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INTRODUCTION
- CT Scans are common in America, with over 70 million scans per year
- Scans sometimes malfunction, exceeding maximum catheter pressure causing the 

technician to abort the procedure

- There is no standard procedure for technicians to follow, rather each operator uses their 
own methods based on experience and unwritten rules

- Developing a way to predict a pressure given the injection conditions in clinical use to 
ensure the clearest and most enhanced CT images.

BACKGROUND
- No Standardization of protocols for technicians to follow
- Configuration of injector and procedure is largely up to the technician and his/her 

background
- PDS (Pressure-Disarm Scenario):

- Occurs when the pressure in an injection reaches dangerously high levels, which 
could harm the patient or damage the catheter

- Causes the injection to automatically abort
- PLS (Pressure-Limiting Scenario):

- Happens when the given setup for an injection procedure cannot reach an adequate 
pressure due to limitations such as catheter gauge in the setup

- We will predict maximum pressure before the injection is run using empirical and 
theoretical models so that the probability of PDS and PLS is significantly reduced
- Prediction of pressure on catheter gauge, contrast properties and saline properties

- We want to prevent suboptimal scan leading to increased scan time or radiation 
exposure

Mathematical	Model		Results
- Goal is to predict the maximum pressure an injection will reach within 5% of the actual 

value

- Program consists of three segments: Data Parser, Nonlinear Analyzer, Output GUI
- The data parser splits the large amount of data into chunks based on factors such as 

catheter gauge, saline type, and contrast type
- The nonlinear analyzer uses nonlinear least squares regression to compare the model 

to empirical pressure vs. time data
- The output GUI indicates a predicted waveform to the technician and predicts the 

maximum pressure as well as whether the injection should continue

- Results - Used three different models with varying accuracy:
- Logistics function was not very effective, not capturing outliers
- Models using Hagen-Poiseuille equation did not capture the correct shape
- Only successful model was a step with a first-order lowpass filter had sub-

5% error (roughly 80% of the time)

Conclusions
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1. Mathematical Model
• Model can produce a graph for the technologists but is ineffective and 

inaccurate to be able to be used in the Stellant device. 

2. Deep Learning Model
• Our model is effectively and accurately able to determine the maximum 

pressure but is unable to create a continuous graph for the technologists. 

• Future Work 
• Recurrent Based Model – Change Data 
• Proper pressure output at the current time depends not only on current 

settings, but also past scenes and their change/trend.
• We need the pressure to respond to current input, while remembering 

critical moments it has seen previously.
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DLNN	Model

Figure 2: Data parser sorts the data set into 
buckets grouped by contrast type, saline type, and 
catheter gauge

1. Classification Based Model
• Classifies the pressure into buckets within a range of 20 kPa based on the protocol settings

2. Regression Based Model
• Estimates a singular pressure value in kPa based on the protocol settings.

3. Loss Functions
• Input: Types of Phases, Volume of Phases, and Flowrate of Phases 
• CrossEntropyLoss: Cross-entropy loss, or log loss, measures the performance of a 

classification model whose output is a probability value between 0 and 1. Cross-entropy 
loss increases as the predicted probability diverges from the actual label.

• L1 Loss: 

• L2 Loss:

4. Architecture – Multiple Layers
• Input: Types of Phases, Volume of Phases, and Flowrate of Phases 
• Linear Layer: Linear combination on the inputs plus a bias
• Activation Function: Compute whether neuron should be fired based on input; provides 

non-linearity
• Batch Normalization: Standardizes the inputs to a layer

5. Results:

• Classification: Accuracy of 94.8% and a Loss of 0.4 was achieved with CrossEntropyLoss

• Regression: Accuracy shows pressure shift in the graph from 0% to 46% in the 0 – 0.5 
range and a Loss of 5 was achieved with L1 Loss.

Figure 8: Left: Prototype GUI. Runs the mathematical model using the MATLAB engine and 
displays the output in Python GUI can also use the DLNN to predict maximum pressure.

Figure 3: Logistics Model Failed to capture outliers, 
step model (pictured in GUI) worked better.

Figure 4: Epoch vs. Accuracy for the Classification 
Model; Validation accuracy increases with training.

Figure 6: Epoch vs. Accuracy for the Regression Model; 
Represents deviation from True value

Figure 5: Epoch vs. Loss for the Classification Model; 
Validation loss increases with Training; No overfitting.

Figure 7: Epoch vs. Loss for the Regression Model; 
Validation loss increases with Training; No overfitting

Figure 1: Stellant CT Injection System

Considerations	for	Further	Development
1. Regulatory
• Due to informative nature: follow Non-Device Clinical Decision Support guidance

2. Reimbursement
• Existing payment codes for injection procedures still apply: A9698, Q9958-65

3. Intellectual Property
• Patentable method (incl. technician input, displaying output); no similar existing prior art

4. Costs of Production
• Amortized per Stellant injector: cost ≈ cost of upgrades needed to integrate our software


