Fall Cushion for Hip Fracture Prevention
Max Adara,b, Omry Alfia,c, Udyaksh Kheraa,b, Kristen Seballosa,b, Ashley Shua,d
Biomedical Engineeringa, Mechanical Engineeringb, Materials Science and Engineeringc, and Chemical Engineeringd, Carnegie Mellon University

\section*{INTRODUCTION}

\subsection*{Background:}
- 54 million older Americans (65+) are currently at risk of intertrochanteric hip fractures (IHF) resulting from a fall1
- 300,000 older individuals are hospitalized each year for hip fractures2
- IHF causes a $2.63 billion economic burden on the American healthcare system1

\subsection*{Problem / Gap:}
- Devices that prevent fall injuries like grab bars and fall mats are dependent on location
- Wearable fall injury prevention devices like TangoBelt3 and Hip'Guard4 can be noticeable, expensive, and uncomfortable

\subsection*{Needs statement:}
To reduce occurrence and injury extent of hip fractures among those who are at risk of falling, particularly in the elderly community, by creating a comfortable, unobtrusive fall cushion that is affordable, aesthetically pleasing, and user-friendly.

\section*{PROPOSED SOLUTION}

\subsection*{Final Design:}
- Discreet undergarment with attached inflatable airbags
- Nylon horseshoe-shaped cushion for maximum diversion of force from hip joint
- Fanny pack containing canisters, electronics and gyroscope / accelerometer sensors
- Reusable & washable girdle

\subsection*{Pressure Testing:}
- Used a manometer while the CO\textsubscript{2} canister discharges to measure the pressure while the device is inflated
 - Pressure range reached in cushion: 1.1-1.4 PSI

\subsection*{Impact Testing:}
- Used the force work equation to calculate that a 45lb plate dropped at 0.7m produces a 5200N impulse
 - 5200N is the median value of the femoral force in an unexpected sideways fall for an average person7

\subsection*{Electronics & Latency Testing}

\subsection*{Accurate Fall Detection Testing:}
- How often does the algorithm detect a fall correctly?
 - The current fall detection algorithm can detect falls accurately, 80% of the time (16 times out of 20 trials)

\subsection*{Latency Testing:}
- Due to limitations in junction strength, latency from detection to inflation had to be estimated
 - Once air valve was opened, the cushions inflated within 2-3 seconds
 - Once a fall is detected, the algorithm takes approximately 5 milliseconds to send the signal to the solenoid
 - Response is limited by the baud rate of 9600ms for the microcontroller

\section*{GENERAL FEASIBILITY}

\subsection*{Cost:}
- Manufacturing costs estimated at about $87.15/unit
- Cost to customers is predicted to be less than $200
 - Hip'Guard priced at $8004
 - TangoBelt priced at $15003

\subsection*{Table 2: Cost to Produce 100k Devices Annually (per unit)}
\begin{tabular}{|c|c|}
\hline
Components & $87.15 4 \\
Assembly (labor) & $20.00 5 \\
Quality Assurance and Testing & $5.00 5 \\
\hline
Total & $112.15 6 \\
\hline
\end{tabular}

\subsection*{Reimbursement:}
- Fall prevention devices (both our device and our competitors) are not listed on the covered medical devices list from the Centers for Medicare and Medicaid Services\textsuperscript{7}

\subsection*{Patentability:}
- US Patent US5500952A is a “Hip Inflation Protection Device” we believe resembles our project6
- Key differences between this device and our own include that our device is not a belt and does not include a pleated, folded cushion that expands

\section*{ACKNOWLEDGEMENTS}

We would like to thank Dr. Conrad Zapanta, Dylan Forenzo, and Jen Hitchcock for their guidance and support throughout this project. We would also like to thank the CMU Undergraduate Research Office for helping fund our exploration in this medical devices space.

\section*{REFERENCES}
4 “Hip Inflatable Belt for Seniors That Protects the Hips.” Hip’Guard, 4 May 2021, https://hipguard.eu/
6 “Simplifying Hip Fractures.” Straight Grab Bar, 18. (2010). ULINE. https://www.uline.com/ProductDetail/H-6483/Bathroom-Supplies/Straight-Grab-Bar-18?priceCode=WB0003K&gclid=Cj0KCQjw37iTBhCWARIsACBt1Iwc5GKq5SKGolPGTwuyU3_RB77e2z6MUu-gjbHkYyHn44VChmH1V9sa02n2EALw_wB&gclid=raw.ds