CARNEGIE MELLON UNIVERSITY BME 2025 SPRING SEMINAR SERIES

Mapping Lung Scarring vs. Healing Across Time and Space

PRESENTED BY

Jason Liwei Guo, Ph.D. Postdoctoral Fellow NHLBI F32 Stanford University

SCHEDULE

Doherty Hall (DH) 2315

Thursday, February 20, 2025 (11:00-12:00 PM)

Fibrosis, the replacement of healthy tissue with collagen-rich scars, can occur in almost every organ and accounts for ~45% of all deaths globally. In the lungs, pulmonary fibrosis can be initiated by various factors, including exposure to irritants or acute injury from respiratory infections such as influenza and COVID-19. Fibrosis can also be unrelentingly progressive in chronic diseases like idiopathic pulmonary fibrosis (IPF), which presents a median survival of only 3-5 years after diagnosis. Given the paucity of effective anti-fibrotic therapies, there is an urgent clinical need to elucidate the biological mechanisms that mediate fibrotic progression vs. resolution.

Mouse lungs follow stereotyped sequences of fibrogenesis-to-resolution after bleomycin injury, and we reasoned that spatiotemporally profiling the post-injury response in mice could uncover biological factors relevant to human disease. In this talk, I will describe how we utilized a machine learning-based fiber algorithm to map both trajectories and regions of scar progression/resolution in mouse and human lungs. Further, I will discuss how we applied a subset of biological factors centered on fibroblasts, which are traditionally thought of as pro-fibrotic, to (1) ameliorate scarring in mice and (2) modulate fibrosis in ex vivo patient-derived lung slices. Collectively, this seminar will illustrate our development of a biological atlas covering pro-/anti-fibrotic factors that underlie intra-scar heterogeneity in the lungs, as well as my vision to carry forward these platforms to answer new systems-biological questions in lung health and disease.

