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Abstract
As part of the rapid progress in the understanding and treatment of disease over

the course of the past 100 years, diagnosis and treatment of cancer has become a
focal point for basic science research. As a result, advances have been made in
quantifying the myriad changes in tumor genomes, transcriptomes, epigenomes, and
metagenomes relative to healthy tissue. Specific to the work of this thesis, techni-
cal advances have led to more robust quantification of RNA expression states via
RNA-seq, and DNA copy number quantification via DNA-seq. These approaches
allow for the measurement of the state of tens of thousands of genes in a sample.
Moreover, the enhanced quantification has led to better understanding of molecu-
lar heterogeneity among and within tumors. Previous efforts used methods from
computational geometry in order to explain tumors in terms of component subpop-
ulations and the mutations associated with those subpopulations. Prior to the work
contained in this thesis, however, there remained a knowledge gap in applying suit-
ably identified methods to data in such a way as to identify branching points in the
evolution and progression of tumors.

The two paths of focus for this thesis are advancement in methodology and ad-
vances in biology. In this thesis, we develop models appropriate for identifying
tumor subpopulations across a large number of tumor samples and a large number
of sites within a sample. We then apply the methods to large-scale cancer exper-
iments based on RNA-seq data. This model introduces the geometric concept of
simplicial complexes for deconvolution of tumor data. The data considered are a se-
lection of breast tumor samples, for which we demonstrate the correlation of metrics
from the method to existing clinical and basic science subtypes. We next enhance
clustering approaches used to decrease the amount of expert knowledge required to
operate and interpret the estimated deconvolution. We apply the enhanced clustering
approach to DNA-seq tumor data from two tumor types — ovarian and lung squa-
mous small cell cancers — and demonstrate the separability of prognoses based on
the resultant partitions. Lastly, we integrate the enhanced clustering approach into
the initial framework of tumor unmixing, and further add a layer of weighting. The
layer of weighting allows for a softer partitioning of data into branches of the tumor
phylogeny. Such an approach provides improvement over the initial approach in
terms of better capturing uncertainty in the biological data in a quantifiable and in-
terpretable way in terms of the probability model underlying the approach. We then
apply the approach to three cancer data sets — one of DNA-seq breast tumor data,
one of RNA-seq breast tumor data, and one consisting of a heterogeneous combina-
tion of both the DNA-seq and RNA-seq data. We are able to correlate favorably with
state-of-the-art approaches based on other data types and statistical models, while
providing additional flexibility with our framework with respect to data type and
quality.
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Chapter 1

Background and Introduction

Cancer lies at the intersection of seemingly paradoxical conditions. For instance, cellular growth

is unencumbered, yet ultimately the individual is harmed. The cells of the tumor find ways to

avoid the mechanisms typical of cell death, but at the expense of the individual experiencing the

disease [39, 40]. Despite these paradoxical conditions, substantive progress has been made in

understanding the mechanisms and basic biology of cancer [39, 40, 96]. Cancer can be charac-

terized by the sets of acquired mutations to normally healthy cells; but translating this molecular

characterization into actionable treatment remains a stumbling block for many cancer types [96].

As a result, better detection, treatment, and outcomes for later-stage cancer has become a priority.

Cancer has been characterized by a number of hallmarks [39, 40]. Among these hallmarks

are avoidance of cell death, uncontrolled growth, and recruitment of vascular tissue. Chronolog-

ically, cancer can be modeled as cells acquiring key mutations that allow the cells to escape the

normally-present set of checkpoints that control the cell cycle, proliferation, cell death, and the

other notable hallmarks of cancer. Further, after the cells exhibit the characteristics of cancer,

further mutations can more easily pass to daughter cells, allowing for additional diversity and

heterogenity of cell genomes in a tumor [26, 67, 96]. Over time, these changes may lead to

tumors metastasizing, using the recruited vascular tissue.
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1.1 Biological and Technological Limitations

In this section, we provide an overview of the steps of quantifying tumor biology data. Broadly

speaking, the quantitative tumor data considered in this thesis may come from either DNA, RNA,

or combinations thereof. In the DNA case, we consider Copy Number Variation (CNV), where

the number of copies of a particular gene is altered. In the case of RNA data, we consider expres-

sion of genes that are dysregulated compared to some expected amount of expression. Although

terminology associated with genomics is used, the same basic steps are followed for quantifi-

cation of RNA as well. With the exclustion of the still-developing technology of Single Cell

Sequencing (SC-seq), the sequencing of tumor genomes has traditionally been obtained through

the use of bulk sequencing technologies [8, 46, 50, 53, 64, 65, 104, 105]. In bulk sequencing

tumors, a tumor is excised from a patient. Following excision, the tumor is put through a Poly-

merase Chain Reaction (PCR) set of cycles, in which the DNA present in the sample is ligated

and amplified in a controlled and cyclical manner. As a consequence of the PCR cycles, many

copies of the tumor genomes of individual cells are freely mixed in the tube containing the sam-

ple. These strands are then run through a sequencing platform, the result of which is called raw

reads. The raw reads are mapped using software tools to either a reference genome or assem-

bled de novo [4, 18, 78, 110]. After assembly, a piece of software known as a caller provides

information as to which areas of the mapped reads exhibit unexpected amplification or deletion

[22, 52, 60], also known as a call. These calls are then arranged by the caller into a list. It is this

list of calls that functions as the input to the models in this thesis.

The bulk sequencing pipeline requires models capable of performing inference by the nature

of its setup. Earlier, we discussed that tumors are evolving at the level of single cells — that

is, each cell may acquire mutations that are passed on to daughter cells, which then acquire

additional mutations, and pass them to the grand-daughter cells of the original cell, and so on

and so forth. However, bulk sequencing measures many cells at the same time, and genomes —

and the alterations manifest at a single-cell level — are mixed freely. As a result, the reads that

2



are output from a sequencer to the aligner then to the caller is a type of average of all mutations

acquired by cells in the sample. Cruicially, previous work has demonstrated that this type of

average is not representative of individual cells in the tumor, in terms of prediction [7, 29, 30, 62].

Figure 1.1 shows heterogeneity in bulk sampling may yield non-representative resulting

genomes.

A proposed workaround to this limitation is the application of SC-seq technologies. However,

SC-seq technologies remain out of reach in several key metrics. Although SC-seq technologies

provide insights as to the genomes of individual cells, the loss of some genetic information during

PCR cycling [64] creates more substantive gaps in aligning genomes obtained through SC-seq,

which in turn may reduce the efficacy of calling tools [46, 50]. Further, SC-seq technologies at

present are not cost competitive on a per-base-pair basis with bulk sequencing technologies [50].

1.2 Prior Work

1.2.1 Methods in Cancer Genomics Modeling

As a result of the limitations of SC-seq, bulk sequencing remains the underlying technology for

the majority of available tumor datasets. Due to the limitations of bulk sequencing with respect

to resolving related subpopulations within an individual bulk sample, numerous computational

techniques have been developed. These computational techniques can be specific to a type of

data, such as Structural Variant (SV) [2]. Others use knowledge based in clustering variant

alleles [49, 55, 83]. However, estimation of some requisite parameters of these models may

be difficult [24, 69]. Other requirements of the models may require substantial read depth [49,

83] that is unlikely to be achieved on large-sample efforts such as The Cancer Genome Atlas

(TCGA) [45]. Other methods that leverage DNA copy number data have modeled deconvolution,

but do not consider how the phylogenetic aspects of tumor biology may play a role in better

understanding the tumor composition [11, 36]. Others permit only one data type per run [68, 69,

3



A B

C D

Figure 1.1: Heterogeneity in tumor samples creates challenges in interpreting sequences of sam-

ples. Multiple subpopuations (panel A) lead to multiple genomes in a bulk sample (panel B).

When these genomes are amplified (panel C), and assembled, the resulting genome may not be

representative of any one of the individual subgroups (panel D).
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88]. However, each of these prior works has contributed to the understanding of tumor biology,

as well as tumor deconvolution modeling. We can further partition the existing approaches prior

to the thesis work by the computational methods employed. Some approaches use probabilistic

graphical models as the core of the approach [83]. Others instead use hidden Markov models

[37]. Foundational works in the field used approaches such as conjunctive Bayesian networks

[31]. Yet others use hierarchical clustering as the approach to building a tumor phylogeny [21].

Other efforts have focused on constrained linear programming as the means to obtain a tree

[74, 75]. Others still have preferred to use Markov Chain Monte Carlo sampling [49]. Our work

has built upon the geometric approaches pioneered by Schwartz and Shackey [86]. Concurrent

work to this thesis has focused on techniques such as non-negative matrix factorization [70],

graphical models [83], and maximimum likelihood models [68, 69]. Below we provide a brief

timeline of the development of prior methods on which our work is constructed, as well as

concurrent approaches developed for related inference tasks.

Ehrlich and Full first applied principles of geometry to deconvolution [23]. In their work,

as reviewed by Size [90], the authors identify the relationship between samples containing a

mixture of numerous populations, and a geometric body called a simplex. More specifically, a

simplex can be formulated as a complete graph embedded in a higher dimensional space — for

instance, triangles, tetrahedra, and their higher-dimensional equivalents. Points within the vol-

ume enclosed by the vertices of the simplex can then be formulated as a convex combination of

the vertices. Because the points can be formulated as a convex combination of the vertices, each

point in the volume can be assigned specific mixture components (mixture fractions) from each

of the vertices. Although Ehrlich and Full [23] applied the approach to deconvolve soil samples

from a discrete number of geological subpopulations, Schwartz and Shackney [86] applied the

principles to tumor samples. The application methods used by [86] stemmed from methods by

Chan et al. [13], who were able to efficiently code the simplex enclosing algorithm.

In the foundational work of [86], the authors note that a small number of related groups of
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cells, termed subtypes, can well characterize tumors. Additionally, the same constraint of convex

combinations apply as in [23], given that the subtypes are sufficient to explain the composition

of the tumor. Furthermore, the authors assert that based on how data points are distributed

throughout the surface of the simplex, inferences can be made as to which subtypes are ancestral

to other subtypes. In particular, the paper brought forth the idea that because tumor progression

can be modeled as an evolutionary process, related subtypes ought to be observed as mixed in

the samples, while subtypes on different lineages of a tumor phylogeny would not be observed

to intermix. The data also needed to exhibit geometric patterns with respect to the distribution of

points in order for any analysis based on geometry to have application. It is key to note that [86]

demonstrated that bulk tumor genomic data filtered with Principal Components Analysis (PCA)

[73] exhibited this property.

Building on the work of [86], Tolliver et al. [98] provided an improvement to better handle

outliers and noise. Whereas the initial work of [86] held a strict requirement that all data points

be contained in the simplex, [98] relaxed this constraint via modifications to the objective func-

tion. Interpreted biologically, a strict requirement would imply that each mixed sample could be

explained as some mixture of subpopulations, whereas a soft constraint would imply that each

mixed sample could be explained as some mixture of subpopulations, plus some allowance to ex-

plain technical and biological noise. [98] accomplished this expansion through a crucial change

in description of the problem of geometric unmixing. Rather than the previous efforts, which

focused on the application of minimum-volume enclosing simplices to point clouds, as outlined

in [13], [98] proposed a probability framework that in the limit of no noise would reduce to

a minimum volume simplex. Using a novel formulation of the probability of the data fitting a

proposed solution, coupled with Bayes’ Rule [6], [98] decomposed the probability of a simplex

best fitting some data into terms proportional to the fit of data to that simplex, and the volume

of the simplex. The key conceptual contribution to this decomposition was that as distance to

the surface of the body increased linearly, the goodness of fit decreased exponentially. Similarly,

6



in the prior portion of their decomposition, as the volume increased linearly, the goodness of fit

decreased exponentially.

1.2.2 Tumor Phylogenetics

Early and influential work in understanding phylogenetic models of tumor progression can be

attributed to Desper et al. [21]. Desper et al. used the technology of Array Comparative Genome

Hybridization (aCGH) as the basis for the models they constructed, which they termed ”oncoge-

netic trees”.

The aCGH platform works by attaching fluorescent dye to reference and tumor DNA —

green fluorescent dye is attached to hybridized tumor DNA, while red fluorscent dye is tagged

to reference DNA. Images of the cells are then taken, and a ratio of the quantified fluorscence

describes the ratio of copy numbers of the tumor cells to the normal cells. For full details on the

procedure, see Kallioniemi et al. [51].

Once the quantified aCGH data were acquired, [21] proposed a tree-oriented model of tu-

mor progression. The models proposed center around heuristic solutions to construct maximally

likely trees based on the evolutionary distance between a healthy cell and tumor cell, with the

distance weighted per site. One of the key assumptions of the approach was that the average

measurements from a bulk tumor would be representative of the tumor as a whole. Neverthe-

less, the work pioneered the idea that tumor progression shared common properties with species

evolution.

Podlaha et al. [77] later advanced the understanding of tumor phylogenetics by bringing to

light the interplay of intratumor heterogeneity in the context of tumor evolution with selective

pressure and potentially changing rates of mutation as a function of time. Greaves and Maley [35]

reviewed the state of understanding how tumor clones evolve in that same year, focusing their

review on the similarities of Darwinian evolution and tumor development, with the role of the

tumor microenvironment providing selective pressure for some subpopulations. Importantly, the

7



}{
Figure 1.2: Coupled with heterogeneity, the evolutionary processes can lead to mixed tumor sam-

ples based on the lineage of the particular sample. Mixed tumor samples can differ substantially

in genomic profile. Despite coming from the same phylogeny, mixed samples (far left and far

right, above brackets) can substantially differ due to phylogenetic branch and tumor heterogene-

ity, creating a need for computational approaches.

review pointed out that some mutations are viewed as driving the development of tumors, while

others simply serve as passengers. Distinguishing which mutations are more vital to the progres-

sion of disease (driver mutations) versus those that are observed but less relevant to progression

(passenger mutations) remains a question in building models. Brocks et al. [9] demonstrated the

correlation among DNA methlyation patterns and DNA CNV patterns with respect to estimated

evolutionary time, highlighting the need for methods capable of multiple data types.

Figure 1.2 illustrates that due to the nature of heterogeneous tumor samples and tumor evo-
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lution, samples from the same tumor phylogeny may exhibit seemingly different properties. As

a result, computational approaches to understand and unify the samples are necessary.

To combat the heterogeneity within a tumor, Pennington et al. [74, 75] contributed models

built upon cell-by-cell analysis of tumors. In the approach, tumor progression is modeled based

on Fluorescence in Situ Hybridization (FISH) data. Compared to bulk genomics approaches,

FISH holds the key advantage that samples can be resolved to a single-cell level. However, the

technology imposes limits on the number of markers that can be tested per cell to a handful of

pre-selected probes rather than the entire genome [100]. Leveraging the single-cell resolution of

FISH data, [74, 75] created a model in which individual events of copy number alteration both

within a patient, and across patients are considered. In this way, [74, 75] represents an key step

forward in tackling both intratumor heterogeneity and intertumor heterogeneity. Furthermore,

the phylogenies produced from [74, 75] provided ordered copy number alteration events and the

relative frequencies in the cell populations studied. In terms of translating the model to a clinical

application, by ordering the copy number alteration events, the model provided a guideline for

therapies that may be applicable earlier in the life of the tumor.

This work in the application of tree-based models to understanding tumor progression was

built upon by [86] and [98]. New models of optimal trees were proposed. The models were trees

relating to the most likely lineages of tumor progression, but with different sets of assumptions.

In [86] the authors aimed to combine the resolution of FISH data with the broad feature

capture of bulk sequencing to produce tumor phylogenies with novel putative prognostic and di-

agnostic markers. Based on the formulation of a tree as an optimization of a constrained system,

in a fashion related to [21], [86] added a geometric mixture element in the set of constraints to

incorporate a measurement of tumor heterogeneity in the bulk samples. The phylogeny inference

portion of the work was framed as a maximum likelihood model, where each subpopulation’s fre-

quency depends on its ancestral population, and is independent of other populations. In practice,

to recover the tree from the geometric body, a MST was used. The phylogenetic results from
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[86] provided evidence demonstrating putative evolution of clinical subtypes of lung cancer.

1.2.3 Tumor Heterogeneity

Although tumor heterogeneity has been recognized as a key characterization of cancer for over a

decade [26], we recognize specifically the pioneering studies of tumor heterogeneity and decom-

position posited by Etzioni et al. [25]. In the work, the authors demonstrated that differences

in the composition of tumors created a statistically significant difference between patients with

and without recurrence. The data set used were prostate tumor samples, stained with immuno-

histochemical antibody stain. Conceptually speaking, the staining process works by applying

an antibody (e.g., syndecan-1) to a tissue specimen. Alterations of the gene assoicated with the

antibody (SDC1) have been demonstrated as dysregulated in prostate cancer cells [92]. Binding

to the antibody is detected through the use of a reactive tag that triggers color change in the stain

where localization occurs.

[25] observed within-specimen heterogeneity in prostate tumor samples. To quantify the

observed heterogeneity in the samples, [25] used a method termed compositional data analysis.

Within their framework, samples were categorized into fractional components based on pure

subpopulations corresponding to discrete staining levels. In the study, the authors categorized

stain intensity into mild, moderate, and intense, and a corresponding mixture component from

each profile for each heterogeneous tumor sample. The authors then correlated the estimated

composition to recurrent or non-recurrent status. As it relates to the work of this thesis, the

authors introduced the idea of quantifying tumors with respect to composition of subgroups, and

further, correlating those subgroups to clinical markers.

Additionally, although not explicitly stated, [25] introduced a geometric element to the mix-

ture analysis. That is, the authors state that a 3-state system such as theirs — having mild,

moderate, and intense profiles — corresponds to a ternary diagram (i.e., a system with three

subpopulations corresponds to composition of mixtures of a triangle).
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[86] made explicit both the intratumor and intertumor heterogeneity considered by their

model, as well as the ties to convex combination and geometry. As a result, an explicit op-

timization problem was stated. Later work emphasizing the biological interpretability of the

optimization was substantiated. [98] enhanced the model proposed by [86] by making explicit

allowances for noise in the model. As a result, fits to synthetic datasets demonstrated a higher

level of robustness in the models. It is reasonable to conclude that the models of real aCGH data

are also more robust than the fits proposed by [86]. As a result of the enhanced robustness, we

presume the inferences as to the biology of the subpopulations of tumors made by [98] represent

a closer approximation to the biological truth.

1.3 The Cancer Genome Atlas

TCGA [45] provides a substantial amount of the real data used in our experiments. This section

provides a brief description of TCGA in terms of data made available, and data used. TCGA has

served to provide a centralized repository of tumor data with support from both the National In-

stitutes of Health and the National Cancer Institute. The data are highly multimodal, consisting of

DNA data including copy number variation and methlyation data; and RNA data including RNA-

Seq quantitative gene expression data; clinical data including demographic, drug, and longevity

data. The data come from multiple organ sites (26 primary organs). Although those data that

contain germline mutations have protected access, substantial portions of the data are freely ac-

cessible [45]. The large number of samples in selected organ sites — for instance, over 1000

samples in the breast tumor dataset — make the repository ideal for our work. The data used as

part of this thesis include DNA copy number data, RNA-Seq quantitative gene expression data,

and clinical outcomes data for BRCA, OV, LUSC, and Glioblastoma Multiforme (GBM).
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1.4 Contributions of the Thesis in Brief

We advance the prior work through further development of geometric models of tumor evolution

and heterogeneity. The work contained in this thesis validates the methods through a combina-

tion of synthetic measurement and correlation with results from other methods. Although prior

work has made significant contributions toward a geometric understanding of tumor evolution,

progression and heterogeneity, key assumptions remain that we seek to better address. The use

of simplices in modeling tumor evolution encodes the assumption that for all tumor samples it is

reasonable to expect a mixture of all subpopulations. However, given that cancer is an evolution-

ary process, we expect that structured relationships among subsets of all possible subpopulations

give rise to the observed heterogeneous samples, rather than mixtures from the set of all possible

subpopulations [80]. Prior to the work of this thesis, there is no method known to us imposing

constraints of subsets of the mixed tumor sample subpopulations.

Additionally, previous geometric models parameterize the number of subpopuations in a tu-

mor panel. This poses a particularly cumbersome challenge to investigators. Although cell-by-

cell studies demonstrated the uniqueness of tumor cells, genetically similar collections of cells

have been grouped together for the purpose of better understanding the composition of tumors

[80, 86, 98]. As the diversity of the subpopulations increases, the number of groups present will

decrease, but choosing a particular number without prior expert knowledge or an assumed model

of probability remains challenging [80, 81]. From a technical perspective, the computational re-

sources required to run geometric models has remained a consistent challenge. Many geometric

algorithms suffer from high runtime as the number of dimensions increase. In our application,

the number of dimensions are propotional to the number of subpopulations. Practically, runtime

is an important consideration for deconvolution algorithms, features may number in the 10,000s,

and the number of data points may number in the 1,000s. The number of samples would be

expected to grow with public efforts to collect tumor samples. Therefore, methods to reduce the

runtime of deconvolution algorithms represent a key step in applying more sophisticated unmix-
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ing models.

Further challenges remained in relating the geometric approach pioneered in [86] and [98].

Although the models have produced putative tumor subtypes and tumor phylogenies, there have

not been published correlations of those results to the deconvolution of tumors produced with

other methods. Agreement between some other method [3, 37, 68, 69, 83] and geometric ap-

proaches would lend further validity to the geometric approach as an appropriate framework.

Many of the statistical models proposed prior to the work of the thesis, and concurrent with

the work of the thesis — both geometric and using other frameworks [3, 37, 68, 69, 83] — are

limited to a single type of data. In other cases, specific information about the platform is not

required, but using both DNA and RNA data simultaneously is not demonstrated [3, 37, 83]. As

efforts emerge to sequence select tumors at a single-cell level, a platform capable of leveraging

the data present in bulk sequencing, as well as the flexibility to capture additional information

from orthogonal data types becomes imperative.

In order to address the concerns outlined above, we contribute several key studies. To allow

for more explicit determination of tumor phylogenies from a geometric perspective, we develop

and implement a model of tumor deconvolution based on simplicial complexes. Simplicial com-

plexes fit more closely the assumptions associated with deconvolution of an evolutionary process.

Geometrically, a simplicial complex is a union of simplices such that the intersection of any of

the components is itself a simplex. In practical terms, the simplicial complex framework devel-

oped for this thesis constrains solutions to be one connected component, and there is at least a

shared point among all sub-simplices. Phylogenetically, the shared componentry — whether a

point, line, triangle, tetrahedron, or hyper-tetrahedron — corresponds to a shared lineage before

branching events in the tumor evolution, while vertices unique to the sub-simplices correspond

to vertices unique to branches of the inferred phylogeny. The development of such models in-

troduce new parameters to the model-building. The thesis addresses the inference of these pa-

rameters, and demonstrates the usefulness of the newly-developed model under the simplicial
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Figure 1.3: Tumor samples contain numerous subpopulations, which are mixed and have mixed

representation when sequenced (panel A). Quantifying the similarities and differences in simi-

larly evolved samples over a patient population yields geometric structure (panel B). Our con-

tribution is to leverage the geometric properties to fit models (panel C), which can be used to

recapitulate the tumor phylogeny, and to make predictions as to outcomes based on the compo-

sition of samples (panel D).

complex assumptions, as compared to the assumptions made in the simplex and robust simplex

cases [86, 98].

Figure 1.3 demonstrates our overall workflow, where we model biological truths by leverag-

ing the present geometric structure implied by the assumed evolutionary process and heterogene-

ity of samples.

A second key contribution of the thesis improves the clustering approach used to link the

previous simplex-based approach to the simplicial complex framework of the thesis. We demon-

strate improvement in both runtime and accuracy of clustering across realistic synthetic scenarios

through the application of medoidshift-based clustering to the data. This non-parametric cluster-

ing approach has asymptotic runtime benefits for clustering. In addition to the novel application

of the improved clustering in the simplicial complex framework, we demonstrated the ability

of the improved clustering approach to meaningfully partition real-world cancer datasets into

groups of differenentiated survival.
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Another substantial contribution of this thesis is improvement of the simplicial complex

framework to reduce parameters, allow for heterogeneous data types — such as DNA and RNA

at once — and automated detection of partial membership of tumor samples in multiple phylo-

genetic trajectories. We reduce the number of parameters required for the unmixing framework

by introducing the improvements in clustering outlined in our second key contribution to the

general framework outlined in simplicial complex unmixing. The mixed membership of tumor

samples across phylogenetic trajectories allows for a better capture of uncertainty in data very

near to shared inferred subpopulations.

1.5 Datasets Used in This Thesis

In this thesis, we applied our methods to DNA and RNA datasets for several types of cancer:

BRCA, OV, GBM, and LUSC. A practical challenge remains in the application of the approach

for DNA copy number data. Input data may be formatted as a spreadsheet of calls containing

the chromosome, start position, end position, and value of the aberration. However, our method

requires a matrix as input. In order to derive the matrix, we implemented a lossless compression

procedure we called blocking. For a static data set, we considered chromosome location pairs for

which a change was observed in at least one data point in the data set at that site. We then store

the state of the data set (the copy number values for each data point)prior to that change site,

and store the chromosome and position pair. The chromosome and position pair then describes a

genomic feature (column) in the matrix, and the values for each data point define the rows in that

column. The procedure of finding positions of change is then repeated across the genome, with

increasing numbers of columns as the dataset becomes more complex in some areas, and fewer

features for when there are fewer changes observed in copy number. We then use the vector of

stored chromosome and start positions to map back from gene features used in our method to

genome positions, and ultimately to gene names or symbols. For each of the tumor subtypes,

clinical data was also obtained. More specifically, used the following datasets:
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• A BRCA RNA-Seq data set [45] containing 1,100 tumors at 20,531 gene sites. Each of

the samples contained a bulk quantified transcriptome for a tumor sample. The dataset was

accessed via cancergenome.nih.gov. We note this access portal has been modified

since the time the data set was accessed.

• a BRCA clinical data set [45] for the 1,100 tumors above was also collected. This data

included survival information, as well as clinical subtype information.

• An OV DNA CNV data set [45] containing 472 samples was accessed on 15 July, 2015.

This data contained gene copy number alteration data. Each of the samples were blocked,

and the top 10 principal components were used in our analysis.

• An OV clinical data set [45] consisting of 472 samples, including survival information.

• An LUSC DNA CNV data set [45] containing 408 samples. This data contained gene copy

number alteration data. Each of the samples were blocked and compressed in such as way

that the top 10 principal components were analyzed.

• A LUSC clinical data set [45] consisting of 408 samples. This data contained survival

information.

• A BRCA DNA CNV data set [45] containing 1,079 tumor samples, at 20,531 genes.1

• a BRCA RNA-Seq data set [45] containing genomic tumor data for 1,041 samples at

20,531 genes. 1

• A BRCA clincial data set [45] containing clinical samples, tumor subtype, and survival

information. 1

• A GBM genome data set accessed from TCGA [45] containing DNA CNV data.

• A GBM clinical data set accessed from TCGA [45] containing survival and demographic

information corresponding to the genome data from the GBM CNV data set.

Generally speaking, prognosis for breast tumors under early detection is good, but falls based

1The dataset was accessed as part of the Exacel project, funded via NSF.
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on clinical subtype and clinical stage [1, 71]. The BRCA datasets are variations of the same

TCGA dataset. The TCGA data was not mature at the time of first access, whereas it had been

curated further later through the thesis process. The BRCA genomic and transcriptomic data is

used extensively due to the large number of samples relative to other organs, as well as having

well-established clinical subtypes. The genomic and transcriptomic data is used in both the infer-

ences of subtypes across the BRCA population, as well as the prediction as to the percentage-wise

makeup of samples contained in the dataset. The problem of heterogeneity prediction presents

an elusive and cruicial problem to better understanding cancer biology. Increased heterogeneity

has been shown to correlate with poorer outcomes [1, 71]. Better estimates of heterogeneity and

tumor progression may provide impactful information toward improved prognosis and diagnosis

of breast tumors. By using the DNA and RNA datasets together, we demonstrated the appli-

cability of our framework to heterogeneous sets with respect to data type, which will become

increasingly requisite as small numbers of SC-seq samples are added to large respositories of

bulk sequencing samples.

Ovarian data used in this study came from both genomic and clinical sources [45]. Previous

work has suggested there may be a basis for molecular segregation of ovarian tumor patients

correspondent to outcomes [99]. Although some subtyping in ovarian cancer has been presented

[66], wide adoption of clinically substantiated subtyping of ovarian cancer remained out of reach

for the timeframe of this thesis. The usage of our techniques results in clusters of samples

separated by expectations of survival, which may provide a basis for a future subtyping.

Lung cancer data used in the study included both genomic and clinical sources. Some molec-

ular markers of outcomes for lung cancer have been proposed [43], suggesting that grouping by

outcome from our clustering approach could be possible. We found outcomes that had weakly

significant differences; however, we concluded that these differences may be due in large part to

the imbalance in inferred survival class sizes.

The GBM dataset included both clinical and genomic data [45]. Outcomes in many scenarios
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for those with GBM is universally poor. Indeed, in demonstrating a limit of the applicability of

our method, we were unable to segregate groups based on survival. Our clustering approach

found one group, which dovetails with the clinical data suggesting all patients died shortly after

biopsy [45]. The outcomes data suggests agreement with the literature in terms of difficulty

finding long-term survivors of GBM [12, 95].

1.6 Organization of This Thesis

Chapter 2 is based on text originally published as [80], and provides a detailed description of the

inference of tumor subpopulations and tumor phylogenies using the lens of simplicial complexes.

The model presented in Chapter 2 demonstrates a highly-parameterized version of the model

bridging the gap between simplex-based unmixing and simplicial complex-based unmixing by

first clustering data into putative simplicies, then applying a modified form of the simplex-based

unmixing, after which a post-processing stage of reconciliation into a unified simplicial complex

is applied. Machine learning algorithms are then applied to correlate the results to subtypes and

outcomes.

Chapter 3 is based on text originally published as [81], and improves the methods used in the

clustering stage of the simplicial complex-based unmixing approach by eliminating parameters,

and providing a novel kernel function well-suited to the particular geometric scenarios modeled.

Simulations are performed to validate the choice of kernel function, and to demonstrate the

suitability of the method for assumed scenarios.

Chapter 4 is based on text currently submitted, and describes methods used for dimension es-

timation in tumor deconvolution, as well as relative areas of strength and drawback. Additionally,

it includes a discussion of the approach integrated into our framework.

Chapter 4 also integrates the approach outlined in Chapter 3 into the simplicial complex-

based framework.

Chapter 5 summarizes the key findings and contributions, and outlines additional steps that
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may arise moving beyond the scope of this thesis in terms of topics in tumor deconvolution,

phylogeny estimation, and progression.
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Chapter 2

A Simplicial Complex-Based Approach to

Unmixing Tumor Progression Data1

Studies of the genetic diversity of tumors demonstrate that bulk tumor samples exhibit both in-

tratumor heterogeneity and intertumor heterogeneity [7, 26]. As discussed in Chapter 1, this

means that individual cells within a tumor sample exhibit key genetic differences from one an-

other (intratumor heterogeneity), and also, that on the aggregate, there are genetic differences

among different tumor samples taken from a patient panel (intertumor heterogeneity). Based on

the microenvironments that give rise to tumors, selective pressure has been identified to act on

tumors in a similar fashion to speciation [7, 26]. In particular, checkpoint pathways regulating

cell development, tumor growth, and invasion have been common areas of mutatation [39, 40].

The combination of ideas — that despite individual developmental differences traceable to the

microenvironments of each tumor, common pathways were observed to be perturbed — led to

the development of modeling tumors as phylogenies [21].

The procedure was also dubbed oncogenetic tree formation [21]. The Desper et al. [21]

approach of oncogenetic trees relied on the intertumor heterogeneity of samples, coupled with

1Work in this chapter is based on material originally published as Roman et al. (2015). A Simplicial Complex-

Based Approach to Unmixing Tumor Progression Data BMC Bioinformatics, 16(1), 254. [80]
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similarities to use methods analogous to inference of phylogenetic trees for species. Following

[21], [74, 75] proposed the use of intertumor heterogeneity and single-cell studies in order to

increase the resolution of tumor phylogenetics. Although both approaches advanced the field of

tumor progression study, both the approaches of [21] and [74, 75] carried disadvantages. The

bulk tumor approach outlined in Desper et al. [21] did not account for intratumor heterogeneity,

and as a result could not model the development of tumors within a single patient. This stemmed

from the fact that one sample was limited to one output, which caused an output representative

of an average genome, rather than any particular genome in the sample [67]. Like other previous

studies [21] the work of Pennington et al. [74, 75] relied on FISH technology. The FISH technol-

ogy employed by these previous works is most notably limited in the number of markers that can

be measured per cell. In principle, single-cell sequencing technologies can combine the single-

cell resolution of FISH with the breadth of whole-genome sequencing, but technological and cost

challenges remain [63]. In an effort to mitigate the disadvantages of previous approaches, [86]

integrated the ideas of geometric unmixing introduced in [23] into tumor phylogenetics. This

approach has also been called ”mixture modeling”, although it is more appropriate to describe

the sort of model as a ”mixed membership model” [80]. In a technical sense mixture models refer

to models in which data points come from exactly one class, and in the case of geometric unmix-

ing for tumor data, the samples contain multiple points, therefore a mixture of different classes

of subpopulations. In previous work, similar mixed membership models have been applied to

determine the level of contamination from stromal cells or normal cells [11, 94]. In addition to

the novel application setting, [86] provided a phylogenetic interpretation of the geometric model

based on a MST. That is, the minimum span in genome space is interpreted as the minimum

evolution tree. [98] extended the idea of geometric unmixing to explicitly model for noise in

the data. In both [86] and [98], the data were whole-genome data. In the interim between [98]

and [80] other advances in deconvolving biological data were also made. As covered in detail

in Chapter 1, these advances included [37, 68, 69, 83], among others.
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Figure 2.1: Overview of the simplicial complex unmixing pipeline. Data are reduced in dimen-

sionality (panel A), clustered (panel B), unmixed (panel C), and resolved to a unified simplicial

complex (panel D). This figure was originally published as Figure 2 of [80].

Whole-genome data most often comes in the form of bulk sampling, which contains multi-

tudes of cells. As a result, the heterogeneous sampling contributes to the output of the sample

being representative of a mixture of the subpopulations present, rather than of an indivdual sub-

population or set of subpopulations. We advance the geometric approach to leverage the phylo-

genetic nature of tumors as well as intratumor heterogeneity. More specifically, we model the

branched nature of tumor development and progression, as well as noise in the data. The use of

parametric modeling used are extended in future contributions to provide better interpretability

and usability. Stated explicitly, our contributions in this chapter are as follows:

1. Extend models of geometric unmixing from simplicies to simplicial complexes and provide

biological interpretation for the model extension.

2. Design and implement a per-simplex model of unmixing consistent with minimum evolu-

tion phylogenetic trees for bulk tumor samples.

3. Test and evaluate the performance of the simplicial complex model on tumor data, and

interpret the results.
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2.1 Methods

In this section, we describe the methodology behind extending simplex models of tumor unmix-

ing to simplicial complex models of tumor unmixing. Further, we provide a description of the

models via code, and runtime analysis of the algorithm. We then propose conditions under which

the algorithm achieves optimized performance. The code for the approach is available at

https://static-content.springer.com/esm/art%3A10.1186%

2Fs12859-015-0694-x/MediaObjects/12859_2015_694_MOESM3_ESM.zip .

Figure 2.1 shows visually the basic steps of the method.

2.1.1 Data Sets

Here we provide a brief description of the data sets used in testing and evaluating the simpli-

cial complex method presented in this chapter. The data sets used consist of both synthetic and

real data sets. The synthetic data sets were data sampled uniformly from the surface and inte-

rior of simplices. These sampled data were then concatenated to provide samples from various

simplicial complexes. We joined the data to form the following simplicial complexes:

1. Two lines sharing a point

2. Two tetrahedra sharing a point

3. Two triangles sharing a point

4. Two triangles sharing an edge

A visualization of the synthetic data is provided in Figure 2.2. After the data were generated

and conjoined, we added 0-mean Gaussian noise to reflect the technological limits and biological

variance of the data.

We also used real tumor data in the method covered in this chapter. The real tumor data in this

chapter is BRCA RNA-Seq data from TCGA [45]. The data consists of 1,100 tumors at 20,531

gene locations. Although we controlled the range of values for synthetic data, we provided pre-
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Figure 2.2: Visualization of synthetic simpicial complex data used in [80]. Scenarios considered

include lines conjoined at a point (panel A) , tetrahedra conjoined at a point (panel B), and trian-

gles conjoined at both a point and an edge (panels C and D). These correspond to phylogenies of

one branching event that may have more than one common ancestor. This figure was originally

published as Figure 3 of [80].

25



processing for the real tumor data in order to achieve the same end. The normalization procedure

is described in detail in further sections. Notably, the real tumor data used in this chapter con-

tains expression data for clinically-relevant subtyping genes: Human Epidermal Growth Factor

2 (HER2), Estrogen Receptor (ER), and, Progesterone Receptor (PR).

2.1.2 Algorithm for Simplicial Complex Approach

In this section, we describe a pipeline used for deconvoling data using the simplicial complex

framework outlined in [80]. We break down the procedure into several key steps:

• Dimensionality Reduction

• Cluster Points into Simplices

• Unmix Each Simplex

• Merge Vertices to Form Simplicial Complex

• Map Components to Full Dimensional Space

In each of the following subsections, we provide more complete details as to the nature of

each step.

Mathematical Model

In this section we describe the mathematical theory behind this model. We presume that a dataset

we would like to analyze can be represented as a matrix. Suppose we call the matrix M ∈ Rg×s,

where there are g gene measurements and s samples. Although we suppose the measurements are

associated with genes, in principle the scope of measurement is not relevant to the mathematical

model. That is, the measurements could be chromosome arms or SVs. Further, we call the

samples tumor samples, although other variants of interest may be substituted. We assume that

the data has been normalized by taking the Z-score of raw measurements, so that M has mean 0

and variance 1 across each gene.
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The goal of the method is to infer mixture components C = −→c1 , . . . ,−→ck . For each i, −→ci =

ci,1, . . . , ci,g represents the profile of a subpopulation in the biology. That is, from a mathematical

perspective, each −→ci is a vertex of the simplicial complex. This can also be conceptualized as

the basis for a convex combination to explain the data points. That is, for each j, if a sample is

denoted by −→sj , then −→sj = fj,1
−→c1 + fj,2

−→c2 , . . . ,+fj,k−→ck + εj , where εj represents a small noise

factor, and fj,i is a mixture fraction. Because fj,i is a mixture fraction, it can be constrained

to be part of a convex combination. That is, we can constrain the system to those f for which∑k
i=1 fj,i = 1 and fj,i ≥ 0 : ∀j, i. We can then collect all of the mixture fractions in a matrix,

which can be denoted F . So then, the goal becomes in the inference of C and F such that

M = CF + ε, where ε is an aggregated noise term. By phrasing the system as such, we mirror

the goals of other unmixing or decomposition approaches.

Probability Model

The objective function we chose was driven by a probability model that enveloped two key

factors: an assessment of the quality of fit of the model to the data, and the biological plausibility

of the model. If we call our model Θ, and data X , we can maximize a Bayesian likelihood

function:

P (Θ|X) ∝ P (X|Θ)P (Θ) (2.1)

The functional form has a basis in the prior work in [98]. For the prior function, we chose

an exponential function form for both the conditional and prior distributions to reflect strong

penalties for a model failing to explain the observed data, and for increasingly large structures,

correspondant to increasingly large biological evolutionary time. Plugging our chosen functional

forms into Equation 2.1 produces

P (X|Θ)P (Θ) = exp(−
∑
|xi −KFi|p)mst(K)−γ (2.2)

In Equation 2.2, xi is a data point, KFi is the estimate of the data point based on the vertices K

and mixture fractions F , p is the value of the chosen p-norm, mst(. . .) is the minimum spanning
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tree function, and γ controls the relative weight given to evolutionary time as compared to the

ability of the model to explain data. In practice, it is more convenient to minimize the negative

log likelihood: ∑
(|xi −KFi|p) + γ log(mst(K)) (2.3)

The choices of the p = 1 and γ = 10 hyperparameters are based on the in the model assump-

tions that the influence of one gene set to another gene set is unknown (p = 1), and that the noise

level is about 5-40 percent of the signal level (γ = 10). The noise level assumptions are made

from [19]. Significant sensitivity to the γ parameter was not observed in our simulation study.

2.1.3 Experimental Pipeline

Dimensionality Reduction

In order to pre-process real tumor data used in this chapter, we reduced the dimensionality of

the original dataset to a more computationally-feasible size. In terms of the previously-specified

mathematical model, we reduce the dimensionality of the input matrix M from g to g′, where

g′ << g. To do so, the user sets a parameter k as the maximum number of subpopulations of any

branch, usually chosen based on computational constraints, and we then choose g′ = k − 1. By

specifying this relationship between g′ and k, we are using the relationship between the number

of vertices of a simplex and the dimension of the simplex — that is, the number of vertices of a

simplex is one greater than the dimensionality of that simplex.

In order to realize our goal of dimensionality reduction, we used PCA [73]. It is understood

that there are numerous mechanisms to achieve this goal of dimensionality reduction — among

them, Independent Components Analysis (ICA) [47], kernel PCA [61], or other dimensionality

reduction techniques such as local PCA [107] — PCA has a straightforward implementation, and

it is unclear how differences in dimesionality reduction techniques might lead to advantages in

terms of implementation or interpretation.

The PCA decomposes the original matrix M into approximately M ′V + A, where M ′ is the
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closest representation of M in the lower-dimensional space, V is a matrix consisting of k − 1

orthogonal basis vectors, and A is a matrix of offsets. A can also be conceptualized as the set

of translations that shift M ′V back to M . Granted, PCA is a lossy compression technique when

used as outlined above, so there is a noise factor to have true equality: M = M ′V + A + ε —

again, in a bit of an abuse of notation, ε represents a noise factor, which may differ from the noise

factors outlined above.

Cluster Points into Simplices

After the data were compressed, we needed to have determined subgroups of the data set (that

is, groups of tumor samples) that collectively lie within the span of unique low-dimensional

simplices. In a certain sense, this is the task of a clustering problem; however, the nature of

the clustering problem is rather unusual. Specifically, standard clustering approaches look for

points where the spatial distance within the cluster is small, and between two clusters is large.

Rather than that spatial marking, our clusters must have small distance from a simplex that we

later specify, and distinct dimensionality from other simplices later specified. In other words, the

set of dimensions sufficient to explain one cluster should be small and distinct from the set of

dimensions necessary to explain other clusters. In order to meet the needs of the situation, we

use a distance measure with a basis in manifold learning [84].

Algorithmically, we first form an s×smatrixD where the entries of the matrix are the square

of the Euclidean distance between samples. That is Di,j is the square of the Euclidean distance

between the ith and jth sample. We then create an updated distance matrix D′, where D′i,j is the

shortest path distance from the ith to the jth sample using the edge weights found in D. This

procedure approximates the geodesic distance that fits the assumptions described earlier in this

section [84, 97]. The geodesic distance is the distance within the manifolds necessary to go from

one point to another, rather than the Euclidean distance that can cut through different manifolds.

After this distance metric was established, we applied k-medoids clustering [41]. Our goal
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using this algorithm was to create k ∈ N clusters where the reprsentatives of the clusters were

the medoids of the clusters — that is, the data points nearest to the mean in Euclidean distance.

The small difference with the original k-means technique outlined in [41] prevents the inference

of cluster representatives outside of the span of the clusters, which leads to no natural biological

interpretation.

Unmix Each Simplex

After the data were partitioned into putative clusters, we fit a simplex to each of the clusters that

we later merge into a simplicial complex. In order to fit the simplicies to each of the clusters, we

optimize the negative log likelihood described in the probability model subsection, subject to the

constraints of convex combination on a per simplex basis. That is, we seek

argmin
K,F

∑
|xi −KFi|p + γ log(mst(K))

s.t. ∀Fi :
∑

F t
i = 1, Fi ≥ 0

(2.4)

where
∑
F t
i is the sum over all inferred components (components of K) is 1, and each of the

mixture fraction entries is non-negative. xi, K, F, p, and mst(. . .) are as in the probability model

section. By using a minimum spanning tree function rather that the volume prior in the previous

works, we are able to sum priors over each of the clusters / subsimplices. As a result, there is

a unified measure of evolution across the entire simplicial complex, even in the situation where

different subsimplices have different dimensionalities.

In order to implement the code, we use an initial guess based on the Minimum Volume

Enclosing Simplex (MVES) code outlined in Chan et al. [13]. Then, we alternate optimization

over the F and K hyperparameters by holding the other constant. When the K are fixed, the

F are computed by using the lsqlin function built into Matlab, and while F are fixed, the

K are computed with fmincon using the Matlab platform. The optimization terminates when

a fixed number of iterations are exceeded, or the objective function does not improve within a

tolerance parameter. In later steps, we use a measurement of simplex uncertainty to yield fits to
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the unified simplicial complex. To simulate this uncertainty, we use bootstrapped replicates with

10 replicates. For an example, see [106].

Merge Vertices to Form Simplicial Complex

In order to form a unified simplicial complex, we use the data from previous steps that infer

mean positions and variance of the positions of vertices for subsimplices. In order to identify

pairs of vertices that may be representative of the same ground truth subpopulation, we look for

overlap in the surfaces from which we assume the trials are sampled. That is, if the Euclidean

distance between two inferred vertices is less than the sum of the individual variances, we merge

the vertices. Formally, we merge a vertex v1 with a vertex v2 when

∃v1, v2 ∈ V : v1 6= v2 ∩ ∃i ∈ N ∩ [1, |v1|]

s.t.
∑ ||v1 − v2||

max
i

(σ(v1,i)σ(v2,i))|v1|
≤ 1

(2.5)

where

• V is the set of vertices

• || . . . || is Euclidean distance

• σ(. . .) is the standard deviation

• vj,i is the jth subsimplex in the ith index of vertex for that subsimplex.

Map Components to Full Dimensional Space

In our pipeline, the solved vertices, correspondent adjacency matrix, and mixture fractions deter-

mined in the merging step of the procedure are solved for in PCA space. In order to determine the

genes of interest related to the numerical inference, we transformed the vertices back into gene

space. This is accomplished because the coefficient matrix (loading matrix), first determined

in the pre-processing step, can be used to map the vertices back to gene space. The coefficient

matrix describes for each principal component what the linear combination of features is that
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composes a principal component. So, we can use algebra to determine the inverse operations,

and perform those to the principal components to yield values in the gene space.

2.1.4 Complexity Analysis

There are a substantial number of parameters influencing the performance of the code. Addition-

ally, some aspects of the code — for example, the k-medoids clustering portion — are iterative,

so the overall complexity expression can be complicated to express. However, a piecewise break-

down on an upper bound of the runtime is reasonable to express. The PCA to pre-process the

code uses Singular Value Decomposition (SVD) on the backend in Matlab [33]. The runtime for

SVD is O(mn2) for m data points and n dimensions, which in our case would be the number

of genes. The clustering phase of our protocol uses k-medoids [41]. The complexity of runtime

for this phase is O(km). The simplex fitting for each cluster applies a similar procedure to the

previous work outlined in [98], with a modified objective function for each cluster. So, for T

rounds of iternation, k clusters, dp simplex vertices for the pth simplex, and P PCs, the runtime

is O(Tkn max
p

(2dp+1, nP 2)) for each of the b bootstrapped replicates. The resolution phase is

computed by learning a Gaussian Mixture Model (GMM) for each of the
∑

p(dp) + k vertices

[101], which would contribute a factor ofO(b(
∑

p(dp)+k)). So, the runtime of the entire pipeline

can be upper-bounded byO( max
m,n,k,m,b,T,k,dp,P

(mn2, km, bTkn,max
p

(2dp+1, nP 2), b(
∑

p(dp)+k)).

In practical terms, the bottleneck occurs in the optimization / simplex inference stage, given that

there is an exponentially increasing cost for increasing the dimensionality of the simplices. How-

ever, this can be an improvement due to a dependence on the maximum on a sub-simplex, rather

than the sum total of vertices in the prior work.

2.1.5 Experimental Application

In order to test the usage of the pipeline, we tested the procedure on both synthetically gener-

ated data, as well as real tumor data acquired from TCGA. Because it is difficult to envisage an
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accurate ground truth model for how the heterogeneous combinations of cells and their progres-

sion interact, we base our synthetic model on sampling uniform mixtures of cells in space. The

scenarios tested (see Figure 2.2) correspond to multiple realistic phylogenetic scenarios for our

model. In addition to testing against the previous robust simplex approach in the synthetic cases,

we also tested against a GMM, part of the architecture used by the PyClone [83] approach.

Real tumor data were taken from TCGA. BRCA RNASeq data were downloaded from the

TCGA data portal, and preprocessed to obtain Z-scores. The BRCA RNASeq panel was chosen

due to the large number of samples available publically compared to other patient panels, as well

as the clinical subtypes. As part of the validation of the approach, we correlated the mixture frac-

tion inferences made by the simplicial complex approach outlined in this chapter to the clinical

labels supplied by TCGA.

2.2 Results

2.2.1 Synthetic Data

We tested the ability of the method on key tasks: inference of mixture fractions, and inference of

vertex positions. The mixture fraction inference task represents the inference of the composition

of a tumor, and the vertex inference task represents the inference of the genomic profile of a

subpopulation. In order to test the method, we used Root Mean Squared Deviation (RMSD) per

point per dimension for mixture fraction inference, and RMSD per model unit per dimension

for the task of vertex inference. Our method compares favorably to the simplex-based approach

outlined in [98] in both tasks, and depending on the noise level, compares favorably to the GMM.

The results are displayed in the figure below. Increasing values along the x-axis in both figures

correspond to increasing standard deviations of the noise added, while increasing values on the

y-axis indicate increasing RMSD.

An examination of the results and methods led us to expect the simplicial complex approach
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Figure 2.3: Comparison of the ability of methods to infer mixture fractions in multiple synthetic

scenarios. Included are two lines at a point (panel A), two tetrahedra at a point (panel B), two

triangles at a point (panel C) and two triangles at an edge (panel D). This figure was originally

published as Figure 4 in [80]. In the figure, σ represents the standard deviation of noise added to

the synthetic data.

ought to have performed better than the other approaches, particularly at low noise levels. This

increased performance was observed; however, it was unexpected to observe that the GMM

approach performed better in the vertex resolution task in some scenarios at higher noise levels.

Although at the noise level σ = 1, corresponding to a signal-to-noise-ratio of 1, we would

expect the data would be inferred better by a GMM, we did not expect the result to hold at lower

values of σ. In general, though, for the mixture fraction inference task, across all scenarios, the

geometric methods performed better than the GMM.

We came to a few points of understanding. The explicit nature of the geometric models may

provide an advantage in the point cloud structure in these cases. The dimensional aspects of

the simplicial complex model in particular would drive a greater advantage in cases where the
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Figure 2.4: Comparison of the ability of methods to infer vertices in multiple synthetic scenarios.

Included are two lines at a point (panel A), two tetrahedra at a point (panel B), two triangles at

a point (panel C), and two triangles at an edge (panel D). This figure was originally published

as Figure 5 in [80]. In the figure, σ represents the standard deviation of the noise addded to the

synthetic data.

low-dimensional clouds are distinct, and embedded in a relatively high dimensional space — as

this would cause GMMs to make inferences based on the entire ambient dimension only, and

the simplex method would perform inferences based on the sum of the low-dimensional spaces,

rather than on each low-dimensional space in turn. That geometry corrsponds to situations where

tumors have branching events early in the progression of the tumors, so that the spaces spanned

by the subtypes are generally distinct. This understanding is supported by the higher relative per-

formance of the simplex approach in scenario 1, and the simpicial complex approach in scenario

4. In terms of vertex inference, a more fuzzy picture emerged. Although the GMM performed

best in high-noise scenarios, prior work on RNASeq [19] showed that a realistic estimate for the

noise is to the lower-middle end of the tested noise levels.
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Further, although real-time runtime was not the primary focal point of the method, we pre-

sented real-time runtime data below:

Scenario Simplicial Complex Simplex GMM

Two Lines 173s 0.794s 0.0955s

Two Tetrahedra 297s 4.62s 0.112s

Two triangles at a point 829s 1.22s 0.133s

Two triangles at a line 554s 5.94s 0.147s

Table 2.1: Runtime in seconds based on a run of 400 data points in each synthetic scenario

The results of Table 2.1 demonstate the additional sophistication of the simplicial complex

approach carries a true cost in terms of real-time running time. However, the algorithm needs to

be run only once per data set, mitigating the increased cost of runtime.

2.2.2 Validation on Real Tumor Data

We ran the described algorithm on 1,100 tumor samples from TCGA [45]. The clustering step

found two clusters in the data. The unmixing phase identified seven total subpopulations, two

of which were determined to be overlapping based on the merging criterion. As a result, six

subpopulations in total were extracted from the data. The six subpopulations formed a simplicial

complex with a triangle as one sub-simplex, and a tetrahedron as the other sub-simplex, joined

together by a point. A visual representation of these findings is presented in Figure 2.5:

In order to ensure the method had extracted clinically-relevant findings, we sought correla-

tion between the results of our approach, and known breast tumor subtypes. First, we performed

correlation between the vertex with the highest mixture fraction — that is, which vertex number

was presumed to contribute most to a sample — and clinical label. Based on a chi-squared test of

independence for the contingency table of subtype distributions over vertex labels, we recorded a

chi-squared score of 542.5002 (p < 0.001). Next, we sought a correlation between the distribu-

36



HER2+
ER+
ER−/PR+
Triple Negative
No Clinical Label for >=1 Category

PC1

PC2

PC3

6

5

4

2 1

3

50
100

150
200

250

0
-50

-100
-150

-100

-50

0

50

100

150

200

-150

-100

-50

0

50

100

150

200

Figure 2.5: Simplicial Complex Fitting to TCGA RNASeq BRCA data [45]. Data are plotted

as a projection in PC space. Subtype labels are inferences of clinical labels (HER2+, HER2-

;ER/PR+; Triple Negative, or missing label). This figure was originally published as Figure 6 of

[80].

tion of subtyping labels from a standardized 50 gene breast cancer panel based on the Prediction

Analysis for Microarray 50 Gene Panel (PAM50) [72], and our simplex assignments (that is,

sub-simplex 1 or sub-simplex 2). Using a chi-squared test for independence for a contingency

table of subtype distribution over sub-simplex labels, we recorded a test statistic of 775.2952

(p < 0.001). In the labeling, if the assignment of genes names were ambiguous from PAM50,

we used the first suggested gene name from the BioDB gene ID conversion tool [48]. We further
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sought a less granular comparison of the PAM50 [72] subtyping to our subtyping. To do so, we

peformed a chi-squared test of independence between the predominant mixture fraction outlined

in the clinical label case, and the PAM50 labeling. We found a strongly significant chi-squared

test statistic of 1128.6668 (p < 0.001). The result suggests that goemetric structure in the PC

space can be related to clinical measures.

In order to better understand the annotations of pathways, we leveraged the knowledge base

of the DAVID ontology analysis tool [20]. For each of the inferred subpopulations of our model,

we took those genes with Z-score ≥ 3 or ≤ −3. We used these lists of genes as input to the

DAVID platform, and recorded the top ontological terms associated with each. The tool was able

to identify terms and pathways of interest, which we present in Tables 2.2 and 2.3

Z-score ≥ 3

Vertex 1 Defense Response, Inflammatory Response, Response to Wounding

Vertex 2 Myofibril, Contractile Fiber Part, Sarcomere, I band, Actin Cytoskeleton, Z Disk

Vertex 3 ∅

Vertex 4 RNA recognition motif (and assoc. terms), RNKP-1, alpha-beta plait

Vertex 5 Cell cycle (and assoc. terms), M phase, organielle fission, nuclear division

Vertex 6 Ribosome (and assoc. terms), translational elongation, cytosolic part

Table 2.2: Increased Z-score DAVID [20] ontological results.

Tables 2.2 and 2.3 were originally presented as Tables 1 and 2 in [80]. We did not find

breast cancer specific roles; however, the terms could be related to pathways connected in many

cases to the hallmarks of cancer [39].

Additionally, we constructed a minimum spanning tree of the simplicial complex in order to

make inferences as to how the subtypes associated with each of the vertices may have evolved.

The phylogeny is presented in Figure 2.6:

We attribute the fulcrum of our simplicial complex to be the most recent common ancestor

of the data points, and given that tumor cells progress from normal tissue, we assign this label.
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Z-score ≤ −3

Vertex 1 ∅

Vertex 2 Chemokine (and assoc. terms), Cytokine (and assoc. terms), interleukin-8-like

Vertex 3 Alternative splicing, splice variant, phosphoprotein, polymorphism, sequence variant

Vertex 4 Signal, signal peptide, glycoprotein, glycosylation site: N-linked, disulfide bond

Vertex 5 icosanoid, unsaturated fatty acid, alkene, leukotriene, transmembrane protein, lipid

Vertex 6 Zinc (and assoc. terms), c2h2-type

Table 2.3: Decreased Z-score DAVID [20] ontological results.
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Figure 2.6: The MST (left side) relates to the phylogeny presented (right side). Clinical labels

associated with each vertex are used to label the phylogeny inferred from the data. This figure

was originally published as Figure 7 in [80].

We assign the inflammation label based on the DAVID terms associated with vetex 1.

The most direct possible comparison with existing tools was with the purity estimation tool

called ESTIMATE [108]. Although our approach is designed for a more general problem, we

sought to compare the estimates derived from our approach with the method. By considering all

non-vertex 6 (normal) tissue as tumor tissue, we were able to derive purity fractional estimates

on our samples. While the method assigned only a fraction of samples to contain a portion of

vertex 1, those that were assigned showed correlation to the ESTIMATE [108] samples at 0.264
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Spearman correlation (p < 0.00001). Other correlations did not prove as statistically significant.

The lack of coherence may reflect a misidentification of component 6 or incompatibility of the

scoring schemes.

2.3 Conclusions

The key contribution outlined in this chapter represents an improvement in the state of the art

of geometric tumor unmixing. By allowing for a more realistic model of tumor subpopulation

evolution, the model is better able to fit mixture fractions and subpopulation genomes simulta-

neously when compared to classical models (GMM), and to the prior state of the art (simplex

unmixing). Additionally, clinical insights derived from the model provide a validation of the

proof-of-concept. However, gaps still remained at the conclusion of this work. Specifically,

the decreased performance in some tasks of the simplicial complex model to the GMM sug-

gested that improved performance might be obtained by integrating aspects of the GMM into

the geometric framework. Additionally, less noisy data types — such as DNAseq — would in

general provide a decreased noise profile when compared to RNASeq. Ideally, a complete MST

optimization would be computed over the entire simplicial complex, rather that piecewise; how-

ever, this may provide substantial algorithmic challenges. Nevertheless, significant improvement

could be made to model the optimization as over the entire simplicial complex.
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Chapter 3

Medoidshift Clustering Applied to

Genomic Bulk Tumor Data1

3.1 Introduction

As outlined in Chapter 2, within the simplicial complex unmixing framework, pre-clustering of

data points into putative sub-structures remained an important facet of the research after publish-

ing the framework [80]. This chapter focuses on improvements made to the clustering approach

that are provided in [81]. The k-medoids based approach in [80] is a parametric clustering

approach. That is, the user to the simplicial complex platform must pre-specify the number of

clusters. The biological interpretation of this parameter is the number of putative paths within a

tumor phylogeny. As a result, except for users expert in both biology and computation, it remains

a challenge to use the platform.

In order to make the platform more user-friendly, we created a novel clustering approach

more specific to the application setting. The approach was designed to eliminate parameters

(i.e., be non-parametric), to be scalable to larger data sets in terms of runtime, and to leverage

1This chapter corresponds to work originally published as Roman et al., (2016). Medoidshift clustering applied

to genomic bulk tumor data. BMC Genomics, 17(1), 6.
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the geometry specified in the problem of tumor deconvolution inference.

A novel variant of medoidshift clustering provides the requisite qualities outlined above [89].

Medoidshift clustering is a non-parametric clustering approach with the option to apply kernel

functions to the distance metric used. Additionally, it does not suffer from the so-called ”curse

of dimensionality” that affects other clustering approaches [41, 101]. Additionally, Medoidshift

clustering allows for a flexible kernel function [89], including the use of kernel functions such as

ISOMAP [97] that approximate the geodesic distance well-suited to the phylogenetic scenarios

we encounter.

Chapters 1 and 2 contain additional details on how the dimensional and mathematical prop-

erties relate well to the biological properties of the system of study. The constraints of evolution

in tumors coupled with the high dimensionality of high-throughput biological experiments, and

tumor heterogeneity creates data sets where each sample has data a large number of probes, but

each of the paths in the tumor phylogeny can be defined by a relatively small number of fea-

tures. These paths corresponds to clusters of the data in a genomic sense. Further, the intrinsic

dimensions used to characterize each of the paths may be partially overlapping.

As a consequence of the constraints of the system, medoidshift clustering [89] fits our system

quite well. In this chapter, we discuss a focal point of our contribution by demonstrating the

applicability and limits of medoidshift clustering to genomics data. We present an application to

our method on synthetic data consistent with the constraints of tumor phylogeneitcs, and assess

our method in comparison to other kernel approaches in medoidshift [89].

3.2 Methods

Medoidshift falls within a class of clustering approaches known as mode-seeking clustering [89].

A closely related mode-seeking clustering approach on which Sheikh et al. [89] based their ap-

proach was meanshift clustering [17]. The key modification of medoidshift clustering when

comparing to meanshift clustering is that in medoidshift clustering, cluster representatives are
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constrained to be themeselves data points, whereas the cluster representatives in meanshift clus-

tering need not be contained in the data set. Additionally, because of the constraints of medoid-

shift clustering, recomputation with the addition of more data to a pre-computed data set is less

computationally costly than in meanshift clustering [89].

We now provide a brief description of the workflow model of medoidshift clustering. Data

are input as a matrixX ∈ Rm×n, where there arem data points, each with n ambient dimensions.

With a shadow kernel function Φ(. . .), and a neighborhood hyperparameter h ∈ R, with a scaling

constant c0 ∈ R, then, we can define a weight that describes a contribution of a given point in

the data set to a centroid for a given cluster as follows:

f(x) = co

m∑
i=1

(
||x− xi

h
||2
)

(3.1)

as described in [89]. In Equation 3.1, co is the scaling constant outlined above, Φ(. . .) is a

shadow kernel function, and || . . . || is a distance function.

The algorithm works by assigning the medoid — that is the data point nearest to the center-

of-mass of a cluster — as the cluster representative of a neighborhood of points. We can then

describe how a data point and its representative relate to one another in the following way, using

an extension of the notation above.

yk+1 = arg min
y∈N(x)

m∑
i=1

||xi − y||φ
(
||xi − yi

h
||2
)

(3.2)

where y is the representative, subscripts designate index of the step of the iterative procedure, and

N(x) is the set of points within the neighborhood of x — that is, the neighborhood h designates

a radius, and the points within that radius are the composition of N(x). To further clarify, φ =

−Φ′;. In theory, y0 can be any point within N(x) to form a base case, although in practice we

chose the point nearest to x in kernel space.

Shiekh et al. [89] offers a proof of convergence for the approach, and details in the the-

ory of medoidshift. In the remainder of the chapter, we reference ”no kernel” or ”kernel-free”

approaches where Euclidean distance is used; however, we clarify that strictly speaking the Eu-
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clidean distance function itself is a kernel function. The usage of the terms are a matter of

parlance and simplicity when referencing the outcomes of each of the various methods.

Based on the way we normalized data in our experiments, a neighborhood hyperparameter

value of 1 was chosen (h = 1). A scaling factor of 1 (co = 1) was also used. This stemmed

from the fact that data can be normalized be be within the [0, 1] ∈ R range in each dimension.

The choice of hyperparameter values encoded the belief that each cluster is approximately unit

length and influential based on the distance in the kernel space. Additional pre-processing was

performed on the real tumor data used in this study, and is described in the real tumor data

subsection of the data section of this chapter.

3.2.1 Two-stage medoidshift clustering

Several of the key features of our data set demand modifications to the basic medoidshift pro-

cedure outlined above. In particular, our data contains biological and technical variation, which

produces noise in the data. Additionally, a denoised version of the data set lies in distinct but

overlapping low-dimesional subspaces relative to the ambient dimensionality of the data. Details

as to how the technical conditions of the data set relate to the biological systems of study can

be found in Chapters 1 and 2. Supposing the data are denoised, the geodesic distance remains

a widespread and applicable measure of distance between points, and the ISOMAP kernel [97]

encodes the geodesic distance into an algorithm. To do so, data points are conceptualized as a

complete graph, where the edge weights are the distances between any two points. The ISOMAP

distance is then the shortest path length between pairs of points in the graph. In general, the tu-

mor data used in our studies would be expected to align with the situations for which ISOMAP

is most appropriate [84, 97]. Nevertheless, the noise produced by real-world biological data sets

does not conform well to the situations for which ISOMAP was developed; and it has been noted

that in the presence of factors of noise, the performance of ISOMAP in identifying distinct low-

dimensional sub-space drops off considerably [5]. It is exactly the case that we seek to resolve
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the low-dimensional sub-spaces in the prescence of noise [69, 76].

As a result, we have sought to balance the ISOMAP [97] algorithm’s ability to identify

sub-spaces in noiseless cases with an earlier stage to suppress noise. In the first iteration of

medoidshift in our approach, we used a kernel-free Euclidean squared distance to determine a

compressed and lower-noise representation of a data set. We use the square of Euclidean dis-

tance to save computational resources compared to Euclidean distance. Because medoidshift

uses mode-seeking, the representation of the data set after the first round will be a compression

of the original data, including a compression of the noise present [89]. By using this distance

measure for the first round, we built in the assumption that the signal-to-noise ratio is relatively

high, and the noise does not exhibit meaningful bias. Based on prior work, these are reasonable

assumptions for DNA CNV data [19].

For all rounds following, we used the ISOMAP [97] distance, with a kernel function K:

K = 1− eD/h (3.3)

where D is the matrix of ISOMAP-like [97] distances between points, and h = 1 is the neigh-

borhood hyperparameter. Distances in D are computed as shortest paths, where edge weights

are squared Euclidean distances. The points used in computing D, however, are those repre-

sentatives from the first round, rather that a computation on the raw points of the data set. We

continued to use the kernel function K for all rounds following the first until convergence. As

a result of our choice of a negative exponential kernel function, representatives were chosen as

extrema in each of the clusters — that is, data points that were most outside the span of the sub-

spaces that were descriptive of other clusters. This choice was meaningful for our data, given

that tumor data consists of distinct evolving subpopulations [26]. As a result, extrema ought to

be more characteristic of potential evolutionary trajectories than data points that are reasonably

represented by other putative evolutionary trajectories. Here, the ability to represent a data point

by using another sub-space corresponds biologically to the ability to represent a data point by

using a different combination of subpopuations. By combining these two stages by altering the
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kernel function based on the stage of the clustering, we created a method that clustered data

from the low-dimensional sub-spaces representative of our biological setup that was also able to

accomodate the noise inherent with biological experimentation.

The method was run on a desktop workstation equipped with an Intel Core i7-4770K proces-

sor at 3.5 GHz per core with 32GB of Random Access Memory (RAM), and Matlab running in

64-bit mode.

3.2.2 Validation on Synthetic Data

We considered application to seven unique synthetic scenarios, to imitate seven realistic phylo-

genetic scenarios. For a given phylogenetic scenario, each path from root to leaf in the phylogeny

corresponded with one sub-space or sub-simplex in a simplicial complex. The number of nodes

in the path correspond to the number of nodes in the sub-simplex. The number of shared nodes

with alternate paths correspond to the number of shared vertices with other sub-simplices. For

full details on the relationship between tumor heterogeneity and simplicial complexes, see Chap-

ters 1 and 2. In Figure 3.1 is a visual representation of each of the scenarios, from both a

geometric and phylogenetic perspective.

Each synthetic scenario began with a description of a tumor phylogeny — that is, an evo-

lutionary tree describing how subpopulations present in a tumor may have evolved. Given the

inter- and intratumor heterogeneity present in tumor samples [21, 26, 64, 67, 85], mixtures of

subpopulations would be expected to be observed in samples. As a result of the convex combi-

nation constraint, for a given phylogenetic path, a simplex can be constructed [98]. By combining

multiple paths, the simplicies can be stitched together to form simplicial complexes [80]. For in-

stance, Figure 3.1 panel A presumes there is an early state that progresses to a progeneitor state

that splits into two differentiated tumor subtypes. The result of these two paths, each with three

subpopulations, and with two ancestors in common, would be two triangles conjoined by an

edge. Similar interpretations can be had throughout the rest of Figure 3.1. The seven scenarios
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C

D

E

F

G

Figure 3.1: Visual representation from geometric (left column) and phylogenetic perspective

(middle column) of each of the seven synthetic scenarios considered in the content of this chapter.

Labels (right column) designate each row / scenario. This figure was originally published as

Figure 1 of [81].

of study can be geometrically described as follows:

1. Two triangles joined at an edge

2. Two triangles joined at a point
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3. Two tetrahedra joined at a point

4. Two tetrahedra joined at an edge

5. Two tetrahedra joined at a face

6. A triangle and a tetrahedron joined at a point

7. A triangle and a tetrahedron joined at an edge

In each of the cases, we generated 100 replicates. In each of the replicates, 500 data points were

embedded in a 10 dimensional space. The 10 dimensions approximated the PCs of the data used

in our previous contribution. Unbiased Gaussian noise in 10 dimensions was then added, with

standard deviation 0 (no noise) up to standard deviation of 0.2 in increments of 0.05. Alterations

in the standard deviation of the noise allowed us to probe how the performance of alternative

approaches would vary with respect to changes in noise. We considered three approaches to

the application of medoidshift clustering: using a kernel-free Euclidean-based approach for all

stages, using the negative exponential kernel function from Equation 3.3 in all stages, and using

the 2-stage approach where the first stage is Euclidean-based distance, and the remaining stages

employ the kernel function from Equation 3.3.

We simulated points in a p-dimensional PC space by first defining a set of k basis vectors. We

called this set B ⊂ Rp. Then, a given sub-simplex can be conceptualized as b = (b1, . . . , bk′) ⊂

B, representing k′ ≤ k of the possible basis vectors. To generate a mixed sample, we then

chose raw propsensities from a uniform distribution between 0 and 1 inclusive, and normalized

by the sum of these propensities to derive mixture fractions. A mixed sample then consisted

of an element-wise sum of the mixture fractions multiplied by the vectors in b. To add noise,

we sampled from a multivariate Gaussian with 0 bias, and added it to the mixed sample. The

standard deviation varied in the manner described in the earlier section to assess sensitivity to

noise.

In order to assess the goodness of fit from the clusters produced by the medoidshift clustering

approach to the ground truth clusters, we used the adjusted Rand index [44, 79, 103]. The
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adjusted Rand index can be computed in the following way. The index assumes we have two

partitions of a data set. Say partition X = X1, X2, . . . , Xr, where each Xi is a set of points

comprising a cluster in X for each i ∈ [1, r] ∩ N. Further, suppose another clustering is Y =

Y1, Y2, . . . Ys, where each Yj is a set of points comprising a cluster in Y , for each j ∈ [1, s] ∩ N.

Further, we designate a matrix N to describe the amount of intersectionality in the clusters of X

and of Y . Then, we let ni,j ∈ N = |Xi∩Yj| where ni,j is the ith row, jth column ofN . Although

such a matrix would measure the amount of overlap in clusters, it does not adjust for the size of

clusters. To do so, we denote vectors describing these sizes. Let ai =
∑r

j=1(ni,j);∀i ∈ [1, r]∩N.

Similarly, let bj =
∑s

i=1(ni,j);∀j ∈ [1, s] ∩ N. Then the adjusted Rand index for X and Y is as

follows, from [44, 79, 103]:

ARI(X, Y ) =

∑
i,j

(
ni,j

2

)
− (
∑

i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
1/2(
∑

i

(
ai
2

)∑
j

(
bj
2

)
)− (

∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

) (3.4)

As a result of the mechanics of measuring adjusted Rand index, the highest value of the

ARI(. . .) function is 1, which would mean that the partitions are identical. The lower the value

for the adjusted Rand index, the more dissimilar the paritions are. To assess performance on the

synthetic data, we computed the adjusted Rand index comparing the clustering produced by a

given experimental method to the known ground truth for the synthetic data.

3.2.3 Application to Real Tumor Data

Real tumor data for these experiments were collected from TCGA. Several varieties of DNA

CNV data were collected: ovarian tumors (OV), lung squamous small cell cancers (LUSC), and

GBM. In addition to the genomic data, clinical data were also extracted for each of the tumor

types. The genomic data consisted of aCGH, which provides data in the form of log2 ratios of

the copy numbers of tumor samples compared to normal. We chose aCGH data in this case,

as it was generally perceived as lower noise and less susceptible to contamination from cell-to-

cell communication (including immune response) than RNA data [98]. Data were presented in

a set of records of CN alterations. So, to transform the data into a matrix compatible with the

49



medoidshift approach, we pre-processed the data in a method we termed blocking. That is, for

a fixed data set, whenever a change in CN for one of the samples occurs, we track the location,

and begin a new feature. The result is a fixed state of the data set within a feature, and changing

values for at least one sample in the data set for adjacent features. The procedure allowed a

compression of the data, given that we tracked the starting and ending positions of each feature.

We then termed the blocked matrixM ∈ Rm×n withm samples and n blocks. We then used PCA

to compress the data into the top 10 PCs of the blocks. PCA also had the effect of increasing the

density of the point cloud, requisite for mode-seeking approaches such as medoidshift [89]. As a

matter of procedure, blocks of adjacent chromosomes were concatenated as additional features.

Sex chromosomes were not considered in these experiments.

Earlier in our description of the methods, we said data were normalized to be in the [0, 1]

range in each PC. To perform that normalization, we performed the following computation:

M̂i,j =
Mi,j −min

s
Ms,j

max
q
Mq,i −min

r
Mr,j

(3.5)

where M̂i,j is the 0-1 normalized version of an entry in M , and Mi,j is the ith row, jth column

entry of M .

The OV data set consisted of 472 samples, while the LUSC data consisted of 408 samples.

The GBM data was not tracked in the resulting publication from this work [81] due to negative

results demonstrating the limits of applicability of the method; however, the GBM dataset cur-

rently contains 406 samples. After blocking and PCA, each data set contained 10 PC features.

In order to assess the usefulness of the medoidshift clustering approach, we conducted survival

analysis. We constructed Kaplan-Meier curves and used log-rank as a statistic to test the signif-

icance of the correlation between cluster assignment and censored survival for each of the real

data sets [59]. The OV data set had 4 subtypes reported to TCGA based on RNA data: differen-

tiated, imunoreactive, mesenchymal, and proliferative [45, 66, 99]. For that data set, we further

looked at a chi-squared test of independence for the distribution of survival based on RNA sub-

type and cluster membership. Additionally, we conducted functional analysis using the DAVID
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bioinformatics platform [20]. In order to generate the gene names that DAVID uses as input, we

looked for blocks demonstrating 4-fold amplification. We considered base pairs within 10kb of

the feature, and used Biomart [91] to produce gene names consistent with the range of base pair

values. For a given cluster, all gene names were pooled and entered into DAVID [20], using the

default parameters. The annotations belonging to the top functional cluster were recorded.

3.3 Results

3.3.1 Synthetic Data

After applying the kernel-free, negative exponential kernel, and 2-stage approaches outlined in

the methods sections to the synthetic data generated as part of the experiment, the adjusted Rand

index was computed in comparison to a known ground truth partition. The results of the compu-

tation are displayed in Figure 3.2:

Based on the results in Figure 3.2, we found that in many cases, the performance of the

kernel-free approach was infereior in the average and worst case than the kernel-based ap-

proaches. Additionally, although the ISOMAP kernel function performed better than the 2-stage

approach in instances where the noise level was low or the data were noiseless, in cases where

realistic noise levels [19] were added, the average-case performance of the 2-stage approach had

outshined the ISOMAP-like kernel only.

We also tracked the real-time running time of the approaches. The mean runtimes were

1.2854s, 1.2914s, and 0.0121s for the kernel-free, ISOMAP kernel, and 2-stage approaches

respectively. The reduced runtime we attributed to the need to compute fewer paths, as the

ISOMAP-like kernel in the 2-stage approach only was used on a compressed representation of

the data, rather than the full data set.
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Figure 3.2: Distributions of ARI, which functions as a goodness of fit, for synthetic data exper-

iments. For each subfigure, row designates standard deviation of noise, and column designates

the approach employed. For example, 4.2 is the fourth noise level (0.15 standard deviation), sec-

ond approach (ISOMAP-like kernel). Within a subfigure, each column represents the geometry

labeled at the bottom of the subfigure. This figure was originally published as Figure 2 in [81].
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3.3.2 Real Tumor Data

For each of the TCGA data sets used in the real tumor experimentation [45], we performed the

2-stage medoidshift clustering. The OV data set used provided an expected simplicial complex

structure, with three lines radiating outward from a central point. Similarly, the LUSC data

also demonstrated a simplicial complex structure, with what appeared to be two planar objects

conjoined at an edge. The OV data were clustered into three clusters, roughly corresponding

to the three arms radiating from the central point. The LUSC data clustered into two clusters;

however, these clusters visually did not tightly correspond to the perceived planar structures. A

visualization of the data in PC space, as well as the clusters found by running the medoidshift

clustering approach is provided in Figure 3.3.

In order to quantitate the results observed in Figure 3.3, we performed Kaplan-Meier survival

analysis [59] to test for differences in the distribution of censored survival time obtained from the

clinical data sets associated with the genomic data sets analyzed. For the OV data, a comparison

of cluster 1 to cluster 2 log rank test statistic had a chi-squared value of 12.557. Cluster 2

to cluster 3 yielded a test statistic of 50.9565, and cluster 1 to cluster 3 yielded a chi-squared

test statistic of 180.9646. All these values were significant at the p < 0.01 level. As a result,

the clustering in the OV case demonstrates statistically significant separability with respect to

survival times.

The Kaplan-Meier analysis for the LUSC data set showed weakly significant differences

in the survival times (p = 0.0.0339) based on a test statistic value of 3.6413. However, the

differences may be related to the relatively small size of the ”fringe” cluster, or the grouping of

those data points as very far from dense regions of the data cloud.

Also in the OV case, we sought a comparison to existing proposed subtypes based on RNA

data. The subtypes by the RNA data were published by Verhaak et al. [102]. The four subtypes

— differentiated, immunoreactive, mesenchymal, and proliferative — identified by [102] were

computed based on a non-negative matrix factorization of RNA expression data, which assigns
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Figure 3.3: Visualization of clustering of TCGA CN data by color in PC space for OV data (panel

A), and LUSC data (panel B). This figure was originally published as Figure 3 in [81].
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non-negative weights to profiles in a latent space, in a similar fashion to the contribution outlined

in Chapter 2 [80]. In order to assess how the OV results compared with the results of [102],

we set up a contingency table to run a chi-squared test of independence. The result was a chi-

squared value of 15.48091566, which suggests weak significance (p = 0.0168). We found one

of our clusters to associate with mesenchymal, one to associate with proliferative, and the third

cluster to have no distinguishable association.

We also performed ontological analysis via the DAVID tool [20]. Table 3.1 shows top

functional enrichment terms for both the OV and LUSC clusters.

Cancer type Cluster number Terms

OV 1 Keratinization, small proline-rich,

epidermal cell differentiation, epithelial cell differentiation

OV 2 Antigen processing, MHC class II, asthma

allograft rejection, type I diabetes mellitus, cell adhesion

OV 3 Keratin, coil 1a/b/2/12

intermediate filament, cytoskeleton, non-membrane-bound organelle

LUSC 1 Zinc finger, KRAB, C2H2

transcriptional regulation, DNA-binding, metal binding

LUSC 2 Keratin, peripherin, intermediate filament family orphan 1

Table 3.1: Summary of top DAVID terms for both OV and LUSC data sets used in medoidshift

experiments. NB: highly similar terms have been merged. This table was originally published as

Table 1 in [81].

Based on the ontological results, we sought links in the literature as to the identified terms

and pathways and known mechanisms of disease. In the OV set, cluster 1 shows terms associated

with differentiation of epithelial tissue, a known pathway pertubed in tumors [32, 39]. Other

clusters in OV may have varying degrees of ties to the literature, but it is difficult to quantify how

meaningful those ties may be. In the LUSC case, we found terms relating to the zinc and keratin

55



families, which may have a role in tumor development [10, 28]. However, it remained difficult

to quantify these results with respect to how significant the findings may be.

We achieved a negative result on the GBM data set. The clustering approach found only one

cluster, so differentiable survival analysis was not possible. We looked for reasons as to why this

observation may have occurred, and noticed that there were no long-term (multi-year) survivors

for the GBM data set used, indicating that perhaps only one cluster — a poorly surviving cluster

— could be supported for that data set. We also observed poor differentiability with respect to

geometry. That is, many of the data points appeared to have been sampled from some high-

dimensional multivariate Gaussian, indicating further that we would not expect to see multiple

clusters given our approach.

3.4 Conclusions

The contribution outlined here demonstrates improvment in the state of clustering approaches

applied to bulk tumor genomic data. The 2-stage approach may hold broader implications for

mitigating the effects of noise in other domains where mode-seeking clustering is applicable, in

addition to the contributions outlined here.

However, there is room to improve further given the suboptimal results in the LUSC cases,

and especially in the GBM cases. As a result of these stumbling blocks, additional normalization

or pre-processing may assist. Gross inspection of the OV data set illustrates a more dense point

cloud locally than the LUSC case, which indicates we may have been hitting the limit of applica-

bility of such a clustering approach. Similarly, in the GBM case, the improvement demonstrated

here is limited when data do not cluster well into differentiable groups with respect to clinical

variables. As single-cell data continues to flourish and become more cost feasible, we might ex-

pect further modifications to the approach to capture the unmixed nature of single-cell data that

could lead to additional clarity in the clustering procedure. Further, a combination of RNA and

DNA data coupled with integrating this clustering approach into the unmixing framework out-
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lined in Chapter 2 may yield significant new insights into tumor deconvolution, and specifically

into the geometric approach.
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Chapter 4

Toward Automated Deconvolution of Bulk

Tumors with Simplicial Complexes1

4.1 Introduction

Although work prior to this thesis and contributions from previous chapters have advanced the

understanding the interplay of intratumor heterogeneity, intertumor heterogeneity, tumor evolu-

tion, and challenges stemming from biological and technical limits, opportunities for improve-

ment remain. In short summary form, tumors exhibit properties similar to species evolution

[26, 67]. In addition to evolutionary properties, the tumors exhibit both intra- and intertu-

mor heterogeneity that we model here, and has been modeled in numerous methods previously

[3, 15, 16, 21, 27, 29, 34, 42, 49, 54, 55, 57, 58, 62, 68, 69, 74, 75, 80, 81, 82, 83, 86, 98, 109].

In the work outlined in Chapter 2, several parameters to the model were challenging for users

to estimate. The model required input of both the number of clusters in the data, as well as

the dimensionality of each of the clusters. The work outlined in Chapter 3 provides evidence

1Work from this chapter corresponds to work originally presented in Roman et al. (2017) Automated Decon-

volution of Structured Mixtures from Heterogeneous Tumor Genomic Data, Submitted. Access to a pre-print of a

previous version of the work is available at https://arxiv.org/pdf/1604.02487.pdf
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that non-parametric clustering could be applied to the pipeline of simplicial complex unmixing

[81]. Integrating the approach into the simplicial complex framework would eliminate the need

for the detection of the number of clusters. In addition to integrating the medoidshift clustering

into the simplicial complex unmixing framework, other key opportunities for improvement to the

simplicial complex framework remained.

In [80] it was observed that allowing for mixed membership in putative evolutionary trajec-

tories may better allow for uncertainty in the data. Furthermore, another parameter controlled

the dimensionality of each of the clusters in [80]. In this chapter, we outline an approach to es-

timate dimensionality in an automated fashion from the data, and integrate that module into the

simplicial complex framework. Lastly, we address the opportunity for heterogeneous data types

in [81] by considering data sets of both DNA and RNA simulataneously. Although the DNA data

has relatively less noise than RNA data [19], combinations may prove fruitful in instances where

additional replication is gained, or where only RNA data are available for some samples.

In brief, the steps to the simplicial complex unmixing framework were as follows:

1. Pre-processing / filtering

2. Dimensionality Reduction via PCA

3. Pre-clustering (partitioning) via k-medoids clustering into submixtures

4. Unmixing substructures

5. Reconciling substructures into a simplicial complex

In this chapter, we outline several key improvement to the simplicial complex framework —

we integrate the medoidshift clustering from Chapter 2 into the simplicial complex framework

we develop automated dimensionality estimation modules, and integrate those modules into the

framework; and, we address the challenge of simplicial complex deconvolution on data sets of

combinations of DNA and RNA data.
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Figure 4.1: Overview of our analysis pipeline. Input are represented as call records. These CNV

records are converted into a matrix. Following conversion, data are passed to the inference code.

The inference code includes compression via PCA, dimension estimation, with pre-clustering

based on a KNN computation. The subsimplices are merged using a maximum likelihood model.

The inferences are then analyzed using downstream analysis tools to identify pathways and term

association.

4.2 Methods and Data

In the following section, we outline the improvements made to the simplicial complex unmixing

pipeline, as well as providing application to tumor data from TCGA, and comparison with state-

of-the-art methods. The figure below provides an overview of how we segment the inference

problem with respect to the bulk tumor data in a DNA case.

We modeled the data as a matrix M ∈ Rs×g, where there are s samples and g genes in the

data set. Although strictly speaking the features may be smaller than genes — such as single

nucleotide variants or larger such as chromosome arms — we use the term genes for the sake

of interpretability of the method. The samples could be multiple samples from a single patient,

or samples spread across a patient population. We preferred the matrix format, as data from

multiple sources, including both RNA and DNA, could be transformed into this generic format.
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Pointedly, the data could stem from various DNA platforms as well, including both aCGH or

DNASeq read depth. Although the approach could be applied to a variety of genomic data, CNV

data would be most closely expected to exhibit the geometric constraints of our model [80, 98].

The method we employ to satisfy the constraints of the model while capturing notions of tumor

phylogenetics and heterogeneity can be generally modeled as

M = FV + ε (4.1)

where M is as before, F ∈ Rs×k represents fractional composition of data points, V ∈ Rk×g

are the unmixed, or ”pure” subtypes of the tumor, and ε ∈ Rs×g is an error matrix. We chose

V as the designation for the unmixed subtypes, given that from the geometric perspective, the

unmixed subtypes are vertices of a simpicial complex. Because in our case the F are mixture

components, we restricted them to have the properties of a convex combination:

∑
i

Fi,j = 1 ∀i, for fixed j

∀i, j,0 ≤ Fi,j ≤ 1.

(4.2)

Another way to state our goal is to compute F and V given M , with a needed intermediate

step of determining k.

4.2.1 Pre-processing

We first compute the Z-scores of our matrix:

Mz =
M − µM
σM

(4.3)

where Mz is the matrix of Z-scores, µ is the vector of means for each feature and σ is the vector

of standard deviations for each feature. NB: In the case of using both DNA and RNA data

together, because we expect different distributions of copy number verus read count for DNA

and RNA, the features are normalized independenly, then pooled together. That is, we compute
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the Z-scores for the DNA and Z-scores for the RNA separately, where all features are pooled into

one distribution, then concatenate the results together into a combined Z-score matrix.

Next, we compress the data using PCA [73], as in prior chapters [80, 81], and work prior

to this thesis [86, 98]. While different approaches may be used for dimensionality reduction,

PCA presents a straightforward and fast-running method to compress the data. We chose a

maximum of 12 components, but to generalize the approach, we deemed this parameter kupper =

12. We implemented the PCA using Matlab’s pca function, with economy mode on. For further

sections, we call the representation of the data in PC space SM ∈ Rs×kupper .

In order to further whittle the dimensionality of the data in a more automated fashion, we

applied the sliver-based dimensionality estimation of [14] to the data. The core of the model

suggested by Cheng and Chiu [14] was that dimension of a point cloud should be increased, until

the surrounding body forms a sliver. A sliver was defined in mathematical terms as follows:

ν < δjr

r =
Lj

j!

(4.4)

In the sliver equations, ν is the volume of an enclosing body to the point cloud, j is the current

estimate of the instrinsic dimensionality, increasing by 1 each time until the top line is false (up

to a limit of kupper), δ is a noise parameter between 0 and 1; and L is the length of the longest

edge. The guesses for enclosing structures were made using the approach outlined in [86] for

speed purposes.

After the dimensionality estimation is completed, and we take the top min(j, kupper) PCs, we

compute a [0,1] normalization of the data to conform with the parameter assumptions made in

[81]. We compute that normalization as

S[0,1] =
SM −minSM

maxSM −minSM
(4.5)

Where the minima and maxima are computed over all samples on a per-PC basis.
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4.2.2 Pre-Clustering

We next applied the pre-clustering approach outlined in [81] and discussed in detail in Chapter 3.

The goal of the method was to identify the low-dimensional substructures that compose the point

cloud, with the caveat that these substructures may be partially overlapping in dimensionality.

As a result of having distinct dimensionality from one another, they were expected to be lower

dimensionality than j determined in the prior step. For example, two triangles overlapping at

a point but having different subspaces might appear 3-dimensional on the aggregate, but each

substructure is 2-dimensional. Because of the likely distinct subspaces the clusters may have

occupied, we used an ISOMAP-like distance [97] on the later stages of the clustering, with

Euclidean-based distance for noise suppression in the first round [81]. Further, we use a negative

exponential kernel on the ISOMAP-like distance in order that very distinct data points are chosen

as representatives, rather than points more similar to points from other clusters, as the data are

distributed differently based on planes and hyper-planes, rather than a Gaussian distribution.

Chapter 3 contains full details on the deployment of the pre-clustering approach. The result of

the pre-clustering was a set of cluster representatives and clusters:

M2−stage = ∪iMN(xi) (4.6)

where N(xi) is the set of points within the neighborhood of a data point xi ∈ S[0,1], and MN(xi)

represents the points in the cluster corresponding to that neighborhood. Over the set of all of

these neighborhoods, we define a partition labeled C = C1, . . . , Cr, and S[0,1] = ∪Ci∈CCi.

Based on the partition C, we can then define an uncertainty in the clustering. We used a

weight function of a multivariate Gaussian with 0 mean vector and orthogonal covariance where

the entries were the distance from each cluster center to the mean of all cluster centers, using the

fact that cluster centers are extrema. We called this the raw weight, and sought to normalize it on

a 0-1 scale. For a raw weight for a point Ri, the normalized weight was defined

Wi =

Ri − min
Cj∈C

Ri

max
Cj∈C

Ri − min
Cj∈C

Ri

(4.7)
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where Wi is the new normalized weight term. Another interpretation of the equation is that we

normalize weight to be a percentage of the total density granted to a point from all clusters for a

particular cluster.

4.2.3 Dimensionality Estimation

Although a pre-processing step of sliver-based dimensionality estimation was applied [14], each

cluster may have a unique intrinsic dimension. However, given that the number of data points in

a cluster may be substantially less than the number of data points total, the approach offerred in

[14] was not appropriate. As a result, we performed a PCA-based instrinsic dimensionality de-

tection. The approach works as follows: first, we built a noise model by sampling the percentage

of variance explained by principal components of Gaussian noise with identity covariance and

0 mean. From those experiments, we derived a sample mean µG(i) and standard deviation σG(i)

for each increasing dimension i ∈ N∩ [1, . . . ,min(j, kupper)]. Next, we take the PCs of the data,

and find the smallest dimension i such that the variance explained by the ith PC of the data set is

less than µG(i) + κσG(i), where κ ∈ R scales the significance threshold. In our experiments, we

chose κ = 3 to correspond with p < 0.01 as the uncertainty in rejecting the hypothesis that the

variation were due to noise.

As a result of this procedure, we were able to consstruct a vector of inferred dimensions for

each cluster D ∈ (1, . . . ,max(j, kupper)
r, where there are r clusters total as above. The test is

designed to be conservative in its approach, but improves as the quality of data improves.

4.2.4 Per-Cluster Unmixing

In order to provide an estimate of the subpopulations within each cluster, we pose the problem

of unmixing each cluster as performing optimization of a function describing the probability

of observing data we see given the model choices we make. Our key choices are that the prior

distribution of the enclosing structure should be exponential on the size of the minimum spanning
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tree, which corresponds to the amount of evolutionary times that passes, and we encorporate a

Bayesian Information Criterion (BIC) penalty to reduce the number of subpopulations. The

conditional model we choose is exponential in terms of genomic distance that is not explained

by the model.

In other words, we suppose, as in [80, 98] that we pose the statement of probability as follows:

P (Θ|X) ∝ P (X|Θ)P (Θ)

∝
r∏
i=1

(
exp(−

s∑
j=1

(|xi − F i
jV

i
j |W i

j )

)
mst(Vj, Aj)

−γβ)
(4.8)

where

• γ is a regularization parameter based on the Signal-to-Noise Ratio (SNR) [80]

• V are inferred vertices

• A is the adjacency matrix of the simplicial complex

• mst(. . .) is the minimum spanning tree function

• W is the relative weight computed earlier

• F are the inferred mixture components

• xi is the ith data point

• β is a BIC-like penalty [87]

• | . . . | is L1 distance

We implemented the optimization code using minimization of the negative log likelihood in

order to both prevent underflow and for ease of implementation. We can re-pose the optimization

problem in negative log likelihood as follows:

−log(P (Θ|X)) ∝ −log(P (X|Θ)− log(P (Θ))

∝
s∑
j=1

(|xi − F i
jV

i
j |W i

j ) + γ log(mst(Vj, Aj) + β)
(4.9)

We implemented a solution using the fmincon function in Matlab, with initial guesses for

the enclosing strucutres as in [86], and a generalized expectation maximization-like procedure,
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where V and F were alternately held constant. To compute F , the lsqlin function in Matlab

was used.

4.2.5 Reconciliation into a Simplicial Complex

After various different sets of vertices are found for each substructure, we needed a way to

reconcile the bodies into a simplicial complex. We followed a two-stage approach. First, we

considered a hypergeometric distribution on the nearest neighbors of each of the vertices. In

practice we found little sensitivity to the number of nearest neighbors chosen, and chose 15 near-

est neighbors for our experiment. Based on the background distribution, we would expect |N1||N2|
N

nearest neighbors in common where there are N data points total, and N1, N2 represent the sets

of nearest neighbor points. For our procedure, if the number of observed nearest neighbors in

common were greater than the amount expected at random, the vertices were joined.

In those instances where the nearest neighbor approach did not yield one connected com-

ponent — which is cruicial for the biological interpretability of the model — we looked at each

candidate pair of vertices, then merged vertices such that the objective function outlined in Equa-

tion 4.9 was kept as low as possible — that is, that the likelihood was maximized — until one

connected component was observed. In the case that vertices were merged, whether from the

nearest neighbor or maximum likelihood phases, the new vertex was set as the mean of the two

old vertices. In Figure 4.2, we outline the algorithm in pseudocode.

4.3 Results

We applied the improvements outlined above to several data sets from TCGA [45]. These data

sets included BRCA DNA CNV data, BRCA RNASeq data, and the clinical data corresponding

to the genomic and transcriptomic samples. The copy number data included is level 4 data, which

includes mapping copy numbers to genes. The RNASeq data used was level 3 data, which also
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1: initialization

2: while notSingleConnectedComponent(Acand) do

3: mergecandIdx ←
(
size(Vcand)

2

)
. Generate a list of all possible pairs.

4: for i = 1 : length(mergecandIdx) do

5: AcandList(i)← merge(AmergecandIdx(i), A) . Merge the candidates.

6: VcandList(i)← merge(VmergecandIdx(i), V )

7: likelihood(i)← computeLikelihood(AcandList(i), VcandList(i))

8: end for

9: singleConnCompIdx← find(numConnComp(AcandList) == 1)

10: if !isEmpty(singleConnCompIdx) then

11: AcandList ← AcandList(singleConnCompIdx)

12: likelihood(i)← likelihood(singleConnCompIdx)

13: VcandList ← VcandList(singleConnCompIdx)

14: end if

15: Acand ← AcandList(arg max likelihood)

16: Vcand ← VcandList(arg max likelihood) . Choose the most likely

17: . Repeat if not 1 connected component

18: end while

19: return : Vcand, Acand

Figure 4.2: Pseudocode for merging protocol to select most likely from a set of candidate models

provided none are simplicial complexes.

included gene lists for the normalized read counts provided. As a result of the gene lists being

provided, we did not need to include a blocking procedure like the one that was used in [81].

We applied the pipeline outlined in the methods section to the TCGA data using the following

parameters: kupper = 12; 1000 replicates for the simulated Gaussians, neighborhood size 1; 15

nearest neighbors for vertex merger; κ = 3; the maximum number of iterations for the fmincon
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optimization: 1000. The choices reflect realistic computational limits coupled with desirable

values for uncertainty.

We applied the method in three separate contexts: DNA data only, RNA data only, and DNA

and RNA data coupled together. The BRCA data set has the desirable property for this appli-

cation in that clinically relevant subtypes are defined: HER2+, HER2-;ER/PR+, Triple Negative

Breast Cancer (TNBC). This subtyping is useful in the validation phase of the results.

4.3.1 RNA Data

Although numerous simplicial and simplicial complex models of unmixing the tumor data were

considered by our algorithm, ultimately, the tetrahedron visualized in Figure 4.3 was judged the

most likely based on our model.

4.3.2 DNA Data

The DNA data from TCGA holds the benefit of a reduced anticipated noise profile relative to

RNA, potntially making it less suspect in terms of contamination from infiltrating stromal and

immune cells [19, 45]. The decreased noise resulted in a sharply defined 3-armed simplicial

complex that was recapitulated visually based on our approach, visualized in Figure 4.4.

4.3.3 RNA and DNA Combined

We also constructed a representation of both RNA and DNA data together. We normalized RNA

and DNA data separately, as outlined in the methods section. Figure 4.5 is a plot of the results

of the experiment, using the same color coding system as earlier plots.
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Figure 4.3: Visualization of the unmixing of the RNA data. Data are colored based on clinical

subtype in PC space: HER2+ is red, purple for ER/PR+, and black for TNBC.

4.3.4 Ontological Analysis

To validate the functional and biological significance of the findings, we also projected the in-

ferred vertices from PC space back into the ’omics space, and looked for statistically significantly

perturbed genes. We identified those genes that had Bonferonni-corrected Z-scores at significant

levels. For RNA and the combined RNA and DNA levels, we used p = 0.01 as the significance
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Figure 4.4: Visualization of unmixing of DNA TCGA data. Data are visualized based on clinical

subtype: red for HER2+, purple for ER/PR+, and black for TNBC.

threshold; however, in the DNA case, so many genes were marked as significant at that level that

the ontology analysis tool would not run, so we used a more stringent level of p = 2.1905e− 11.

At levels smaller than that p-value, the inverse density function used to produce the resulting

Z-score in Matlab underflowed. The significant gene lists were then run through DAVID [20], a

meta-ontology tool. We evaluated the upregulated genes in each of the cases. As we expected,
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Figure 4.5: Visualized unmixing of DNA and RNA data combined, using the colors based on

clinical labels as in Figures 4.4 and 4.3

when we investigated the tissues and pathways that had significant enrichment at a Benjamini

corrected weak significance or lower (p ≤ 0.05), we encountered breast-specific terms, as well

as cancer-specific terms. The full list of results are presented in Tables 4.1, 4.2, and 4.3
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Source Term Benjamini Score Vertex

GAD DISEASE CLASS Immune 3E-010 3

GAD DISEASE CLASS Infection 0.00052 3

BIOCARTA Antigen Processing and Presentation 0.019 3

BIOCARTA CTL mediated immune response against target cells 0.0057 3

KEGG PATHWAY Allograft Rejection 4.7E-009 3

KEGG PATHWAY Cell adhesion molecules 2.4E-009 3

KEGG PATHWAY Graft-versus-host disease 3.8E-009 3

KEGG PATHWAY Antigen Processing and Presentation 3.3E-009 3

KEGG PATHWAY Type I diabetes mellitus 5.1E-009 3

KEGG PATHWAY Viral myocarditis 4.7E-009 3

KEGG PATHWAY Autoimmune thyroid disease 2.8E-008 3

KEGG PATHWAY Intestinal immune netowkr for IgA production 2.9E-007 3

KEGG PATHWAY Asthma 2.7E-005 3

KEGG PATHWAY Systemic lupus erythematosus 0.00011 3

KEGG PATHWAY cytokine-cytokine reception interaction 0.00084 3

KEGG PATHWAY natural killer cell mediated cytotoxicity 0.00092 3

KEGG PATHWAY hematopoietic cell lineage 0.0093 3

KEGG PATHWAY chemokine signaling pathway 0.0094 3

Panther Pathway T cell activation 0.00093 3

Reactome pathway Signaling in Immune System 2.8E-014 3

UP TISSUE Spleen 1.9E-017 3

UP TISSUE Blood 1.4E-012 3

UP TISSUE B-Cell 1.1E-011 3
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UP TISSUE Lymph 3.1E-011 3

UP TISSUE Lymph Node 1.1E-005 3

UP TISSUE Peripheral Blood 0.0001 3

UP TISSUE T-Cell 0.00025 3

UP TISSUE Leukocyte 0.00047 3

Table 4.1: RNA Data

Source Term Benjamini

Score

Vertex

CGAP SAGE stomach Adenocarcinoma 3rd 1.6E-3 1

CGAP SAGE cartilage Dedifferentiated chondrosarcoma lung

metastatis

5E-3 1

KEGG

PATHWAY

Systemic lupus erythematosus 9.1E-012 1

KEGG

PATHWAY

Alcoholism 1.4E-010 1

UP TISSUE Blood 1.7E-005 1

UP TISSUE Spinal cord 1.4E-005 1

UP TISSUE Pancreas 0.0003 1

UP TISSUE Ovary 0.0047 1

UP TISSUE Mammary gland 0.004 1

UNIGENE Breast (mammary gland) cancer disease 3rd 0.00057 1

UNIGENE Blood normal 3rd 0.00034 1

UNIGENE Ear normal 3rd 0.00043 1

UNIGENE mammary gland normal 3rd 0.00034 1
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UNIGENE prostate normal 3rd 0.00043 1

UNIGENE placenta normal 3rd 0.0013 1

UNIGENE oral tumor disease 0.002 1

UNIGENE spleen normal 3rd 0.0027 1

UNIGENE respiratory tract tumor disease 0.0028 1

UNIGENE bone normal 3rd 0.0032 1

UNIGENE thymus normal 3rd 0.003 1

UNIGENE uterus normal 3rd 0.0031 1

UNIGENE colon normal 0.0043 1

UNIGENE chondrosarcoma disease 0.0049 1

UNIGENE adrenal gland normal 0.0056 1

UNIGENE muscle tissue tumor 0.0073 1

UNIGENE uterine tumor disese 0.005 1

UNIGENE ovarian tumor 3rd 0.00046 2

UNIGENE ovary normal 0.00046 2

CGAP Sage mammary gland breast carcinoma 0.0048 2

CGAP SAGE colon adenocarcinoma 0.0058 2

CGAP SAGE mammary gland carcinoma metastasis to lung 0.0072 2

CGAP SAGE liver poorly differentiated adenocarcinoma 0.0076 2

UNIGENE ear normal 3rd 7.8E-005 3

UNIGENE ovarian tumor 3rd 0.0012 3

UNIGENE bone marrow normal 0.001 3

UNIGENE tongue normal 3rd 0.0038 3

CGAP SAGE mammary gland breast carcinoma 4.4E-016 3

CGAP SAGE liver poorly differentiated adenocarcinoma 8.8E-006 3
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CGAP SAGE mammary gland carcinoma 0.0028 3

CGAP SAGE prostate carcinoma 0.00037 3

CGAP SAGE stomach, poorly differentiated carcinoma by

surgery

0.0022 3

CGAP SAGE thyroid follicular adenoma 0.0027 3

CGAP SAGE liver 0.0032 3

Table 4.2: DNA Data Table

Source Term Benjamini Score Vertex

UNIGENE Breast (mammary gland) cancer disease 3rd 0.0083 2

GAD DISEASE CLASS Cancer 0.0022 4

GAD DISEASE breast cancer 5.1E-006 4

GAD DISEASE Breast Cancer 1.1E-005 4

GAD DISEASE Asthma — Autoimmune disease 0.0013 4

KEGG PATHWAY Melanoma 0.036 4

UNIGENE EST Breast (mammary gland) cancer disease 3rd 0.02 4

Table 4.3: Table of combined DNA and RNA terminology

Although we expected the DNA and RNA data combined to yield the most clear simplicial

complex and term structure, the specificity of terms in that data set relative to the others coupled

with a few number of vertices demonstrating significant terms may reflect a tradeoff in sensitivity

and specificity based on the data types used for our model.
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4.3.5 Comparison to Existing Methods

Although direct comparison with competitor methods was challenging due to competing require-

ments on data type, platform, data format, and requirements of paired tumor-normal samples, we

were able to allow our data set to be run on PyClone [83], a widely-cited approach, by making

some assumptions. We also were able to compare our results with those of [70]. The methods

from [70] rely on methylation data from TCGA, yet another type of data, while PyClone ran on

the DNA portion of the data used in our experiment. In order to fulfill the data format constraints

of PyClone [83], we assumed read length of 300 and baseline copy number of two. We note also

that PyClone is designed for deeply sequenced (1000X+) targeted data points, while the data in

TCGA does not have that level of coverage. Further, although we attempted to run all genes

through the PyClone pipeline, it did not complete in approximately one week of runtime on our

workstation with an Intel i7-4770K processor, 32GB of RAM, and operating at 3.5 GHz per core.

We omit allele frequency data, as it is not publicly available for our data set [45]. We found by

reading the documentation that PyClone’s designation as running on targeted data implied an

upper limit on the order of 30 genes per sample, so we trimmed our data list by using a published

list of driver genes only [93].

We present the comparison using Spearman correlation of our mixture estimates with those

derived from running PyClone [83] on the reduced feature data set. We found significant (p <

0.01) positive correlation between three of our four vertices and three of the four clusters inferred

by PyClone [83], demonstrating general agreement between the methods. Table 4.4 shows the

results from the comparison.

We also compared the PyClone [83] results and our results in a correlative fashion to the

clinical labels supplied by TCGA [45]. The Spearman correlations for those experiments are in

Table 4.5. We found at least weak significance p ≤ 0.05 with our approach to a number of the

clinical labels, at a similar rate to the PyClone results.

We also validated our approach using a different approach outlined in [70] based on non-
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Py1 Py2 Py3 Py4

V1 -0.1269 (0.0012) 0.1305 (0.0009) 0.1137 (0.0037) 0.0312 (0.4283)

V2 -0.0914 (0.199) -0.0994 (0.0113) -0.0869 (0.0269) 0.209 (<0.00001)

V3 -0.0265 (0.5002) -0.026 (0.5083) -0.0237 (0.547) 0.039 (0.3212)

V4 0.204 (<0.0001) -0.0743 (0.0588) -0.0383 (0.3298) -0.1501 (<0.00001)

Table 4.4: Spearman Correlation values (ρ values) among inferred vertices from simplicial com-

plex unmixing by our method and subpopulation clusters derived from PyClone applied to TCGA

breast cancer CNV data. The Py prefix is used for PyClone clusters. For our estimates, we use

the V prefix. P-values for the comparisons appear in parentheses.

HER2+ HER2-;ER/PR+ TNBC

Py1 -0.0756 (0.0543) 0.1244 (0.0015) -0.0207 (0.5986)

Py2 -0.1702 (<0.0001) 0.0349 (0.3754) 0.0566 (0.1498)

Py3 -0.0383 (0.3307) 0.0709 (0.0711) 0.0343 (0.3835)

Py4 0.2451 (<0.0001) -0.2551 (<0.0001) 0.0032 (0.9345)

Table 4.5: Spearman correlation from PyClone clusters derived from TCGA breast cancer CNV

data to clinical labels of samples. P-values for the correlations appear in parentheses

HER2+ HER2-;ER/PR+ TNBC

V1 0.1864 (<0.0001) -0.1830 (<0.0001) -0.0533 (0.1752)

V2 0.0117 (0.7670) 0.0252 (0.5222) -0.0026 (0.9467)

V3 -0.0782 (0.0467) 0.0215 (0.5853) 0.003 (0.9395)

V4 -0.2027 (<0.0001) 0.1566 (0.0001) 0.0711 (0.0706)

Table 4.6: Spearman correlation of simplicial complex mixture fractions derived from TCGA

breast CNV cancer data to clinical labels of samples.

negative matrix factorization of DNA methylation data. The results of Onuchic et al. [70] cat-

egorized five cancer subgroups present in samples, as well as stromal, immune, and normal
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subgroups. We found significant p ≤ 0.01 positive correlations between our estimated fulcrum,

which corresponded to the most recent ancestor in our data, to the stromal, immune, and normal

composition of Onuchic et al. [70]. The full results are displayed in Table 4.7.

Cancer1 Cancer2 Cancer3 Cancer4

V1 0.1026 (0.0009) -0.0151 (0.6261) -0.0137 (0.6586) 0.0411 (0.1855)

V2 -0.0196 (0.5298) 0.03 (0.3341) -0.0076 (0.8074) 0.0007 (0.982)

V3 0.047 (0.1306) 0.0133 (0.6697) -0.0003 (0.9932) 0.0171 (0.5822)

V4 -0.1562 (<0.0001) 0.0018 (0.9545) 0.0118 (0.7041) -0.0768 (0.0134)

Cancer5 Stromal Immune Normal

V1 0.091 (0.0034) -0.0666 (0.0321) -0.0467 (0.1332) -0.0399 (0.1989)

V2 0.0207 (0.5057) -0.0489 (0.1156) -0.0326 (0.2946) -0.0199 (0.5224)

V3 0.0171 (0.5822) -0.0726 (0.0194) -0.0607 (0.0506) -0.0433 (0.164)

V4 -0.0855 (0.0059) 0.1197 (0.0001) 0.103 (0.0009) 0.1008 (0.0012)

Table 4.7: Spearman correlation values for simplicial complex unmixing fractional estimates

from TCGA breast cancer CNV data to fractional estimates from Onuchic et al [70]. Parentheses

enclose p-values.

We also performed correlation analysis on the RNAseq data from our experiments to the

clinical labels. PyClone does not perform analysis on RNAseq data, so we cannot provide those

results. The data are presented in Table 4.8. We note several statistically significant (p ≤ 0.01)

correlations from our data to the clinical labels in the RNASeq data.

While our method does not provide a perfect head-to-head comparison with PyClone or the

Onuchic et al. [70] approach, we nevertheless demonstrate significant correlation among our

results, the results of those approaches, and the clinical labels supplied by TCGA [45]. We

further note several key advantages our method provides over existing methods:

1. The option to run on expression data, CNV data, protein expression data, or heterogeneous

combinations thereof
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HER2+ HER2-;ER/PR+ TNBC

V1 -0.1304 (<0.0001) 0.2235 (<0.0001) -0.2618 (<0.0001)

V2 0.004 (0.8969) -0.2397 (<0.0001) 0.3131 (<0.0001)

V3 -0.1029 (0.0009) 0.0033 (0.915) 0.0267 (0.3888)

V4 0.1636 (<0.0001) 0.0979 (0.0016) -0.1451 (<0.0001)

Table 4.8: Spearman correlation values for simplicial complex unmixing fractional estimates

from TCGA breast cancer RNAseq data with TCGA-provided clinical subtypes. Parentheses

enclose p-values.

2. The option to run on matched tumor-normal data or unmatched data

3. Amenability of our method for whole-genome or whole-exome sequencing data (i.e., data

with many features)

In the case where the constraints of an approach such as PyClone are well-satisfied, that

approach may provide advantages of being specfically designed for the data based on the under-

lying statistical model. However, in the case where those constraints are not met, the contribution

presented here may provide a reasonable alternative. As an added note, we attempted to run our

method on the trimmed data set used by PyClone in this experiment; however, the fractured

nature of the pathways did not allow for the presumed continuous geometry, and therefore con-

flicted with the geometric assumptions underlying our model.

4.4 Conclusions

The contribution presented here allows for improvement in the space of geometric models for

tumor deconvolution. The assumptions of the model mirror those in Chapter 2: a reliance on

intra- and intertumor heteroegenity coupled with tumor phylogenetics in order to better make

inferences over a large number of samples, given that these traits encode nicely as geometric

properties. We advanced the models presented in Chapter 2 by eliminating nusiance parameters,
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which allowed for greater usability. We found our tool to correlate well with a state-of-the-art set

of approaches using both CNV and methylation data, demonstrating the clinical and molecular

efficacy of the tool.

Nonetheless, there remain areas for future contributions, to be detailed in the following chap-

ter. These areas of contribution include the use of integrated data about data type in the case of

heterogeneous data — for instance, an expression of higher confidence in DNA data versus RNA

data. Further, models that can integrate single-cell data as it becomes widely available will be of

great use in prognostic and diagnostic tools.
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Chapter 5

Conclusion and Future Directions

5.1 Conclusions

Better methods to model the interaction among tumor evolution, intratumor heterogeneity, and

intertumor heterogeneity have remained challenging problems in the field of tumor biology. Al-

though prior work has created geometric models for tumor heterogeneity, to our knowledge, this

thesis represents the first efforts toward applications of simplicial complex models of tumor pro-

gression and heterogeneity. The extension from a simplex to a simplicial complex represents

several key advantages in the study of tumor biology. Through the use of a simplicial com-

plex, each branch of a tumor phylogeny can be modeled separately. The interactive nature of

tumor heterogeneity and evolution implies that modeling each branch of the phylogeny specifi-

cally yields greater understanding of the heterogeneity of the branches, which in turn may permit

better models of survival.

In Chapter 2, we presented extensions of the simplicial approach to tumor deconvolution to a

mixed membership model for tumors based on simplicial complexes. In addition, we presented

an objective function consistent with a minimum evolution interpretation of tumor phylogenies.

We applied the framework to a collection of synthetic data sets for validation versus previous

approaches, and real tumor data from TCGA in order to yield additional insights, ontology-
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related validation, and survival-related validation.

In Chapter 3, we improved the clustering used as a portion of the framework presented in

Chapter 2. Rather than the parametric clustering approach used in Chapter 2’s framework where

cluster representatives were in the middle of the subsimplices, the nonparameteric approach out-

lined in Chapter 3 coupled with the novel kernel function and distance metric permitted cluster

representatives to be extrema of the clusters. As a result, the cluster representatives had corre-

spondence to the most extreme examples of subpopulations in a tumor, rather than medoid points

within a branch. By changing from a parametric to non-parametric approach, we eliminated a

difficult to estimate parameter of the previous model. We validated the approach on several rep-

resentative synthetic data sets, and applied the method to real tumor copy number data from

ovarian, lung, and brain tumors. We demonstrated highly positive results on the ovarian tumors,

as well as the limits of the approach for functional application on the brain tumor data set. We

then were able to interpret the results on the ovarian and lung data to derive significant survival

differences and putative subtyping of the tumors.

In Chapter 4, we applied the improvements made in Chapter 3 to the framework presented

in Chapter 2. We further improved the framework by adding feature selection via BIC into

the objective function. Additionally, we developed and implemented dimensionality detection

both via slivers [14] and by a PCA [73] oriented approach, depending on the problem context.

We applied the improved pipeline to several real tumor data sets from breast tumors. The data

included both RNASeq and DNA copy number data, as well as heterogeneous combinations of

DNA and RNA data. We validated the approach through statistically significant correlation to

two state-of-the-art methods [70, 83]. One of those approaches used DNA variant data, while

the other used DNA methylation data. We further validated the approach through the use of a

meta-ontological tool [20], demonstrating enrichment for breast tumor terms. The framework

further demonstrated statistically significant correlation to clinically-validated markers.
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5.2 Future Directions

This thesis provides important and significant strides toward using geometric features of genomic

point clouds to better understand tumor biology. The developments of theory, algorithms, and

validation demonstrate improvement in relating more subtle aspects of the tumor genome to

clinically-relevant markers. Nonetheless, further contributions may increase the ability of the

algorithm to make inferences, and to translate those inferences into actionable clinical statements.

One such important future direction remains the relationship of the first round of dimen-

sionality reduction via PCA [73]. Initial work has demonstrated the efficacy of more advanced

approaches based on spectral clustering to compression of genomic data with the end goal of

deconvolution [38, 56]. Importantly, however, the initial clustering step cannot perturb the ge-

ometry uncovered through our current approaches. An approach that might implement a more

exotic reduced representation of the data might employ some approach, such as those outlined in

[38, 56], then use PCA [73] on the reduced representation. The learned relationships among fea-

tures from the first stage would be coupled with the orthogonality of the reduced representation

in PCA [73]. Otherwise, if the geometry of the point cloud is not preserved, the assumptions of

point cloud geometry leveraged in this thesis will not hold and the approach will fall short.

Further, we consider heterogeneous data types in terms of RNA and DNA quantified ex-

pression and copy number data combined into a single data set in Chapter 4, only DNA data

in Chapter 3, and only RNA data in Chapter 2. A true integration of specific noise models for

multiple platforms and data types emboided in the objective function may yield a more realistic

model of the data. For example, future work may seek to expand the platform established here

to include data from both copy number, structural variant, and single-nucleotide polymorphism

sources. One potential implementation for this sort of technology might be to incorporate Single

Nucleotide Polymorphism (SNP) mutation rates — that is, the rate of change from a particular

base pair to another base pair along the genome — in inferring subpopulations. Additionally,

distinct noise models associated with complimentary single-cell sequencing data may further
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increase the specificity of the model, and move toward unifying models of individual tumor evo-

lution and the models of bulk tumor evolution. If we assume data were present for samples

that identified new genomic features, such as SNP mutation rates and structural variant rates,

these could be incorporated into the existing data matrix outlined in earlier chapters of the thesis.

One contemporary work that embodies incorporating structural variant data into a deconvolution

model is THeTA [68, 69], which may be useful as a foundational work to future directions in this

space.

Additionally, if we suppose single-cell whole-genome data were available, these ought to

be placed in a different data matrix, due to the fact the unmixing would handle single-cell data

differently. For instance, the conditional distribution part of the probability statement places a

penalty on bulk data points from the surface of a sub-simplex, which corresponds to a penalty

for not being well-represented by some mixture of the proposed subtypes. On the other hand, a

distance-based penalty for single-cell data to the nearest inferred population might make more

sense, because the single-cell data ought not to be represented by a mixture of inferred subpop-

ulations, but rather by a specific subpopulation. Further, by using different matrices, different

noise parameters would be able to be used for both the single-cell and bulk data.

A specific step that can be taken to implement such an extension is to expand the parame-

ter set for weight or noise to be platform-specific as the data permits, and otherwise to learn a

noise model from the data. Currently, we penalize data points in probability as a function of dis-

tance from the surface of a subsimplex. If we suppose we knew the data point were a single-cell

sequence data point, we would presume that the data ought to be near a vertex representing a sub-

population of the data. Rather than distance to the surface of the subsimplex, which corrsponds

to the area well-represented by bulk samples, we could penalize in probability for distance from

an inferred vertex. To address the different noise models for DNA and RNA data, we could

explicitly model the parameter that weighs the conditional part of our probability model relative

to the prior (called γ in earlier chapters) as a vector, with each element corresponding to noise
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for a data type, rather than a scalar. In regards to further automation of these parameters, as

computational resources increase, the number of experiments that could be done ought also to

increase. As a result, the neighborhood parameter used by the medoidshift clustering aspect [81]

might be learned by trying multiple values, and choosing the value that leads to the maximum

likelihood model. In a similar fashion, the number of iterations parameter could be transformed

into a maximum runtime for the unmixing parameter, analogous to a walltime for other compute

jobs. As a result, the model could be reduced to a choice of walltime and p-value, with the other

parameters learned from the data or chosen in a maximum likelihood fashion.

The many challenges associated with modeling tumor progression and making clinically-

relevant predictions based on the models of tumor progression continue to provide a barrier to

progress in tumor biology. Nevertheless, scientific inquiry has pressed against these hurdles in

order to improve understanding. This thesis represents a step toward a more realistic understand-

ing of tumor biology based on improvements in understanding how geometric structure in tumor

point clouds may influence outcomes, and may be influenced by tumor progression and het-

erogeneity. We encapsulate these phenomena through the use of simplicial complex modeling,

which provides greater specificity that previous work. In short, the work presented in this thesis

represents an important step in a quantitative understanding in how tumors evolve, and how the

evolution of tumors relate to likely outcomes for patients. It serves as a crucial step toward an

improved deployment of quantitation and automation in personalized medicine.
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