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Preface

Everything is connected! From small groups to economic markets to global
societies – interactions among people, organizations, technology, and policies
lead to complex systems. These connected systems cannot be described with
simple equations–they need to be articulated as networks. Social Network
Analysis (SNA) offers a wide variety of tools to analyze complex connected
systems. The ability to store and work with network data in a digital en-
vironment has enabled a multiplicity of new analytic methods for networks.
Layout algorithms help analysts create attractive and compelling renderings
of data. More sophisticated techniques for detecting significant groups and
agents can be applied to larger networks than ever before. These develop-
ments and others have changed our way of perceiving and analyzing networks
in the world, and they are the ground layer for future understanding of how
networks function.

Dynamic Network Analysis (DNA) brings network reasoning to a new level
by going beyond the social connections. By adding organizations, knowledge,
tasks, locations, beliefs, etc. to the network data and analyzing all these
information together as well as the change over time offers new insights into
complex socio-cultural systems. This is a teaching book for learning DNA. It
is intended for students in all majors as well as for non-academia people who
want to analyze networks. The book is targeted to an audience that has little
or no experience with network analysis. For the advanced reader, the book
serves as a reference book, as it offers an extensive glossary and a collection of
analytical network algorithms. Readers who are familiar with SNA can learn
how to extend the scope of analysis beyond people to multi-modal networks
of people, organizations, task, resources, knowledge, events, and locations.

This book is not a manual for a specific software program, but rather an
introduction to DNA. Nevertheless, every researcher and every analyst needs
software to perform her or his research. We use ORA. ORA is a powerful
software tool to handle and analyze dynamic networks and is developed by
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the Center for Computational Analysis of Social and Organizational Systems
(CASOS) at Carnegie Mellon University. To get the most out of learning
dynamic network analysis with this book, we recommend using ORA, too.

The book is organized as follows. The first three chapters are introductions
to DNA. We suggest reading those chapters first. Chapter 1 is a general intro-
duction and it also gives a plot overview of The Tragedy of Julius Caesar, a
play by William Shakespeare which is primarily used in this book to introduce
different aspects of network analysis. Chapter 2 introduces the topic of SNA.
Chapter 3 expands people networks to meta-networks by including other en-
tity classes and covers the different methods that can be followed when using
networks consisting of two or more entity classes. Chapter 4 shows you how
to analyze groups in networks. Space (chapter 5) and time (chapter 6) are
covered in the following chapters. Chapter 7 discusses simulation of network
data and chapter 8 presents various aspects of network text analysis. Finally,
chapter 9 discusses future directions of DNA. The last part of the book covers
a structured collection of many methods and algorithms for DNA. We do not
discuss the algorithms of these measures in detail during the course of the
chapters, but they are defined at the end of the book.

At the end of every chapter you will find problem sets. You can use them
to test your knowledge about the topics that are presented in each chapter.
We do not offer solutions to these problem sets because often the answer is
not trivially ”yes” or ”no,” but you will be able to find all the information
you need to solve the questions in the book itself.
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Chapter 1

The Essence of Network
Analysis

Traditionally, network analysis has focused on the social network–who inter-
acts with whom. Most classic measures were developed from research on such
networks and were meant to be interpreted in a social context. For example,
a researcher might survey fraternity members about who they consider to be
their friends (Newcomb, 1961). The most popular individual would show up
as the Agent with the most in-links.

Unlike a conventional social network, a dynamic network bundles together
a variety of networks between different types of entities into a meta-network.
These different networks include the social network mentioned above, as well
as the membership networks. The membership networks are the relation-
ships of the students to their different fraternities, and the inter-organizational
network—and the relationships of the fraternities to each other. Humans are
not simply situated within one social network but rather a vast sea of overlap-
ping networks of different types. An analyst working with a dynamic network
attempts to choose a particular set from this ocean of relationships that is
most relevant to their work, bundles them together, and then tries to incorpo-
rate and layer them into their analysis. The analyst needs to understand the
context in which a social network operates. Thus, rather than asking just who
do you know, dynamic network analysis supports asking additional context
questions such as: How does who you know impact what you know? What
you do? Where you do it? And of course, networks change over time. In other
words, networks of interaction are now embedded in complex meta-networks
that link who, what, how, and why through time and space. Dynamic Net-

15
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work Analysis (DNA) is the study of these complex networks, generally from
a quantitative perspective. Agent-based simulation is often used to forecast
change and explore variations in the networks over time. In this book, we will
move from the basics of Social Network Analysis (SNA) to the more detailed
DNA.

DNA can be applied in a wide number of settings. Gaining an understand-
ing of the structure of Al-Qaeda is critical in fighting the war on terror and
could help prevent future events such as another September 11 attack. Pos-
sessing a true ecological map of a food chain will help keep environments
stable (Johnson et al., 2001). Because of limited resources, understanding the
varied shipping lanes merchant marine vessels traverse as they conduct inter-
national trade is vital to protecting ports of call (Davis and Carley, 2007).
Understanding how a network of satellites is connected to various locations
around the world is critical for a global company’s bottom line. A financial
network, such as those that enabled the fraud at Enron to destroy the entire
company and make a lifetime’s retirement fund disappear in a day, is also
fertile territory for DNA.

Networks surround us and pervade our interactions. Your co-workers, your
food supply, and even your own body can be construed as networks. You can-
not go through life without belonging to a network of some sort. You can even
belong to vastly different multitudes of networks which are all interconnected
to other sorts of networks that you may or may not have a clue as to their
very existence. Even if you are not associated with one particular network,
you can still be defined by your isolation from it.

So how can we use an understanding of the relations among who, what,
where, how, why and when to analyze how complex systems such as food
chains plotted to blow up a U.S. Embassy in Tanzania, the plot to murder
Julius Caesar, the performance of public health organizations, the merger
of companies, and so on? The answer lies in the science of DNA, a robust
approach to network analysis.

1.1 Network analysis beyond the social graph

It is not all about who knows whom. A lot of other factors are important
when it comes to analyzing networks. And even if we are interested in who
knows whom, looking at where the Agents are located, having a closer look
at not just who talks to whom but also what the people are talking about, or
analyzing the interaction patterns over time, may help us to gain more and
better insights into network dynamics. To give you a better impression of
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Figure 1.1: Distance and communication in a research laboratory (Allen and
Fustfeld, 1975).

what we are talking about, you can find three examples of studies, in which
researchers analyzed networks beyond the single social graph.

1.1.1 Communication as a function of distance

Allen and Fustfeld (1975) surveyed people in seven research laboratories.
Based on a list of all colleagues, the interviewee where asked with whom
they communicate “about technical or scientific matters” (Allen and Fustfeld,
1975, p. 154) at least once a week. In addition, the physical distances between
the desks of all employees were measured. For every scientist a radial distance
network was created with the person of interest as the focal node in the middle
and a circle for every 3 meters (10 feet) forming distance groups (see Figure
1.1). Furthermore, the proportion of communication partners was calculated
for every distance group.

In their analysis, Allen and Fusfeld were able to show that the probability
of communication follows an exponential decay1 as a function of distance.
This was not a very surprising result for the authors. More astonishing was
the rate of the decay. Allen and Fusfeld figured out that the probability of
weekly communication is almost zero for any distance between two scientists
having their desks more than 25–30 meters. Even more, they show the results
of intervention experiments in which the communication between groups of
people could be increased significantly just by moving their offices closer to
each other. Allen and Fustfeld (1975) were able to show strong evidence that

1The authors fit the decay with a hyperbola curve.
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“communication is influenced by the physical, architectural arrangement” of
the working environment. Similar results were shown in subsequent studies in
the following years. A recent study including a review on spatial dimensions
of social networks is provided by Sailer and McCulloh (2012). All studies
about social networks and geographical proximity or distance have one result
in common: Space matters! We will talk more about geo-spatial networks in
chapter 5.

1.1.2 Co-word analysis of invisible colleges

Networks of scientists in a particular field who collaborate for publications and
grant proposals—independently from their institutional affiliation—are called
Invisible colleges (Crane, 1972). Lievrouw et al. (1987) were interested in pos-
sible invisible colleges in a special sub-field of biomedical science. Lievrouw
and her colleagues asked the scientists in the field about their collaboration
partners. They looked for the intellectual structure of the field by analyz-
ing co-citation as well as common use of content in scientific articles. The
content analysis was accomplished by making use of index terms that were
pre-assigned by a team of professional indexers at the NIH. These indexers
had used a thesaurus of 13,000 words and had assigned on average 15 terms
to every grant. Lievrouw et al. (1987) showed in their work that

“. . . there is indeed a distinction between the communication struc-
ture, or social network, among scientists, and the actual content
of the work in which they engage.” (Lievrouw et al., 1987, p. 245)

The authors were able to reject the assumption that “social structures in sci-
ence somehow reflect or represent the intellectual structure of the research
specialty” (Lievrouw et al., 1987, p. 245). Even most scientists in the ana-
lyzed field knew each other and had many collaboration overlap, the content
analysis of their work showed different groups of specialization. From the
perspective of raising money for grants, these groups were competitors in a
fight for constraint research Resources. In a nutshell, Lievrouw et al. (1987)
showed in their research that analyzing the content of written text can result
in broader insights into the connections between people than just looking at
their social interaction ties. Networks that are created from large amounts of
text data are a very important aspect of DNA since an enormous amount of
text is created every day by journalists describing incidents around the world
and by billions of Internet and in particular Social Media users. We discuss
the different aspects of network text analysis in chapter 8.
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1.1.3 An acquaintance process

Analyzing change in networks over time is another very essential task in DNA.
In chapter 6 of this book, you will learn a lot about networks over time and
how to measure and detect change in these dynamic networks. At this point,
we tell you about the most famous analysis of networks over time in Social
Network literature. Theodore Newcomb (1961) was interested in the dynamics
that drive the formation of friendship ties—consequently, the resulting book
is titles The Acquaintance Process. To gather the data that was required for
his research, Newcomb recruited 17 students from the University of Michigan
in fall 1956 to live for 16 weeks in an off-campus fraternity housing. None of
the students had known anyone of the other students before the start of the
experiment. After every week, every student had to rank all other students of
the observed group from 1 (= best friend) to 16. Newcomb himself analyzed
his data primarily with statistical methods showing that physical proximity,
reciprocity, similarity, and complementarity were the main reasons to form
friendship. The first three of these points became generally accepted theories
for tie formation in the subsequent decades and we will describe their meaning
in chapter 2.

Many scientists analyzed the networks that were created in Newcomb’s
(1961) study. They were particularly interested in the forming of the network
structure (e.g. sub-groups). Most of the studies that re-analyzed Newcomb’s
fraternity data, came to the conclusion that the acquaintance forming process
was more or less finished after four or five weeks and that not so much changed
after this point. Nevertheless, the dynamic analysis of the networks and in
particular the original study of Newcomb (1961) describing the underlying
impulses of the acquaintance process were not possible without analyzing not
just a single social network but a collection of networks over time.

1.2 Dynamic Network Analysis as answer

DNA is concerned with who is connected to whom (as in traditional SNA)
and the strength, direction, and type of connection. In addition, DNA moves
beyond the social to simultaneously examine who is in what groups, has what
capabilities or expertise, is engaged in what activities, and holds what beliefs.
DNA simultaneously puts these networks in a geo-temporal context that de-
fines who was where and when. These diverse entities define a meta-network of
connections that link who, what, where, when, how, and why (Carley, 2004a).
In this book, we introduce the exciting field of DNA to the uninitiated and
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provide additional information on current research to the initiated. It is our
broad and lofty hope that you will soon find yourself immersed in DNA and
thus able to reap the powerful, insightful and critical analysis that only DNA
makes possible.

Let us imagine you are the president of your own company of 45 professionals
who work in the areas of software development, marketing, research, and
distribution. Things were going well for years, but now profits are slipping.
You begin to wonder if you are maximizing the resources you have at your
disposal. Do you truly have the most talented people in the most important
roles critical to your business? Is it time to look at how the skills in your
company have changed? What if years go by and everybody has the same
knowledge they did when they started. Chances are your knowledge base
would become outdated and obsolete. You need to make sure, that does
not happen so you plan to periodically monitor your employee’s talent and
knowledge base.

Do you need a tool to figure out if your company is set up in the best way
possible but are not sure how to do it? So what do you do? Do you just take
an educated guess about how your company should be arranged to maximize
employee’s talents, skills and resources? Wouldn’t it be nice if there was a
tool that could make a model of your company and based on the linkages
of education, aspirations, responsibilities, access to resources, business skills,
tell what your company really looks like? For instance, wouldn’t you like to
know who would constitute the weakest link in your company or the most
underused employee from a standpoint of their knowledge? Who are the
emerging leaders? What employees have the most knowledge and where are
they located? Can they access the right resources for the tasks they are given?

Perhaps you want to study how your company might likely perform based
on the removal of “John” since John is moving to an out of town job. Who
might take his place? Does he have access to some resources that nobody else
has access too? Was he a silo of special information? What if John performed
critical functions that officially belonged to someone else? How would you
know that? Along those lines, what are the informal channels that exist at
your company? Does your catering manager actually know the whereabouts
of your key personnel better than the respective executive assistant does?

We can’t answer any of the aforementioned questions by simply making
educated guesses about who really does what in a haphazard fashion. We
need a scientific method to go about a true analysis of the company. We need
to create a model that takes into account all the critical entities and how they
are truly connected. We would like our tool to provide scenario-based analysis
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as well. Moreover, we need it to consider incomplete or outdated information.
Could such a tool allow us to even predict how your company might grow
in the near future given the removal or addition of any key employee? The
answer is DNA.

Everyone that has ever heard of a terror network or complex organizational
structure has an intuitive idea about how such a network might be displayed
and, hence, analyzed. Such a person might logically envision that any such
terror network might have a leader and a group of underlings to carry out
certain terror-oriented tasks. They may further conclude that such a cell
could be plotted out on paper by denoting actors with dots and drawing
lines between them symbolizing connections. Likewise, a complex organization
might have a hierarchical structure with a president and board of directors
sitting at the top. However, those who are not trained in the science of DNA
will not realize what can be fully gleaned from network analysis when one takes
into account the cross-disciplinary approach of computational mathematics
and other social-science disciplines.

In such a science, complex factors are considered when conducting network
analysis. For instance, much like the Special Theory of Relativity changed the
way we think of space and time to something called space-time, we have to
take a far deeper analytical approach to what we mean when we say network
analysis. After all, networks are not like molecules—they can learn. Yes,
that is right. We already went into how networks can be comprised of nearly
anything. One thing you are well familiar with is that networks, the ones we
are most often interested in analyzing, are made up of people and those people
have a tendency to learn and forget, grow and decline. People also tend to
react to certain events in different ways, which could easily change a network
model. So let us be clear on this point: networks don’t exist in a vacuum—they
evolve (Bonacich, 2001). Networks don’t suffer damage without responding
in some way—be it growth or the emergence of new leaders and increased
activity. Networks don’t stay the same either—they change constantly. What
you analyzed today is altered by the time it is read and considered by another.
The change can be dramatic or small, but any change can be critical. One’s
assessment of any part of the network can be skewed if the information, on
which your assumptions are based, proves to be false. Along similar lines,
the information you have on a network might only be the tip of the iceberg.
When you consider all of these quandaries, a more robust science is needed to
carry out effective network analysis.

Below is a list of issues that can be tackled with DNA (Aldrich and Herker,
1977; Wasserman, 1980; Watts, 1999; Carley, 2001; ?, 2003b; Carley et al.,
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2003; Carley, 2004b; Carley et al., 2004):

• Developing algorithms to track groups in networks over time.

• Developing and testing theory of network change, evolution, adaptation,
decay, etc.

• Developing control processes and statistically valid measurements for
networks over time.

• Examining networks as probabilistic time-variant phenomena.

• Forecasting change in existing networks.

• Identifying trails through time given a sequence of networks.

• Identifying changes in node criticality, given a sequence of networks
and anything else related to multi-mode multi-link multi-time period
networks.

• Developing metrics and statistics to assess and identify change within
and across networks.

• Examining the robustness of network metrics under various types of
missing data.

• Empirical studies of multi-mode multi-link multi-time period networks.

• Developing and validating formal models of network generation and evo-
lution.

• Developing and validating simulations to study network change, evolu-
tion, adaptation, decay, etc.

• Developing tools to extract or locate networks from various data sources
such as texts.

• Developing techniques to visualize network change overall or at node
level; or the representation of a single entity, or group level, which con-
tains multiple entities.

In this book we will discuss some of these issues and provide you with the
basic DNA knowledge and skills to perform your own network projects.

1.2.1 Who can use DNA?

DNA can be used by any type of analyst interested in state-of-the-art network
analysis for a variety of reasons. This includes university researchers and an-
alysts employed by various profit and non-profit corporations, military units,
and government units. The ubiquity of networks means nearly any organiza-
tional analyst can use DNA to solve his or her own unique network problem
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(Carley, 2006) no matter what field the analyst is involved in. Like statistics,
DNA is a general purpose analytic tool that helps the analyst understand,
assess, and predict social behavior. To understand what networks are best
for DNA, we need to learn how DNA is applied and what process is involved
in conducting DNA analysis. There are two aspects of DNA. The first is
the statistical analysis of DNA data. The second is the use of simulation to
determine how a dynamic network will evolve over time.

DNA networks vary from traditional social networks in that they are larger,
dynamic, multi-mode, multiplex networks and may contain varying levels of
uncertainty. Moreover, DNA statistical tools are generally optimized for large-
scale networks and simultaneously admit the analysis of multiple networks in
which there are multiple types of entities and multiple types of links (multiplex
data). In contrast, SNA statistical tools focus on single or at most two node
classes (two mode data) and facilitate the analysis of only one type of link at
a time (Freeman, 2000).

DNA statistical tools tend to provide more measures to the user because
they have measures that use data drawn from multiple networks simultane-
ously (Carley, 2003b; Breiger et al.). From a computer simulation perspective,
entities in DNA are like atoms in quantum theory because the entities can
be treated as probabilistic. Entities in a traditional SNA model are static,
whereas entities in a DNA model have the ability to learn. In a DNA model
the properties can change over time, and the entities can adapt (Breiger et al.).
For example, a company’s employees can learn new skills and increase their
value to the network (Watts and Strogatz, 1998).

DNA allows us to analyze the interplay between various different types of
who, what, where, when, and how–which are the entities that can pretty much
include just about anything in the physical universe (Carley and Lee, 1998).
DNA adds the critical element of a network’s evolution and considers the
circumstances under which change is likely to occur and how it applies to the
entities that compose it (Carley, 2004a). It is with these entities that our
analysis must begin.

1.2.2 More than “who you know”

DNA integrates different fields which have been developed in the past. Fig-
ure 1.2 gives you an overview of the genealogical tree of DNA. In short, DNA
is rooted in graph theory and is combined with methods and theories of An-
thropology, Sociology, and Organization Theory on the one side. The other
side of DNA’s family tree focuses rather on single links and the attributes of
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Figure 1.2: The genealogical tree of dynamic network analysis

agents connected through these links than on the structure of the network.
In recent years, physicists working with network models have been creating
a field of Network Science which is—when looking at the methods they are
using—very similar to other areas enumerated in Figure 1.2. Nowadays, a lot
of different research areas describe different aspects of network analysis. DNA
includes the best of these worlds.

An entity in DNA is essentially the who, what, where, how and why. It is
something that is being studied, and it exists in relation to something else. In
addition, as we mentioned, networks can be made up of practically anything:
you and your friends constitute a social network and in it as such represent
entities in that network. For example, the millions of living organisms and food
sources in an ecosystem would be considered network entities. Furthermore,
a company might set up a network of computers and, thus, computers are
now entities in that network as well. An isolated group of terrorists might
constitute a cellular network since each terrorist is an entity of some sort. In
addition, orbiting satellites can also be networked. Our solar system is a vast
network of billions of stars of varying sizes and shapes. As a whole, these
stars comprise the Milky Way galaxy. The Milky Way galaxy is one of many
galaxies comprising the infinitely vast network of galaxies that constitute the
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Universe. Are you beginning to notice a pattern? Have we made it clear
that just about anything you think of can be considered a network on some
abstract level and, as such, anything that makes up a network is an entity of
some kind which interacts with other entities?

We will get into more details about the sorts of entities a DNA scientist
typically deals with soon enough. For now, we want to consider another
element that is very integral to an entity. This element is time. Time does
not stand still and over any given period, things, that are entities, are likely to
change. This is similar to how Albert Einstein made the connection between
space and time. It is clear that networks occupy space, and it would only
make sense to see that time is integral to the space in which the network
exists. A network that exists this year can be dramatically different than the
same network represented next year. DNA takes this change into account.
Actually, the analysis of change is the main challenge of DNA.

Entities and their relations are always changing, and this makes networks
dynamic. DNA is plowing the path for the study of this dynamic activity
which was previously inaccessible in the traditional disciplines of link analysis
where change was not likely to be a key factor. DNA looks at networks not
merely as a bunch of people connected to other people, but people that exist
in time and can be different, and often are, from one time period to the next.
Some people, after all, learn new knowledge and forgot knowledge just the
same. We are looking at networks in terms of their interconnectedness to
other entity networks and how change occurs as time marches on (Carley,
2001). This is where DNA proves its mettle. With DNA we can take a
snapshot of a network in time and with some skill in analysis, stay one step
ahead of the curve.

Let us now consider DNA on a more practical level, in a manner that
might help explain situations you have probably encountered many times.
The importance of networking is something we have all encountered before
in one form or another–be it in our personal or professional lives. In such
everyday experiences, we might say that networking is the art of making
meaningful connections. We have all heard the expression: It is not what you
know but who you know. Let us consider this common morsel of wisdom from
the perspective of DNA.

Countless variations of the phrase It is not what you know but who you
know ring true across many boundaries from the cynically hardened skeptics
to the most incorrigible optimists. Moreover, such a turn of phrase is often
ascribed as the key to both personal and professional success. However, what
is this phrase really hinting at? We know it describes a network but what
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exactly about the network? The laws of sociological nature? The laws of
social dynamics? How to get ahead? The art of networking? A certain part,
or aspect, of what it means to be an important component of a network? All
of the above? None of the above? Some of the above?

The truth is that the simple phrase, It is not what you know, but who
you know describes merely one single facet of any social network, and the
dynamic network analyst would find this turn of phrase incredibly simplistic.
In fact, have you ever considered it might totally be wrong? Can you think of
examples where the opposite might be true? How about a network model of
a Ph.D. program where an advanced degree is conferred by accumulating and
presenting research than defending such research until the thesis is accepted?
In this network, could it not be argued that what you know is more important
than whom you know? Perhaps. Nevertheless, back to that hackneyed phrase:
It is not what you know, but who you know. What is to be made of it from
the stand point of DNA?

1.3 Caesar, Brutus, and co.

To understand DNA more fully, we will apply the tool to The Tragedy of Julius
Caesar as crafted by William Shakespeare. Why Julius Caesar? In short, we
have chosen The Tragedy of Julius Caesar because chances are it is a literary
work many of us have encountered at one time or another in our educational
backgrounds, whether it be from high school or at the post-secondary level.
Moreover, it is about a simple usurpation of power, an assassination, and
betrayal. Meanwhile there are conflicting values, a plot, and a network of
people who made decisions. There is a lot of network complexity in that
play. Therefore, in our opinion, The Tragedy of Julius Caesar is a highly
useful network from that standpoint: neither too big nor small. It is just
right to show the power of DNA properly with a model that you may likely
know already. It is especially useful because it is made up of a fairly complex
arrangement of characters, allegiances, and resources. With the use of DNA
and a time machine, we might even be able to suggest to Julius Caesar how
he could have prevented his own demise.

You need not re-read the play to understand the examples we will go through
in our application of DNA. However, a familiarity with The Tragedy of Julius
Caesar might help you get more out of this book. We suggest Sparknotes.com
for a short but concise summary of the characters, events and plot (simply
search “Julius Caesar” on the SparkNote’s site search function). You can also
get a copy of Cliff’s Notes from your local bookstore. Better yet, purchase a
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copy of the play, dust off the old one in your book collection, and do something
novel, like read the play over again. It shouldn’t take you more than a couple
hours. You might even enjoy it.

It is our hope that when presented with the proper DNA model, even Bru-
tus would have seen that the fault surely did not “lie in the stars” as Cassius
reminded him in course of events. Rather, the fault lies in the failure to ana-
lyze a complex multi-modal network of Roman politicians, plebeians, military
leaders, poets, family member, citizens, soothsayers, battles, skills, allegiances,
knowledge, rhetoric and what have you–that is where true fault resides.

So we begin a journey, in hindsight nonetheless, to analyze The Tragedy
of Julius Caesar by William Shakespeare, and offer our own analytical rec-
ommendations and insights surrounding Caesar’s assassination by putting the
power of DNA to work on the network of Julius Caesar as extrapolated from
the legendary play The Tragedy of Julius Caesar.

1.3.1 The plot of the tragedy

Let us begin to consider DNA in the context of our specially created example
solely for the illustrative purposes of this book. The Tragedy of Julius Caesar
by William Shakespeare represents the assassination against the Roman dic-
tator Julius Caesar, including the aftermath. It is based on true events from
Roman history. Although the title of the play is The Tragedy of Julius Caesar,
Julius Caesar is not the central character in the plot, as you will soon learn. In
fact, Julius Caesar only appears in three scenes and he dies at the beginning
of the third act. The protagonist of the play is actually Marcus Brutus. The
plot focuses on his internal struggle with the conflicting demands of honor,
loyalty, and companionship.

The play begins with two tribunes named Flavius and Marullus who discover
a large crowd of Roman citizens roving the streets. The pedestrians are cele-
brating Julius Caesar’s victory over the Roman general Pompey, his archrival,
during a battle. The tribunes scold the citizenry for abandoning their duties
and instruct them to remove the decorations from Caesar’s statues. Caesar
enters with his associates, including the military and political figures Brutus,
Cassius, and Antony. Famously, a Soothsayer calls out “beware the Ides of
March,” but Caesar ignores him and continues with his victory celebration.

Later, Cassius and Brutus, who are friends of Caesar and each other, begin
to confer. Cassius tells Brutus that he seemed withdrawn recently. Brutus
responds by saying that he is full of self-doubt. Cassius replies by voicing his
wishes that Brutus could see himself as others see him. Cassius goes on to



D
RA
FT

28 CHAPTER 1. THE ESSENCE OF NETWORK ANALYSIS

explain that if Brutus had more confidence in himself he would realize how
honored and respected he is. Therefore, in turn, he would feel more secure
in his rightful place. Brutus states that he worries the people want Caesar
to become king, which would overturn the republic and convert it into an
authoritative regime. Cassius agrees with Brutus, and they point out that
Caesar is already considered to be a god-like figure that people idolize. In an
effort to empower Caesar, Cassius reminds Brutus that Caesar is only a man,
and he is not superior to Brutus or Cassius. To back up his claims, Cassius
recounts incidents of Caesar’s physical weakness and expresses his shock that
this fallible man has become so powerful. He blames his and Brutus’s lack
of conviction for allowing Caesar’s rise to power. Brutus considers Cassius’s
commentary as Caesar returns. Upon seeing Cassius, Caesar lets Antony know
about his suspicion and distrust for Cassius.

After Caesar departs, a politician named Casca tells Brutus and Cassius
that, during the celebration, Antony offered the crown to Caesar three times.
Each time the crown was offered the people cheered, but Caesar refused it
every time. Casca reports that right afterwards, Caesar fell to the ground and
had some kind of seizure in front of the crowd. While some would consider this
to be a sign of weakness the plebeians were unaffected by it, and continued to
show their devotion to him. Later, Brutus considers Casca’s observations that
suggest Caesar’s poor qualifications to rule. Meanwhile, Cassius brainstorms
a plan to involve Brutus in a conspiracy against Caesar.

That evening, Rome experiences destructive weather and a variety of bad
omens and forewarnings. Brutus finds letters in his house that are suppos-
edly written by Roman citizens who are worried that Caesar has become too
dominant and controlling. In actuality, the letters have been fabricated and
planted by Cassius. Cassius does this because he wants Brutus to believe
that the public is dissatisfied with Caesar. He knows that Brutus is deeply
affected by the republic’s reaction, and, therefore, after reading the letters he
knows that he will likely become more supportive of Cassius’s plot to remove
Caesar from power. Brutus fears that the populace would lose its voice in
a dictator-led empire. When Cassius arrives at Brutus’s home with his con-
spirators, Brutus is already influenced by the letters, and he takes control of
the meeting. The men unanimously agree to lure Caesar from his house and
murder him. In addition, Cassius wants to kill Antony too. His logic is that
Antony will ruin their plans. Brutus refuses to murder Antony since he fears
that too many deaths in their plan will appear too bloody and dishonorable.
After they all agree to spare Antony, the conspirators depart. Brutus’s wife,
Portia observes that Brutus appears distracted and ill at ease. She begs him
to confide in her, but he ignores her.



D
RA
FT

1.3. CAESAR, BRUTUS, AND CO. 29

As Caesar continues to prepare to go to the Senate, his wife, Calpurnia,
begs him not to go as well. In an effort to persuade him, she describes recent
nightmares she has had. In the nightmares she envisions a statue of Caesar
covered with blood and smiling men bathing their hands in the blood. Caesar
refuses to react to fear and insists on going about his normal routine. Eventu-
ally, Calpurnia convinces him to stay home. He agrees to stay home only as a
favor to her, and is careful to point out that his decision is not based on fear.
However, soon his plans change when Decius, one of the conspirators, arrives.
He assures Caesar that Calpurnia has misinterpreted her dreams, as well as
the recent omens. Caesar heads toward the Senate with the conspirators. As
Caesar proceeds through the streets toward the Senate, the Soothsayer once
again tries to warn him. However, his attempt to get his attention is unsuc-
cessful. In another attempt to warn Caesar, Artemidorus, a citizen, hands
him a letter to advise him about the conspirators, but Caesar refuses to read
it. While at the Senate, the conspirators speak to Caesar. As they are hud-
dled around him, they take turns stabbing him to death. When Caesar sees
his close friend Brutus among his murderers, he stops resisting the attack and
dies.

Calpurnia’s prediction comes true when the murderers bathe their hands
and swords in Caesar’s blood. Antony returns, after having been led away on
a false pretext, and vows his allegiance to Brutus. Later, however, he weeps
over Caesar’s body. He shakes hands with the conspirators, thus making them
all appear guilty while trying to make a gesture of conciliation. When Antony
asks for an explanation as to why they killed Caesar, Brutus replies that he
will explain their reason at the funeral. Antony asks to be allowed to speak
at the funeral, and Brutus grants his permission. Cassius, however, remains
leery of Antony. After the conspirators depart, and Antony is alone, he asserts
that Caesar’s death must be avenged.

Later, Brutus and Cassius go to speak at a public forum. Cassius exits to
speak to another section of the crowd. Brutus explains to the crowd that al-
though he admired Caesar, his ambition put Roman liberty at risk. The speech
pacifies the crowd. Brutus turns the pulpit over to Antony when Antony ap-
pears with Caesar’s body. Antony’s speech begins with praise for Brutus, but
then becomes increasingly sarcastic. He questions the statements that Brutus
made in his speech that Caesar acted only out of ambition. Antony calls at-
tention to the wealth and glory that Caesar brought to Rome. However, with
all the success that Caesar had, he rejected the crown three times. Antony
points out that Caesar was clearly not solely interested in the power to rule.
Antony takes out Caesar’s will with the intention of reading it, but then he
stops himself from reading it since he decides that it will cause unnecessary
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distress to the people. Nevertheless, the crowd pleads for him to read the will.
He leaves the pulpit to stand next to Caesar’s body. He describes Caesar’s
abhorrent death and presents Caesar’s wounded body to the crowd. After-
wards he reads Caesar’s will, which states that a sum of money will be given
to every citizen and orders that his private gardens shall be made open to the
public. The fact that such a generous man was horribly murdered enrages the
crowd, and the crowd begins to call Brutus and Cassius traitors. The masses
begin their plan to eject them from the city.

In the meantime, Caesar’s adopted son and appointed successor, Octavius,
arrives in Rome and forms a pact with Antony and Lepidus. They prepare
to fight Cassius and Brutus, who have been driven into exile and are raising
armies outside of the city. Brutus and Cassius have a heated argument regard-
ing money and honor, but they ultimately decide to settle their disagreements.
Brutus reveals that he is grieving the death of Portia, who committed suicide.
The two continue to prepare for battle with Antony and Octavius. The Ghost
of Caesar appears to Brutus that night. It announces that Brutus will meet
him again on the battlefield.

As Octavius and Antony march their army toward Brutus and Cassius,
Antony instructs Octavius where to attack, but Octavius stubbornly replies
that he will make his own orders. He is eager to assert his authority as the
heir of Caesar and the next ruler of Rome. The rivaling generals meet on the
battlefield and exchange harsh words to each other before beginning to fight.

Cassius begins to notice that his own men are retreating and he hears that
Brutus’s men also are not performing effectively. Cassius sends one of his
men, Pindarus, to check on the situation. From afar, Pindarus sees one of
their leaders, Cassius’s best friend, Titinius, being surrounded by applauding
troops and infers that he has been seized. Cassius becomes distraught and
orders Pindarus to kill him with his own sword. He dies after proclaiming that
Caesar is avenged. Soon after, Titinius arrives, and it is revealed that the men
who were encircling him were actually on his team, and they were celebrating
the victory over the opponents. When Titinius sees Cassius’s corpse he begins
to mourn the death of his friend. He is so distraught that he kills himself.

When Brutus learns of the deaths of Cassius and Titinius he is also upset,
and he prepares to take on the Romans once again. When his army loses the
battle, Brutus asks one of his comrades to hold his sword while he impales
himself on it. As he is dying, he proclaims that Caesar can rest satisfied.
When Antony speaks over Brutus’s body, he calls him the noblest Roman of
all. He points out that while the other conspirators acted out of envy and
ambition, Brutus genuinely believed that he acted for the benefit of Rome.
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Octavius orders that Brutus be buried in an honorable way. Afterwards, the
men leave to celebrate their victory.

This was the story of the Tragedy of Julius Caesar by William Shakespeare.
Now that we got that out of the way, it is time to get down to some DNA.
After all, now that we know the story, now we need to know the nodes (the
whos) that will make up our meta-network. And, without further adieu, we
are ready to talk about the basic building blocks of network analysis.

1.3.2 Saving Julius Caesar?

Nearly everything is a network. The universe is expanding. Your knowledge
is growing or languishing. People move on to different roles. One day you’re a
son, the next day you are a parent. Like string theory and quantum mechanics,
everything in our vast interconnected universe is, on some level, constantly on
the move and this is what you will come to see in Julius Caesar. The time
element makes depicting network models especially tricky because no sooner
than you construct a network, it has changed. Since this applies to Julius
Caesar, we will explore several techniques that will help you properly account
for time in your own network model.

Using DNA, our aim is to discover what Julius Caesar could not discern
for himself; how he was vulnerable in his own empire by failing to understand
the complex multi-modal evolving network around him. In doing so, we will
introduce and explore the power of DNA. We aim to show how this is done
based on our knowledge of the Julius Caesar network as presented by Shake-
speare. A DNA analyst could have made certain recommendations, based on
rock-solid mathematical computations, to Caesar, which might have seen him
carrying on his rule as emperor of Rome and conquering the rest of known
world, as he probably would have liked to have done.

Although a skeptic might conjecture that he too would have ignored our
insights, much as he did the dire warnings of the Soothsayer, the nightmares
of his wife Calpurnia, and the advice of Artemidorus shortly before his ill-fated
trip to the Roman Senate. But, that only underscores a human volatility that
can in part affect the impact of a well put together network model: is the
person who is looking at the model shrewd enough to see what it really is?

We know one thing: if we presented Julius Caesar our findings, based on
the authority of the cutting-edge computational mathematics of DNA, Decius
would have had a much harder time convincing Julius Caesar that his wife’s
dream was merely misinterpreted and that he should attend the Senate meet-
ing that day, where he would promptly be stabbed by his closest friends. Our
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findings would have given him much pause. Still, Caesar would have to act
upon them by making some kind of policy decision. He seemed to “go at it
alone,” and it cost him his life.

Nonetheless, rooted in the knowledge of DNA, a better policy for Julius
Caesar could have been crafted to avert his impending doom. We can take
solace in our lesson, however, that grounded with the results of better analyt-
ical methods we might construct policies that would prevent a network from
doing the same again be it for nefarious purposes or altruistic. Along those
lines, we should add that our purpose is not necessarily to show how DNA
can buttress the continuation of a tyrant, as Cassius might have argued, but
just demonstrate how useful it can be when applied with foresight and skill.
Brutus could have also used his own DNA model, perhaps, to see the likely
outcome of killing Caesar. He might not have needed an ill dream to tell him
that Rome would be divided in two. He might have only needed his DNA
model.

Therefore, before we begin to build our network model of the Julius Caesar
world, we first need to explain to Caesar what a network is, what its com-
ponents are, what the best ways of analyzing them are, and what challenges
are faced in analyzing complex multi-modal networks over periods. We begin
with the basics for those Roman citizens of network analysis lacking in the
rudiments as we are sure Caesar would have been in the same class as the
soothsayers and cobblers in that regards.

1.4 Problem set

1. Remember the study by Allen and Fustfeld described in this chapter—
why is the desk-to-desk distance in a company important for collabora-
tion?

2. What is the main difference between social network analysis and dy-
namic network analysis regarding to the entities of the analysis?

3. Imagine the network consisting of all employees in your company or all
students of your university as well as their connections based on sending
and receiving e-mails. What are the questions which you want to have
answered with such network data?

4. Thinking of accomplishing tasks, why do you think is it important to
know which person in an organization has which knowledge?
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5. Let us assume Julius Caesar had the support of a lot of smart net-
work analysts (including yourself after finishing this book). Why do you
think that Caesar would have listened to his analysts more that to the
soothsayers?

6. What are the differences between link analysis and network analysis?

7. Lievrouw et al. (1987) created networks from words occurring in texts.
What are the links in these networks?

8. Do you have a better network than your best friend? What are the
problems with this question?

9. Imagine a data table with people as rows and socio-economic attributes
for the people as columns. Why are these data not suitable for network
analysis?

10. Johnson et al. (2001) analyzed food chain networks. What can be a
possible research question using these data?

11. *Imagine a data table with people as rows and socio-economic attributes
for the people as columns. Why are these data suitable for network
analysis?

12. *What are the advantages and disadvantages of networks extracted from
social media?

13. *Read Crane’s invisible college study and discuss whether the results of
this work are still valid today, in particular, in your area of research.

14. *Download the Julius Caesar network data from the book’s website.
Install your favorite networks analysis tool and load the Julius Caesar
networks. That’s all for now, you will see how to analyze this data in
the next chapters.

15. *Why do you think is your social network important for getting a good
job. Also, collect some information connected to “Getting a Job” by
Marc Granovetter.

16. *Reading this book, you are probably a PhD student or an analyst that
spent lots of time in previous years with learning to know a lot. Do
you think “it is not what you know but who you know” is correct?
Do you think that your social network is the result of your personal
characteristics (education, personality) or are your characteristics the
result of your network structure?
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17. **Find the Newcomb fraternity data on the web and run some simple
statistical analysis to show which students are in vogue and how their
popularity changes over time.

18. **Search online for an article that covers your area of research and that
uses network analysis as a method. What is accomplished in this article?
What are your concerns?

19. **What analysis are you planning to accomplish by using network anal-
ysis? What are your hypotheses? What data are necessary to perform
network analysis?

20. **List ten people of your closest friends, co-workers, or fellow students.
Collect the following information about these people (you can ask them
if you do not know this information): A) Who knows whom. B) Who
is a good fried of whom. C) What are the organizational affiliations of
these people (e.g., universities, companies). D) What are there areas of
expertise (knowledge). What do you learn from the data? How are the
connections of data collected for A, B, C, and D? Based on these data,
is somebody important in your network? Why?
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Chapter 2

Analyzing Social Networks

Social networks are networks consisting of human beings. The people in these
networks are often called Agents, nodes, or actors. These terms are used
interchangeably. Connections between these Agents are called edges (or links).
These two sets, nodes and edges, are sufficient to describe the essence of social
networks. Therefore, before we can start to collect and analyze the network
of Julius Caesar, we have to answer the two fundamental questions of social
network analysis: What are the entities of our networks? And how are these
entities connected with each other?

2.1 Units of interest

2.1.1 Entities: Friends, romans, and countrymen

In the following list, we have the characters that make up our Julius Cae-
sar Network, which is based on William Shakespeares The Tragedy of Julius
Caesar. All of the characters on this list constitute an entity, which for the
purposes of DNA we say is a who. After all, they are people, even though it
is in a fictional sense. Other entity classes, which you will see later in this
book, allow us to put certain entities into other different containers, which,
perhaps you have guessed by now, correspond to the who, what, when, where
and why model. There are even more components as well, but we will explore
those more deeply when we learn about entity classes. For now, let us visit
our whos as they relate to the Julius Caesar Network we are going to build in
the next chapter. Here are the whos!

By reading the names of characters in Table 2.1 you can imagine that the

35
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Antony, (Marcus Antonius) Lucilius, friend to Brutus
Artemidorus, a teacher of rhetoric Lucius, servant to Brutus
Brutus, (Marcus Brutus) Marullus, a tribune
Caesar, (Julius Caesar) Messala, friend to Brutus
Calpurnia, wife to Caesar Metellus Cimber, a conspirator
Casca, a conspirator against Caesar Octavius, (Octavius Caesar)
Cassius, a conspirator against Caesar Pindarus, servant to Cassius
Cicero, Senator Poet
Cinna the Poet Popilius, (Popilius Lena)
Cinna, a conspirator against Caesar Portia, wife to Brutus
Citizens Publius, Senator Publius, Senator
Claudius, servant to Brutus Soothsayer
Clitus, servant to Brutus Strato, servant to Brutus
Dardanius, servant to Brutus Titinius, friend to Brutus
Decius Brutus, a conspirator Trebonius, a conspirator
Flavius, a tribune Varro, servant to Brutus
Lepidus, (Marcus Antonius Lepidus) Volumnius, friend to Brutus
Ligarius, a conspirator against Caesar Young Cato, friend to Brutus

Table 2.1: Entities (cast) of characters in Julius Caesar (whos)

decision of who is in the network and who is not, is not always trivial. It
is obvious that the main characters of the play such as Caesar, Brutus, and
Antony should represent nodes of our network. But, how should the other
characters who just play supporting actors be handled? And what about
those who do not even have a name? For example, citizens sometimes speak
as a group and sometimes a single citizen is labeled “First Citizen” or “Second
Citizen.”

First, lets discuss the poets. In the entity list of Table 2.1 you will find two
poets, “Cinna the Poet” and the “Poet.” The first one has a name, which
makes him a specific entity. The second poet is a generic entity. When it
comes to generic entities we always have to be careful to be sure that different
references to these entities really discuss the same Agent.

We decided to add the poet who shows up in the fourth act to tell Brutus
and Cassius that they should stop fighting with each other. We know that
this poet is different from Cinna, the poet who gets killed accidently in after
the assassination of Caesar. A couple of “Servants” are not part of our node
set because we perceive them to be less important. With some exceptions, the
servants of Brutus and Cassius have names which persuaded us to add them
as Agents to our selection.

Cinna, the poet is also a good example for another challenge. We men-
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tioned earlier that he got killed by the citizens because they confounded him
with another guy called Cinna who was one of the conspirators against Cae-
sar. What happened to the citizens of Rome can also happen to us when we
are collecting data for our Social Network Analysis (SNA). Unifying different
people to one entity of our analysis can easily create interesting artifacts—or,
in other words, it can destroy your whole analysis!

Finally, the most critical of our decision is certainly the node “Citizens,”
which is a group node that represents a couple of anonymous people. We can
use the same arguments discussed for generic nodes to ignore these nodes in
our networks. For your own networks you should not mix up individuals and
groups in one node class unless you have a really good argument for that.
In our case, we think we have a good reason to lump them together. The
Citizens are of key importance when it comes to the succession of Caesar and,
less gloriously, they kill Cinna the Poet. In addition, we also want to refer to
these incidents in the networks. But, we must be aware of the implications
for calculating measures for our networks. We will discuss these implications
in the later chapters of this book.

2.1.2 Relations: To love and to hate

Now that we have the nodes, the next fundamental decision is to determine
how to connect the nodes with each other. In creating our social network
of The Tragedy of Julius Caesar, we can say that the characters in the play
constitute a social network based on their interactions. It will be a who by
who network. Since the elements of our network are people, this is often called
a social network. A social network should be something familiar to anyone.
Whomever you regularly talk with can be a social network. It can be your
friends, family, the people you work with, or any combination of them. This
social network will be our first network, and it will tell us who is connected
to whom. In the case of The Tragedy of Julius Caesar the who elements are
the persons of the play as we described in the previous sub-section.

Now that we have all of the characters recorded, we need to figure out who
is connected to whom. The question to answer is what do we consider as being
connected? In our case, we are going to consider that they are connected with
each other if they appear in the same scene and interact with each other. Let
us start coding our network. Actually, we need to create five networks instead
of just one network—every act in the play of Julius Caesar gets a separate
network. The multiple networks will allow us to examine change over time
later on. But, let us start with the first act and discuss over time issues later
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
Antony 1 · · x · x x · · · · · · · ·
Brutus 2 · · x · x x · · · · · · · ·
Caesar 3 x x · x x x · · · · · · · x

Calpurnia 4 · · x · · · · · · · · · · ·
Casca 5 x x x · · x x · · · · · · ·

Cassius 6 x x x · x · · x · · x · x ·
Cicero 7 · · · · x · · · · · · · · ·
Cinna 8 · · · · · x · · · · · · · ·

Citizens 9 · · · · · · · · · x · x · ·
Flavius 10 · · · · · · · · x · · x · ·
Lucilius 11 · · · · · x · · · · · · · ·

Marullus 12 · · · · · · · · x x · · · ·
Octavius 13 · · · · · x · · · · · · · ·

Soothsayer 14 · · x · · · · · · · · · · ·

Table 2.2: Social network matrix of the first act of Julius Caesar

in this chapter.

In Table 2.2 you can see a first representation of a network. You can see
that the relations between the entities of a network are stored in a matrix.
In the left column of the matrix as well as in top row, the Agents of our
network are enumerated. An “x” is drawn in a cell of the matrix if there is
a connection between two Agents, e.g. the Soothsayer warns Caesar about
the Ides of March; therefore, you can find an “x” connecting Caesar with
the Soothsayer. The network matrix is symmetric because you can find every
connection twice in the network matrix. All other connections are set the
same way, so that the matrix aggregates all connections of the three scenes of
the first act of the play.

The decision making process that is involved in deciding which Agent is
part of the network and which is not, is similar to the process of deciding
what is an interaction and what is not. In the third scene of the first act, for
example, the two conspirators Casca and Cassius are having a discussion when
Cinna, another conspirator, enters the scene. Cinna has a short conversation
with Cassius, but Casca is not involved in this conversation at all. After
Cinna leaves the scene again, Casca and Cassius continue their interrupted
conversation. So, if we build up a network based on occurring in the same
scene we would establish a relationship between all three Agents, but if the
network is based on actual interactions, we cannot set a connection between
Cinna and Casca. For the networks of this book, we decided to look for
interaction between the actors. Therefore, this scene leads to two links in our
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network, one between Casca and Cassius and a second between Cassius and
Cinna.

This little example should show you that the decision whether a link is in
a specific network or not can be tricky. In general, the definition of a link
has to be made in every DNA project. When it comes to your own network
projects, this is an important question to ask even if you are working with
data collected by other people. In the next chapters, you will learn a lot
about different measures to identify interesting nodes or groups of nodes or
other patterns. These measures very much rely on your data. The networks
of the same organization or other group of people, or even the networks of a
play by Shakespeare, can look very different based on the definition of who is
in the network and who is not, as well as the decision about which kind of
connections to observe and which not to observe.

2.2 More definitions

This book is an introduction of network analysis, and it is targeted to students
in all majors as well as non-academia people. Therefore, we avoid complicated
definitions and equations in larger parts of the book, and we have put all of the
mathematical details in the glossary part at the end of the book. Nevertheless,
some basic definitions are necessary to be sure that we are all talking about
the same things. First of all, when reading the first pages of this book, you
have already seen that a network is defined by a set of nodes (e.g. Agents)
and links connecting these nodes. A link which connects a node with itself is
called a self-loop. Two nodes are neighbors if there is a link connecting this
pair of nodes directly with each other. Two nodes are indirectly connected if
there is a path through the network connecting a node with another node by
intermediate nodes. For example, if a is connected to b, b is connected to c,
and c is connected to d, then a and d are indirectly connected. The shortest
indirect connection (using the smallest number if intermediate nodes) is called
shortest path. The longest shortest path in a network is the diameter of the
network. A group of nodes connected by direct or indirect connections is
called a component. If you look at Figure 2.4 you can see that in act 1 and
4 our network consists of 2 components while in the acts 2, 3 and 5 all nodes
are part of one single component.

The edges can be of different types. In our five Julius Caesar networks the
edges are unweighted. This means that the importance of every edge is the
same. Each has an “x” in the matrix and they all have lines with the same
width in the network visualization. If it would not be the case that all the
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edges in our networks are treated identically, the network would be weighted.
We could, for example, say that the relation between Caesar and his wife
Calpurnia is much more important than the relation between Caesar and the
Soothsayer and, consequently, we are interested in coding this fact into the
network model. We can do so, by putting different numbers into the network
matrix, e.g. “5” into the matrix cells connecting Caesar and Calpurnia and
“1” to his connection with the Soothsayer. If we write different edge weights
into the network matrix, we call it a weighted network. To also represent
the different line weights in the network visualization, we draw the lines with
different widths.

In the context of edges we can introduce another definition. A network is
called undirected if case A is connected to B and B is connected to A. It is
directed if the connection is just in one direction. Why is this important? The
Julius Caesar networks we constructed earlier in this chapter are undirected
because our definition of a single connection is an observation while reading
the book. If we had the ability to jump back in time and ask Caesar and
his contemporaries with whom they interact with, our network data would
look different. Why? Imagine an ancient scientist surveying Caesar about his
social interactions. Probably this would turn out to be a long lasting interview
because Caesar interacts with a lot of different people. There is, however, a
pretty good chance that Caesar misses some people in answering this question;
maybe he would not remember that he ever talked with the Soothsayer. On
the other hand, a lot of people in ancient Rome who had contact with Caesar
would recall him as one of the first names in their enumeration of connected
people. To handle this asymmetric information about a single relation, we use
directed edges. So, we are able to add a connection from the Soothsayer to
Caesar but not vice versa.

We use the term simple networks to refer to networks which just consist
of undirected and unweighted links, which have no self-loop, and which in-
clude all nodes in a single component. When considering the question about
weighted or directed networks, you will realize that in social life almost no con-
nection between people is undirected; even the most fundamental emotional
connections, like love and hate, are somehow directed information. And of
course, adding weights can help to describe these relations more in detail, e.g.
how often do the people communicate, how close do they feel, or how long do
they know each other. Nevertheless, in real world scientific and business SNA
projects, the most networks are unweighted and undirected. These networks
are easier to collect and to handle. A lot of measures ignore the direction or
the weight of edges at all. In this book, you will find both variation; some-
times we will use networks with more characteristics. For the first measures
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we are going to introduce later in this chapter, just simple networks are used.

2.3 The structure of human connections

Before we start to analyze social networks, we want to give some attention
to the question why people interact with each other at all and which network
structures emerge as a result of social relations.

2.3.1 Networks on personal level

Think about the people that you met today or that you send emails to before
you started to read these pages, why did you interact with them? Or why do
Flavius and Marullus as well as Brutus and Cassius communicate with each
other rather than all of the four as a group? During the last couple of decades
scientists figured out that a vast part of the dynamics that drive the formation
of social connections can be described with a few theories.

Reciprocity. The simplest answer to the question, “why does A communi-
cate with B” is: “Maybe, B communicated with A the day before”. Network
analysts call the tendency of these bi-directional relations reciprocity (Katz
and Powell, 1955). Following this theory, people interact with each other be-
cause there is communication history. There is a good chance that you send
an e-mail to John because John had sent you an e-mail before, asking you a
question or telling you some news. Cassius confides his doubts with Caesar
to Brutus because he trusts him, probably because they have discussed other
serious matters before. Consequently, when you observe networks over time,
reciprocal connections will be a phenomenon that you will find very often.
“Reciprocal service” is also one of the characteristics that describe strong ties
(Granovetter, 1973) – we discuss weak and strong ties in some paragraphs
more in detail. In opposite, very asymmetric relations, i.e. A sends a lot of
information to B but B does not answer very often or maybe never, are a good
indicator for hierarchies (e.g. A is an employee of B and has to report him
about his project progress) or possession of valuable Knowledge or Resources
(Wellman, 1988, p. 45).

Homophily. The second big theory of social connections is homophily.
Homophily that people tend to connect with other people that are similar
to themselves. Similar based on age, gender, education, or any other socio-
demographic characteristic as well as similar behavior, goals, political posi-
tions, and religious Beliefs. Homophily is, therefore, what people mean when
they use the saying “birds of a feather flock together”. In their review arti-
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cle about homophily McPherson et al. (2001) emphasized the importance for
social connections when they stated:

“Homophily limits peoples social worlds in a way that has powerful
implications for the information they receive, the attitudes they
form, and the interactions they experience.”

The fact that people create connections based on homophily has very impor-
tant implications for the formation of groups – we will discuss this topic in the
next section. For now, we can answer the initial question of this section about
the relations in the Tragedy of Julius Caesar simply with “perhaps Flavius
and Marullus as well as Brutus and Cassius interact because they are very
similar to each other”.

Propinquity. A special form of homophily is similarity based on physical
Locations. Festinger et al. (1950) figured out in their Westgate West Study
that the friendship of students within a dorm is a function of the closeness of
their rooms. Physical (geographical) closeness is very important impetus to
forming relations – in other words: “Those close by, form a tie”. This is not
just true for students but also for co-workers or neighbors in suburbs.

Transitivity. So far, we have just discussed the direct interactions between
two people. The next theory about why people form relations with each other
involves a third person. Transitivity describes the tendency that people form
new relationships with friends of existing friends. In other words, if Jane and
Betty are friends for many years and Jane also is good fried with Joe, than
there is a good chance that Betty and Joe also form a positive relation with
each other. The dynamics in these triadic relationships where introduced by
Heider (1946) in his Balance Theory that describes the interaction of two
people and their relationship to a third person (Cartwright and Harary, 1956)
or any other form of entity (e.g. Event, idea, etc.). Look at Figure 2.1,
triad number 1 shows a balanced triad, i.e. A and B like each other and
they both like C. In opposite, triad 2 is unbalanced since A likes C but B
doesnt. Why is this unbalanced? Imagine once again the two friends Betty
and Jane and a slightly changed situation in which Betty likes Joe but Jane
doesnt. What do you think happens in such a situation? Right, Betty and
Jane start to argue about whether Joe is a nice guy or not. This results in
an unbalanced triad. And the dynamics of this arguing between Betty and
Jane are also quite predictable. Actually, there are two very likely outcomes.
First, Betty convinces Jane that Joe is a nice guy. In this case the balanced
triad number 1 would be the result. Second, Jane convinces Betty that Joe
is not a nice guy. The result is triad number 3—which is again a balance
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Figure 2.1: Triads of Heider’s balance theory

triad as the double negative relation stabilizes the relation between Jane and
Betty. 1 We can find another—yet more complex—example for transitivity in
the Julius Caesar play. Return your mind to how the conspirators prepared
their attempts to convince Brutus to support their plans. They sent him fake
letters from residents of Rome talking about the concerns over Caesar and his
leadership. When the conspirators showed up at Brutus house, Brutus closed
a pretended balanced triad with the conspirators and the people of Rome!

2.3.2 Networks on group and society level

After we discussed how individual relationships are formed, let us continue
these considerations at a larger level. If we zoom out and look first at network
consisting of all relationships of a single person (e.g. of you), and in the next
step at networks of groups (e.g. a group of friends) or even entire cities, we
can find the following characteristics. But let us start with two theories that
give better insight into arrangement of connections around a single Agent.
In case we talk about a focal single Agent and his connections, we call the
focal Agent the ego, the other nodes that are connected to ego we call alters,
and the network with all its nodes and edges is referred to as ego network or
personal network.

Weak/Strong Ties. People have a lot of relationships, some of which
are subjectively more important than others. Brutus is a very good friend of
Caesar (at least he thinks that he is) while Caesar does not feel so close to the
other Senators. Mark Granovetter used the words weak and strong ties for
these different relationships (Granovetter, 1973). He also offered a definition
for classifying the strength of a connection:

“The strength of a tie is a (probably linear) combination of the

1Of course, there are some more possible triads in case we do not just look at symmetric
but also at unsymmetric relationships, but the basic ideas and dynamics stay the same.
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amount of time, the emotional intensity, the intimacy (mutual
confiding), and the reciprocal services which characterize the tie.”
(Granovetter, 1973, p. 1361)

Based on this definition, every person has a small number of strong ties and
a more or less large number of weak ties (see next paragraph). Strong ties
are our best friends and parts of our core family. These connections are very
important for our everyday life as well as for support in important situations.
But, Granovetter’s article (1973) was titled “The Strength of Weak Ties”.
He wanted to emphasize in particular these connections in the context of the
diffusion of information. To give you an example why weak ties can be im-
portant, we refer to another study by Granovetter in which he surveyed a
blue-collar worker in a suburb of Boston (Granovetter, 1974). Granovetter
analyzed how people get their jobs and he found out that not just friends
and family were the providers of information about a vacant job, but also
acquaintance and loose connections. Even more, Granovetter concluded that
the more a job is ranked superior the more information about this job oppor-
tunity is communicated via weak ties. This is the case because strong ties
are often homogeneous ties (see homophily) while weak ties are connections
to different people with different information, Knowledge, and Resources.

Dunbar’s number. Robin Ian McDonald Dunbar leveraged the Social
Brain Hypothesis (Dunbar, 1998), based on which the social group size of pri-
mates and humans is a result of the size of their brains. Dunbar analyzed the
size of the neocortex (part of the brain that is responsible for higher func-
tions, e.g. senses, spatial–temporal reasoning, and language) from different
primates as well as their average group size and predicted a mean group size
for humans (based on the size of our neocortex) of approximately 150. This
number has since then been called Dunbars’s number and was reconfirmed
in empirical studies (Hill and Dunbar, 2003). Even some people have much
more connections and others have less, on average this turned out to be a
good estimation of social network sizes for humans.

Hierarchical organization of personal networks. In the previous para-
graphs we talked about a) weak and strong ties and b) Dunbar’s number.
Consequently, the question arises how these 150 people are organized in dif-
ferent groups of tie strength. Zhou et al. (2005) answered this question with
four hierarchical layers surrounding every human being (see Figure 2.2), with
every group being roughly three times larger than the previous one. These
groups are defined as follows:

1. Support clique. The strongest ties of a person including the core family
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Figure 2.2: Hierarchical organization of nodes in a personal network (Zhou
et al., 2005).

and the best friends is called support clique. In network studies these
alters are often collected by asking the interviewee about the people
with whom they “discuss an important personal matter”. (Burt, 1984,
p. 331). Size: 3–5 people

2. Sympathy group. The second layer consists of people that we have special
relationships with based on regular interaction, e.g. most important
co-workers, friends that we spend leisure time or share other common
interests with. Size: 12–20 people.

3. Band. The third group are people that you interact from time to time
but you don’t feel emotionally very close. These are the people that you
would also invite to your birthday party. Size: 30–50 people.

4. Clan. The largest layer includes the active network and includes “alters
that ego feels they have a personal relationship with, and make a con-
scious effort to keep in contact with, or alters whom ego has contacted
within the last 2 years” Roberts et al. (2009, p. 138) call this layer the
active network. Size: 150 people.

Group Homophily. We now look at the group level of people interacting
with each other (e.g. group of friends or co-workers). On the group level of
social connections we repeat the theory of homophily. We talked about one
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person connecting to another person because of similarities. If we imagine
that all human beings tend to connect with similar others, then this results
in groups of homogeneous people:

“Homophily in race and ethnicity creates the strongest divides in
our personal environments, with age, religion, education, occupa-
tion, and gender following in roughly that order.” (McPherson
et al., 2001, p. 415)

Six degrees of separation. The last two theories in this section describe
the structures that are created by people on society level (e.g. a city, country,
or the entire human race). In 1929, Karinthy (1929) wrote a non-scientific
short story called “Chains” that became the first description of the global
connectedness of all the people on planet earth. In Karinthys story one actor
brings forward the argument that “Planet Earth has never bees as tiny as it is
now” (reprinted in Newman et al., 2006, p. 21). He continues by enumerating
chains of social connections between people that could connect any two people
on earth with each other with five connections or less. Forty years later Travers
and Milgram (1969) became famous with an experimental study on the same
idea calling the phenomenon “Six Degrees of Separation”.

Small world. “It’s a small world” is an old saying. This refers to the
fact described in the previous paragraph that everybody on earth is somehow
connected to everyone else in short distances. At the same time, we also know
that as a result of homophily and transitivity our personal networks are very
densely knitted. When it comes to describing how people at large scale are
connected with each other via interpersonal interactions, these two opposed
characteristics are important (Hamill and Gilbert, 2009). So, on the one side
we all know each other indirectly via a very few number of intermediates, but
on the other side we just interact with 150 people on average and a lot of
them are also connected with each other. How is it possible? The answer
is global connections. Beside all our local transitive connections, every one
of us has at least a small number of ties into different social worlds, e.g.
to people in other countries, other cultures. And these global connections—
often weak ties—tie mankind closely together. Watts and Strogatz (1998)
developed an algorithm to create these small world networks artificially, but
we will discuss issues of random and stylized networks later in this book.
They also introduced the clustering coefficient that can be used to measure
the amount of transitivity in a network. The clustering coefficient of a node
is the percentage of possible links between its neighbors that are actually
established. The clustering coefficient of a network is the average clustering
coefficient of all nodes.
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2.4 Analyzing social networks

Now that we know what drives the creation of links between Agents and which
kind of network structures are formed by these dynamics, we will start to
actually analyze networks. First, we visualize the connections of our network
to get an impression of the underlying structure. Second, we are interested in
identifying important actors in our networks. For accomplishing these points,
use social networks created from the Tragedy of Julius Caesar. We discuss
some details of creating these networks in this chapter and you can find the
network matrices for all five acts in the appendix of this book. So, let’s have
a look at the Julius Caesar networks.

2.4.1 Visualizing networks

We spent a lot of time discussing different aspects of networks in the last
couple of pages. Now it is time to actually see how networks look like when we
visualize them. The matrix in Table 2.2 is easy to read but hard to interpret,
e.g. it is not easy to identify groups of interacting people or the structure of
this network. To overcome these drawbacks of the matrix representation, the
sociogram representation is used. Sociogram pictures, which were developed
in the 1930s by Jacob Levy Moreno (1953) are also called “stick-and-ball”
diagrams. Looking at Figure 4.1 helps to explain why. Every Agent in our
network is represented by a circle while every connection creates a line between
two circles. The “x” in the matrix between the Soothsayer and Caesar is
symbolized with a line between those two Agents.

This network visualization makes it easier to see the structure of the un-
derlying network. We can see that the two tribunes Flavius and Murellus are
interacting with citizens, that Caesar and the four senators Brutus, Cassius,
Casca, and Antony form the core of this network, and that other individuals
of the story are connected by a single line with this network core.

A network picture can help us to see an overview of the network structure,
but it is just the first step of analysis. The decision of deciding which node
of the network to put in a certain place in order to show a good network is,
fortunately, not your decision. Special algorithms—so called layout algorithms
(Torgerson, 1952; Fruchterman and Reingold, 1991)—are included in network
analysis software to optimize the positioning of the nodes based on the network
structure. We do not discuss further details of these algorithms in this book,
but their purpose is simple. Connected nodes are positioned closely together,
while unconnected nodes are kept apart. By doing so, the underlying structure
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Figure 2.3: Network visualization of the first act of Julius Caesar

of the network can be revealed automatically.

2.4.2 Networks over time

One aspect of DNA is time. Time is normally included in networks by creating
different networks for different time periods. In our Julius Caesar Network,
every act of the play is represented by one network. The single scenes of an act
are not identified separately, but they are aggregated to an act. Therefore, we
have five different networks because the tragedy has five acts. In Figure 2.4
you can see visualizations of these five networks. The first picture is the
same picture of Act 1 that we already know from Figure 4.1. The picture in
Act 2 shows the increasing focus of the conspirators on Brutus while Caesar
and Antony move to the periphery of the network. In Act 3 the many links
between the Agents results in a densely connected network. The fourth picture
is dominated by the divide of the main characters in two groups. The group
with Brutus is on one side, and Antony is with the triumvirate on the other
side. Brutus’ group is larger in our network because Shakespeares play focuses
on this character. The fifth picture shows us the clash of the two groups as
well as the addition of some new Agents.

You can see that these five pictures are worth a thousand words. We see
different parts of the story by looking at the visualizations of the network.
Looking at the pictures is just the first step of the analysis. Of course, we
can also do a lot more sophisticated analysis by calculating lots of different
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Figure 2.4: Networks of five acts of Julius Caesar
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measures. In later chapters, you will even learn how to analyze not just one
network but all networks together to statistically reveal change over time.

2.4.3 Identifying important agents

Once you have a network, the graph representation of a bunch of nodes, and
the links between them, you can begin to identify characteristics of that net-
work. One of the first things to consider is that some nodes stand out. Julius
Caesar, for example, was connected to more people in ancient Rome than
the Soothsayer. We know this as a result of knowing history, of reading the
Shakespeare tragedy, or of reading the short introduction in chapter 1 of this
book. We could also look at the graphical representation of the networks on
the previous pages to figure out that Caesar must have been more important
than other agents–at least unless he got killed. In case of larger networks,
e.g. with hundreds or even hundreds of thousands of nodes, however, we had
problems in identifying the important agents of the network by just looking
at the data or at the visualization. Instead, we use network measures.

A measure is an algorithmic function that tells us something insightful about
a network. In some ways, DNA is built upon the ability to apply measures to
a complex network model and draw conclusions from those measures. There
are a large number of measures that identify which things in a network are
important or key. The set we are concerned with, at least initially, are those
that measure the extent to which a node is of central importance. We are
going to learn three measures and apply them to our Julius Caesar networks.

In 1979, the network researcher Linton C. Freeman created his conceptual
clarifications of centrality in social networks (Freeman, 1979). Freeman iden-
tified “three distinct intuitive conceptions of centrality.” In the following, we
will introduce these concepts which are very important because the three mea-
sures based on these concepts are widely-used nowadays and also a lot of other
measures are based on the fundamental ideas of these concepts. To illustrate
these concepts we use a network which is similar to Freeman’s network. In
Figure 2.5 a star-like network is visualized. A single agent in the middle of
the star, Agent 1, is connected to the other 5 agents while these agents are
unconnected among them. Looking at this picture and trying to figure out
why Agent 1 is more important than the other agents in this network, leads
to three different answers. These are the three concepts that Freeman was
talking about:

1. Agent 1 has more connections to other nodes than any other node in
the network (degree)
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Figure 2.5: A simple network to illustrate different aspects of centrality

2. Agent 1 has shorter distances to all other nodes than any other node in
the network (closeness)

3. Agent 1 is often in between–on paths connecting pairs of nodes (be-
tweenness)

Degree centrality. The first concept is covered by degree centrality. De-
gree Centrality is a measure that tells the network analyst how many other
entities are connected to the entities we care about. The assumption is that
an agent who is connected to a lot of other agents, must be important. A high
Degree Centrality is an indicator for an agent who is very active and therefore
has a lot of connections. In our star network, agent 1 has a Degree Centrality
of 5, while all other agents have a Degree Centrality of 1. In the model of our
Julius Caesar Network, how many people is Julius Caesar, or any other agent,
connected with? We run the measure Degree Centrality and discover who is
the most connected entity, i.e. the most important who in this network. Will
we be surprised?

Figure 2.6 shows the result for six selected agents of our network over time.
It is obvious that Brutus is not very important at the beginning of the play but
gets the agent with the most connection in the second part when he is selected
to play a crucial role in the conspiracy. You can also see that some lines stop
after three or four acts. Casca, who is the conspirator who stabs Caesar first
from behind, is not mentioned again after the third act and Shakespeares text
implies that he gets killed by the citizens after the assassination of Caesar.
The opposite is true for Octavius who is just part of the network in the last two
acts. The ghost of Caesar appearing to Brutus results in a Degree Centrality
of 1.0 for Caesar after his death.
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Figure 2.6: Degree centrality of six agents over the course of the tragedy

Closeness centrality. The second concept of centrality is Closeness Cen-
trality. This is a measure representing the distance of an agent to all other
agents in the network. To actually calculate Closeness Centrality, we first
calculate the farness (Sabidussi, 1966). Referring again to Figure 2.5, we can
see that Agent 1 needs 1 step to all other 5 nodes resulting in a farness of 5.
For Agent 2 (as well as all other agents) the farness is 9 because of 1 step to
agent 1 and 2 steps to the 4 other agents. Therefore, the more central an agent
is, the lower is his distance to all other agents. And “distance” means “path
distance” in the way it was introduced in the previous section. To calculate
closeness centrality we use the inverse farness. Now, higher values point at
the central agents of a network. Being close to all other nodes of the network
is important because in that case communication paths are short and efficient
and the access to different Knowledge and Resourcesof the agents is easier.

Betweenness centrality. Betweenness tells us which agents are impor-
tant for the flow of communication. In terms that are more mathematical, Be-
tweenness measures the number of times that connections must pass through
a single individual in order to be connected. This measure indicates the ex-
tent that an individual is a broker of indirect connections between all others
in network, similar to a gatekeeper for information flow in an organization.
We can see that in the Julius Caesar Network such information would be
highly valuable to Caesar. People that occur on many shortest paths between
other people have higher Betweenness than those that do not. Betweenness
Centrality is one of the key measures used by those interested in networks.
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Figure 2.7: Change of betweenness centrality over time

In Figure 2.7 Betweenness Centrality is calculated for some agents. The most
astonishing result is the big change of the score of Brutus over time. In act
1, Brutus is very unimportant for the information flow; he is just connected
to agents that are also connected with each other and he lies on no single
shortest path between two other nodes. This situation changes completely
in act 2 when Brutus acts as an intermediate in many connections. When
searching the shortest paths between all pairs of other agents, Brutus lies on
these paths in almost 70 cases.

For all three measures which were introduced in the previous paragraphs
you need to know one additional point. Look at the y-axes in Figure 2.6 and
Figure 2.7. The values for Degree Centrality are in the range from 0 to 11
and even higher for Betweenness Centrality. These values are pretty much
depending on the number of agents in the network. For example, in act 2
our network consists of 16 agents. If we want to know how often Brutus is
on shortest paths between two other agents, we would look at 15 agents each
of which connected to all other 14 agents resulting in 105 different pairs of
agents. If we add just two nodes, this number goes up to 136. And the chance
is quite high that Brutus, because of his central position in the network,
would be on the shortest path of a large number of these pairs of agents. To
prevent this artifact, we scale network measures with the maximal possible
score. We do not discuss the scaling in detail at this point in the book . The
interested reader can look in the glossary. For now, we state that the result
of scaling centrality measures is that all scores are in the range of 0 and 1 for
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all networks.

2.5 Problem set

1. Think of your three best friends, and now of the three people you have
been interacting with the most during the last 10 days. Do you see how
simple definitions of your network can change your whole network data?

2. Why would you not add “Citizens” to your own network?

3. Describe reciprocity and transitivity. What is the main difference be-
tween these two concepts?

4. Why does homophily constraint the information that you get from your
personal network?

5. Why is the world small after all regards to social distances?

6. What do the lines in the network visualizations represent?

7. Why does it make sense to analyze networks over time?

8. What is the highest possible degree one agent can have in a network
with 50 agents?

9. What is meant by sympathy group and how big is your personal sympathy
group?

10. Find one agent in act 3 with a betweenness centrality score of 0.

11. *Find five agents in act 3 with a betweenness centrality score of 0.

12. *Calculate the farness of the Soothsayer in act 2.

13. *Find a pretty network visualization online. Why do you like the pic-
ture? Is the network graph a good approach to visualize the underlying
information? What is bad/confusing in your visualization?

14. *Cinna the Poet is getting killed by being confounded with Cinna the
conspirator. Think of the centrality measures, what happens when you
unify two actors to one node of your network?

15. *Explore the Julius Caesar networks from the book’s website. Create
network visualizations that are similar to the figures in this chapter.
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16. *Calculate different centrality measures and discuss the results.

17. **Read the centrality article by Freeman (1979). Freeman discusses his
three measures exclusively for connected, undirected, and unweighted
networks. Discuss implications for the measure calculation in the context
of unconnected, directed, and weighted networks.

18. **Find out what about the average number of connections and the clus-
tering coefficient of the Facebook friendship network. Imagine two ran-
dom people A and B that are friends on Facebook. What is the expected
number of shared friends of A and B?

19. **Gather the data for a connected and directed network with at least
15 nodes. You are now interested in who is connected to all other nodes
on short paths. Which metrics X of the three Freeman metrics will you
use? Why is X not trivial for your directed network? Based on the
concepts of this metrics, create two new metrics Xin and Xout that are
applicable for directed networks. Calculate the results of these metrics
for your network and discuss the differences of the results.

20. **Perform a literature review to answer these questions: What are cri-
teria for “good” network visualizations. Discuss the network pictures of
this chapter with these criteria. Create a visualization of the third act
that is better than our visualization. Why is it better?
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Chapter 3

Meta-Networks

Based on the techniques Julius Caesar has learned in the previous chapter
of this book, he can now complete a thorough network annual analysis of
how all of his senators, generals and administrators connect to each other so
he can figure out if there are any within his own imperial ranks that are in
very central network positions and can become maybe a threat for himself—
information that would be valuable to any dictator right? Julius Caesar is
interested in a local rumored plot operating in the Roman imperial Senate.
Caesar has identified several social networks containing a number of ”persons
of interest” who communicate with each other regularly by letter, chatting
at parades, conversing in whispers, meeting in secrecy. Based on carefully
obtained surveillance Caesar constructs a network model of who is talking to
whom and come up with an elaborate map detailing these relationships. He
carefully analyzes this data and draws conclusions about how best to disrupt
this network. Once again, it is the hope of the network analyst inside Caesar
that the data obtained reveals vulnerabilities within the network structure.

To get better insights into his empire, Caesar conducts a survey (let us
assume for now that all the important people in the empire participate in this
survey and answer honestly). Caesar can soon discover from the data who is
talking to whom inside his empire but he can’t quite determine if by nature of
these connections any of these pairs of communicators are a threat. After all,
his model tells him very little about what they are talking about. His model
tells him very little about what Tasks those that are talking share. His model
tells him very little about what Events those who are talking share in common.
Moreover, it would be nice if Caesar had a model of how the Knowledge of
those who are assigned for specific Tasks actually fits the Knowledge needs to

57
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successfully accomplish these Tasks. Such a complex picture might indeed be
what is needed to save Caesar from the Senatorial daggers.

In addition, Caesar is maybe interested in which armories are accessible by
which generals within his empire. He studies in close detail an inventory of
the all the armories as well as the servers they are networked to and how they
communicate with each other. He wants to take this information and draw
certain conclusions about the way the network is structured so he can draw
conclusions about how to make his military stronger. Will his current network
model of how the armories are connected help him get the job done?

In all these examples we can get network data about people and other enti-
ties are connected with each other, be they workers conspiring senators in the
Roman imperial senate, administrators and his trusted generals in the upper
echelons of his government or how his armories are all interconnected. Clearly
the complex information described above would prove extremely useful in pro-
viding an in-depth analysis of the dynamics relevant to Caesar’s dictatorship.
Meta-networks are the models to describe this complexity in a network model.

The set of networks for two or more of these entity classes is called the
meta-network. The entire field of Dynamic Network Analysis (DNA) is based
on the concept of the meta-network. Therefore, we need to ask what is a
meta-network, and how does it relate to our Julius Caesar dataset? In this
chapter, you will learn about the different node classes beyond Agents and
how they can be used and combined to create various networks. We will use
these new node classes to collect even more data from the Tragedy of Julius
Caesar. And you will learn about different concepts and measures which make
use of all these networks.

To begin with, what is an entity? In the previous chapter we defined net-
work entities as human beings. In this chapter we are going to extend this
perspective. An entity is essentially the building block of all networks. In
general, an entity is a node in a network. It is what we are networking. It is
what we are looking at and it can literally be anything that you can possibly
think of in terms of what you can possibly imagine. You name it–it is an
entity! We can’t build a network without entities. In DNA, an entity is often
best described as a who, what, where, when, how or why. These descriptions
are the hallmark of any good news story and are convenient ways to describe
any complex system or story. Networks tell stories and vice versa. We can
almost extrapolate any network from a story and a network model may indeed
tell a story, but we are getting ahead of ourselves.

If you take a few moments to ponder this, most anything you can think of
can fit into one of these categories. So, think of entities in terms of who, what,
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where, when, and why :

• A who such as Julius Caesar, Cassius, Brutus, CEOs, famous historical
people, imaginary people, myths, your friends, family members, terror-
ists, people that owe you money, scientists, celebrities, athletes, religious
figures, etc.

• A where such as The Roman Senate, The streets of Rome, Brutus’
House, cities, stores, swimming pools, lakes, rivers, oceans, countries,
roads, Planets, galaxies, etc.

• A what such as a dagger, computers, satellites, cars, cell phones, food,
money, molecules, etc.

• A why Julius Caesar is becoming too powerful and so should be killed,
other beliefs and attitudes.

So now that we met the whos in Julius Caesar, remember that an entity
can be literally anything. But for a moment, think of all the connections
that would compose a network of a company or a country. You couldn’t
describe these networks with one type of entity called ”nodes”. If indeed it
were possible at all, it is plainly obvious that we would need to interconnect
all sorts of different types of entities. We would need a model beyond a mere
network of same type entities. We would need a better model, one that would
incorporate different entity classes and allow us to perform an analysis on the
model that way. Such a model is called a meta-network.

Before we talk about meta-networks, we to need get a firm understanding
of what an entity is and how entities are the building blocks of networks. In
this chapter, we want to create a meta-network of Julius Caesar, which will
attempt to capture and present to us a model of all the entities that make up
the plot of Shakespeare’s classic play. Even though it may seem small, with
only 36 whos, just watch and see what happens when we start factoring in
Locations, Knowledge bases, Events–every entity-types that can meaningfully
describe a who, what, when, where and why of the Julius Caesar Network
model. Indeed, things can get complex fast as you will also come to see. And
of course, real world meta-networks can have tens of thousands of nodes.

3.1 More than who: Additional entity classes

It is useful to classify certain type of entities into categories or classes. A group
of entities of the same type is referred to as an entity class. The relation of
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entity class to entities is sort of like genus to species in the Linnaeus system
of classification. Toward those ends, there are ten entity classes that social
scientist have determined to be of the most value in network analysis: Agents,
Resources, Knowledge, and Tasks are the main node classes for which most
of the meta-network measures have been developed (see in the next sections
of this chapter). The other node classes are Organizations, Locations, Events,
Actions, Beliefs, and Roles. These are the genus categories of which we can
fit most species–entities. Are they beginning to sound familiar now? Can you
see the parallel between these types and the who, what, when, where, why and
how model?

These classifications are what drive many of the advanced mathematical
algorithms that can make a highly complex meta-network comprehensible to
an analyst. The good news is that nearly anything that can be an entity can
neatly fall into one of these entity classes and you will see that as we build
the Julius Caesar model, we will place our entities into such containers as the
entity class types described above. In detail, the ten entity classes can be
defined as follows:

1. Agents are individual decision makers. The most common type of de-
cision makers are people. However, this category could also be used
for other types of actors such as robots or monkeys. A single Agent
represents any person: a family member, a Roman soldier, Soothsayer,
Calpurnia, Cicero, any historical figure, a terrorist, or a teacher.

2. Resources are products, materials, or goods that are necessary to per-
form Tasks, Events, and Actions. A Resource could literally be a dagger,
a cloak, a crown, a short sword, a computer, money, bombs, tools, or
books.

3. Knowledge describes cognitive capabilities and skills. Knowledge could
be Trigonometry, History, English, Economics, the science of DNA, or
the Knowledge about how to perform a surgery or to build bombs.

4. Tasks are well defined procedures or goals. A Task could be any process
in a company, e.g. product development or administration, but also the
plan to kill Caesar.

5. Organizations are collectives of people that try to reach a common goal.
An Organization could be a specific company, the United Nations, or
the government of a country.
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6. Locations are geographical positions at any aggregation level that de-
scribe places or areas. A Location could be 1600 Pennsylvania Avenue
in Washington, London, Florida, The Middle East, Earth, or Mars.

7. Events are occurrences or phenomena that happen. An Event could be
9-11, the JFK Assignation, the Super Bowl, a wedding, a funeral, or an
inauguration. Specific Events are one time occurrences with a specific
date.

8. Actions are specific activities done by Agents. An Action could be buy-
ing a car, writing a letter of recommendation, or flying to Africa.

9. Beliefs are any form of religion or other persuasion. A Belief could be
to believe that there is a god, or that there are many gods, or that that
Earth is flat. Some Beliefs are signaled by sentiment such as ”war is
bad.”

10. Roles describe functions of individual decision makers abstracted from
specific Agents. A Role could be leader of a group, driver of a car, or
mother of an Agent.

In addition to these 10 node classes we use an 11th node class that is differ-
ent. Groups also referred to as meta-nodes, are any categorization of nodes
into a cluster. Groups are defined by one or more of the grouping algorithms
(see next chapter).

To repeat the function of these node classes and to show their differences
as well as give a first impression about how these node classes are connected
with each other, we summarize the Julius Caesar plot very briefly. Brutus
(Agent) and other senators (Roles) agree that Rome (Location) would be
a better place without Caesar (Belief ). To kill Caesar (Task) they form a
group of assassins (Organization). To accomplish their Task they need to
know about Caesar’s daily routine (Knowledge) and how to get their knives
(Resources) into the senate. Finally, the assassination (Event) takes place
because somebody actually stabs Caesar (Action).

So when building a network the DNA scientist needs to be aware of how to
categorize the entities he or she wishes to study, that is a decision has to be
made as to what entity classes are needed and where it makes sense to put
the entity in. To a certain extent one can make up their own entity classes
sole and separate from the ones aforementioned. However, it probably is not
wise to do so; by fitting your entities into a traditional, if not obvious, entity
classes, we can then run powerful measures on them. What is a measure? We
will get to that shortly.
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The networks in chapter 2 were all just constructed by using nodes from one
single node class—Agents. You have just learned that there are ten different
node classes. When combining them with each other, we can create a lot
of networks. Most of these new network data are different from the Agent x
Agent networks of chapter 2. For instance, a matrix describing the connections
between Agents and Knowledge, i.e. a skills network, is not squared but
rectangular as the x-axis (Agents) and the y-axis (Knowledge) have different
entities. If you are having a hard time to imagining these rectangular matrices,
don’t worry, you will see a lot of them at the following pages.

But before we can come to the point of coding the meta-network of the
Tragedy of Julius Caesar, we first have to make the decision which entity
class we will need. Naturally, we need to think up of a least two different
networks. But, to really hammer the point home, let us come up with three,
maybe five different networks relating to Julius Caesar and add them together
to see what we get. Again, before we truly get into DNA, our goal is to create
multiple networks to create our multi-modal ”meta-network.” So, let’s now
create another network by repeating the process for building our who by who
network and then another until we are satisfied that we have captured enough
pertinent and interesting data that could be of use to us if presented as a
meta-network. For purposes of our Julius Caesar model, we are going to
capture about as many useful networks as possible, graphing the relationships
of who, what, where, how. The when is covered by the temporal aspect of the
five acts which have been introduced in the previous chapter. To cover the
other aspects, we will create the node classes Knowledge, Tasks, Locations,
and Events.

3.1.1 Skills in the roman empire

To build our first network with nodes other than agents, we are going to graph
who x what. The what in this case represents Knowledge (K). So, our who by
what network constitutes an Agent (A) by Knowledge (K) network. Let us
begin by determining a list of what Knowledge bases would seem applicable
to our network. We defined Knowledge as skills. Based on our understanding
of the play, we have identified the following Knowledge sets to be of relevance
to the network analysis. Table 3.1 enumerates the six Knowledge nodes that
we have identified in the Tragedy.

We just selected the—from our perspective—most important skills. Of
course, you could come up with a totally different list. In networks that are
derived from real world Organizations, the list of Knowledge entities can be
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Administration Persuasion
Citizenry Politics
Military Prediction

Table 3.1: Knowledge list in Julius Caesar

surveyed from the members of the Organization. In companies with Knowledge
Management lists about who is connected to which Knowledge is often pre-
collected and can be directly transferred to a network matrix.

For now we focus on the selected skills of the Julius Caesar network. The
next step, after identifying the list of Knowledge, is to connect the Agents of
our meta-network with these Knowledge entities. Figure D.1 in the appendix
shows the network matrix of these connections. An “X” in this matrix, e.g.
between Anthony and Persuasion, indicates that we think that the Agent
Antony has the Knowledge Persuasion. In case our network matrix would
be more elaborated, we could code weights into the matrix. What does this
mean? Instead of “X” we would use numbers, for instance, from 1 (little skills)
to 5 (very high skills). Why would this be a useful extension to our network
matrix? The answer lies in the story. When you remember the plot of the
Tragedy of Julius Caesar, Brutus has the Knowledge of persuasion, which is
important to manipulate the Citizens after the assassination of Caesar. But
Antony, who speaks after Brutus to the Citizens has higher skill in Persua-
sion. Finally, Antony is able to convince the Citizens to support his cause.
Therefore, we could code Brutus with “3” and Antony with “5” to express
this difference. But for the purpose discussing the node classes, we omit this
information to keep the networks simple. For your own data collection pro-
cess it is probably worth spending some time with considering whether the
additional work of coding and handling weighted Knowledge (and also other)
networks pays off or not.

3.1.2 Tasks that drive the tragedy

Now let us create who x how, or Agent (A) by Task (T) network. Just like in
the previous examples, here is what we have determined to be the Tasks as
we took them to be by studying the plot of Julius Caesar in detail. Table 3.2
enumerates all Tasks of the tragedy. Once again, we have created a list, much
like our previous Knowledge sets, based on our personal insights into the
Julius Caesar Network. In the appendix you can find the Agent x Knowledge
network matrix.

But now, read the list of Tasks in Table 3.2. Do you agree with this list
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Achieve Victory Kill Caesar
Attend Senate Lure Caesar
Avenge Caesar Persuade Brutus
Celebrate Victory Persuade Caesar
Deceive Brutus Persuade Citizens
Defeat Antony/Octavius Read Will
Defeat Brutus/Cassius Refute Brutus
Expunge Conspirators Support Antony/Octavius
Form Coallition Support Brutus/Cassius
Haunt Brutus Warn Brutus
Justify Murder Warn Caesar

Table 3.2: Task list in Julius Caesar

Battle Tents Parade to Senate
Battlefields Pompey Parade
Brutus’ House Senate
Funeral site Streets of Rome

Table 3.3: Locations where the tragedy takes place

or do you have problems in accepting that some of these Tasks are really a
Task? If you have doubts about the list, you are right. Some of these Tasks
could probably also be part of different node classes. For instance, Read Will
is maybe rather an Action than a Task. Our decision to code all these entities
as Tasks is more than anything else based on the fact that we did not want
to add another node class to the meta-network. There are, of course, better
reasons for coding an entity as Task or as Action. Tasks are—and we will
discuss this more in details later in this chapter—things that need to be done.
You can see a Task as a goal. So, reading a will is a Task in case it is a goal
that needs to be achieved, e.g. because it is a sub-goal of a bigger goal like
Gain Power in Rome. Reading a will is an Action if it just happens without
identifying this as an important goal. After these considerations, what do you
think is Read Will for the Tragedy of Julius Caesar, Task or Action?

3.1.3 Where everything takes place

In our additional node class, let us decide to collect the places where the
characters in The Tragedy of Julius Caesar have been seen. For a written
document like a play it is quite easy to determine the list of Locations since
every scene starts with the information where this scene takes place. Never-
theless, the decision remains whether a location is of relevance or not. We
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Figure 3.1: Agent and Location network

decided to code 8 locations (see Figure 3.3).

The network matrix that is created by connecting this node class with our
Agents is the where x who network or simply put: who has been where. The
matrix can be found in the appendix. What also can be found there is a
Location x Location matrix. Since the Locations are ordered in a sequence
based on the narrative of the story, we connected the Locations in the same
order. In Figure 3.1 we visualized both networks in one picture. The black
nodes (hexagons) are the Location entities. They are connected with black
lines in the sequence of the story line, starting from the Pompey Parade and
ending at the Battlefields. The gray circles are the Agents that are connected
to these Locations. We can see in the visualization that the prior and the
later Locations form two more cohesive groups in the right and left side of the
visualization. From the Agents just Antony, Cassius, and Brutus connect both
groups of Locations with each other. Therefore, the network layout algorithm
put these Agents between the groups of nodes. Some minor Agents of the
story are not connected to any Location. Their position in the visualization
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Antony speaks to citizens Funeral of Julius Caesar
Antony/Octavious honor Brutus Generals meet on battlefield
Antony/Octavious victorious Ghost of Caesar haunts Brutus
Artemidorus attempts to warn Caesar Meeting at Brutus’ house
Battle, Pindarus fooled Octavious arrives in Rome
Brutus kills himself Octavious, Antony, Lepidus ally
Brutus speaks to citizens Octavius and Antony march army
Brutus’ defeated Offering of crown to Caesar, he rejects
Brutus/Cassius argue Parade, celebrating defeat of Pompey
Brutus/Cassius prepare for battle Parade, to Senate
Caesar warned by soothsayer Portia kills herself
Calpurnia warns Caesar Reading of Caesar’s will
Cassius orders Pindarus to kill him Rome plagued
Cassius/Brutus driving into exile Senate meeting, Caesar killed
Cassius/Brutus raise armies Tintinius kills himself
D. Brutus coax Caesar to attend Senate

Table 3.4: Events of the tragedy

is randomly selected in the periphery.

In the context of Locations you probably want to discuss issues of Gran-
ularity—the level of aggregation. For instance, what if we use a node for
every battlefield instead of one aggregating all of them? Or where actually is
Streets of Rome? Shouldn’t we enumerate the different streets where different
incidents happened? And if so, how different would the networks be? We
do not answer these questions at this point but we will discuss this aspect of
Locations in chapter 5. For now, be aware of the fact that different levels of
aggregation result in different networks.

3.1.4 Events as corner posts of the story

The last node class that we introduce for the Julius Caesar meta-network is
Events. We defined earlier in this chapter that Events are “are occurrences
or phenomena that happen”. And there are a lot of things that happen in
a tragedy by William Shakespeare. From the perspective of the play, Events
form the storyline. Table 3.4 enumerate all the Events that we have identified
in the text. Once again, we can have the discussion about whether a single
entity of this list is really an Event or rather an Action. We discuss this
question more generally some pages later.

Moving on and creating networks, we collected data for three different net-
works including Events. For all of which you can find the network matrix
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Figure 3.2: Event x Event network of Events following each other

in the appendix. The first network is obvious, the Agent x Event network
showing the participation of Agents at certain Events. The second Event re-
lated network connects the Events with the Locations where the Events took
place. The third is another network that put entities in a temporal order;
the Event x Event network connects those Events that follow each other in a
temporal order. Figure 3.2 shows a visualization of this network and gives a
short overview of the tragedy.

3.1.5 Some comments on node classes

Specific vs. generic nodes. You have learned a lot in this chapter about
entities and how to organize them in different node classes. At the beginning
of this chapter we introduced ten node classes. Four of which—Agent, Organi-
zation, Event, and Location—are special in a sense that they can be composed
of two different types of nodes. Recall the discussion about what is an Agent
and what is not an Agent in chapter 2. Do you remember our concerns about
the node Citizens? What is the issue with this node? It is not specific but
generic. Here is the difference between these two types of entities:

• Specific entity. A particular entity representing a uniquely identifiable
Agent, Organization, Event, or Location, e.g. Barack Obama, IBM,
Christmas 2012, Rome (Italy).

• Generic entity. A generalized entity representing an Agent, Organiza-
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tion, Event, or Location, e.g. citizen, committee, Christmas, house.

It is importance to differentiate between generic and specific entities. This
is particularly important when it comes to measure calculation with network
data. We talk more about measures later in this chapter, but we can imagine
a simple example: Let us assume that some police officers in Rome wanted
to analyze the background stories behind the assassination of Julius Caesar
some days after his death. For this purpose, police officers fan out to different
Locations and try to figure out who participated in different Events that took
place in these Locations. The result of this data gathering process could be
similar to our Agent x Location network in Figure ??. After analyzing this
network, guess what, beside Brutus and Antony, the Agent “Citizens” is very
important in this network. So, while the fact that citizens are connected to
some incidents or to some Agents was an interesting information for visual-
izing the data and understanding the story, this becomes problematic in the
context of measures because one and the same generic node can represent
different specific entities. Therefore, a generic node can—dependent from the
measure—create artifacts in the results.

Knowledge vs. Resources. Note that there is one entity set that we are
not employing in our Julius Caesar dataset even this node class sounds quite
important based on the definition at the beginning of this chapter, and that is
Resources. Why have we opted not to use Resources? Primarily because the
main characters in the tragedy did not use important Resources during the
course of the play. In addition, it seemed that Knowledge was every bit as a
Resource and they were in a sense interchangeable in our network. It is not
always easy to decide whether to put an entity into a Knowledge node class or
a Resource node class. For instance, having a Bachelor’s degree in computer
science is connected to a lot of Knowledge. That Bachelor’s degree can surely
be also a Resource for an IT department of a company.

The good news for you: Later in this chapter you will learn about different
measures for meta-networks. When you read about these measures as well as
their underlying concepts, you will figure out that Knowledge and Resources
are most of the time treaded interchangeable by the network measures. There-
fore, it is actually not very important whether you decide for Knowledge or
Resources, as long as you stay consistent within your project.

Task vs. Action vs. Event. We also had some difficulties in the previous
paragraphs to decide whether an entity is a Task, and Event, or an Action.
For clarification, Tasks are scheduled or planned activities, for instance, from
the perspective of the conspirators in William Shakespeare’s tragedy, killing
Caesar is a Task. The assassination of Caesar is an Event—even more a
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specific Event. Focusing more closely to the Event, we could have the need to
describe a bit more in detail what is going on. For this reason we also have
the node class Action. So, the actual killing—the stabbing of Caesar—can be
coded as Action.

In general, you are very much interesting in Tasks as Tasks describe the
regular patters of activity in a meta-network. In addition, you will see that
Tasks are heavily involved in multi-mode measures which is also an argument
for coding entities that are hard to decide rather as Tasks than as Event or
Action.

3.2 Adding it all together – the meta-network

As you should be seeing by now, real networks are not one dimensional. People
have Knowledge, they have access to Resources, Events happen and change
networks and certain nodal points will contain varying attributes distinguish-
ing them from the others. In fact, real networks for that matter are rarely
one dimensional except, perhaps, on the most abstract levels. For the Julius
Caesar network we have coded the following ten networks:

1. Agent x Agent (who knows who)

2. Agent x Event (who goes to what)

3. Agent x Knowledge (who knows what)

4. Agent x Location (who is where)

5. Agent x Task (who does what)

6. Event x Event (when by when)

7. Knowledge x Task (what is needed to do what)

8. Location x Location (where by where)

9. Task x Event (what by when)

10. Task x Task (what by what)

When looking at this list and recalling the ten node classes that we have
introduced in the beginning of this chapter, it is easy to imagine that there are
many more possible networks that we can create with these 10 node classes.
Table 3.5 shows all networks based on all possible combinations of node classes.
As you can see, there are 55 different networks for one single meta-network.
Of course, in most of your network projects you will not use them all at the
same time, but be aware of them because every additional network can give
you deeper insights into your real-world system that you are going to describe.
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Now you may be saying to yourself–just what kind of model are we now left
with? This complex meta-network could be said to resemble a ball of yarn.
What are we to make of it? Well, your reaction is to be expected because meta-
network analysis is beyond first intuitions and the resultant meta-network
can be hard for an analyst to comprehend. However, this is where powerful
computational methods come into play in the form of measures and we can
begin to break down the meta-network and glean some powerful insight into
the network’s architecture.

3.3 Concepts for two entity classes

It is time to revisit measures once again. We learned in previous chapters that
a measure tells us something unique about a network using computational
methods. More specifically, a measure is an algorithm specially formulated to
tell us meaningful information about network data that we apply our algo-
rithm to. In chapter 2, you have learned about centrality measures that can
identify important nodes in networks.

So far as the dynamic network analyst is concerned, measures can span
two or even more entity classes. Such measures are carefully constructed and
arrived at by research and scientific method.

Measures and algorithm are created to answer questions by analyzing net-
work data. These questions can be grouped based on the underlying ideas.
We call these groups of measures and questions concepts. In the following
we describe these concepts and introduce some measures that can be derived
from the concepts. In this chapter we focus on discussing the measures. We
will also use the measures to analyze the Julius Caesar network. We will not
discuss the algorithmic details of the measures. This will be accomplished in
the appendix. The interested reader can explore all the mathematical details
of the measures that we are using at the end of this book.

3.3.1 Quantity

Let’s start with the easiest and most intuitive concept of two-mode measures—
quantity. Quantity measures simply count or summarize information. Re-
member Degree Centrality (Freeman, 1979), a measures that we used in chap-
ter 2 to identify the most active Agents in our network. This centrality was cal-
culated in the one-mode network describing the interactions between Agents.
We use the same idea to describe activity in two-mode networks. We con-
structed the Agent x Task network earlier in this chapter. We can now use
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Group Concept Description
Quantity Degree Count row or column entries

Load Average link values/counts of network
Variance Centralization Distribution of node level scores

Diversity Concentration of node level scores
Correlation Similarity Degree of similarity between two Agents

Distinctiveness Complementary of two Agents
Resemblance Exact same connections
Expertise Degree of dissimilarity between Agents

Specialization Exclusivity Agents with exclusive connections
Redundancy Different Agents sharing connections
Access Identify critical connections

Table 3.6: Classification of measure concepts for two entity classes

this network to calculate the activity of Agents based on their assignment to
Tasks. Counting the number of Tasks for ever Agent results in this list of
Agents with connections to more than five Tasks:

1. Antony (15)

2. Cassius (13)

3. Brutus (11)

4. Decius Brutus (11)

Degree. The numbers in brackets behind the Agents represent the number
of Tasks a single Agent is connected to. This number is hard to interpret;
is 15 or 11 high or low? For instance, if the overall number of Tasks in our
empire were 15, then Antony would be connected to every single Task. In
opposite, if this number were 150, then Antony would be connected to just
one-tenth of all Tasks. To make it easier to interpret Degree Centrality over
different networks, network analysts scale the measure so that the result is
in the range of 0 to 1. This can be done by dividing the degree (e.g. 15 for
Antony) with the maximum possible degree which is the size of the other node
class (Borgatti and Everett, 1997). As we have 22 Tasks, this is the number
to scale our results. Therefore the scaled Degree Centrality of Antony is 0.68.
In other words, Antony is connected to 68 % of all Tasks. This idea, of scaling
by dividing with the maximum possible value to get a result between 0 and
1, is used for almost all network measures.

Load. Computing Degree Centrality results in a single value for every actor
— or for every Task in case we count the number of Agents that are connected
to the Tasks. Consequently, this measure is a node level measure. In opposite,
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Network N.1 N.2 Edges Load Density
Agent x Event 36 31 100 2.78 0.09
Agent x Knowledge 36 6 54 1.50 0.25
Agent x Location 36 8 60 1.67 0.21
Agent x Task 36 22 74 2.06 0.09

Table 3.7: Load and Density of different networks

a network level measure creates a single value for an entire network. An easy
way to create a network level measure with quantitative information is to
calculate the average number of Tasks (or Knowledge) per Agent or we could
calculate the Density of the network matrix by looking for the proportion
of connections compared to all possible connections between all Agents and
Tasks. We call the concept of these quantitative network level measures Load
since they measure how loaded a network matrix is with the edges. As for
network level measures every network can be represented with a single value,
this approach can be used to contrast different networks with each other.

Table 3.7 illustrates such calculations for four networks that include Agents.
The second and third columns of the table show the number of nodes in the
first and in the second mode of each network. The third column holds the
number of edges in the networks. With these numbers, the network level
measures Load and Density are calculated. You can see that on average every
Agent of the play is connected to 2.78 Events and 2.06 Tasks, while these
numbers are smaller for Knowledge and Locations. On the other hand, for the
Agent x Knowledge and the Agent x Location networks the density is more
than twofold than for the other two networks.

Beside the results regarding the content of the network, we can see a very
important artifact when calculating Density in networks: The result value has
an inverse dependency on the network size—the large the network, the lower
the Density. This is true for all networks. Why is this the case? The answer
can be found in the limitation of human connections. Imagine the number
of people in your life, all of which you have personal interactions from time
to time. Scientist figured out that this number is 150 on average (Hill and
Dunbar, 2003). Let us assume that all these people live in the same city than
you do, that this city has 150,000 inhabitants, and all the other people also
have 150 connections within this city. If we now construct a network matrix
for the Agent x Agent network of this city, this matrix has 22.5 billion cells —
wow! In contrast, as every Agent has 150 connections, the number of ”X” in
this matrix is ”just” 22.5 million resulting in a network density of 0.1%. If you
now move under the same assumptions with your whole network to a small
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town with 5,000 people, the density is suddenly 3.0%. So, density actually
tells us something about the network, but you have to be careful with the
interpretation when comparing networks with different size.

3.3.2 Variance

Centralization. A different perspective of analyzing two-mode networks on
network level is to look at the distributions of the values on node level. For
instance, some pages ago we’ve calculated Degree Centrality for the Agent x
Task network and gave you a list with the top 4 scoring Agents. But what is
the result of the other 34 actors? Is the load of work evenly distributed or are
there some Agents that are involved in many Tasks while a lot of other Agents
are way less active? Variance measure can help us to answer this question.
Freeman (1979, p. 227) stated that “the centrality of an entire network should
index the tendency of a single point to be more central than all other points
in the network.” Therefore, if a single node — or some nodes — has a much
higher centrality score than all other nodes, then the network centralization is
high. And with ”high” we mean close to 1.0 which is — due to scaling — the
highest possible centralization value. In case the centrality scores are almost
evenly distributed, the centralization value tends towards 0.

Highly centralized networks are often not very robust since single nodes
have very much power, influence, or control over the network and removing
these nodes can endanger the whole network. So, if Caesar would calculate
different centrality measures to identify the key players in his empire, he could
also calculate centralization measures to get a better understanding of how
dependent the network is on these central Agents. looking at Table 3.8 we can
see that, even though the networks are very different in size and maximum
degree, the centralization is very similar. The higher centralization of the
Agent x Location network is a result of the fact that a small number of Agents
showing up in almost every relevant Location (e.g. Brutus, Antony) while a
lot of other Agents just occur in one or two Locations.

Diversity. Another measure of Variance is Diversity. Many diversity mea-
sures were developed in Ecology (Magurran, 2003) where scientist are inter-
ested in measures that tell them whether an ecosystem is dominated by a
single species or not. To describe the diversity of information, i.e. the un-
certainty of the content of information (entropy), Claude Shannon developed
another famous diversity index — the Shannon index, also called Shannon-
Weaver index (Shannon, 1948). Another area in which diversity indexes are
used is Economy. The Gini Coefficient describes the extent of inequality in
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Network Max.Degree Centralization Diversity
Agent x Event 16 0.44
Agent x Knowledge 4 0.43
Agent x Location 6 0.55
Agent x Task 12 0.44

Table 3.8: Centralization and Diversity of Degree Centrality

a country, e.g. the income distribution (Gini, 1921). The Herfindahl (1945)
index (also known as Herfindahl-Hirschman index) measures the concentra-
tion of firms in a particular industry. This index is high in case of a single
(almost) monopolistic company with very high turnover and some companies
with very small turnover. The index tends toward 0 in case of a lot of rather
small companies.

All the diversity measures that we have introduced in the previous para-
graph have one important characteristic in common, they take a value for
every entity that is part of the analysis as input parameters and return a sin-
gle value for the entire system that describe the distribution of the values from
a perspective of equality/inequality perspective. To describe the variance in a
network we can use all of them. For now, we use the Hirschman (1945) index.
In the last column of Table 3.8 you can find this index applied to the four
Agent two mode networks.

3.3.3 Correlation

When we hear correlation we automatically have Pearson’s correlation coeffi-
cient (Pearson, 1920) in our minds. But this is just one specific interpretation
of correlating entities. In general, correlation measures for networks compare
pairs of nodes with each other by looking at their similarities or dissimilarities
(Carley, 2002). In the following, we describe four different measures based
on the idea of correlation. To keep our examples simple, we are interested in
correlation measures for Agents based on shared on distinct Knowledge. Of
course, these measures can be calculated for any network that connects two
different node classes, e.g. which Tasks need a similar set of Knowledge?

For all measures—similarity, distinctiveness, resemblance, and expertise—it
is necessary to create a new matrix with the pairwise similarity or dissimilarity
in each cell. When you look at these measures in the appendix, you can see
that we create these new matrices often via multiplication of a network matrix
with itself. What does this mean? Here is an example which is a subset of our
Julius Caesar Agent x Knowledge network. Let us just focus on three people,
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Antony, Brutus, and Caesar as well as their Knowledge

1. Antony: Citizenry, Military, Persuasion, Politics

2. Brutus: Citizenry, Military, Persuasion, Politics

3. Caesar: Military, Politics

When we now look at each pair of Agents and count the number of overlap-
ping Knowledege we can create the following matrix. You can find the matrix
algebra notation for this transformation on the left side of the matrix:

AK ·AK ′ =

Antony Brutus Caesar
Antony 4 4 2
Brutus 4 4 2
Caesar 2 2 2

We do not discuss matrix algebra in this book. In case you are interested
in understanding these techniques, look for books like ”Matrix Algebra” in
your favorite (online) book store or in particular for ”Matrix Multiplication”
in your favorite web search platform. For now, let us focus on the result of the
calculation. Every cell in the new matrix represents the number of common
Knowledge between each pair of Agents, e.g. “2” in the Antony / Caesar cell
tells us that these two Agents share two common Knowledge (Military and
Politics). The new matrix is, of course, symmetric. The diagonal 1 of the
matrix contains the number of Knowledge every single Agent is connected to,
for himself ignoring the Knowledge of other Agents.

Based on this first step of comparing the similarity of all pairs of Agents the
following measures are calculated. Some of which need a dissimilarity matrix
that can be calculated in a very similar way. Details to the measures can be
found in the appendix. The first two measures are node level measures.

Similarity tells us to which extent the other Agents have the same Knowl-
edge than a specific Agent. Based on the similarity matrix that we introduced
in the previous paragraphs, the similarity index of an Agent is the average of
its similarities to all other Agents.

Expertise is very similar but focus on the dissimilarity between agents
concerning their shared Knowledge. Consequently, the inverse Knowledge of
an Agent is compared with the Knowledge of all other Agents, i.e. the Knowl-
edge dissimilarity of Antony and Caesar is 2, while it is 0 for Antony and

1The diagonal of a one-mode network matrix holds all cells with the same line and column
index, i.e. A(i, i). Therefore, this describes the relationship of a node to itself. This is also
called the self-loop.
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Agent Similarity Expertise
Antony
Brutus
Caesar
...

Table 3.9: Correlation measures of Agents in Caesar’s empire

Brutus since they have 100% of their Knowledge in common. If we calculate
the Similarity and the Expertise index for the main Agents of the tragedy, we
can see that . . . (Table 3.9).

The other two measures of the concept of correlation are dyad level measure.
Therefore, the results are not a single value for every node but for every pair
of nodes.

Resemblance identifies Agents with identical Knowledge in a meta-network.
Resemblance is maximal in case two Agents have exactly the same Knowledge
and lack in exactly the same Knowledge. When we once gain look at the small
set of three Agents described above, we will find that Brutus and Antony have
100% Knowledge resemblance (or 1.0) as they know and don’t know exactly
the same. Brutus and Caesar share a resemblance score of 0.67 as they both
know about Military and Politics, they both don’t know about Administra-
tion and Prediction, and they have different Knowledge about Citizenry and
Persuasion (at least in our interpretation of the play).

Distinctiveness. This last part of different Knowledge is in the focus of the
Distinctiveness measure which can be used to calculate the degree to which
each pair of Agents has complementary Knowledge, i.e. Agents a knows about
something which Agents b does not know and vice versa. Distinctiveness is
also expressed as the percentage of all available Knowledge.

3.3.4 Specialization

The fourth and last concept that we discuss in this section is Specialization.
Measures of this group try to identify specific Agents that have either exclu-
sive or redundant Knowledge. Why is it critical to understand who specializes
in what within any network? Within the Julius Caesar Network it would be
highly valuable to understand who amongst all of his underlings possesses a
specialist Knowledge relating to the operation of his empire. For the con-
spirators it would be interesting to know which of the critical Knowledge to
run the empire is exclusively held by some people or which of their scheduled
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Tasks needs a specialized set of Resources that are not used for other Tasks.
Another perspective on Specialization measures is to identify the extent to
which the Knowledge in a network is redundantly connected to Agents. But
let us first have a closer look at Exclusivity.

Exclusivity in network analysis can be of fundamental interest to discern-
ing the critical infrastructure of a network. Naturally, as the term may allude,
we are interested in performing an analysis that will reveal exclusive entities
within our network model (Ashworth and Carley, 2006). Consequently, we
are looking for any entity within our network model that has an exclusive
link to another entity, which occurs across our two-mode network data. In
lay parlance, this is finding out who in the network does something or knows
something that nobody else does or knows. Such information could be very
useful to Caesar in determining his empire’s Organizational vulnerabilities.

Access takes the idea of Exclusivity one step further. The Access Index
identifies those Agents which are directly or indirectly connected to exclusive
Knowledge, Resources, etc. (Ashworth and Carley, 2006) The result of this
measures is a binary value for every Agent, i.e. access critical Agents get 1 and
all other Agents get 0. The identification of access critical Agents happens
in two steps. First, for the Knowledge Access Index we identify Agents that
are exclusively connected to entities of Knowledge. These Agents are critical.
In addition, a second group of Agents is critical; those that are exclusively
connected to an Agent of the first group in the Agent x Agent communication
or interaction network, because these Agents control the social connections
to Agents with critical access. For instance, in the first act of Julius Caesar
the Soothsayer warns Caesar about the “Ides of March”. Let us assume the
Soothsayer had an inspiration about something bad happening with Caesar in
his dreams the night before that event. If we now call this inspiration a piece
of Knowledge then this Knowledge is exclusively connected to the Soothsayer
in case that nobody else in the empire had the same dream. Therefore, the
Soothsayer has critical access to Knowledge. But also Caesar has critical access
since the Soothsayer exclusively communicates with Caesar in this matter.
The result is obvious, the Soothsayer and Caesar can both block the warning
from the other Agents.

Redundancy is the risk based on duplication in Task assignments, Re-
source access, and Knowledge access. For instance, Knowledge is redundant
if more Agents share the same Knowledge. Redundancy is a network level
measure. Therefore, we get a single value for every two-mode measures for
which we are calculating the measure. From the extreme perspective that
every available Knowledge entity is connected to one Agent, Redundancy is
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Group Concept Description
Quantity Degree Count row/column entries in networks

Load Average link values/counts of networks
Coherence Congruence Proportion of correctly assigned connections

Needs Undersupply of assignment
Waste Oversupply of assignment
Performance Percentage of task completion
Workload What is used to perform Tasks

Substitution Availability Agents available for certain Roles
Reuse Utilization of connections to multiple tasks
Negotiation Need for communication to perform Tasks

Control Demand Cognitive effort expended by Agent
Awareness Cognitive similarity of Agents

Table 3.10: Classification of measure concepts for three and more entity classes

calculated by counting the number of other Agents that are also connected
to every Knowledge entity. An Organization with little redundancy is more
adversely affected by an Agent or Resource no longer being available such
as a ”Cassius” taking his Knowledge and getting a new job in some other
empire. On the other hand, too much redundancy makes an Organization
inefficient. For instance, you wouldn’t want everybody in the imperial Senate
to learn how to conduct military operations when everyone has other Tasks
and accountabilities to see too as well.

3.4 Concepts for three and more entity classes

We have talked a lot about different concepts and measures in this chapter.
All the measures, that we have described and used so far, just used two node
classes at a time for calculating the results of the measures. The connections
of entities from two node classes can be described in one network. For the
following concepts and measures, we will use more than two node classes to
calculate a single result. Therefore, we need more than one network as input
for these measures and we call the underlying concepts of these measures
multi-mode concepts.

The part for multi-mode concept and measures is organized in a similar way
than the previous section describing the two mode concepts. We discuss the
ideas behind the concepts at this point and you will find the algorithmic details
in the appendix at the end of this book. To describe the underlying logic
of meta-network measures, we focus on the four main node classes, Agents,
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Figure 3.3: Conceptual connections between the four main node classes

Tasks, Knowledge, and Resources, and how these node classes can be logically
connected with each other through networks. Of course, the most important
node class are the Agents. Agents are essential for every Dynamic Network
Analysis and are part of almost every measure that we discuss in this book.
Beside Agents, there is a second node class that is very central for measures
that make use of three or even more node classes. When you look back at the
enumeration of the ten node classes, which one do you think will be almost
as important as Agents for the following measures?

The correct answer to this question is: Tasks. This may be surprising for
you, but Dynamic Network Analysis deals a lot with Tasks and the question
whether they can be accomplished or not. From the dynamic perspective,
Tasks are like goals. Actually, developing a product and even killing Cae-
sar are very well defined procedures, all of which having a goal that defines
the successful accomplishing of the Task. To accomplish Tasks, Agents are
assigned to these Tasks. Figure 3.3 shows this connection in the center of
the visualization. A circle in this figure represents a node class, while every
link stands for an entire network connecting two node classes with each other.
Knowledge and Resources are positioned between Agents and Tasks. Agents
need Resources and Knowledge to accomplish their Tasks. Most of the time,
the following concepts and measures will discuss this basic system of Dynamic
Network Analysis from different perspective.

Coherence measures calculate whether the Resources and Knowledge of
Agents that are assigned to Tasks actually fit the Resources and Knowledge
that is necessary to accomplish the Tasks. Substitution measures look for
entities in different node classes whether they can be reused or substituted.
Finally, control measures are the most complex DNA measures that are cur-
rently available and incorporate different aspects of the connections between
the four main node classes in single measures. However, let us start with the
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easiest group of measures grouped under the concept of Quantity.

3.4.1 Quantity

Quantity measures—similar than for two-mode measures—just count cells in
the network matrices.

Degree. A multi-mode degree measure is Personal Costs. It counts the
number of labor-intensive connections of an Agent in the entire meta-network,
i.e. the number of people reporting to the Agent (in-degree) plus the number
of connections to Knowledge, Resources, Tasks, etc (Ashworth and Carley,
2003)

Load measures are similar to the idea of density. We call these measure
concept Load in meta-networks because they tell us how loaded a network is.
(Wasserman and Faust, 1994)

3.4.2 Coherence

The biggest group of measures for multi-mode networks is created through
the concept of coherence. These measures cover the connections of the main
node classes as visualized in Figure 3.3. The line in the middle of the picture
represents the assignment of Agents to Tasks. In a nutshell, coherence mea-
sures use the networks represented by the other lines of this figure to check
whether the Agents have the right Knowledge and Resources to perform their
assigned Tasks or not. Just as in the previous sections, we focus on Knowledge
to describe the following measures.

Congruence is a network level measure that calculates the extent to which
the Knowledge of Agents which are assigned to Tasks actually fits the Knowl-
edge that is actually needed to accomplish the Tasks (Carley, 2002). Maximal
congruence (1.0) is just achieved in case Agents have exactly the Knowledge
they need for their Task—nothing less and nothing more.

Needs is similar to Knowledge Congruence, but quantifies only the under
supply of Knowledge to Tasks (Lee and Carley, 2004). Task Knowledge Needs
compares the Knowledge requirements of each Task with the Knowledge avail-
able to the Task via Agents assigned to it. Needs is a node level measure for
Tasks. Therefore a value is calculated for every Task describing the amount
of missing Knowledge to accomplish this Task.

Waste measures the opposite of Needs and is also a node level measure
for the Task node class (Lee and Carley, 2004). Agent Knowledge Waste
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compares the Knowledge of the Agent with the Knowledge it actually needs
to do its Tasks. Any unused Knowledge is considered wasted.

Performance also calculates a Task related measure but results in a net-
work level result. On particular performance measure is Knowledge Based
Task Completion (Carley, 2002). For this measure the percentage of Tasks is
determined that cannot be completed because the Agents assigned to these
Tasks lack in needed Knowledge.

Negotiation is a network level measures that is based on identifying the
proportion of Tasks that need negotiation of the Agents (Carley, 2002). Ne-
gotiation is necessary in case the Agents assigned to Tasks do not have all the
Knowledge and Resources that are necessary to accomplish the Tasks. Based
on the congruence of the main node classes Agents, Tasks, Resources, and
Knowledge the Tasks that need negotiation are identified.

3.4.3 Substitution

Availability is a Role based measure of Substitution. The idea behind Avail-
ability is that to accomplishing a specific task it often does not need a partic-
ular Agent but rather an Agent fulfilling a certain Role (Behrman).

Reuse The Reuse measures (Carley et al., 2000) looks for utilization of
Knowledge or Resources. The question here is whether Knowledge that is
needed for a Task is already available in an Organization/Company because
the particular piece of Knowledge or Resource is already used for other Tasks.
Reuse measures are often referred to Omega measures.

3.4.4 Control

Control measures express the extent to which agents are in control about the
entire meta-network or about the situation of the other Agents of the network.
Both measures of this concept can be referred to as Cognitive measures.

Cognitive Demand is a node level measures that incorporates ten different
aspects of Agents being cognitively engaged in a meta-network (Carley, 2002).
Some of these aspects can just be calculated in case you have Knowledge and
Resources in your data. In case your meta-network includes just one of these
node classes as well as Agents and Tasks, you can still compute Cognitive
Demand by just calculating the feasible aspects. The ten aspects covered by
Cognitive Demand are the following:

1. The number of other Agents that a single Agent is connected to.
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2. The number of Tasks an Agent is assigned to.

3. The amount of Knowledge an Agent has.

4. The amount of Resources an Agent is connected to.

5. The number of Agents that are assigned to the same Tasks than the
Agent.

6. The amount of Knowledge that is necessary to accomplish the Tasks
that an Agent is assigned to.

7. The amount of Resources that is necessary to accomplish the Tasks that
an Agent is assigned to.

8. The amount of negotiation on Resources with other Agents that is nec-
essary to accomplish the assigned Tasks.

9. The amount of negotiation on Knowledge with other Agents that is
necessary to accomplish the assigned Tasks.

10. The number of Agents that an Agent depends on or that depend on an
Agent to handle his Task.

This enumeration of different aspects that are incorporated in Cognitive
Demand makes it clear that people that score high in this measure are very
important in a network. We call these people “Emergent Leaders”. Emergent
leaders are identified in terms of the amount of cognitive effort that is inferred
to be expended based on the individual’s position in the meta-network. Indi-
viduals who are strong emergent leaders are likely to be not just connected to
many people, organizations, tasks, events, areas of expertise, and resources;
but also, are engaged in complex tasks where they may not have all the needed
resources or knowledge and so have to coordinate with others, or have other
reasons why they need to coordinate or share data or resources. The drawback
for Emergent Leaders is that they are so busy with keeping the company (or
the empire) running, that there is a good chance that they never become a
formal leader.

Awareness is another control measure that creates dyadic results (Graham
et al., 2004). The measure tells us to which extent two Agents are similar from
a meta-network perspective. Shared Situation Awareness is a mixture of four
different aspects:

1. The interaction between the two Agents.
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2. The power of the two Agents calculated by their Eigenvector Centrality.

3. The Agents physical proximity approximated through their shared Lo-
cations or Events.

4. The Agents socio-demographic similarity approximated through their
shared Knowledge and Resources.

This enumeration covers different aspects of having shared awareness about
the networked system.

3.5 Problem set

1. What are the main four nodes classes of dynamic network analysis?

2. Which two node classes occur in almost every measure that uses three
or more node classes?

3. What is the difference between the quantity concept of two-mode mea-
sures and the quantity concept of multi-mode measures?

4. Describe the underlying idea of coherence measures.

5. Why are people critical in a network that score high in Exclusivity?

6. Which situations create the need for Negotiation in a company?

7. Draw a small network consisting of Agents and Resources that describes
the Access measure.

8. What do you think, is it likely that the person in an Organization that
scores highest in Cognitive Demand will become the next leader of this
Organization?

9. In Figure ?? you can find the conceptual linkage between Agents, Tasks,
Knowledge, and Resources. Find another combination of four node
classes that can be used for any coherence measure.

10. What is the main difference between Congruence, on the one hand, and
Needs and Waste, on the other hand?

11. *Imagine that you are the head of a company and you measure high
Redundancy in one department. Why could this be a problem? And
why could this be important?
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12. *Imagine that you had to calculate betweenness centrality in the network
that is an aggregated representation of all five acts. Why is the generic
node Citizens problematic for the centrality score of ALL nodes of the
network?

13. *What is the 11th node class and why could analysis involving this node
class make sense?

14. *Calculate the Coherence measures for the Julius Caesar meta-network
and give an interpretation of the results.

15. *Download the company network from the book’s website. Identify the
cognitive leader of the company.

16. *The Event x Event network in Figure 3.2 consists of long chains of
events. Why is this the case? Is this typical for real world Event net-
works?

17. **Take a sheet of paper. Copy the Agent x Knowledge network matrix
and perform a matrix multiplication by hand so that the result is a
Knowledge x Knowledge matrix. What is the meaning of the resulting
matrix?

18. **Calculate by hand the network level measure “negotiation”. Describe
the different steps of the calculation.

19. **Take your favorite movie and code as many node classes as possible.
What nodes classes are tricky to code? Visualize and analyze this meta-
network. Can you describe the narrative as well as the highlights of
the movie with network visualizations and metrics? There is no need to
create more than one meta-network for the entire movie.

20. **Take all two-mode and multi-mode measure concepts and find a new
classification system that does not use the number of entity classes as
first separator.
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Chapter 4

Finding Groups

Imagine, Julius Caesar is going through some major organizational restructur-
ing. The soldiers are naturally worried, but the whole idea is for the empire to
realign strategically to allow the groups within the empire the most efficient
use of Resources. It is the theory of Julius Caesar that the empire can then
become more profitable and hence more stable. Therefore, ultimately, it is
about reassuring the soldiers of the empire that Julius Caesar will continue
to remain strong long into the near future. Now, that should make some rest
easier but perhaps it makes politicians, especially Cassius, a little uneasy. Af-
ter all, they have given themselves a daunting task: they want to know about
the groups that exist inside their organizational structure. They believe, quite
correctly, that knowing the make-up of how groups and teams function across
the empire will therein provide clues as to where Julius Caesars empire can
reallocate Resources to make Julius Caesars empire more efficient and hence
more enduring. The problem is how do they go about discovering the groups
that exist within their empire?

Inside Julius Caesars empire, we have Cassius, who interacts with Brutus
and Calpurnia. Everyone interacts within his or her group. We will say that
they are part of distinct organizational group called Roman Countrymen but
could there be other groups they interact with outside of their core group?
Of course there could. There could be countless amounts of other groups
which they interact with on a regular basis. Cassius could hang out with the
accounting group while on lunch. He may have privy to Knowledge that is
generally available only to those in the friends group. Likewise, Brutus might
take Roman baths on the weekends and belong to the same club that many
of the senior leaders belong too. He may therefore have the inside scoop on a

87
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lot of high-level strategy that generally would be unavailable to anyone within
the customer service group. He may even serve as a source of information to
the senior executives as to what really works in the custumer service group.

Groups are a natural part of our human experience. Individuals are indeed
social actors who tend to migrate into membership into a group, or several
groups, for a variety of reasons. In prehistory ages, the human species seemed
to have figured out that the family group is the starting social structure for
our very core survival and that being part of an even larger group provides
us with increased access to critical resources, such as food, water, potential
mates, etc. Moreover, being part of a group afforded the individual better
protection from our enemies, both the difficulties of nature and the brutalities
of other humans. Today, this drive for affiliation continues; we each are a
member of numerous groups, from personal-contact groups, to cyber-space
virtual world groups.

From a DNA perspective, groups also encapsulate objects and ideas, such as
computer networks, music genres, and job categories. Whether by the force of
a natural law, or the limited capacity of humans, objects and ideas are placed
into groups. Groups of all types, forms and made up of various complements
and, even, subgroups are everywhere.

So it follows, that a network analysis will typically investigate a network
data from the perspective of the network as a group or a set of groups. This
perspective accomplishes two things: (1) it reduces the number of entities to
analyze, and (2) the natural tendency for things (including people) to grav-
itate into groups, suggests that understanding the sub-groups in a network
may provide hidden clues to that network. So, people are interested in groups
is, because when you look at groups in a network, it is a very easy way to
summarize information in a network. Rather than saying something about
any particular node, we are trying to aggregate information to higher rep-
resentations groups. This is especially helpful when the network is large.
When we think of groups we automatically think of communities that share
knowledge, information, or norms or have similar experiences. So, you could
interact with them in similar ways and you can expect similar reactions from
members of the same group.

In this chapter we will first introduce some interesting patters in networks
which can be considered as groups, e.g. disconnected components or sub-sets
of nodes in which every node is connected to every other node. In the second
part of this chapter we will discuss more complicated group structures—those
which need algorithms to be identified. Finally, we will have a closer look at
our Julius Caesar network to discuss grouping issues in meta-networks or in
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Figure 4.1: Network visualization of the first act of Julius Caesar

networks over time.

In general, groups are a set of nodes that meet certain criteria. This sounds
easy but creates a major implication: There are no natural groups in networks;
you create groups based on your definition. Therefore, there is no one-fits-
all method to identify groups. This is the reason why many new grouping
algorithms are being developed every year and grouping is a big topic in
DNA. When working with groups in the network setting, there is not yet
agreement on a precise definition (Seidman & Foster 1978; Alba & Moore
1978; Mokken 1979; Burt 1980; Freeman 1984; Freeman 1992; Sailer & Gaulin
1984). Exactly what constitutes a group is a matter of ones perspective, the
data, and analytic question. For our purposes here: cohesive sub-groups, or
just groups, are collections of nodes that share some specific characteristic(s)
or property(ies); most often a nodes membership is bounded by being in only
one sub-group, but some grouping processes allow for multiple memberships.
We seek to identify and characterize these groups because often the analyst
can locate, often hidden, sets of actors that have something (loosely defined)
in common that can be useful information in explaining, understanding and
forecasting, either the group itself or the larger network. As mentioned earlier,
these often-hidden groups are sometimes (self-) organized for some collective
action of sorts.

Let’s have a look at Act 1 of the Julius Caesar play again (Figure 4.1. What
Agents form a group? Well, as you would probably know by now, this depends
on the selected criteria.
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The first criteria that we look at is not directly connected to networks.
Agents share different attributes and form groups based on that. For instance,
age, gender, occupation, or sympathy to Caesar can be used to group the
Agents of reffig:act1. Sharing specific attributes can lead to nominal groups,
e.g. nurses, teachers, or senators. Even though attributes include no network
information at first sight, we know from chapter 2 that similarity in attributes
(homophily) is number one drive for network formation. Conspirators tend
to hang out with other conspirators and new Agents are more likely of being
accepted by the group when they share this attribute.

4.1 Interesting patterns

A second set of grouping criteria are based on graph theoretic definition. When
we look at the structure of the network, the most obvious groups in this
network are the two unconnected parts, Marullus and Flavius together with
the Citizens of the left side and all other nodes on the right side. We call these
unconnected parts of a network components. Are these different scenes of the
play? No, components are created when there is no path between (at least)
two groups on nodes. For the play this means, when there are two Agents
from different scene that do not co-occur with any Agent that can create a
chain of links between them.

Another interesting structural pattern is created by Antony, Cascar, Brutus,
Cassius, and Caesar. When there is a group of nodes with each of which
is connected to every other node, then we call it a clique. Cliques are the
strongest pattern of structural pattern but you need to be careful using cliques,
when your network data is created by folding two-mode data to one-mode
data, as we did for the network in reffig:act1. Every node of the second mode
forms a clique in the folded one-mode network. This can create confusing
artifacts of large cliques in case of, let us say Events, with many participants.

Cliques are very intriguing, however, not often used in real-world networks.
There are two reasons for why this group criteria is not so great after all. First,
in real-world groups that exist of a certain number of Agents, some links are
often missing even in the strongest group of friends or co-workers. Secondly,
cliques are very time consuming to calculate for larger networks.

Some other concepts for group identification are similar to cliques but are
more realistic and very fast to calculate. k-Cores ?? are groups of nodes that
are all connected to at least k other nodes of the groups. Therefore, we can
use this approach to identify clique-like groups. k-Plex ?? is a similar concept.
Here, a group is defined as a set of nodes that ... ??. It is worthwhile knowing
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that k-cores and k-plexes as well as cliques can and often do overlap—one
node can be part of more than one group.

Equivalence i Equivalence Structurally indistinguishable Same degree, cen-
trality, belong to same number of cliques, etc. Only the label on the node
can distinguish it from those equivalent to it. Perfectly substitutable: same
contacts, resources

Face the same social environment Similar forces affecting them same influ-
encers On average, hear things equally early, influenced similarly, have similar
things to cope with

Role equivalent

4.2 Grouping Methods

When groups are extracted from networks with grouping algorithms, they are
often called communities. A community consists of a subset of nodes within
which the node-node

4.2.1 Newman grouping

connections are dense, and the edges to nodes in other communities are less
dense. Be aware that this is just another criteria definition for groups—
although one that is highly relevant for networks consisting of people. The
grouping algorithm by ? is very often used to identify communities because
it is a very intuitive approach. Remember betweenness centrality (Freeman,
1977). We discussed in chapter 2 that a node scores high in this measure
in case this node links parts of the network that were not connected as well
without this node. It is clear that the nodes 1, 2, and 3 in the network
visualized in 4.2 fulfill this criteria while peripheral nodes have a betweenness
centrality score of 0.0. Now the same idea is used for links of the network.
The link with the highest betweenness centrality is considered to connecting
different groups that were not connected as well without this link. In Figure
4.2 the line width are drawn based on line betweenness centrality. You can
see that the connecting line between node 1 and 2 scores highest. The smart
algorithmic move now is, to remove this link. By doing so, the example
network breaks in two components. Of course, in real networks network parts
are not connected by just one link. Therefore, we recalculate line betweenness
centrality again, delete the line that scores highest, etc. Recalculating the
metrics again after removing a link is necessary as the the results may change
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13 2

Figure 4.2: Example for line betweenness centrality

dramatically. In our example, the link between 1 and 3 would looses almost
all of its centrality after the link between 1 and 2 is removed. The removing
of links can be calculated till no link is left. To answer the question when to
stop, ? offered the modularity measure that xxx

The disadvantage of this approach is obvious when you recall the procedure.
Calculating betweenness centrality again and again is costly and impossible
for larger networks.

Newman [2006] : Start inside community and search for boundary. Rela-
tively fast for large networks

4.2.2 CONCOR grouping

CONCOR puts its focus on the notion of structural equivalence to discrim-
inate among the nodes to form groups. Structural equivalence is the notion
that two nodes that have the same number of links with the same alters are
therefore structurally equivalent. CONCOR essentially performs often multi-
ple, row or column-wise, vector correlations to determine the level of struc-
tural equivalence between a given pair of nodes. This correlation process is
repeated until ultimately the matrix representing the network has stabilized
with a set of 0s and 1s. These values indicate to which group an individual
node will be placed. Notice, this situates CONCOR to creating only up to two
groups. CONCOR can repeat itself multiple times to further split one or both
of the previously located groups. Therefore, CONCOR most often produces
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a number of groups that are a power of two. The number of groups identi-
fied by CONCOR is a user-parameter (often times the number of “splits” is
the expected input). PRO: Only commonly used algorithm detecting relaxed
structural equivalence. CON: Top down splitting of nodes imposes structure
CON: Requires user to choose a power of 2 for the number of groups.

4.2.3 Johnson grouping

The Johnson procedure uses a distance metric to discriminate groups. It
creates groups according to a network that is constructed with links that
indicate the distance between dyads. Johnson will segregate groups according
to these weights by separating those who are most distant from others in the
same group from the original group and off to a group of nodes that are closer
in this distance value.

4.2.4 Fuzzy Grouping

The FOG / K-FOG are powerful approaches that recognize that nodes can
often be members of more than one group at a time (fuzzy groups), which can
be a major weakness of the aforementioned techniques. FOG begins with a
collection of nodes and uses a maximum likelihood perspective to determine
the probability that a link exists among the various dyads in the group. It
compares the probability with the actual data and as a result, a node can
indeed be assigned membership in the group, or not. By taking this approach,
FOG can assign a node to multiple groups.

4.2.5 Block-Modeling

Block-Modeling ?? is a grouping approach that optimizes the matrix repre-
sentation of a network. A block model is a reduced form representation such
that nodes are divided into a set of mutually exclusive groups. The resulting
groups can then be analyzed as a network such that
The groups connection to itself is the density of the connections among mem-
bers
For each pair of groups, the inter-group connection is the density of the con-
nections of group 1 (row) to group 2 (column)
The resulting block matrix can be turned into a binary matrix by simply
comparing the level of connections in the block to the overall density of the
original matrix such that there if the value of the cell is ¿= to the overall
density then we replace it with a 1, else 0
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
Antony 1 · · 1 1 1 · · · · · · · · ·
Brutus 2 · · 1 1 1 · · · · · · · · ·
Caesar 3 1 1 · 1 1 1 · · · · 1 · · ·
Casca 5 1 1 1 · 1 · 1 · · · · · · ·

Cassius 6 1 1 1 1 · · · 1 1 1 · · · ·
Calpurnia 4 · · 1 · · · · · · · · · · ·

Cicero 7 · · · 1 · · · · · · · · · ·
Cinna 8 · · · · 1 · · · · · · · · ·

Lucilius 11 · · · · 1 · · · · · · · · ·
Octavius 13 · · · · 1 · · · · · · · · ·

Soothsayer 14 · · 1 · · · · · · · · · · ·
Marullus 12 · · · · · · · · · · · · 1 1

Flavius 10 · · · · · · · · · · · 1 · 1
Citizens 9 · · · · · · · · · · · 1 1 ·

Table 4.1: Block modeling the social network matrix of the first act of Julius
Caesar

In Table 2.2 on page ?? the social network matrix of the first act of Julius
Caesar was shown. Block-modeling makes use of the fact that changing the
order or the lines (and to the same extend the order of the columns) does not
change the network. Therefore, we can rearrange the lines and columns for
whatever purpose.

Opposing groups 10-01
Hierarchy 10-10
Core-periphery 11-10

4.2.6 Other approaches

Methods from multivariate statistics.
Single linkage; connectedness; minimum
Complete linkage; diameter; maximum
k-means

4.3 Groups in meta-networks

4.4 Problem set
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Chapter 5

Spatially Embedded
Networks

In exploring the various influences and roles in human relationships we will
now consider one of the most important features for understanding social in-
teractions: space. Clearly, space is important, and as such, we intend to equip
the reader with appropriate methods for analyzing networks where locational
information is available. Physical proximity has long been known to play a
major role in shaping human interpersonal relationships. In general, people
are more likely to interact with others who are nearby. This effect, called
propinquity, has been documented time and time again for a wide variety of
networks (Butts, 2002; Faust, 2000; Festinger, 1950; Latane, 1995). It has
even been proven theoretically that for large social networks, the locations in
space of individuals can explain almost all of the information in the network
(Butts, 2002).

This chapter should provide an overview of the core issues in analyzing
spatially embedded networks. After discussing different aspects of networks
and space—including the importance of aggregation, clustering, information
loss and smoothing—we introduce technical artifacts that are needed to han-
dle geographical information. Section 3 continues with spatial visualizations
and the final section discusses centrality measures that make use of spacial
information.

97
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5.1 Propinquity – Those close by form a tie

5.2 GIS, shape-files, and Co.

5.3 Spatial visualizations

5.4 Spatial centralities
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Chapter 6

Temporal Networks

We should know by now that networks evolve and change over time and it
is the key role of dynamic network analysis to identify and describe those
changes. Furthermore, by analyzing change in networks, we are maybe capable
of predicting how networks evolve in the future and how the underlying real-
world system will change. In fact, it is this time consideration that marks the
true difference between Dynamic Network Analysis (DNA) and traditional
link analysis.

In this chapter we discuss different aspects of temporal networks. After
introducing some definitions and discussing aggregation issues, we try to de-
scribe and measure change in networks. You will learn in this chapter that
the statistical analysis of correlating different networks to identify similarities
of multiple networks is possible, but not trivial. The final part of this chapter
introduces different ways to detect change and periodicities in networks over
time. Some of the measures that we discuss in this chapter are mathematically
challenging. We try our best to describe the underlying ideas of the methods
in an understandable way here and we want to refer the advanced reader to
the algorithms in the appendix or the cited literature.

6.1 Networks over time

6.1.1 Creating networks over time

When network analysts talk about temporal networks, they normally talk
about networks that are created through data aggregation for a specific time
period (e.g. by day, week, month, year). For instance, if you think about e-

99
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mail communication in a company, then all e-mail that are sent at one day can
be grouped together to form the communication network for this particular
day. Another example is our Julius Caesar data. When coding the social
interaction of this network (see chapter 2), we decided to aggregate on act
level. This was a deliberate decision. Both aggregation levels—for the Julius
Caesar as well as for the e-mail network— also can be selected at a different
level. We talk more about aggregation on network data later in this chapter.

In general, there are two different ways of describing change in meta-
networks:

1. Keyframes. A meta-network over time is collected as a set of networks,
e.g. one meta-network per day, month, year.

2. Deltas. A meta-network as a set of single “change events” in time.
These change events can be: add/remove a node, add/remove a link,
and modify an attribute.

As we discussed above, keyframes are the common way of describing change
in networks. But keyframes and deltas are highly connected with each other.
Remember the Julius Caesar social network from chapter 2. The act-by-act
networks are not just an aggregation by scene, actually theses networks are
the result of aggregating every single interaction in every scene, e.g. Calpurnia
(the wife of Caesar) tries to convince Caesar not to go to the Senate and Decius
does the opposite; both interactions (deltas) are coded in the second act of our
network as one edge. Imagine that we have coded every single interaction as
delta, we could create the act-by-act keyframes easily by aggregating several
deltas within the specified period of of the play. However, we will discuss
temporal networks in this chapter from the perspective of keyframes.

6.1.2 Levels of aggregation

We already used the term aggregation in this chapter. Aggregating over time
data means creating keyframes. To illustrate this process and to discuss issues
of aggregation, we look at a dataset of e-mail communication. The dataset
includes approximately 200,000 e-mails over the course of 81 days. These
large amount of e-mails were sent from 2,427 people to 2,563 recipients. Let
us just look at one week of this dataset including 16,277 e-mails. If we start to
think about how to analyze this data with statistical methods, a very intuitive
approach is to count the number of e-mails by day or by hour. Figure 6.1 shows
the result of this statistical approach. Figure 6.1(a) reveals very little activity
on Saturday (day 7) and Sunday (day 1) and rather stable activity during
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Figure 6.1: Number of e-mails aggregated by day and by hour.

the working week. The picture looks different for an hourly aggregation level
(Figure 6.1(b)). Here it seems that Wednesday creates much higher activity
but looking more closely we can also identify the Monday night activities that
led to the high activity level on Monday in the first chart.

So, both charts tell a different story. But why is this connected to net-
works? From a network perspective, every single e-mail represents a link in
the network. And every single link can change a network. Therefore, different
aggregation level create different networks! Imagine a person in this organi-
zation that is part-time worker and just works in the morning. On a daily
aggregation we would see an average active person even if this person sends a
lot of e-mails per hour. Another example is illustrated in Figure 6.2. This is a
network created from an artificially created company but this data could also
be a subset of the e-mail data from Figure 6.1. If we look at the first picture
and analyze the company network by hour, we would identify two sub-groups
of communication with nodes number 1 and 6 as central in these groups. On
a daily aggregated analysis (Figure 6.2(b)) we identify the additional connec-
tion between nodes 3 and 2 because these two employees collaborate in a
project and had a project meeting in the afternoon. This connection changes
the network structure in a way that from a perspective of communication flow
(e.g., betweenness centrality) these two nodes are now very important. The
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Figure 6.2: Networks created based on three different aggregation level.

weekly observation, again, looks different because now we identify that there
is—for some reason—a lot of communication in this company between almost
all people and especially node number 4 seems to communicate with all other
nodes. So, what is the the right aggregation level? It depends on your re-
search question and your data. If it is possible, try different aggregation levels
analyze (and interpret) the differences. If your aggregation level is selected
wrong, these are possible implications:

• Aggregation level too high. The network gets dense and is harder
to analyze. Interesting structures are masked by more or less random
interactions. It is also possible that two or more interesting pattern
superimpose each other.

• Aggregation level too low. Miss of important structural patterns.
Overemphasize of links having high communication. Very sparse net-
works result in highly fluctuating measures as a single link can change
the global structure of the network.

6.2 Trails

In the last chapter we discussed ways of analyzing network data when it is
connected to geo-spatial Locations. Now, let us add the perspective of time
to this data. For instance, Julius Caesar has seen his empire and bureaucracy
ever expanding. He analyzed who the important Agents in his empire are and
he already accomplished some spatial analysis regarding his empire. In an
effort to better analyze the structure of his empire, Caesar decides that he
wants to know exactly how his military command travels the known world.



D
RA
FT

6.2. TRAILS 103

Could the emerging travel patterns lead Caesar and his staff to draw new
conclusions about where the business is located or where it should open new
Locations to better serve the geographic needs of the empire? And what
about all the Locations that are shared in common by Caesar’s military and
administration stuff, such as cities they passed through, houses they stayed at
in various cities, routes they took, stops they made, on their way to forming
the enemy army? In other words, how can we analyze network data in space
and time?

When observed over time, spatially embedded networks exhibit a specific
kind of dynamism deserving of its own forms of analysis. Agents occupy only
one Location at a time, but progress from Location to Location longitudinally,
creating a temporally embedded sequence of relationships we call a ”trail”.
Trails are paths that whos move through within a network. Naturally, trails
involve both a who and where and even a when. When you can link those
entities together over period you have a trail.

Trails are just one perspective on one part of the larger dynamic network,
but thinking about relationships in sequence makes certain kinds of analysis
much more intuitive. Using trails, we can begin to analyze questions like,
”Where do people at Location X tend to go next?”, ”Which other Agents does
Agent A frequently cross paths with?”, or ”What kind of seasonal patterns
govern movements in my networks?”

Stepping back from the spatial context, we can see that sequential relation-
ships, and the type of question we ask about them above, are not limited to
tracking movement. We might also consider changes in Agent affiliation, such
as an Agent x Employer relationship, or changes of power, such as a Country x
Political Party relationship. The formal, generalized definition of ”trail” is (1)
a subject node (such as an Agent) and (2) a time-labeled sequence of target
nodes from the same class (such as Locations). Any dynamic relation can be
used as a trail set, so long as it has the property that at any given time—it
is many-to-one (an Agent can occupy only one Location but a Location may
host many Agents).

Having established that general view, we will return to discussing trails in
their most intuitive context, as a description of spatial transitions. Since trails
and networks are closely related and defined in this way, trails are actually
a type of network. Although analyzing the trail as a network may not seem
interesting, trails can be used to create useful networks. For example, trails
can be used to create co-Location or co-affiliation networks, showing who was
at the same place or Organization at the same time. Trails can also be used
to create transition networks showing how people in aggregate tend to move
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from place to place or from Organization to Organization (2008b). Trails can
also be generated from networks. Although networks do not have sufficient
information to reproduce trails, networks can be used to create prototypical
trails that might be expected given e.g. a transition network (Davis, 2008).

So, when we look for trails in networks over time, we look for interesting
patterns and shared similar behaviors.

ToDo: example of trails, e.g. Davis, 2008. Focus: What can be analyzed?

6.3 Measuring change

Questions for Comparison: Are two networks similar? What is the difference
of two networks? How to compare more than two networks? How to com-
pare predicted networks to the actual future observed networks? Can we use
standard statistics (e.g. correlations)?

6.3.1 Levels of comparison

We distinguish between four levels of comparison based on what is calculated
for every network:

Node measures. Measures are calculated on node level (e.g. centrality
measures) and the results are compared with each other, e.g. comparison of
the set to top 10 key entities, the ranks of the entities, or the centrality scores
of the entities. We did this in chapter 2 with the Agents in the five acts of
the Julius Caesar network.

Network measures. Network level indices are calculated (distribution
of node measure values, network centralization, density, etc.) and then com-
pared between different networks. This approach is similar to comparing node
measures.

Network structure. The network matrices are compared with each other,
e.g. Hamming distance, Euclidean distances, correlation of networks, regres-
sion models with networks. The remaining sections of this chapter will pri-
marily deal with these topics.

Motifs. Local patterns in networks are analyzed and compared between
networks to describe the dynamics of change, e.g. transitivity, reciprocity. One
approach to compare motifs is the triad census from Holland and Leinhardt



D
RA
FT

6.3. MEASURING CHANGE 105

(1976). A more comprehensive method is called Exponential Random Graph
modeling and is presented later in this chapter.

6.3.2 Network distances

One straightforward approach to compare networks with each other to identify
the amount of change over time is to calculate the difference between networks.
So exactly, how does the network scientist measure the differences between two
networks? Well, one the short answer is that they dynamic network analyst is
interested in learning about the distance between the network. To do so, is to
consider the network matrix as list of numbers. The most common means for
doing so is to calculate the Hamming distance between two networks. Another
method is to use Euclidean geometry to ascertain differences. Of course, there
are other methods, each of which is done differently and warrants its own
respective considered by the analysts.

Hamming distance. Hamming distance considers network matrices as
strings of binary information. Therefore, every cell of the string is either 1
or 0. In Figure 6.3 we illustrate the process of comparing two networks by
calculating the hamming distance. You can see visualization and matrix of two
different networks, each consisting of 5 nodes and directed links connecting
the nodes. On the lower left part of the Figure, the two network matrices are
transformed into a string by concatenating the lines of the matrices. If we
now compare these two strings bit-by-bit (column-by-column), we can count
the number of disparity—in our example 5 elements are different resulting in
a proportion of 20 % difference. Consequently the Hamming distance between
our two example networks is 0.2.

Let us look again to the Tragedy of Julius Caesar. When we look at the
social networks that we have introduced in the first chapter and we want to
calculate the hamming distance between the first and the second network,
the second and the thirds network, and so on, we are facing a problem—the
networks are of different size and when we concatenate the lines of the matrices
the resulting strings are also of different size which makes it impossible to
compare them. In addition, we can find Agents in the second network that are
not part of the first and vice versa. And this is not the exemption but rather
the rule because in real world—and in written tragedies—different networks
barely ever have the exact same Agents. To overcome this constraint that
we have two options adjust networks so that they have the same size before
calculating Hamming distance. Both methods result in different results and
you have to be aware of what you are interested in:
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Distance = 5 
5/25 = 0.2 = 20 % 

Figure 6.3: Hamming distance of two networks

• Union. Add missing nodes to both networks so that the networks con-
sists of all nodes that occur in at least one network. The added nodes
have no links.

• Interesect. Delete all nodes that just occur in one network.

In a nutshell, the Hamming distance is defined for binary networks as the
sum of differences between two networks. In other words, how many changes
from 0 to 1 or from 1 to 0 are necessary? This is a very simple and intuitive
approach to describe differences between networks.

Euclidean distance. Do you remember the Pythagorean theorem from
your math class in high school? a2 + b2 = c2 defines the relation between the
two shorter and the longer line of a triangle. Imagine the Cartesian coordinates
(the cross where the horizontal axis is called x and the vertical y). If you start
in the origin at (0, 0) (where the axes cross) and move 3 units to the right
and from there 4 units to the top. What is the distance from this point to the
origin? Correct, it is 5 because based on the Pythagorean theorem, the long
side of the triangle is the square root of the sum of the squares of the other
two lines, or to say it in math:

√
32 + 42 = 5. This distance of the longer

line of the triangle is actually the Euclidean distance from the origin on a
2-dimensional surface. In general, we can use the same concept to describe
the distance in any higher dimension:

d(A,B) =
√

(A11 −B11)2 + (A12 −B12)2 + · · ·+ (Anm −Bnm)2

So, even if we are not capable of imagining a 25 dimensional space, it is quite
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easy to take 25 times each with two numbers, calculate the difference, square
the difference, 1. sum up all sub results and calculate the square root from the
sum. If you do so and calculate the Euclidean distance for the example of 6.3
you will probably figure out that the result is the square root of the absolute
Hamming distance. This is the case because our network is binary and the
square of 1 (or -1) is also 1. However, Euclidean distance has a very important
advantage compared to Hamming distance, it takes link weights into account.
Therefore, if your network is weighted and you are interested in distances
between networks, than Euclidean distance is probably your preferred choice.

6.3.3 Correlation of networks and its problems

Another approach to compare networks is to correlate its network matrices.
Person correlation (Pearson, 1920) compares any list of numbers and tells us
how similar these numbers are. People run their statistical tools and calculate
correlations because they are interested in comparing different variables with
each other. For instance, managers are interested in whether employees with
higher income have higher productivity, teacher want to know whether middle
school students that perform better in math do also better in physics, and
Caesar could be interested in whether the happiness of his subjects is higher in
parts of his empire in which more gladiator fights are happening or in which the
taxes are lower. All these examples have in common that different attributes
of set of people are compared with each other. When we compare networks we
are interested in correlations of relations. To modify the previous examples to
relational questions, managers are interested in whether employees that share
more common projects interact more often which each other, teachers can be
interested in whether students use their friendship ties when they ask each
other for advice, and Caesar could be interested in whether private relations
(e.g. marriages between families) or business relations between the senators
result in a common voting behavior in the Senate. The näıve approach to
these network correlation questions is almost right.

If we transform the network matrices into lists of numbers (like for calcu-
lating distances), we can correlate these lists. For the two networks used in
the distance examples, the Pearson correlation coefficient is 0.53 if we ignore
the diagonal elements. At first glance, to Calculate the correlation between
the edge values in two networks, seems to be a straightforward–and also quite
intuitive— approach to compare network matrices. But after careful con-

1Squaring the differences has the big advantage that the ordering of the two numbers is
not relevant for the results. In case the difference is negative, the square is also positive
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sideration we can identify some major problems concerning correlation on
network matrices because network data violate basic assumptions of standard
statistics. In particular, whether a single link exists in an network or not
is not independent from the existence of the other links (see section 2.3.1
Networks on personal level), in networks are row and column dependencies.
Why does this matter? Because of this second number that always comes
with the correlation coefficient—the significance value (level). In statistics a
result is significant when there is a low probability that the result occurred by
chance. And this significance test (statistical hypothesis tests)—the result is
often referred to as p-value—requires independent lists of values as essential
pre-condition. In summary, it is o.k. to calculate correlations between to net-
works matrices, but we won’t have a clue whether the result is significant or
not. Consequently, we need a better significance test that result in statistical
guaranteed p-values. And this is exactly what people do when they run a
QAP analysis.

6.3.4 QAP/MRQAP

David Krackhardt (1987b; 1988) presented the Quadratic Assignment Proce-
dure (QAP) “for testing hypotheses in both simple and multiple regression
models based on dyadic data, such as found in network analysis.” (Krack-
hardt, 1988, p. 359) Krackhardt used the ideas from Hubert and Schultz
(1976) to overcome the statistical dependencies problem of network data (see
previous paragraph). But before we discuss this question in details, let us enu-
merate some statistical definitions. In stats, the null hypothesis is normally
the assumption that two variables are uncorrelated. In the context of net-
works, these two variables represent two network matrices. In econometrics,
temporally interdependent variables are called autocorrelated. For instance,
the stock exchange price of a certain company at a certain day is a function
of a lot of variables, one of which is the price at the day before our day of
interest. In the context of networks, the interdependencies of data is called
structurally autocorrelated.

When calculating correlations with network data the question is, does the
network structure independently from the nodes cause the similarity between
two networks or is the identity of the nodes relevant? To tackle this ques-
tion, Krackhardt (1987b) suggested simulation approach called QAP. QAP
is a graph-level test against the null hypothesis of uncorrelated data. The
procedure itself is quite simple. First, you calculate the correlation of two
networks. Krackhardt (1987b) used the network in Figure 6.4(a) to demon-
strate the approach; the dependent network is without the dashed line and the
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Figure 6.4: Correlation and QAP significance level for two networks

independent network is the same network but with the dashed line. Calculat-
ing Pearson’s correlation for these two networks result in r = 0.816. Second,
to get the p-value, the QAP approach comes into play. For the independent
network (with the dashed line) we take the network matrix and we randomly
permute the rows of the network matrix. Then we also change the order of
the columns. The permutation of the columns is done identically to the rows.
This procedure does not change the structure of the network but the identity
of the nodes. We can get the same permuted network by simply changing the
labels of the nodes. This random sampling of node label assignments or rows
and column orders is called Monte Carlo simulation. Krackhardt did this for
all possible 120 different permuted network and identified four networks that
result in the same strong correlation (Krackhardt, 1988, p. 378). Therefore,
the chance that the correlation is a random result triggered by the network
structure is 3.3%—0.033 is the p-value of significance.

For very small networks it is possible to calculate all possible permutations.
For five nodes there are 120 different permutations (= 5!). If the network
is larger this is impossible. Even for a network with ten nodes there are
already 3.6M different possible permutations. For practical applications, not
all possible permutations are calculate but a rather small random sub-sample,
e.g., 100 permutations. Consequently the p-value is then the percentage of
permuted networks with a higher or equal correlation with the dependent
network than the original independent network.

This is what we did in for both networks Figure 6.4. 2 The first network is

2For these examples we did the opposite of selecting a small random sub-sample of per-
muted networks but selected 1,200 networks from the pool of 120 possible permutations.
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the network that we have discussed in the previous paragraphs. The right net-
work is the star structured network that Freeman (1979) used to describe the
centrality measures. Both networks have five nodes and to both networks just
one link is added to create the second network for comparison. The correlation
coefficient is identical for both networks but the p-values are very different.
The reason for the very bad (high) p-value for the second correlation is the
structural dominance over the individual nodes—the structural autocorrela-
tion. More than 20% of random permutations result in networks with equal
or better correlation coefficient that the original independent network. Even
r = 0.816, the result is not significant.

Multiple regression quadratic assignment procedure (MRQAP) is the ap-
proach for running regression analysis with more than two networks. Like re-
gression analysis for regular statistical data, MRQAP describes the dependent
network with a set of independent networks. The approach is very similar to
QAP. We do not discuss details of MRQAP in this book; the interested reader
will find more information about this topic at (Krackhardt, 1988) and (Dekker
et al., 2007).

6.3.5 Exponential Random Graph (p∗) Models

Exponential Random Graph Models, also known as (p∗) models, are a family
of statistical models that help analyze the structure and properties of social
and other networks. There are other well known techniques to describe the
structural properties of a network such as centrality, density etc. As opposed
to these techniques which describe only the network for which they are mea-
sured, ERGMs try to describe all possible networks with the same statistical
properties as the current one. The other alternative networks may or may not
have the same structure, but the underlying statistical model that generates
them is the same as the observed network. The networks that are being stud-
ied today are substantially larger in structure for example, the World Wide
Web, Internet, communication networks, food web networks, etc which have
millions and even billions of nodes. It is very hard to visualize the shape and
structure of such networks, even with modern advances in computing tech-
nology. In absence of reliable visualization techniques, statistical modeling
techniques can provide an answer by quantifying large networks. Networks
with similar properties will have similar statistical models. This change in
scale also makes traditional questions like, which nodes removal will affect the
connectivity in the network the most, largely irrelevant. For large scale net-

This approach makes the resulting p-values very stable when re-running the analysis.
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works a question which makes more sense is what percentage of nodes when
removed would significantly affect network connectivity? Newman (2003).
Statistical modeling of networks will allow us to answer this question.

Exponential random graph models have the following form:

Pθ(X = x) =
exp(θts(x))

c(θ)

Where X is a random graph consisting on n nodes and x is the observed
graph. The assumption of this model is that the structure of the observed
graph x can be derived from a known vector of graph statistics, s(x) and the
associated vector of model parameters θ. The parameter c(θ), is a normalizing
constant where

c(θ) =
∑

all possible graphs x

exp(θts(x))

All exponential random graph models are of the form of the first equation,
which describes a general probability distribution of graphs with n nodes. The
particular probability for observing the graph x is dependent on its statistics
s(x) and on θt for all configurations in the model. Configurations include
ties, triads and are these dependence assumptions are important because they
pick different configurations as relevant to the model and also because they
constrain the possible configurations possible in the model ?. The simplest
dependence assumption is the Bernoulli random graph distributions where the
edges are assumed to be independent whereas more complex ERGMs incor-
porate node level effects (actor attributes) in the configurations. This flexibil-
ity in dependence assumptions allows for greater variability in the statistical
modeling depending on the requirements and needs of the end user using the
ERGM technique.

6.4 Detecting change

In the previous sections we learned how to compare specific networks with
each other. For the last two sections of this chapter our focus shifts to an-
alyzing many keyframes of a network over time. The initial example of this
chapter in which we had thousands of emails for a time period of 81 days fits
this criteria. Other examples of data are, the interaction of users in Social
Media or co-publishing of scientific articles over decades, etc. In particular
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when you think on data from Social Media, you can create keyframes aggre-
gating data on a daily level, or even for every hour. This results in a large
number of keyframes, i.e. networks. Having all these networks, we are inter-
ested in quickly determine that (change detection) and when (change point
identification) a change occurred in the network.

One approach to identify whether something interesting happened in these
networks at some point in time make use of Statistical Process Control(McCulloh
and Carley, 2011). Statistical Process Control (SPC) approaches are used in
industrial production processes. Imagine a big machine producing lids for
tubes of toothpaste. At the end of the production circle, right before the lids
got packaged into boxes to be shipped to the toothpaste company, there are
electrical sensors that take different measurements from every lid, e.g., weight,
size, color. Each of this measure has an expected value that is pre-defined by
the product engineers. As the instrument that collect these measures are
very precise, it is almost impossible that the exact expected values are met.
Therefore, a tolerance area of satisfactory is defined, i.e., a deviation from the
expected value. We now use this idea of SPC for DNA.

6.4.1 Shewhart’s Chart

The first SPC approach to detect change is Shewhart’s chart (Shewhart, 1927).
Recall the lid example from the previous paragraph. What do we need to an-
alyze whether the lids have the correct size and color? We need to know what
we are measuring (statistic) and when the measure is outside the expected
area (signal). The first question is easy to answer. Various measures on node
level or on network level that have been described in this and other books can
be used to create statistics of interest, e.g., centrality measures. To create the
statistic over time, we simply calculate the measure(s) of a network for each
keyframe. The underlying assumption of change detection is that a change in
an appropriate network measure is the result of a change in the underlying
real-world network.

To illustrate Shewhart’s approach for network data, we calculate total de-
gree centralization Freeman (1979) over time for the e-mail network. The
Curve in Figure 6.5 shows the result for every keyframe—please ignore the
y-axes and the horizontal lines in the chart for now. For interpretation of
this chart we need to know that day 1 of our data is a Thursday. With this
knowledge we can identify a peak in centralization on the first weekend as
well as on the third weekend and the consecutive days. In the second part
of the data, the peaks get higher and the last 20 days of observation show a



D
RA
FT

6.4. DETECTING CHANGE 113

more dramatic up-and-down of degree centralization indicating short periods
in which some people send and receive many more mails than the majority of
the people in the network.

The second question concerning the signal is not trivially to answer. Look-
ing at the curve in Figure 6.5 one could say that every peak is interesting.
From a statistical point of view “a peak” is too fuzzy, we have to find a better
definition. In particular, when we assume network data with hundreds or even
thousands of keyframes. This brings us back to the question about what is
the expected value in the context of networks? What is the expected degree
centralization of our network, or what is the expected value of any network
measure? Normally, we will not be able to answer these questions theoret-
ically. Instead, we use parts of our empirical data to describe an expected
behavior and calculate the deviation from these expectations. The tricky part
is now to come up with a decision about which data to include. The left
y-axis in Figure 6.5 uses just the first two days to calculate the boundaries
that signal unexpected values. Therefore, 0.0 of the left y-axis is in the middle
of the first two data points. The +/- values on this y-axis describe how many
standard deviations the data points are away from this average value. If we
assume an expected area of +/- 2.0 standard deviations (continuous lines),
the first two peaks (and also the later peaks) are identified as spikes of our
statistic.

Maybe we already know that, because of some characteristics of this system,
total degree centralization peaks on weekends and we want to incorporate this
into the expected behavior of the change detection (we talk more about these
periodicities in the next section). In this case, our observation period could be
seven days. The right y-axis and the dashed lines show average and standard
deviations calculated on the first seven data points. You can see that now
the first peaks are within the boarders of expected behavior. The third larger
peak is the first that triggers the signal of unexpected behavior. The last 20
days are still covered by this version of detecting change.

This straightforward example already illustrates the main issue of change
detection for network measures—the definition of the expected behavior of
the system which is the primary trigger for signaling deviating behavior of the
system. First of all, this a decision of trade-off between false positive and rapid
detection, i.e., a narrow area of expected behavior is able to identify small
change but results in a lot of false alarms while a broader tolerance region
produces less false alarms but includes a higher risk of missing interesting
changes in the network. In the context of SPC, Page (1961) suggests a second
line on a lower level—the warning line.
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6.4.2 Cumulative Sum (CUSUM)

Shewhart’s control chart Shewhart (1927), that was introduced in the last
section, focuses on the identification of single outliers in the data. The cu-
mulative sum (CUSUM) approach is good for detecting smaller but constant
change. A simple version of CUSUM is the following. Imagine a control chart
like in Figure 6.5. Instead of one action line that signals a deviation of the
system, we could draw two or more lines, some of which even closer to the
expected average value. Passing the first control line results in 1 point, pass-
ing the second line results in 2 points, and so forth. A data value within
the expected area results in, e.g., -2 points. If we now setup the system in a
way that reaching 3 (or more) points triggers the deviation signal than this
threshold can be reached with one or two big deviations or a larger number
of smaller deviations.

A more generalized version of CUSUM was introduced by (Page, 1961). The
CUSUM chart consists of two lines. Let us first focus on the first line that
controls for positive deviations, i.e., the observed data points xi are bigger
than the expected value k. For instance, the first data points of our observed
measures are above k. CUSUM accumulates now the deviation from k by
calculating S2 = (x1− k) + (x2− k). It is clear that this line is going upwards
as long as the data points are larger than the expected value. In case the data
points are smaller than k, the CUSUM value gets smaller but the accumulated
deviation is still positive. If this line hits now, e.g., as a result of many small
positive deviations, a pre-defined threshold, the change signal is triggered. In
case the threshold is not reached but instead the CUSUM gets smaller and
smaller and finally undershoots zero, the positive lines is set to zero and the
negative CUSUM line starts to accumulate negative deviations.

In Figure 6.6 we used the same email data that was used previously in this
chapter. As we have seen before that the weekends are very different in our
data, we deleted the Saturday and Sunday networks from our Dynamic Meta
Network. For the CUSUM analysis we looked at the number of Agents in
the network. The number of nodes that are involved in email conversation
(send and/or receive) is visualized with the gray line in Figure 6.6. The y-axes
marks the amount of standard deviations from the mean based on the first
five observations. If you look at the gray curve in of the statistic you may
think that values go up and down around the zero line marking the average.
Looking at the cumulative sums reveals a very different picture. Even the
one day peak at day 20 is followed by a rather stable period of 20 days, the
values of this period are almost completely above the average—the constantly
raising increase lines indicates this artifact of our statistic. Moreover, when
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Figure 6.6: Cumulative sum chart

we look at the point at which the increase line leaves the zero line we can
identify the change point of the statistic (day 12). CUSUM The very high
values of the last 20 days of the data burst the bonds of the chart. Therefore,
we stop drawing the increase CUSUM at this point.

Shewhart’s control chart and Page’s CUSUM are straightforward approaches
that are easy to understand and to calculate. The decision about which ap-
proach to use is based on the question of whether you are more interested in
detecting all spikes of deviation or you are looking for constant (and probably
smaller) changes. Another advantage of CUSUM is the built-in change point
detection. If you are interested in statistically more elaborated approaches
to Statistical Process Control we want to point your attention to McCulloh
(2009) for an introduction to this topic in the context of network analysis.

6.5 Periodicities

Many real world network data over time, in particular data based on commu-
nication like the e-mail data that we have used in the previous sections, show
periodic patters, i.e., a very similar up-and-down over time. For instance,
it makes perfects sense that e-mail data has a weekly periodicity as people
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work less on the weekends. In addition a monthly periodicity could indicate
reporting a reporting structure that create more communication at the end of
the month independently from the weekday. This changing behavior creates
similar networks on a periodic intervals that probably result in similar net-
work statistics on network or node level. In real-world data the weekly and
the monthly periodicity overlay each other. Actually, additional periodicities
based on project cycles can make it even harder to identify the underlying
periodicities. Nevertheless, identifying the periodic behavior of ones data can
be a very interesting step of analysis.

A very powerful but all but trivial approach to describe periodicities auto-
matically is Fourier analysis. Fourier analysis decomposes a signal into a sum
of sine waves. What does this mean? A sine wave is function a · sin(t/b).

Figure xx with 3 or four difference sine waves: 2 · sin(t/π)

Figure xx shows how different sine waves can be used to describe more
complex periodicities. The third sine wave is the product of the first two sine
waves. Adding more sine waves can create any possible curve—theoretically
we could even create the rectangular signal utut with an infinite number of
sine waves.

figure: sum of 2 sine waves (from AHFE workshop)—write sin(xx) to the
figure.

Spectral analysis.

Use Sine waves to describe periodicity
Detect temporal regularities and cycles
Power spectral density (PSD): How much power/energy lays in which period-
icity?
frequency domain Dominant Frequencies: Shows just frequencies that are
greater than two standard deviations from the mean frequency
Period Plot: applying an inverse Fourier transform to the dominant frequen-
cies

6.6 Problem set

1. What are the two ways of describing change in network and which one
is used normally in network analysis?

2. What two-mode network can be used to show the trail of Julius Caesar
in the tragedy?
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3. What data is used when network distances are calculated?

4. If you assume two networks that have 80% of the nodes overlapping.
Does the union or the intersect of the networks have more nodes? Why?

5. When we want to compare the centrality of an actor over time. What
data do we use to create the line diagram of importance over time? How
do we get this data?

6. What is false positive and false negative?

7. What is the advantage of CUSUM compared to Shewhart’s chart?

8. What is the basic idea of fast Fourier transformation?

9. How is it possible that we can calculate Pearson correlation for two
network matrices?

10. Look at the overtime calculations in chapter 2 that show the importance
of Agents in the tragedy of Julius Caesar. What network level metrics
could we use to analyze change in this network?

11. *If your want to calculate Hamming distance from the network of an
organization over time with fluctuating members; what is the problem?
How can you overcome this problem?

12. *Aggregate (union) all five acts of the Julius Caesar Agent x Agent
network. Calculate degree, closeness, and betweenness centrality for the
aggregated as well as for the per-act networks. Discuss the differences
of the calculations. What are the advantages and disadvantages of both
methods?

13. *What is the problem with network correlation and how can we overcome
this problem?

14. *We used Freeman’s star network in this chapter to show a bad example
for the QAP procedure. Find another network consisting of five nodes
for which adding a single link results in bad QAP significance level.

15. *Find a scenario that satisfies these conditions: The node level metric
is completely different and the network level metric is identical.

16. *Visualize the overlapping trails of three main Agents of the Julius Cae-
sar network.
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17. **Enumerate the four levels of comparison and describe how change on
each of these levels can be calculated. Find a network with at least two
keyframes and calculate a change metrics for every level. Discuss the
your results in the context of your network data.

18. **Figure out why correlation of two binary network matrices is prob-
lematic. You can discuss this question with a statistician.

19. **Find and example for exponential random graph models in the liter-
ature and understand what was accomplished in this work.

20. **Find a network online or create a network that has at least ten
keyframes. Calculate degree centralization for every keyframe and cal-
culate the Shewhart’s chart. Experiment with different numbers of net-
works that are in control. Can you find useful results?
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Chapter 7

Network Evolution and
Diffusion

7.1 Diffusion of apples, ideas and beliefs

7.1.1 Random networks and stylized networks

7.1.2 Diffusion of innovation

7.1.3 Epidemic concepts

7.2 Agent-based dynamic-network computer simu-
lations

7.2.1 Models

7.2.2 Models for diffusion processes

7.3 Evolution of networks
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Chapter 8

Extracting Networks from
Texts

It has become fast, cheap, and easy to collect and store large amounts of
natural language text data. New text data is created every second on the
internet as hundreds of million of user interact on social media platforms
with each other. But also traditional media is more and more available since
archival text data such as newspapers and books are being converted to digital
forms daily. The increasing availability of these data has exacerbated the need
for techniques, measures and tools for automated knowledge discovery and
reasoning about text. The family of methods developed to address this issue
is collectively known as Relational Text Analysis (RTA). Or, in the context
of networks it is often referred to as Network Text Analysis ( Carley, 1997;
Danowski, 1993; van Cuilenburg, Kleinnijenhuis and Ridder, 1986). While
text data does not automatically entail a network analysis, text is a ready
source of new information about relationships between entities and additional
attributes for single entities.

The goal of this chapter is to introduce you to the applicability and usage of
text analysis in the domain of network analysis. You will learn how to extract
relevant information and structured data from text data in an efficient and
systematic fashion, how to perform appropriate analysis on the extracted data,
and how to interpret and evaluate your results. The secondary goals are to
understand how the different choices that you make throughout this process
impact your results. We will describe the basics for how to distill relevant
information as well as one-mode and multi-mode network data from texts.
We will also discuss what metrics you would use in analyzing the extracted
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information and network data.

8.1 Analyzing texts

8.1.1 Content analysis

8.1.2 tf*idf

8.2 Text processing

8.2.1 Deletion

8.2.2 Thesauri

8.2.3 Concept lists

8.2.4 Bi-grams

8.2.5 Stemming

8.3 From texts to networks

8.3.1 Keyword in context

8.3.2 Windowing

8.3.3 Extracting meta-networks from texts
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Chapter 9

The Future of Dynamic
Network Analysis
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Appendix A

SNA Measures Glossary

Dynamic network analysis uses a lot of different measures to gain better in-
sights into network structure and dynamic. In the chapters of this book we
discussed various measures to identify important nodes, find group structures,
detect change, etc. We have not defined these measures mathematically or
algorithmically so far. This is what you can find in this chapter. At the fol-
lowing pages you will find a lot of measures including a short description, the
reference of the paper where the measure was originally presented, as well as
the equation or algorithm describing the actual calculation of the measures.

Scaling a measures means to transform the results of a certain calculation
into the range of 0 to 1, with 0 being the smallest possible value and 1 indi-
cating nodes having the maximum possible value. This is important to make
results of different networks comparable. The basic idea of scaling network
measures is to find the maximum possible value and divide by this number,
e.g. in a network with N nodes a single node can have N − 1 maximum pos-
sible neighbors. Degree centrality, therefore, counts the number of nodes, a
single not is connected to and divides this number by N − 1. In the following
equations you will find an apostrophe to indicate scaled measures, e.g. C ′D
stands for scaled degree centrality. Consequently, C is unscaled degree cen-
trality, which is the number of neighbors of a node. For some measures we
offer the unscaled version and the maximum possible value. In this case, to
get the scaled measure you have to divide the unscaled with the maximum
value:

C ′ =
C

Cmax
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A.1 Notations

A.1.1 Node Classes

A single network matrix is notated with capitalized letters. We use different
letters to refer to different node classes. These are the abbreviations for the
node classes:

A Agent T Task R Resource K Knowl-
edge

E Event

C Action O Organiza-
tion

L Location X Role B Belief

Table A.1: Node Classes

A.1.2 Matrices

For some of the measures we need matrix notation to describe the measure.
Table A.1.2 gives an overview of these notations as well as short descriptions.

A.2 Standard network measures

A.2.1 Degree Centrality

Citation: Freeman (1979)
Description: Degree centrality measures the number of other nodes that one
node is connected to. Depending on the network, high degree centrality in-
dicates a highly active agent or an agent known by a lot of other agents,
etc.

CD(i) =
∑
j>i

wj,i with CmaxD = N − 1

A.2.2 Closeness Centrality

Citation: Sabidussi (1966), Freeman (1979)
Description: Closeness centrality measures the nearness (as opposite from the
distance) from an agent to all other agents. Agents having a high closeness
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Notation Description

A Capitalized letters represent one mode (squared) network ma-
trices, e.g. the connections between Agents

A Capitalized bold letters represent a matrix which is the result
of a calculation

AR Two mode network matrix, e.g. the connections between Agent
and Ressources

|A| Dimension of a squared matrix, i.e. the number of nodes in the
network

A(i, j) The entry in the ith row and jth column of the matrix
A(i, :) The ith row vector of a matrix
A(:, i) The jth column vector of a matrix∑

(A) The sum of all elements of a matrix
A′ The transpose of a matrix, i.e. rows and columns are swapped
∼ A For binary matrix, A(i, j) = 1 if A(i, j) = 0, i.e. swaps 0 and

1,
A ◦A Element-wise multiplication of two matrices,

i.e. C = A ◦B ⇒ C(i, j) = A(i, j) ·B(i, j)
card(Set) The cardinality of a set, i.e. |Set|

Table A.2: Matrix notations

score have short distances to all other nodes. This is important for the avail-
ability of knowledge and resources. d(i, u) is the path distance from node i to
node u.

CC(i) =
1∑

i 6=u d(i, u)
with CmaxC =

1

N − 1

A.2.3 Betweenness Centrality

Citation: Anthonisse (1971), Freeman (1977, 1979)
Description: Betweenness centrality measures the amount an actor is in an
intermediate position between other nodes. High between actors connect dif-
ferent groups and have control over the flow of information in a network. gu,v
is the number of shortest paths between two nodes u and v while gu,v(i) is the
number of shortest paths including node i.
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CB(i) =
∑
u<v

gu,v(i)

gu,v
with CmaxB =

N2 − 3N + 2

2

A.2.4 Eigenvector Centrality

Citation: Bonacich (1972)
Description: Eigenvector centrality is based on eigenvector calculation in lin-
ear algebra. Agents have a high eigenvector score if they are important and
connected to other important agents. Let W be the network matrix, λ be
the largest eigenvalue of the adjacency matrix W , and CE the corresponding
eigenvectors. The Eigenvector centrality of a node i, CE(u) is defined as the
linear combination of the eigenvector centrality of its neighbors:

CE(i) =
1

λ

∑
u

wi,uCE(I) with CmaxE =
√

0.5

where λ is a constant. We can rewrite the equation as:

λCE = W · CE

A.2.5 Clustering Coefficient

Citation: Watts and Strogatz (1998)
Description: The Clustering coefficient measures the local density of every
agent. Agents with a high clustering coefficient are connected to neighbors
which are more likely connected to each other. For a vertex i with ki neighbors,
these neighbors can have at most ki(ki−1)/2 edges. The clustering coefficient
for the node i is the number of actual links between the kv neighbors divided
by the maximum possible number:

CC(i) =
2 · |wu,v|
|Ni|(Ni − 1)

with ei,u, ei,v ∈ E
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A.3 Grouping algorithms

A.4 Change measures

A.5 Network text algorithms
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Appendix B

Two-Mode Network Measures

B.1 Quantity

Quantity measures count or average the entries of a matrix.

B.1.1 Degree

Counting the row or column entries of a two mode network. In case of an AK
network the normalized row degree d for an agent i is defined as follows:

di =

∑|K|
j=1AK(i, j)

|K|

Level: Node
Reference: Freeman (1979), Wasserman and Faust (1994), Borgatti and Ev-
erett (1997)
Current ORA measures: columnDegreeCentrality, inDegreeCentrality, out-
DegreeCentrality, rowDegreeCentrality, columnCount, rowCount, edgeCount,
capability

B.1.2 Load

On network level, a single value for the entire network is calculated through
averaging link values. Load is a network level concept that identifies the
average amount of, e.g. Knowledge, per agent. Knowledge load l is defined as

l =

∑
AK

|A|
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Level: Network
Reference: Carley (2002)
Current ORA measures: knowledgeLoad, resourceLoad, density, rowBreadth,
columnBreadth.

B.2 Variance

Variance measures create network level indices that describe the distribution
of connections in networks.

B.2.1 Centralization

On way to describe the variance in a network is through calculating network
centralizations based on the results of centrality measures. If c(pi) is the
centrality score of node i and c(p∗) is the largest value for any node in the
network, then the network centralization c is defined as

c =

∑n
i=1 [c(p∗)− c(pi)]

max
∑n

i=1 [c(p∗)− c(pi)]

Level: Network
Reference: Freeman (1979)
Current ORA measures: columnDegreeCentralization, inDegreeCentraliza-
tion, outDegreeCentralization, rowDegreeCentralization

B.2.2 Diversity

Diversity is a group measure and results in a single value for the whole network.
It measures whether the knowledge of the people in an organization is rather
equally distributed or concentrated. This is the Herfindahl-Hirshman index
applied to column sums of, e.g. the AK network. For every knowledge we
calculate

wk =

|A|∑
i=1

AK(i, k)

with

W =

|K|∑
k=1

wk
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then

d = 1−
|K|∑
k=1

(
wk
W

)2

Level: Network
Reference: Hirschman (1945)
Current ORA measures: knowledgeDiversity, resourceDiversity

B.3 Correlation

Correlation measures create a matrix A that describe similarities/dissimilarities
between all pair of agents. For some measures, this dyadic matrix is the result.
For other measures, node level or network level indices are calculated.

B.3.1 Similarity

The degree of similarity between two agents based on shared knowledge. Each
agent computes to what degree the other agents know what they know. Let

M = AK ·AK ′

and

w(i) =
∑

M(i, :) for 1 ≤ i ≤ |A|

then the relative similarity S between agents i and j is

S = M(i, j)/w(i)

The relative similarity s for an agent i is the average of the non-diagonal
elements of row i of S

si =

∑|A|
j=1,j 6=i S(i, j)

|A| − 1

Level: Node
Reference: Carley (2002)
Current ORA measures: relativeCognitiveSimilarity, cognitiveSimilarity, rel-
ativeSimilarity, correlationSimilarity
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B.3.2 Distinctiveness

Measures the degree to which each pair of agents (i, j) has complementary
knowledge, expressed as the percentage of total knowledge. In effect, this is
the exclusive-OR of the knowledge vectors. Cognitive distinctiveness d for a
pair of agents (i, j) as well as (j, i) where i 6= j is

di,j =

∑|K|
k=1 (AKi,k· ∼ AKj,k) + (∼ AKi,k ·AKj,k)

|K|

Level: Dyad
Reference: Carley (2002)
Current ORA measures: relativeCognitiveDistinctiveness, cognitiveDistinc-
tiveness, correlationDistinctiveness

B.3.3 Resemblance

Measures the degree to which each pair of agents has the exact same knowl-
edge. Cognitive resemblance r for a pair of agents (i, j) as well as (j, i) where
i 6= j is

ri,j =

∑|K|
k=1 (AKi,k ·AKj,k) + (∼ AKi,k· ∼ AKj,k)

|K|

Level: Dyad
Reference: Carley (2002)
Current ORA measures: relativeCognitiveResemblance, cognitiveResemblance,
correlationResemblance

B.3.4 Expertise

The degree of dissimilarity between agents based on shared knowledge. Each
agent computes to what degree the other agents know what they do not know.
The relative expertise matrix E is defined as follows:

E(∼ AK ·AK ′) with E(i, i) = 0

normalize E by its row sum

E(i, :) =
E(i, :)∑
E(i, :)
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The relative expertise e for agent i is

ei =

∑|A|
j=1,j 6=i E(i, j)

|A| − 1

Level: Node
Reference: Carley (2002)
Current ORA measures: relativeCognitiveExpertise, cognitiveExpertise, rela-
tiveExpertise, correlationExpertise

B.4 Specialization

These measures identify agents that have either exclusive or redundant con-
nections to other node class entities.

B.4.1 Exclusivity

Detects agents who are exclusively connected to elements of other node classes.
The knowledge exclusivity index x for an agent i is defined as follows:

xi =

|K|∑
j=1

[AK(i, j) · exp(1−
∑

AK(:, j))]

Level: Node
Reference: Ashworth and Carley (2006)
Current ORA measures: knowledgeExclusivity, resourceExclusivity, taskEx-
clusivity, exclusivityComplete, exclusivity

B.4.2 Redundancy

Knowledge is redundant if there are different agents sharing the same knowl-
edge. Redundancy is a network level measure and returns the average number
of redundant agents per knowledge. For every column j in the AK matrix we
calculate

dj = max[0,
∑

AK(:, j)− 1]

Knowledge redundancy r is consequently

r =

∑n
j=1 dj

|K|
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with
rmax = (|A| − 1)

Level: Network
Reference: Carley (2002)
Current ORA measures: columnRedundancy, rowRedundancy, knowledgeRe-
dundancy, accessRedundancy, resourceRedundancy, assignmentRedundancy

B.4.3 Access

An access index identifies connections to critical knowledge, resources, etc.
The knowledge access index a first identifies actors that have exclusive con-
nections to knowledge. If such an agents is in addition connected to just one
other actor in the social network then both agents have critical access. For
every agent a set of exclusive knowledge is calculated in case the agent is just
connected to one other agent:

Ki = {k|AK(i, k) ∧ (
∑

AK(:, k) = 1) ∧ (
∑

A(i, :) = 1)}

For agent i a is binary and defined as

ai = ((Ki 6= ∅) ∨ (∃j|Kj 6= ∅ ∧A(j, i) = 1))

Level: Node
Reference: Ashworth and Carley (2006)
Current ORA measures: knowledgeAccessIndex, resourceAccessIndex
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Multi-Mode Network
Measures

C.1 Quantity

C.1.1 Degree

Total number of people reporting to an agent, plus its total knowledge, re-
sources, and tasks can be considered as Personnel Costs:

ci =

∑|A|
j=1,j 6=iAA(j, i) +

∑
AK(i, :) +

∑
AR(i, :) +

∑
AT (i, :)

(|A| − 1) + |K|+ |R|+ |T |

A very similar measure is Socio Economic Power that measures the power of
Agents based on access to knowledge, resources, and tasks. It is defined like
Personnel Costs but without the Agents parts of the equation.

Level: Node
Reference: Ashworth and Carley (2003), Carley (2004)
Current ORA measures: personnelCost, agentSocioEconomicPower

C.1.2 Load

Complexity is a meta-network measures of load. It calculates the density of
the meta-matrix that results from concatenating all available networks:

139
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c =
card{∀i, j ∈ A|i 6= j ∧AA(i, j) > 0}+ card{∀i ∈ A ∧ ∀t ∈ T |AT (i, t) > 0}+ · · ·

|A|(|A| − 1) + |AT |+ · · ·

Level: Network
Reference: Wasserman and Faust (1994)
Current ORA measures: complexity

C.2 Coherence

Coherence measures analyze to what extent requirements are accomplished
by the actual allocation of agents to tasks. The three different concepts of
this group describe coherence from different perspectives. Congruence mea-
sures the level of conformance, need algorithms focus on missing Knowledge
or Resources, and waste algorithms identify surplus Knowledge or Resources
compared to the actual needed ones for completing tasks. Performance looks
at Tasks which can be completed.

C.2.1 Congruence

Measures the similarity between what Knowledge is assigned to tasks via
agents, and what Knowledge is required to do Tasks. Perfect congruence
occurs when Agents have Knowledge when and only when it is needful to
complete their Tasks. Let KT be the matrix representing the Knowledge
assigned to Tasks via Agents

KT = AK ′ ·AT

then then Knowledge Congruence is the proportion of correctly assigned Knowl-
edge

c =
card{(i, j)|[(KT(i, j) > 0) = (KT (i, j) > 0)]}

|K| · |T |

Another more elaborated measures is Communication Congruence that mea-
sures to what extent Agents communicate when and only when it is needful
to complete Tasks. We assume that Agents i and j must reciprocally commu-
nicate if at least one of the following is true. a) if i is assigned to a Task s
and j is assigned to a Task t and s directly precedes Task t (handoff). b) if
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i is assigned to a Task s and j is also assigned to s (co-assignment). c) if i is
assigned to a Task s and j is not, and there is a Resource r to which Agents
assigned to s have no access but j does (negotiation to get needed Resource).
These three cases are computed as follows:

a) H = AT · T ·AT ′
b) C = AT ·AT ′

c) N = AT · Z ·AR′ with Z(t, r) =

{
1 if [AT ′ ·AR−RT ′](t, r) < 0
0 otherwise

Let Q be the reciprocal communication matrix that is required

Q(t, r) =

{
1 if [(H + C + N) + (H + C + N)′](i, j) > 0
0 otherwise

then Communication Congruence is, similar to Knowledge Congruence, the
degree to which actual communication differs from that which is needed to do
tasks

c =
card{(i, j)|[(A(i, j) > 0) = (Q(i, j) > 0)]}

|A| · (|A| − 1)

Level: Network
Reference: Carley (2002)
Current ORA measures: communicationCongruence, knowledgeCongruence,
resourceCongruence, socialTechnicalCongruence (2 mode)

C.2.2 Needs

Task Knowledge Needs compares the Knowledge requirements of each Task
with the Knowledge available to the Task via Agents assigned to it. It is
similar to Knowledge Congruence, but quantifies only the under supply of
Knowledge to Tasks. Let S be the Knowledge supplied to Tasks via assigned
Agents.

S = AT ′ ·AK

then Task Knowledge Needs for t is defined as

nt =

∑|K|
k=1KT

′(t, k) · (S(t, k) = 0)∑|K|
k=1KT

′(t, k)
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Organization Needs measures are the corresponding network level measures,
e.g. the Knowledge that Agents lack to do their assigned Task expressed as a
percentage of the total Knowledge needed by all Agents:

n =

∑|T |
t=1

∑|K|
k=1KT

′(t, k) · (S(t, k) = 0)∑
KT

Level: Node, Network
Reference:Lee and Carley (2004)

Current ORA measures: communicativeNeeds (communication), congruenceAgen-
tKnowledgeNeeds, congruenceOrgAgentKnowledgeNeeds, congruenceOrgTaskKnowl-
edgeNeeds, congruenceTaskKnowledgeNeeds, congruenceAgentResourceNeeds,
congruenceOrgAgentResourceNeeds, congruenceOrgTaskResourceNeeds, con-
gruenceTaskResourceNeeds, knowledgeUnderSupply, resourceUnderSupply

C.2.3 Waste

Waste measures focus on the oversupply part of congruence. Task Knowledge
Waste counts the number of skills supplied to a Task via Agents that are not
required by it expressed as a percentage of the total skills required for the
Task. This measure results in a value for every Task. Let, again, S be the
Knowledge supplied to Tasks via assigned Agents.

S = AT ′ ·AK

then Task Knowledge Waste for t is defined as

wt =

∑|K|
k=1 S(t, k) · (∼ KT ′(t, k))∑|K|

k=1 S(t, k)

Organizational Waste measures are the corresponding network level measures,
e.g. the Knowledge supplied to Tasks via Agents that are not required by
them, expressed as a percentage of the total skills needed by all Tasks:

w =

∑|T |
t=1

∑|K|
k=1 S(t, k) · (∼ KT ′(t, k))∑

S

Level: Node, Network
Reference: Lee and Carley (2004)
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Current ORA measures: congruenceAgentKnowledgeWaste, congruenceOr-
gAgentKnowledgeWaste, congruenceOrgTaskKnowledgeWaste, congruenceTaskKnowl-
edgeWaste, congruenceAgentResourceWaste, congruenceOrgAgentResource-
Waste, congruenceOrgTaskResourceWaste, congruenceTaskResourceWaste

C.2.4 Performance

Knowledge Based Task Completion calculated the percentage of tasks that
can be completed by the agents assigned to them, based solely on whether
the agents have the requisite Knowledge to do the Tasks. First, we find the
Tasks that cannot be completed because the Agents assigned to the Tasks
lack necessary Knowledge:

N = (AT ′ ·AK)−KT ′

Then we calculate the set of Tasks which cannot be completed:

S = {t|t ∈ T ∧ ∃k : N(t, k) < 0}

Knowledge Based Task Completion is then the percentage of tasks that could
be completed:

c =
|T | − |S|
|T |

Level: Network
Reference: Carley (2002)
Current ORA measures: resourceTaskCompletion, overallTaskCompletion,
knowledgeTaskCompletion, performanceAsAccuracy

C.2.5 Workload

Workload measures look for the Knowledge or Resource an Agent uses to
perform Tasks to which it is assigned. The Potential Knowledge Workload is
defined as

wi =

∑
(AK ·KT )(i, :)∑

KT

while the Actual Knowlede Workload also takes the actual AT network into
account:

wi =

∑
(AK ·KT ·AT ′)(i, i)∑

KT

Level: Node
Reference: Carley (2002)
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Current ORA measures: knowledgeActualWorkload, resourceActualWorkload,
actualWorkload, knowledgePotentialWorkload, resourcePotentialWorkload, po-
tentialWorkload

C.2.6 Negotiation

The extent to which Agents need to negotiate with each other because they
lack the Knowledge to complete their assigned Tasks. The Negotiation mea-
sure computes the percentage of tasks that lack at least one Knowledge. First,
a TK congruence matrix is calculated with

C = (AT ′ ·AK)−KT ′

to get proportion of unassigned Tasks:

n =
card{t|t ∈ T ∧ ∃k : C(t, k) < 0}

|T |

Level: Network
Reference: Carley (2002)
Current ORA measures: knowledgeNegotiation, resourceNegotiation

C.3 Substitution

This group is rather diverse and include concepts and measures describing
to which extent Agents can be substituted base on identical Roles or Agents
need to negotiate with each other as well as Knowledge and Resources that is
used or reused to perform Tasks.

C.3.1 Availability

Availability measures use the node class Roles. Role Based Knowledge Avail-
ability computes the number of roles that an agent is qualified to have based on
knowledge requirements. Overall Role Based Availability computes the degree
to which agents are available to do tasks based on their access to knowledge
and resources and roles that are needed to do the tasks. The later is defined
as . . .

a =?AK??AR??AX?
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Level: Network
Reference: Behrman
Current ORA measures: roleKnowledgeAvailability, roleResourceAvailability,
knowledgeBasedRoleAvailability, organizationalAvailability, resourceBasedRoleAvail-
ability, overallRoleAvailability

C.3.2 Reuse

Knowledge utilization can be calculated with Reuse measures of Knowledge or
Resources. The interested question is whether e.g. Knowledge that is already
available in an Organization can be reused to accomplish Tasks. Let TAT be
a matrix connecting Tasks to which identical Agents are assigned to:

TAT = AT ′ ·AT

Then Knowledge Based Omega is the proportion of Knowledge used in Tasks
that has been already used in previous Tasks:

ω =

∑
((TT ′ ◦ TAT ) ·KT ′) ◦KT ′∑

KT

Level: Network
Reference: Carley et al. (2000)
Current ORA measures: knowledgeOmega, resourceOmega

C.4 Control

Control measures are the most complex measures as they combine a couple of
calculations into a single measure. Control measures describe to which extent
an Agent is either important (central) for an entire meta-network or Agents
have similar perspectives of the network.

C.4.1 Demand

Cognitive Demand measures total amount of cognitive effort expended by
each agent to communicate, performs its tasks, etc. The Cognitive Demand
for an agent i is an average of terms, each of which measures an aspect of
its cognitive demand. Each term is normalized to be in [0,1]. The number of
terms depends on the available input networks. The first three terms cover
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the number of entities Agent i is connected to in different networks:

d1
i =

∑|A|
j,j 6=iAA(i, j)

|A| − 1

d2
i =

∑
[AT ](i, :)

|T |

d3
i =

∑
[AR](i, :)

|R|

d4
i =

∑
[AK](i, :)

|K|

The next terms cover the number of Agents assigned to the same Tasks as i
as well as the Resources and Knowledge needed by i to complete her Tasks:

d5
i =

∑
ATA(i, :)−ATA(i, i)

|T |(|A| − 1)
with ATA = AT ·AT ′

d6
i =

∑
ATR(i, :)

|T | · |R|
with ATR = AT ·RT ′

d7
i =

∑
ATK(i, :)

|T | · |K|
with ATK = AT ·KT ′

To also include the negotiation needed by i for its Tasks into the measure
we define the hamming distance between two matrices X and Y that are the
same dimension m · n as the fraction of the cells that are different:

hd(X,Y ) =

∑m
i=1

∑n
j=1 (X(i, j) 6= Y (i, j))

m · n

And use this to calculate Resourece and Knowledge negotiation:

d8
i =

hd(AR(i, :), [AT ·RT ′](i, :))
|R|

d9
i =

hd(AK(i, :), [AT ·KT ′](i, :))
|K|

The last term represents number of Agents that i depends on or that depend
on i. Let s be a vector describing the number of Agents that dependent on
each Task

s = (T + T ′) ·
∑

AT (:, t)
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And let v be the number of Tasks that Agents are dependent on

v = AT · s

Then

d10 =
v(i)

|A| · |T | · (|T | − 1)

Finally, the Cognitive Demand of Agent i is the average of all aspects:

di =
1

10
·

10∑
j=1

dji

Level: Node
Reference: Carley (2002)
Current ORA measures: cognitiveDemand

C.4.2 Awareness

A dyadic cognitive concept is Awareness. Share Situation Awareness mea-
sures the degree to which an Agents are similar, based on social interaction,
physical distance, and socio-demographic data. Shared Situation Awareness
is composed of four different terms that need the following three AA matrices:

A Agent x Agent interaction/communication matrix
P Agent x Agent physical proximity matrix
S Agent x Agent social demographic similarity matrix

Together with

e Eigenvector centrality measure computed on A
G Dyadic geodesics computed on A

Shared Situation Awareness is defined as

a(ij) = α · e(i) · e(j) + β ·P(i, j) +
δ · S(i, j)

γ ·G(i, j)
+ µA(i, j) ·A(j, i)

The constants α, β, etc., control the influence of the specific terms and are set
to 1.0 by default. The AA matrices described above can be approximated with
networks including other node classes. First, the interaction/communication
matrix can be replaced by every AA matrix. Second, the physical proximity
matrix can be replaced by either (select from top to bottom)
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AL ·AL′ in case AL exists, or
Similarity of [ATAE] in case AT and/or AE exist.

Otherwise ignore any physical proximity calculation. Third, the social demo-
graphic similarity matrix can be replaced with

Similarity of [AKAR] in case AK and/or AR exist.

Otherwise ignore the social demographic similarity calculation.

Level: Graham et al. (2004)
Reference: Node, Dyad
Current ORA measures: sharedSituationAwareness
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Julius Caesar Data

D.1 Interactions of Agents

Agent x Agent - Act 1

Agent x Agent - Act 2

Agent x Agent - Act 3

Agent x Agent - Act 4

Agent x Agent - Act 5

D.2 Agents and Their Connections

Agent x Knowledge

Agent x Location

Agent x Event

Agent x Task

D.3 Other Networks

Event x Event

Knowledge x Task
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Administration X X X X X X X X X
Citizenry X X X X X X X
Military X X X X
Persuasion X X X X X X X X X X X X X
Politics X X X X X X X X X X X X X X X X
Prediction X X X X X

Figure D.1: Agent by Knowledge link matrix
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Pompey Parade X X X X X X X X X X X X
Brutus' House X X X X X X X X X
Streets of Rome X X
Parade to Senate X X X X X X X X X X X
Senate X X X X X X X X X X
Funeral site X X X
Battle Tents X X X X X
Battlefields X X X X X X X X X

Figure D.2: Agent by Location link matrix
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Location x Location

Task x Event

Task x Task
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