

Program

Friday, September 19

Carnegie Mellon Forum on Biomedical Engineering

08:45 - 09:00 AM

Welcome Remarks

Keith Cook, Ph.D.

The David Edward Schramm Professor and Head Biomedical Engineering Carnegie Mellon University

09:00 - 09:30 AM

Keynote Talk: Computational modeling to advance cardiovascular

regenerative medicine

Sandra Loerakker, Ph.D.

Associate Professor

Department of Biomedical Engineering Eindhoven University of Technology

Moderator: Jason Szafron, Ph.D.

Assistant Professor

Department of Biomedical Engineering

Carnegie Mellon University

09:30 -10:00 AM

Keynote Talk: Some Recent Progress in Transient Bioelectronics

John Rogers, Ph.D.

Louis Simpson and Kimberly Querrey Professor

Materials Science and Engineering,

Biomedical Engineering and Neurological Surgery

Director, Querrey Simpson Institute for Bioelectronics

Northwestern University

Moderator: Tzahi (Itzhaq) Cohen-Karni, Ph.D.

Professo

Biomedical Engineering and Materials Science & Engineering

Carnegie Mellon University

10:00 - 10:15 AM

BREAK

10:15 - 10:45 AM

Keynote Talk: Neurotechnologies for Controlling the Brain: Where are things going?

Garrett Stanley, Ph.D.

Professor of Biomedical Engineering

McCamish Foundation Distinguished Chair

Department of Biomedical Engineering

Georgia Tech & Emory University

Moderator: Steven M. Chase, Ph.D.

Professor

Biomedical Engineering and Carnegie Mellon Neuroscience Institute

Carnegie Mellon University

10:45 - 11:15 AM

Keynote Talk: Extracellular Matrix for Lung Modeling and Repair Rebecca L. Heise, Ph.D.

Inez A. Caudill, Jr. Distinguised Professor and Chair Department of Biomedical Engineering

Virginia Commonwealth University

Moderator: Keith Cook, Ph.D.

The David Edward Schramm Professor and Head

Biomedical Engineering

Carnegie Mellon University

11:15 - 11:45 AM cell

Keynote Talk: Neurovascular mechanisms of acute vaso-occlusive pain in sickle cell disease. (Why does "emotional stress" trigger a vaso-occlusive crisis?) Thomas Coates, M.D.

Section Head, Hematology

Attending Physicial, Hematology, Oncology and Blood and Marrow Transplantation

 $Investigator,\,Hematology\hbox{-}Oncology$

Professor, Pediatrics and Pathology

Keck School of Medicine of University of Southern California

Moderator: Sossena Wood, Ph.D.

Assistant Professor Biomedical Engineering Carnegie Mellon University

11:45 - 12:15 PM

Keynote Talk: Time Series Intelligence Artur W. Dubrawski, Ph.D

Alumni Research Professor of Computer Science Robotics Institute Carnegie Mellon University

Moderator: P. Sang Chalacheva, Ph.D.

Associate Teaching Professor Biomedical Engineering Carnegie Mellon University

12:15 - 1:00 PM

LUNCH BREAK

1:00 - 1:30 PM

Keynote Talk: Insights on Disc Degeneration and Anterior Vertebral Body Tethering Success through FEM Grace D. O'Connell, Ph.D.

Professor

Department of Mechanical Engineering Associate Dean for Inclusive Excellence College of Engineering

UC Berkley

Moderator: Axel Moore, Ph.D.

Assistant Professor Biomedical Engineering Carnegie Mellon University

1:30 - 2:00 PM

Keynote Talk: Bioengineering Collaborations to Improve Global Newborn Health: Lessons Learned for Impact at Scale Rebecca Richards-Kortum, Ph.D.

Malcom Gillis University Professor Department of Bioengineering Co-Director of Rice360 Institute for Global Health Technologies Rice University

Moderator: Keith Cook, Ph.D.

The David Edward Schramm Professor and Head Biomedical Engineering Carnegie Mellon University

Program continued

2:00 - 2:30 PM

Best Abstract Talk: Cell-Penetrating Peptide Mediated Delivery of Gene-encoded DNA Origami

Zijuan Liang

Doctoral Candidate

Mechanical Engineering Department

Carnegie Mellon University

Moderator: Keith Cook, Ph.D.

The David Edward Schramm Professor and Head

Biomedical Engineering Carnegie Mellon University

2:30 - 4:15 PM

Pre-recorded Slide Presentations

4:15 - 4:30 PM

Announcement of Awards

Dr. Thomas Coates

Section Head, Hematology Attending Physicial, Hematology, Oncology and Blood and Marrow Transplantation Investigator, Hematology-Oncology Professor, Pediatrics and Pathology Keck School of Medicine of University of Southern California

Dr. Coates primarily works in two areas of basic and translational research: 1) the role of inflammation in the genesis of vascular disease in sickle cell disease; 2) the detection and management of transfusion related iron overload. His research employs various engineering-intensive methodologies (MRI, laser Doppler flow, digital image analysis, signal processing) to explore the basic mechanisms of sickle cell disease and to measure the effect of various treatment modalities. He uses direct measures of microvascular blood flow to monitor the process of vasoocclusion and relate it to simultaneous measures of autonomic nervous system function. In collaboration with members of the Cardiology, Pulmonology, and Radiology Departments at Children's Hospital Los Angeles, the Departments of Biomedical Engineering and Physiology/Biophysics at the Keck School of Medicine, his lab devises methods to measure the sickling process in human sickle cell subjects and relate these measurements to clinical factors that modulate disease severity.

Dr. Keith Cook

The David Edward Schramm Professor and Head Biomedical Engineering Carnegie Mellon University

Dr. Cook is the David Edward Schramm Professor and Department Head of Biomedical Engineering at Carnegie Mellon University (CMU). At CMU, he also serves as the Director of the Bioengineered Organs Initiative and the Transforming Transplant initiative. As a student, Dr. Cook obtained a BSE in both Mechanical Engineering and Engineering Science from University of Michigan and an M.S. and Ph.D. in Biomedical Engineering from Northwestern University. Dr. Cook's research focuses on the application of biomedical engineering to the treatment of lung disease. His primary research focus is the development of permanent replacement lungs for destination therapy. This work extends into computational modeling and device design, development of novel biomaterials and new drug approaches to reduce blood coagulation within these devices, and in-vitro and in-vivo biomaterials and artificial lung testing. His research also focuses on design and biofabrication of tissue-based lungs. Dr. Cook is a fellow of the American Institute for Medical and Biological Engineering (AIMBE).

Dr. Artur W. DubrawskiAlumni Research Professor of Computer Science Robotics Institute
Carnegie Mellon University

Artur Dubrawski received a Ph.D. in robotics and automation from the Institute of Fundamental Technological Research, Polish Academy of Sciences, and a M.Sc. in aircraft engineering from Warsaw University of Technology.

Artur considers himself a scientist and a practitioner. He had started up a small company which turned out successful in integration and deployment of advanced computerized control systems and novel technological devices. He is also affiliated with startups incorporated by others: Schenley Park Research, a data mining consultancy and a CMU spin-off, where he was a scientist; and more recently with Aethon, a company building robots to automate transportation in hospitals, where he served as a Chief Technical Officer. Artur returned to CMU in 2003 to join the Robotics Institute's Auton Lab. He works on a range of applied data mining endeavors and teaches data mining to graduate students at the CMU Heinz School. In January 2006 Artur Dubrawski was named the director of the Auton Lab.

Dr. Rebecca L. HeiseInez A. Caudill, Jr. Distinguised Professor and Chair
Department of Riemedical Engineering

Department of Biomedical Engineering
Virginia Commonwealth University

Dr. Heise is an associate professor of biomedical engineering at Virginia Commonwealth University (VCU). She holds an affiliate appointment in the Department of Physiology and Biophysics at VCU and is a member of the Massey Cancer Center and the Johnson Center for Critical Care and Pulmonary Research. She earned her B.S. in Chemical Engineering with an additional major in Biomedical and Health Engineering from Carnegie Mellon University in 2003. She then earned her Ph.D. in Bioengineering from the University of Pittsburgh in 2008. She then did her postdoctoral work in the Laboratory of Respiratory Biology at the NIEHS in Research Triangle Park, NC. She joined the faculty of Biomedical Engineering at VCU in 2010. Dr. Heise's research focuses on pulmonary mechanobiology and regenerative medicine. She seeks to understand how the mechanical environment in the lung influences cellular behavior in health and disease with in vitro and in vivo models. Dr. Heise also researches the use of naturally-derived extracellular matrix as a biomaterial for cell and drug delivery to the lung. She has been awarded an R01 from the National Institute of Aging to study the effects of ventilator induced lung injury on inflammatory cell signaling, and she has earned a CAREER award from the National Science Foundation to study cell-ECM interactions in pulmonary fibrosis.

Dr. Sandra LoerakkerAssociate Professor
Department of Biomedical engineering
Eindhoven University of Technology

Sandra Loerakker is an associate professor at the TU/e department of Biomedical Engineering (research group Soft Tissue Engineering and Mechanobiology). She studied Biomedical Engineering at Eindhoven University of Technology (TU/e) where she obtained both her BSc and MSc degrees cum laude. She completed her Ph.D. at Northwestern University and in collaboration with the University of Alberta (Canada), where she researched the etiology and early detection of deep pressure ulcers in skeletal muscle, using a combination of computational and experimental methods. Currently, Dr. Loerakker's research focuses on modeling the mechanobiology of native and engineered tissues using integrated computational and experimental methods, in order to obtain an improved understanding of the biological mechanisms responsible for soft tissue development, homeostasis, and disease and to translate those findings into novel therapies in the field of regenerative medicine. She primarily focuses on understanding how mechanical factors drive soft tissue growth and remodeling at different spatial and temporal scales.

Dr. Rebecca Richards-KortumMalcom Gillis University Professor
Department of Bioengineering

Co-Director of Rice360 Institute for Global Health Technologies Rice University

Rebecca Richards-Kortum received her B.S. in Physics and Mathematics from the University of Nebraska. She then completed both a Masters in Physics and a Ph.D. in Medical Physics from MIT. Guided by the belief that all of the world's people deserve access to health innovation, Dr. Richards-Kortum's research and teaching focus is on the development of low-cost, high-performance technologies for remote and low-resource settings. She is known for providing vulnerable populations with access to life-saving health technologies that address diseases and conditions that cause high morbidity and mortality, such as cervical and oral cancer, premature birth, sickle cell disease and malaria. For two decades, Richards-Kortum's laboratory has focused on translating research that integrates advances in nanotechnology and molecular imaging with microfabrication technologies to develop optical imaging systems that are inexpensive, portable, and provide rapid point-of-care diagnosis. Her research and engineering design efforts have led to the development of 40 patents, and her work has been supported by many noteable organizations including the "genius grant" from the MacArthur Foundation.

Dr. John Rogers

Louis Simpson and Kimberly Querrey Professor Materials Science and Engineering, Biomedical Engineering and Neurological Surgery Director, Querrey Simpson Institute for Bioelectronics Northwestern University

John Rogers completed a Masters of Science in both Physics and Chemistry from MIT. He continued on to complete his Ph.D in Physical Chemistry from MIT as well. Professor Rogers has invented over 80 patents and patent applications, more than 50 of which are licensed or in active use by large companies and startups that he has co-founded, including Active Impulse Systems, Semprius, MC10, CoolEdge, XCeleprint and Transient Electronics. His current research focuses on soft materials for conformal electronics, nanophotonic structures, microfluidic devices, and microelectromechanical systems, all lately with an emphasis on bio-inspired and bio-integrated technologies.

Dr. Grace D. O'Connell

Professor Department of Mechanical Engineering Associate Dean for Inclusive Excellence College of Engineering UC Berkley

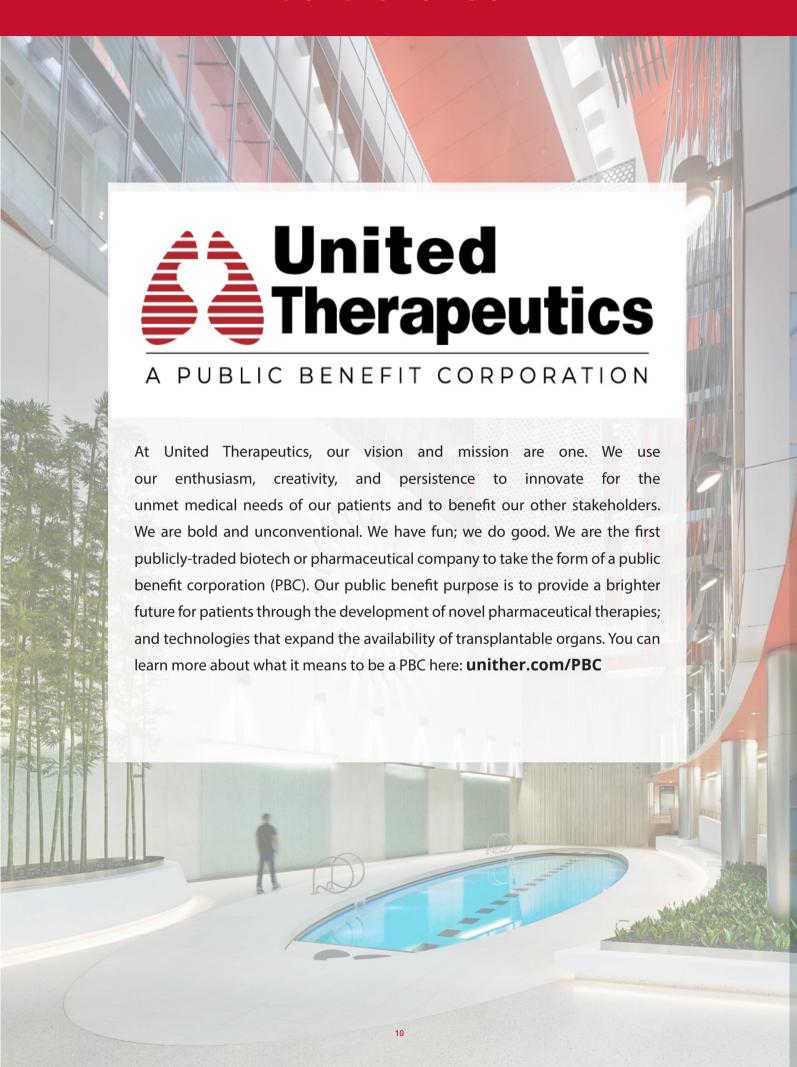
Grace O'Connell is a professor in the Department of Mechanical Engineering at UC Berkley. She received a Bachelor of Science in Aerospace, Aeronautical and Astronautical Engineering from University of Maryland and completed her Ph.D. in Bioengineering and Biomedical Engineering at the University of Pennsylvania. She then went on to complete her Postdoc in Biomedical/Medical Engineering at Columbia University. Dr. O'Connell's research is focused on soft tissue biomechanics and tissue regeneration. Specifically, her goal is to understand the mechanical function of the healthy, degenerated and injured intervertebral discs in order to develop more physiologically relevant repair strategies. Injury, through herniation, or degeneration may lead to debilitating lower back pain. Current research is focused on understanding alterations in biomechanics and tissue remodeling with degeneration and injury. Other studies are focused on using organ culture techniques to directly measure tissue remodeling and potential biological repair strategies.

Dr. Garrett StanleyProfessor of Biomedical Engineering
McCamish Foundation Distinguished Chair

Department of Biomedical Engineering
Georgia Tech & Emory University

Garrett Stanley is the McCamish Foundation Distinguished Chair in the Department of Biomedical Engineering at Georgia Tech and Emory University, Directs the McCamish Parkinson's Disease Innovation Program, and is the Co-Director of the Georgia Tech Neural Engineering Center. He has formal training, both at undergraduate and doctorate levels, in engineering (specifically trained in Control Theory through all of his graduate work), and has worked extensively in the field of neuroscience, specifically in sensory processing in the brain, and more specifically in vision and somatosensation (touch). From 1999 to 2007, he was an Associate Professor in the Division of Engineering & Applied Sciences at Harvard University, where he was the leader of the Harvard Biocontrols Laboratory. Professor Stanley is now a faculty member in the Department of Biomedical Engineering at Georgia Tech/Emory University and leads several programmatic efforts at the interface between basic neuroscience and neurotechnology. In terms of research, he is the leader of the Laboratory for the Control of Neural Systems. The research of his group has been funded by the National Institute of Health, National Science Foundation, the Office of Naval Research, DARPA, and several private foundations.

PLATINUM SPONSOR


MAYO CLINIC

Mayo Clinic's nationally recognized organ transplant programs have been providing high-quality patient care for over 50 years. Across three major campuses in Florida, Minnesota, and Arizona, Mayo Clinic is currently the largest organ transplant provider in the United States.

At all campuses, there are also established regenerative medicine programs with advanced infrastructure in biomanufacturing and broad expertise in regenerative medicine products including induced pluripotent stem cells (iPSCs). This leads to a unique environment of collaboration between transplant clinicians and regenerative medicine scientists. This enables scientific discoveries to be efficiently translated into its patient-centered, progressive transplant practice. This connection, in turn, will accelerate innovative approaches for organ dysfunction, failure and transplantation spectrum.

Learn more at mayoclinic.org

GOLD SPONSOR

BRONZE SPONSORS

Thank you to all of our wonderful sponsors!

Pre-recorded Slide Presentations

102

Multi-sensor Integration for early stroke detection Simran Yadav; Ganpat University

103

Segmentation Under Stress: Improving Generalization Through Clinically-Informed Model Retraining

Aidan Schurr, Gary Milam Jr, Richard J. Cha, Chung-Hyuk Park; George Washington University

104

Keto Diet Reverses High-Fat Diet-Induced Metabolic Impairments in Preclinical Rodent Models

Sirisha Nuti, Ramachandran Subramanian, Suresh S Kumar, Mainak Dutta; Birla Institute of Technology & Science Pilani, Dubai Campus; RAK Medical and Health Sciences University

108

3D printed percutaneous renal puncture simulator

Augusto P. Bracamonte Sabogal, Jose Caceres-Alban, Carlos F. Ugas Charcape, Karen N. Gonzales; University of Engineering and Technology (Peru); Yale University

109

The role of cancer-associated fibroblasts-remodeled collagen matrix on monocyte recruitment in 3D collagen matrices

Angela Wong Lau, Ioannis Zervantonakis; University of Pittsburgh

110

Machine Learning Driven Myoelectric Control for Multi-Degree of Freedom in an Upper Limb System

Dheemant Jallepalli, Luigi Borda, Douglas Weber; Carnegie Mellon University

112

Quantum 3D Infrared Imaging without Infrared Camera

Yameng Zhang, Wenyu Liu, Petr Moroshkin, Jimmy Xu; Brown University

113

Model-Guided Design of Microfluidic Traps for Controlled Cell Pairing

Mark Bardin, Merve Ertas Uslu and Melikhan Tanyeri; Duquesne University

114

Cell Pairing via Fibronectin Micropatterning for Studying Intercellular Mechanobiology

Jayakrishnan T Unnikrishnan, Dr. Melikhan Tanyeri; Duquesne University

115

Targeted Therapeutics to Modulate Myeloid-Derived Innate Immune Cell Phenotype

Abigail McSweeny, Shreya S. Soni, Arielle M. D'Elia, Kenneth M. Kim, Christopher B. Rodell; Drexel University

116

Real-time, High-throughput Super-resolution Microscopy via Panoramic Integration

Hansol Yoon, Kyungduck Yoon, Shu Jia; Georgia Institute of Technology

117

Myelinated axon sizes measured at multiple angles in a male and female mouse for a better understanding of magnetic resonance imaging estimates

Jessica de Kort, Rubeena Gosal, Madison Chisholm, Melanie Martin; University of Winnipeg

118

Development of a Tunable Cardiovascular Shunt for Neonates with Congenital Heart Defects

Akari J. Seiner, Elisabeth Posthill, Lindsay Hager, Amy L. Throckmorton, John F. Eberth, Christopher B. Rodell; Drexel University

119

Heterogeneous GNN for Label Noise Mitigation in Biomedical Knowledge Graphs

Srbuhi Mirzoyan, Junwei Yang, Ming Zhang; Peking University

121

Platelet lysate incorporated sodium alginate polymannuronate nanogel with mussel-inspired surface chemistry for scar-minimized diabetic wound healing

Labiba Islam Salsabil, Labiba Islam Salsabil, Abdur Rahman, Ashraful Hoque, Siew Yee Wong, Xu Li, M Tarik Arafat; Bangladesh University of Engineering and Technology, National Institute of Burn and Plastic Surgery (Bangladash); Institute of Materials Research and Engineering (Singapore); Institute of Sustainability for Chemicals (Singapore)

122

AggreBots: configuring CiliaBots through guided, modular tissue aggregation

Dhruv Bhattaram, Kian Golestan, Xuanshuo Zhang, Shihong Yang, Zhuowei Gong, Steven Brody, Amjad Horani, Victoria Webster-Wood, Amir Barati Farimani, Xi Ren; Carnegie Mellon University; Washington University School of Medicine

123

In-Vivo Joint Dynamics Conserve the Compression and Recovery Response of Cartilage in Cadaveric Joints

Tejus Surendran, Axel C. Moore; Carnegie Mellon University

125

Miniaturized Fluorescence Endoscope for Longitudinal In Vivo Viral Imaging

Liam O'Sullivan, Nathan Youngblood, Paul Duprex; University of Pittsburgh

High SNR Outperforms Increased Diffusion Weighting for OGSE-TDS Axon Diameter Mapping Precision

Madison Chisholm, Smah Riki, Bibek Dhakal, Sheryl Herrera, Morgan Mercredi, John Gore, Melanie Martin; The University of Winnipeg (Canada); Vanderbilt University Medical Center

127

Mathematical Modeling of Isoproterenol and Zinterol Effects on Mouse Ventricular Myocyte Contraction

Dilmini Warnakulasooriya, Vladimir E. Bondarenko; Georgia State University

128

Super Absorbent Decellularized Human Amniotic Membrane Microgel for Chronic Wound Healing and Accelerated Skin Regeneration

Fabliha Noshin, Dipta Roy, Mobin Ibne Mokbul, Dr. Muhammad Tarik Arafat; Bangladesh University of Engineering and Technology

129

SortInspector: An Open-Source Framework for Multimodal Neural Data Analysis with Seizure-Specific Extensions

Zixi Song, Huan Gao, Bin He; Carnegie Mellon University

130

A Multiphysics Digital Twin Approach for Understanding and Diagnosing Cardiac Disorders: From Blood Flow to Chest Vibration

Mohammadali Monfared, Peshala T. Gamage, Bahram Kakavand, Amirtaha Taebi; Florida Institute of Technology; Lehigh University

131

Objective Pain Profiling in Sickle Cell Disease Using Quantitative Sensory Testing and Functional Connectivity

Joel Dzidzorvi Kwame Disu, Charles Jonassaint, Sossena Wood; Carnegie Mellon University; University of Pittsburgh

132

Gene-omere: An Al-Powered Platform for Visualizing and Targeting Pathogens Through Genomic Intelligence Aadya Goel; Carnegie Mellon University

135

Sustained Release of Antibody-Targeted Nanocarriers from In-Situ Forming Gels Using Novel Complexation Strategies to Prevent Ocular Fibrosis

Camila Vardar, Giavanna Trojan, Mark E. Byrne; Rowan University

137

Exploring How Common Food Dyes May Contribute to Obesity in Adipose Tissue

Khushi Soni, Elizabeth Johnston, Eric Johnson, Rosalyn D Abbott; Carnegie Mellon University; Northeastern University

138

Synergistic Osteogenic Effects of BMP-2 Mimetic Peptides KIPKA and DWIVA in 3D Stem Cell-Encapsulated Hydrogels

Umu Jalloh, Shishir Patel, Mateo McCathern, Sebastian Vega; Rowan University

139

Extracellular vesicles (EVs) and silk fibroin (SF) can deliver and enhance the therapeutic efficacy of multiple cell populations

Kiran Mcloughlin, Amanda Pellegrino, Justin Weinbaum, David Vorp; University of Pittsburgh

14

Estimating cellular packing fractions by segmenting white matter microstructure in electron microscopy images for comparison with MRI inference

Daniel Girard, Nicole M. Valencia, Jessica de Kort, Alejandro Civetta, Rubeena Gosal, Morgan E. Mercredi, Madison T. Chisholm, Melanie Martin; University of Victoria (Canada); University of Winnipeg (Canada); University of Manitoba (Canada)

143

Supervised Algorithm to Accurately Segment Brain Vasculature

John Lorence, Satyaj Bhargava, Benjamin Cohen, Anisha Virmani Isaiah Jefferson III, Therese Nneji, Minjie Wu, Howard Aizenstein, George Stetten; Carnegie Mellon University; University of Pittsburgh

144

Python Monte Carlo simulator of physiologically realistic diffusion MRI for axon diameter measurements

Nicole M. Valencia, Madison T. Chisholm, Morgan Mercredi, Melanie Martin; The University of Winnipeg (Canada)

145

3D Printing Lipid Laden Tissue for Breast Reconstruction *Lindsey Huff, Theo Mohideen, Daniel Aluko, Adam Feinberg, Rosalyn Abbott; Carnegie Mellon University*

146

Comprehensive Network Pharmacology-Based Elucidation of Bioactive Compounds in Smilax corbularia Kunth. and Smilax glabra Roxb. Against Multiple Cancer Types

Wasitpon Masasom, ZTassanee Ongtanasup, Komgrit Eawsakul; Walailak University (Thailand)

147

Deep Learning-Guided Profiling of Active ECM Proteins in Fibrotic Microenvironments Using Multimodal Raman Imaging

Natasha N. Kunchur, Tillie L. Hackett, Leila Mostaço-Guidolin; Carleton University (Canada)

148

Peptide-Responsive Synthetic Receptors for Spatial Gene Expression in 3D Materials

Kebisha Basukala, Matthias Recktenwald, Sebastián L. Vega; Rowan University

149

Optimizing Multi-Scale Vesselness for Segmenting Cerebral Vasculature in MRI

Isaiah Jefferson III, Therese Nneji, Satyaj Bhargava, John Lorence, Benjamin Cohen, Anisha Virmani, Minjie Wu, Howard Aizenstein, George Stetten; Carnegie Mellon University; University of Pittsburgh

Mechanical Stiffness and Anisotropy of Porcine Right Ventricular Myocardium Measured by Shear Wave Elastography and Biaxial Tensile Testing

Olagoke Olafiranye, John Cormack, Kim Kang; Texas A&M University; University of Pittsburgh

152

PanEcho: Complete Al-enabled echocardiography interpretation with multi-task deep learning

Gregory Holste, Evangelos K. Oikonomou, Márton Tokodi, Attila Kovács, Zhangyang Wang, Rohan Khera; The University of Texas at Austin; Yale School of Medicine; Semmelweis University

153

Machine Learning based Differential Diagnosis of Dengue

Prajakta Goilkar, Niranjana Sampathila, Kavitha Saravu, Ramya S.,Nitin M. Shivsharan; Manipal Institute of Technology (India); Kasturba Medical College (India); SSPM's College of Engineering (India)

154

Detecting Intraoperative Hemorrhage with MRI during Neurosurgical Procedures

Grace Zhang, Yujie Ren, Melanie Martin, Bocheng Xu; University of Western Ontario (Canada); University of Winnipeg (Canada); University of Manitoba (Canada)

155

Skin Friendly Wearable Electrode by MoSe2/rGO in PVA Matrix for Biosignal Monitoring

Indra Suresh, Harshini I, Janakiraman P, Arun Karthick S; Sri Sivasubramaniya Nadar College of Engineering (India)

156

Flexible Dry Electrode by PVA Incorporated with Ag/Carbon Nanotubes for Biosignal Acquisition

Ankitha Swaminath, Harshadha V.K, Mahima V, S. Arun Karthick; Sri Sivasubramaniya Nadar College of Engineering (India)

158

A Robotic Platform for Optimizing Biomaterial Synthesis in Plants for Tissue Engineering

Caiya Coggshall, Jonathan Tabb, Josiah Garan, Diego Habana, Miranda Najera, Steven Santana; Harvey Mudd College

159

Fluid Shear Stress-Dependent Remodeling of Endothelial Cell Basal Hyaluronic Acid

Mark DeAngelis, Philip LeDuc, Warren Ruder; Carnegie Mellon University; University of Pittsburgh

160

A Multi-Center Comparison of Two Computed Tomography Image Segmentation Methods for Abdominal Aortic Aneurysm

Katherine E. Kerr, Pete H. Gueldner, Indrani Sen, Tiziano Tallarita, Joseph C. Wildenberg, Nathan L. Liang, David A. Vorp, Timothy K. Chung; University of Pittsburgh

161

Decoding Fibroblast Responses to Substrate Stiffness with Tunable Hydrogels

Devin Johnson; University of California, Irvine

162

Wearable Bowling Action Analyser

K.B. Krithiukha, Karthick Siva R.; Sri Sivasubramaniya Nadar College of Engineering

163

Macrolide-Mediated Modulation of BMP-2 Peptide Signaling in Reporter Cell Lines

Stacy A. Love, Myranda Sims, Matthias Recktenwald, Sebastián L. Vega; Rowan University

164

Evaluation of a single functional unit of a silicon membrane oxygenator for an Artificial Placenta system

Jacqueline Kading, Nicholas C. Higgins, David G. Blauvelt, Benjamin W. Chui, Charlotte I. Li, Shuvo Roy; University of California, San Francisco

165

Quantifying Skull Thickness from MR Images of Adults with Sickle Cell Disease

Rhea Soo, Lara Abdelmohsen, Joel Disu, Nahom Mossazghi, Elizabeth Meinert-Spyker, Sossena Wood; Carnegie Mellon University

166

Statistical Parameterization of the Medial Manifold in Tubelike Structures

Satyaj Bhargava, John Lorence, Benjamin Cohen, Isaiah Jefferson III, Therese Nneji, Anisha Virmani, Minjie Wu, Howard Aizenstein, George Stetten; Carnegie Mellon University; University of Pittsburgh

167

Engineering Human Thymus Organoids from Primary Thymic Stromal Cells to Support T Cell Development

Wen Liu, Haonan Guan, Jiahui Dai, Erin Parlow, Zekun Wu, Carl Engman, Suzanne Bertera, Mousumi Moulik, Ipsita Banerjee, Brandi Scully, Yong Fan; Carnegie Mellon University; University of Pittsburgh; Johns Hopkins University

168

Oxygen-Generating PDMS-CaO2 Microbeads for Mitigating Hypoxia in Tissue-Engineered Implants

Leia Jiang, Cameron Crouse, Emrullah Korkmaz, Burak Ozdoganlar, Cherie Stabler, Rosalyn Abbott; Carnegie Mellon University

169

Molecular Cloning of Donor Plasmids for CRISPR/Cas9-mediated Genome Editing for Endogenous Expression of Engineered Extracellular Vesicles

Jayadeep Yedla, Yuki Kawai-Harada; Michigan State University

170

Studying Memory Retention in Planaria with Extracellular Neural Signals

Ibrahem Alhafiz, Jaashvi Chandagari; George Mason University

174

Affordable Video Laryngoscope for Resource-Constrained Healthcare Settings

Imdadul Haque Sourav, Mehedi Hasan Nirzan, Galib Anjum Talukder Mahi; Bangladesh University of Engineering and Technology

Sterilization of Electrospun Soy Protein Fibers Loaded with Extracellular Vesicles

Thea Spellmeyer, Nader Rezazadeh, Phil Campbell; Carnegie Mellon University

176

Development of Avidity-Controlled Biotherapeutic Delivery Systems for the Treatment of Acute Kidney Injury Arielle D'Elia, Kenneth M. Kim, Carl R. Russell III, Akari J. Seiner, Alex R. Osidach, Winni Gao, Danielle E. Soranno, MD, Christopher B. Rodell; Drexel University; Indiana University

177

Three-Dimensional Ultrasound Tissue Characterization of Myofascial Pain Using Nakagami Distribution

Maryam Satarpour, Zhiyu Sheng, John M. Cormack, Yu-hsuan Chao, Allison C. Bean, Ryan P. Nussbaum, Jiantao Pu, Ajay D. Wasan, Kang Kim; University of Pittsburgh

178

Immune Checkpoint-Conjugated Hydrogels To Treat Psoriasis

Kenneth Kim, Arielle D'Elia, Lindsay Hager, Christopher B. Rodell; Drexel University

179

Towards Predicting Muscle Injury During Vaginal Delivery Sydnei Lewis, Henry Chill, Ghazaleh Rostaminia,

Steve Abramowitch; University of Pittsburgh; University of Chicago

180

Engineering Hydrogels to Investigate Extracellular Vesicle Biogenesis

Max Buchanan, Angel Perez, Maraki Solomon, Jonathan Tabb, Steven Santana; Harvey Mudd College

181

Development of MATLAB Workflows for Immunofluorescence Image Analysis in Tissue Engineered Vascular Grafts Jacqueline L. Avila, Katarina Martinet, David R. Maestas, Tiffany A. Moreno, Leon Min, Jonathan P. Vande Geest; University of Pittsburgh

182

We are what we touch: Quantifying statistical structure in tactile scenes

Neeli Tummala, Adrienne L. Fairhall, Mitra J. Hartmann; Northwestern University, University of Washington

183

Multi-Modal Flexible Bioelectronics to Advance Electrophysiological Maturation of Engineered Heart Tissues

Mengdi He, Jacqueline Bliley, Kritika Chaddha, Liyang Wang, Zoe White, Mabel Bartlett; Carnegie Mellon University; University of Pittsburgh

184

A Hydrogel Bioprinter Using Pressure-Actuated Bioink Flows

Joseph Abdelmalek, Allison Barker, Carlos Ojeda de Silva, Sophie Qiu, Izze Stolzoff, Rai Wandeler, Ellen Yu, Steven Santana; Harvey Mudd College

18

A Computational Model for Bioink Flow Through a Two-Layer Cross-Channel Micromixer

Nicole Balsz, Liam Graham, Nyah Hamilton, Julia Kolt, Samuel Brewer, Gabriel Klinger, Steven Santana; Harvey Mudd College

186

Peptide Nucleic Acids as Programmable, Versatile, and Robust Tools for Synthetic Biomolecular Condensate Engineering

Lainie Beauchemin, David Sarabia, Andrei Loas, Bradley Pentelute, Rebecca Taylor; University of Pennsylvania, Carnegie Mellon University; MIT

187

TAT Peptide Mediated Delivery of Gene-encoded DNA Origami

Zijuan Liang, Isabella Ferranti, Sanjay Mishra, Eric Goetzman, Burak Ozdoganlar, Rebecca E. Taylor; Carnegie Mellon University

188

Biomechanical modeling of rodent facial muscles: Developing an OpenSim-like platform for sensorimotor neuroscience research

Megan Black, Mitra J. Hartmann, Yifu Luo; Northwestern University

189

Understanding the Role of Hemodynamic Forces in Valve Development Using Ex-Ovo Chicken Embryo Cultures

Rita Khoury, Dr. Jaci Bliley, Dr. Adam Feinberg; Carnegie Mellon University

190

Optimizing Transfection-Based DNA Loading into Extracellular Vesicles for Therapeutic Delivery

Nayeema Siraj, Dr. Masako Harada; Michigan State University

191

Gold CMU array: 3D nanoprinted gold microelectrodes on flexible substrates

Aditya Khandelwal, Sanjida Jahan, Eleanor Barnea, Rahul Panat; Carnegie Mellon University

192

Decoding in the gaps: improving bidirectional brain-computer interfaces using gaps in stimulation feedback

Vu Song Thuy Nguyen, Robin Lienkämper, Robert A. Gaunt; University of Pittsburgh; Michigan State University

193

Electromyographic assessment of text neck syndrome

Rakshana Ramesh, Sharadha Gopal, Shravan Kumar S; Sri Sivasubramaniya Nadar College of Engineering (India)

194

Creating Hemodynamic Models of Early Heart Valve Morphogenesis

Noel Overby, Adam Feinberg, Jaci Bliley; Carnegie Mellon University

Ultra-Sensitive Detection of Amyloid-β Plaques via NV-Center Diamond Quantum Sensors for Early Alzheimer's Diagnosis

Ahmet Cemal Muftuoglugil, Birol Ozturk; Morgan State University

196

Directing Lung Morphogenesis by Modulating Geometrical and Biomechanical Cues through 3D-ICE Biofabrication Eric Trout, Feimo Yang, Barbie Varghese, Burak Ozdoganlar, Philip Leduc, Charlie Ren; Carnegie Mellon University

197

Biodegradable, Cationic Nanogels for Targeted Delivery of Therapeutics Across the BBB for Neuroinflammation

Rachel Aguillard, Paige Radloff, Serenity Howery, Maryam Paykar, Holly Rose, Nicholas Peppas; The University of Texas at Austin

198

MULab: A motor unit analysis tool for multichannel surface electromyography systems.

Mahavir Prasad, Luigi Borda, Douglas Weber; Carnegie Mellon University

199

Highly organized aligned polymer nanofiber yarns as suture materials

Dominique Hassinger, Vince Beachley, Sean McMillan; Rowan University

200

Subjective Value Is Encoded in the Motor Cortex

Hiroo Miyata, Raeed Chowdhury, Adam Smoulder, Mrunal Zambre, Jingkai Wen, Emily Oby, Aaron Batista, Steve Chase; Carnegie Mellon University

201

FlexOx Breathes Life into Cell Therapy: Electrocatalytic Flexible Oxygenator for Sustained Oxygen Delivery in 3D Cell Culture

Sarah Kim, Aaditya Nandakumar, Seonghan Jo, Inkyu Lee, Sara Gibson, Tzahi Cohen-Karni; Carnegie Mellon University

202

Clickable Extracellular Vesicles for Abdominal Aortic Aneurysm Stabilization

Ellen L. Otto, Thomas G. Gleason, Julie Phillippi, Spandan Maiti; Carnegie Mellon University, University of Pittsburgh, Vanderbilt University; Magee Women's Research Institute

203

Simulating Platelet Transport in Arterial Flows

Arnav Garcha, Noelia Grande Gutierrez; Carnegie Mellon University

204

Extracellular Matrix Proteomic Categorization of Decellularized CFTR Knock-Out and Wild-Type Ferret Lungs

Noah Dreifus, Daniel Weiss, Bin Deng; University of Vermont

205

Monitoring in vivo transcription with synthetic serum markers

Sho Watanabe, Jerzy O. Szablowski; Rice University

206

In-situ Study Of Alzheimer's Disease Rat Brain Tissue Through Gold Colloid Aggregates And Attempting The Detection Of Amyloid Oligomers.

Andrew Donner and Kevin Chung, Kazushige Yokoyama; The State University of New York Geneseo College

207

DeepFocusPlus: a Model for Dense Electrode Coverage in Transnasal Deep Brain Stimulation

Kora S. Hughes, Yuxin Guo, Alonso Buitano Tang, Mats Forssell, Pulkit Grover; Carnegie Mellon University

208

Woven bone-mimicking organoids as a therapy for critical-size calvarial defects

Sai Abasolo, Juncen Zhou, Donghui Zhu; Stony Brook University

209

PDGF-BB role in the inflammation of mice's lung microvasculature after EC exposure

Carmen Bartilson, Hassan Alkhadrawi, Jenna Abdulrahman, Dhruvi Panchal, Kokeb Dese, Margaret Bennewitz; West Virginia University

210

Next-Generation Biocompatible Microcarriers: Controlled Delivery of Niacinamide and Palmitoyl Tripeptide-1 via Electrosprayed PLA/Spirulina Microparticles

Basak Dalbayrak, Isil Aksan Kurnaz, Sumeyye Cesur, Oguzhan Gunduz, Elif Damla Arısan; Gebze Technical University (Turkey); Marmara University (Turkey)

211

Design of a Nitinol Actuator-Based Prosthetic Arm for Low-Cost Limb Restoration

Sunaina Rahman Adisha, Afroza Yesmin Isha, Rudmila Nizam; Bangladesh University of Engineering and Technology

212

Automated Segmentation and Medial Line Extraction of Dental Root Canals from Micro-CT

Rudmila Nizam, Afroza Yesmin Isha, Sunaina Rahman Adisha; Bangladesh University of Engineering and Technology

212

Al-Mediated Colorimetric LAMP Biosensor for Rapid Saliva-Based Genotyping of MTHFR C677T Mutation at the Point-of-Care: Toward Personalized Biomedical Diagnostics

Burcu Taluğ Taştan, Ömer Faruk Taştan, Şevval Martin, Elif Damla Arısan; Gebze Technical University (Turkey)

214

DESIGN AND DEVELOPMENT OF A SPECIALIZED TOOL FOR EFFICIENT MEDICAL FLOWMETER ATTACHMENT AND DETACHMENT ON MEDICAL OXYGEN CYLINDERS.

John Delali YEKPLE; All Nations University (Ghana)

215

Characterizing the Effects of Indirect Histotripsy Treatment on Tendon Structure and Function

Megan Gulian, Elliana Vickers, Blake Bangay, Zoe Miloszewski, Georgina Flynn-Smith, Sheryl Coutermarsh-Ott, Joanne Tuohy, Eli Vlaisavljevich, Vincent Wang; Virginia Tech

Soft Robotic Origami Crawler for Targeted Drug Delivery Purujit Piyal Sana, Trisha Mondal, Nazmul Alam, Sumaiya Afrin Rubab, Alifa Hossain Chowdhury; Bangladesh University of Engineering and Technology

217

Enabling Painless, Pulsed Transcranial Electrical Stimulation (PP-TES) for Chronic Pain Populations

Jasmine Kwasa, Rabira Tusi, Alonso Buitano-Tang, Darren Kim, Jeehyun Kim, Pulkit Grover; Carnegie Mellon University

218

Using Dynamic Engineered Heart Tissues (dyn-EHTs) to Evaluate Cardiomyocytes Incorporated into Pulsatile Conduits

Shreenidhee Teli, Jaci Bliley, Adam Feinberg; Carnegie Mellon University

219

Foveal Area Estimation and Fixation Mismatch in AMD: A Deep Learning Analysis on En-face OCT and ETDRS Maps Micah Baldonado, Arav Jain, Kitiyaporn Takham, Shreyas Sanghvi, Sharath Chandra, Sandeep Bollepalli, Jay Chhablani; Carnegie Mellon University; University of Pittsburgh

220

AI-Enhanced Comprehensive Dielectrophoretic Profiling of PBMCs for Early Detection of Pancreatic Ductal Adenocarcinoma

Joao Tome, Thomas G. Gleason, Julie Phillippi, Spandan Maiti; University of Pittsburgh

221

CMOS 18V Compliant Biphasic Neurostimulator ASIC Jed Lee, Grace Tang; Carnegie Mellon University

222

Advancing Biomechanics Measurement and Mapping with Polymer Mechanochemical Tools

Xiaocun Lu, Qingkai Qi, Nnamdi Ofodum, Richard Chandradat, Rober Davis; Clarkson University

223

Initial Observations of Voice Biomarkers: A Focus on Vowel Phonation and Connected Speech

Tara Chatty, Shreshtha Das, Corinthian Ewesuedo, Ezimma Onwuka, Waleed Shirwa, Paul C. Bryson, Colin K. Drummond; Case Western Reserve University

224

BioDrip: An Advanced IV Drip Control System

Nanziba Islam, Rahin Ibne Hasan, Md. Abirul Alam; Bangladesh University of Engineering and Technology

228

Intervertebral Disc Morphology in Adolescent Idiopathic Scoliosis

Anna K. Iacocca, Axel C. Moore, Patrick J. Cahill, Thomas A. Coleman, Jacob V. Jordan; University of Pennsylvania; Carnegie Mellon University

229

One-Shot Semi-Supervised Cyst Segmentation for PCOS Ultrasound Images

Nitila Gokulkrishnan, Dr. Nagarajan Ganapathy, Dr. Subhamoy Mandal; Indian Institute of Technology, Hyderabad (India); Indian Institute of Technology, Kharagpur (India)

230

Drug Delivery: Hydrodynamics and Interaction of Multiple Surfactant-Containing Droplets Spreading on a Clean Liquid Subphase

Minkyoung Kim, Stephen Garoff, Robert Tilton; Carnegie Mellon University

231

A Longitudinal, Mixed-Methods Study to Support Undergraduate Engineering Student Well-Being Faith Gacheru, Joe Mirabelli, Eileen Johnson, Jeanne Sanders, Karin Jensen; University Of Michigan

232

Computational Fluid Dynamics Analysis of Cerebrovascular Hemodynamic Differences in Adults with Sickle Cell Disease: Comparing Stroke and Non-Stroke Cohorts

Lara Abdelmohsen, Anyssa Oden, Tamer Ibrahim, Enrico Novelli, Sossena Wood, Noelia Grande Gutierrez; Carnegie Mellon University

233

Tissue Anchoring Mechanism for Tapeworm-Inspired Ingestible Electronic Device

Olivia LaFond, Fokion Taxiarchis Sanoudos Dramaliotis; Carnegie Mellon University

234

A Neural Ordinary Differential Equation Approach for Spatiotemporal Glioblastoma Tumour Evolution Prediction

Tushar Nayak, Cynthia Han, Kite Trenton, Pulkit Grover, Aswin Sankaranarayanan, Matthew Shepard; Carnegie Mellon University

BME Academic Programs at CMU

Graduate Programs Overview

Ph.D. Program

The Ph.D. program is designed to nurture the next generation of leaders in biomedical engineering for the university and industry. Flexible degree requirements allow the student to balance breadth and depth, and to develop a research plan best suited to his/her career goal.

Ph.D. students start thesis research soon after matriculation. A rigorous review system monitors the progress to facilitate timely completion in 4-5 years for students without an M.S. degree, and in as short as 3 years for students with a relevant M.S. degree. All Ph.D. students are supported with full financial aid that covers tuition and stipend. The Department also participates in a joint M.D.-Ph.D. Program with the University of Pittsburgh School of Medicine.

M.S. Program

The M.S. program, built upon the interdisciplinary, collaborative culture of Carnegie Mellon University, provides an ideal opportunity for career advancement in biomedical engineering or transitions from other disciplines into biomedical engineering.

The large degree of flexibility and a wide choice of research advisors allow M.S. education to be tailored according to the student's professional goals, from R&D in biotechnology, health-care, to university faculty. Students may choose between the traditional BME M.S. - Research program and the accelerated BME M.S. - Applied Study program. If choosing the BME M.S. - Applied Study program, a practicum course can provide opportunities for clinical exposure at local hospitals. It may also be combined with programs in Engineering & Technology Innovation Management to form a dual M.S. program. Students wishing to enter Carnegie Mellon's Ph.D. program in Biomedical Engineering must reapply and compete with the general pool of Ph.D. applicants.

M.S. in Artificial Intelligence Engineering - Biomedical Engineering (MSAIE-BME)

Artificial Intelligence (AI) no longer just lives in the digital realm of social media and e-commerce – it has also become a critical part of physical technologies in healthcare, transportation, communication, manufacturing and more. In Biomedical Engineering, AI has the potential to transform healthcare with a wide range of applications. Biomedical AI can help a doctor diagnose a disease, determine its optimal treatment, and predict the patient's prognosis. Biomedical technologies such as brain-computer interfaces, neuroprosthetics and medical imaging have been enriched by the application of AI and machine learning techniques to biological signal analysis and image processing. Biomedical AI can thus be used to improve the quality and length of life.

The MS program in Artificial Intelligence Engineering in Biomedical Engineering offers students the opportunity to gain mastery of AI and Biomedical Engineering domain expertise while learning how to integrate AI/machine learning approaches with engineering design and system analysis to develop effective solutions in biomedical engineering.

Cl	MU BME Research Areas:
	Biomaterials & Nanotechnology
	Cardiopulmonary Engineering
	Cell & Tissue Engineering
	Computational Biomedical Engineering
	Medical Devices & Robotics
	Neural Engineering
	Biomechanics
П	Biomedical Imaging

Online Graduate Certificate in 3D Bioprinting & Biofabrication

This program's unique, credit-bearing, transcripted curriculum teaches the fundamentals of fabricating 3D tissues, so you can bring actionable knowledge back to your organization. The Certificate is offered online to allow physicians and other biomedical professionals to fit this cutting-edge program into their busy professional lives. Live, weekly, online classes are held in the evening and complemented by videos and activities that you will complete on your own time, at your own pace. In addition, you will have the opportunity to attend an optional, on-campus, week-long lab session over the summer to immerse yourself in the techniques and collaborate with other like-minded professionals. When you finish the certificate program, you will have the information and tools needed to create structurally complex 3D tissues.

Undergraduate Programs Overview

Major in Biomedical Engineering

Biomedical engineering education at Carnegie Melon University reflects the belief that a top biomedical engineer must be deeply trained in both a traditional engineering practice and biomedical sciences. The unique additional major program leverages extensive collaborations with sister departments in the College of Engineering and with major medical institutions in Pittsburgh. This collaborative approach, combined with a rigorous engineering education, confers unique depth and breadth to the education of Biomedical Engineering graduates.

Additional Major in Biomedical Technology

Biomedical Technology is for students from non-engineering majors who want Biomedical Engineering training beyond the BME minor. The requirements for the Biomedical Technology additional major program consist of the core, the tracks, and the capstone design course. The core exposes students to basic facets of biomedical engineering to lay a foundation. The tracks allow students to build depth in a specific aspect of biomedical engineering. The capstone design project engages students in teamwork to develop real-world applications.

