Core Biopsy Device for Low Resource Areas

Ryne Deitz1,2, Anushree Gupta1,3, Mia Hartman1,3, Michalina Lacheta1,4, Katelyn Parsons1,3, Allison Rojas1,5

1Biomedical Engineering, 2Materials Science and Engineering, 3Chemical Engineering, 4Civil and Environmental Engineering, 5Mechanical Engineering

Introduction

Background

- 2.3 million women diagnosed with breast cancer and 685,000 deaths due to breast cancer in 20201.
- 60% of all breast cancer deaths occur in developing countries2.
- Difficult to use for physicians without extensive medical training.
- Mean cost for patient per core biopsy procedure is $4,346.

Needs Statement

A more affordable core needle biopsy device that is easy to use for healthcare providers within low resource areas.

Current Devices

- Most devices are one-time use, leading to extra costs and waste.
 - Average cost of a core biopsy device: $243
 - Bard is the current top producer of core biopsy devices
- Ithemba: patented by a Johns Hopkins student group.
 - Core biopsy targeting low resource areas.
 - Our device features a distinct launching mechanism.

Device Mechanism

- Components:
 - 2 spring types (1 around shaft, 4 below button)
 - Button
- How it works:
 - Pressing button decompresses the spring around shaft, which fires the device.
 - Button slides underneath body and up through second hole.

Testing

- Prototype fired into a banana (n=15) to test effectiveness.
- Throughout these trials, the needle cavity was emptied and cleaned of remnants between each individual fire.

Sample Collected (mg)

<table>
<thead>
<tr>
<th>Sample Collected on Prototype 3</th>
<th>Sample Collected on Bard Monopty Disposable Core Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 ± 2.9 mg</td>
<td>6 mg</td>
</tr>
</tbody>
</table>

- Density of a banana: −1 g/cm³
- Density of human breast tissue3: 0.950 - 1.020 g/cm³

Conclusion and Future Work

- In comparison to current devices, our prototype has been able to function properly and yield sample sizes with a comparable mass.
- Our testing has shown us that our prototype is able to function properly over several uses without showing signs of wear or damage.

Future Work

- Testing ethylene oxide sterilization as an effective method to sterilize the device between uses.
- Finding the optimal lubricant to use within the device to allow for a smoother firing mechanism.

Acknowledgements

We would like to thank Dr. Conrad Zapanta, Dr. Howard Edington, Alefa Kohtabhawala, and the Carnegie Mellon Undergraduate Research Office for their assistance on this project.

Manufacturing Cost and Market Analysis

- Manufacturing Info
 - One-time cost of 6 total molds: $30,000
 - Large scale manufacturing cost breakdown (50,000 units)

<table>
<thead>
<tr>
<th></th>
<th>ABS</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Molding Cost</td>
<td>1.30</td>
<td>2.30</td>
</tr>
<tr>
<td>Cost of Springs ($/device)</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>Cost of Needles ($/device)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Unit-Device Cost ($/device)</td>
<td>25.19</td>
<td>25.41</td>
</tr>
</tbody>
</table>

- Market Analysis
 - Breast biopsy and device market estimated at $528.7 million with a CAGR of 8.3% through 20273
 - Target market: health care facilities/hospitals with limited resources and healthcare services.

Reimbursement and Patents

- Patentability
 - Ithemba – reusable core biopsy device, but lacks launching mechanism.
 - Bard, BD – reusable core biopsy device, but requires vacuum assistance.
- Our device is patentable – presents a reusable device with a novel and low-cost mechanism for sample collection.

Reimbursement

- Medicare and Medicaid fully cover core needle biopsies.
- Outpatient: covered under Part B
- Inpatient: covered under Part A
- Reimbursement code: 19100
- Biopsy of breast; percutaneous, needle core, not limited resources and healthcare services.

References

6. Finding the optimal lubricant to use within the device to allow for a smoother firing mechanism.