig. 9a) and is consistently positive (Fig.
9b), while trend error in EI grows substantially (Fig. 9a)
and is consistently negative (Fig. 9b).
Both the consistent bias in these projections and their

magnitudes have important implications for evaluating
the EIA projections. Consider first the over-optimistic
projections of the trend in GDP. As discussed in Section
2, the GDP projections are based on an exogenous
forecast supplied to EIA by an outside consulting firm
(DRI), which is then modified by feedbacks with the
energy model. The over-optimism of the final GDP
projections could be due to consistently biased DRI
forecasts, or to overly strong modification by energy
system feedbacks acting in the direction of increased
economic growth. Since the original exogenous DRI
forecasts are not available, this question cannot be
answered definitively. However, the magnitude of the
GDP errors suggests that the feedbacks, which likely
constitute a smaller adjustment to GDP growth, are
unlikely to be the major part of the explanation. It may
very well be that the exogenous GDP forecasts have
been the primary source of bias.
Next, consider the consistent under-projection of the

trend in EI. At first glance, the rough symmetry in trend
errors between GDP and EI might suggest that they are
related to each other, much as the roughly symmetric
baseline errors in these two quantities are. For baseline
error, the EI errors are a simple mathematical con-
sequence of consistently positive errors in estimations of
GDP, combined with relatively accurate, and indepen-
dent, estimates of total consumption. As a result,
baseline errors in EI simply mirror errors in GDP, but
with opposite sign. However, the situation with trend
errors is distinctly different. The projected trend in
energy consumption is not independent of the GDP
projection. In fact, GDP is perhaps the most important
driver of consumption. Thus, the trend errors in EI
reflect a true shortcoming of the energy projection, and
are not a simple mathematical consequence of the trend
errors in GDP.
There are at least three possible explanations for the

systematic under-projection of EI: the effects of income,
prices, or efficiency. It may be that the income elasticity
of demand in the projection model has been too low, so
that rising incomes in the model do not generate a
sufficiently strong increase in energy consumption. It
may be that the price elasticity of demand has been
inaccurate, so that responses to projected prices have
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been in error. Similarly, it could be that the projections
of the energy prices themselves have been too high (as
found by Holte, 2001), suppressing the amount of
energy consumption per unit GDP in the model below
actual levels. Finally, it is possible that projections of the
demand for energy services per unit GDP has been
accurate, but that projections of the efficiency with
which those services are delivered have been over-
optimistic, leading to an under-projection of energy
consumption per unit GDP. It is beyond the scope of
our analysis to pursue these hypotheses here; they
remain important questions for future work.
Turning from the bias in the projections to a
consideration of the magnitude of the errors, note that
the trend errors become quite large with increasing time
horizon. For GDP, the error is less than 5% up to a time
horizon of about 8 years, but grows to exceed 15%
beyond a time horizon of 12 years. Similarly, trend
errors for EI remain below 5% up to a time horizon of 5
years, but exceed 15% beyond a time horizon of 10
years. (As shown in Fig. 9a, errors in both GDP and EI
are even larger at the 15-year time horizon, but the
sample size is too small to meaningfully characterize
typical performance over these time spans.) If these
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findings are robust indicators of projection perfor-
mance, they imply that very substantial inaccuracies
are plausible in current projections over time horizons of
a decade or more. As previously noted, projections of EI
itself play an important role in policy, heightened
recently by the Bush administration climate policy based
on goals for improvement in carbon intensity. Equally
important is the fact that these results imply that
improvements in either GDP forecasts, or in EI
forecasts, will lead to potentially large increases in
errors in projected energy consumption. Errors in
consumption forecasts are currently small because they
mask large offsetting errors in GDP and EI forecasts.
Thus, improving only one component will lead to less
accurate consumption forecasts.
Finally, we also looked for evidence of improvement

in projections of GDP and EI over time. Analysis of
APET for GDP, and separately for EI, for time horizons
of 3, 5, and 7 years (not shown) as a function of the
projection year show no unambiguous trend toward
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improvement in forecasts over time. Similarly, there is
no indication that GDP or EI forecasts made with
NEMS are any more accurate than those made with
IFFS (results available from authors).
5. Conclusions

Our analysis shows that visible errors in projections of
US energy consumption have, on average, been too low,
but their magnitude has been relatively small (a few
percent) up to about 10 years in the future. On the one
hand, this level of accuracy stands in marked contrast to
the typical level of accuracy in forecasts of energy prices
and of macroeconomic growth, which generally fare
much worse. On the other hand, we find that the small
errors in EIA consumption forecasts are due in part to
large offsetting errors in GDP and energy intensity,
which grow to more than 15% at a time horizon of 10–
12 years or more.
These errors can inform estimates of the uncertainty

in current projections of future energy use. One might be
tempted to assume that current projections of consump-
tion 10 years into the future may have an uncertainty of
a few percent, based on the average of past performance
at this time horizon. While we believe our analysis
provides a benchmark against which to gauge uncer-
tainty estimates, it must be kept in mind that the future
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may be harder or easier to project than the past. Given
the substantial variations in the magnitude and direction
of US energy consumption forecasting errors since the
1960s (Laitner et al., 2003), a change in forecast
performance is a clear possibility. Two ways in which
the past two decades would no longer serve as a useful
guide are: (1) if the energy system experiences disrup-
tions, such as those that occurred during the 1970s, but
that are not represented in the period of our analysis; or
(2) if the large offsetting errors in GDP and energy
intensity forecasts no longer tend to cancel each other,
as they have over the past 20 years. This caution echoes
Landsberg (1985), who reviewed an energy projection he
was involved in making in 1963 and found that accurate
projections for particular variables were almost always
the result of large offsetting errors in the components.
‘‘Divining the future correctly in the aggregate can be quite
an ego trip’’, he wrote, ‘‘but its usefulness depends largely
on the question one seeks to answer. Nor can you bank on
offsetting errors. Errors can also be compounding’’.
We find no clear evidence of improvements in

projections over time since 1982, and no clear difference
in projections made with the IFFS model, or its
successor, the NEMS model. This is not inconsistent
with the conclusion of Cohen et al. (1995), who find
evidence for improvement in energy projections made
between the late 1970s and early 1980s, given the
different time periods of the analyses. Our analysis also
suggests some priorities for improvements. First, focus-
ing both on better projections of energy intensity, and
better projections of GDP, would be helpful. GDP
forecasts suffer from substantial baseline errors, sug-
gesting that improving the quality of the baseline data in
GDP forecasts could contribute to better energy
forecasts. It would also be important to take into
account ‘‘period effects’’; i.e., particular times during
which prevailing economic conditions may make it
easier or harder to forecast GDP (McNees, 1992). We
also note that variability can be an important source of
error for shorter-term projections. This should be
recognized in evaluating projection accuracy in any
given year: some error should be expected simply
because the models are not designed to simulate inter-
annual variability. In addition, it may be worth
accounting for this fact in setting initial conditions for
projections. Currently, the projection model is cali-
brated to the best estimate of the actual consumption
level in the base year. However, it may be advisable to
calibrate to the estimated value of the trend in the base
year, which will generally be different than the level of
actual consumption.
Our analysis also has limitations and could be

extended in several ways. We examine consumption,
output, and intensity figures aggregated across the
economy, rather than by sector. Analysis of the errors
in the projections of consumption in individual sectors
would give valuable insight in error sources, a strategy
that was pursued by Cohen et al. (1995) and Linderoth
(2002), who found that relatively small consumption
errors in forecasts for OECD countries were typically
the result of large, offsetting errors for the transporta-
tion and industrial sectors. Such sectoral analyses bear
repeating with the now more extensive set of projections
available, and (we suggest) with the methodology used
here. In addition, investigating the source of the under-
projections of the trend in energy intensity would be
important. Additional analysis of price forecasts,
measures of energy efficiency, and income and price
elasticities of demand would give additional insight into
this important question.
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Appendix A. Adjusting for dispersed renewables

In 1990, the EIA began to include ‘‘dispersed renew-
ables’’ in their projections (AEOs) and estimates (AERs)
of energy consumption (Holte, 1997). Earlier projections
and estimates are therefore not directly comparable.
Dispersed renewables was an informal term used by EIA
to categorize renewables not interconnected to the
electric power grid. Dispersed renewables consumption
includes total end-use renewable consumption (excluding
transportation) and renewable consumption by non-
utility power producers. For example, this would include
wood used for residential heating and rooftop solar
panels for water heating (Reiser, 2001, pers. comm.).
In order to address this inconsistency for the purposes

of their own forecast evaluations, EIA adjusts earlier
raw AEO projections with current estimates of past
consumption of energy from dispersed renewables.
Specifically, a correction factor (CF) was added to the
raw AEO projections (Reiser, 2001, pers. comm.), where

CFt ¼ non-utility power producerst

þ residentialt þ commercialt þ industrialt:

Each term on the right hand side represents total
renewables consumption in each sector.
We applied this correction factor to the consumption

data taken directly from AEO reports that we used to
supplement the data summarized in Holte (2001).
Estimates for historical renewable energy consumption
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by sector were taken from Tables 10.2a and 10.2b of
AER 2000. We confirmed the consistency of this
approach with the one taken in Holte (2001) by
successfully reproducing their corrected consumption
projections for pre-1990 AEOs. The only exception is
that for AEO 1989, for projected values in calendar
years 1996, 1997, 1998, and 1999, the formula for the
correction factor provided by EIA does not reproduce
projected consumption values presented in Table 2 of
the Holte (2001). Differences were relatively small; we
used the values from Holte (2001).
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