

Nasal Valve Collapse

- The **nasal valve** is a region inside the nasal passageway.
- Internal valve sits about 2 cm above base of the nose.
- It provides appropriate **airflow resistance** before air
 - enters the trachea and lungs.¹

Figure 1: Shows the location of the internal and external nasal valves.

- Nasal valve collapse results in a piece of cartilage restricting the nasal valve, and can result from several causes:
- **nasal septum deviation**: the septum is displaced sideways, resulting in blockage of the nasal valve at the side of displacement
- turbinate hypertrophy: the turbinates enlarge to minimize the opening of the nasal valve
- injury to the nose: the nasal valve is damaged and weakened
- Negative pressure is created during inhalation, and weakened valve strength or valve area can lead to collapse² and the following symptoms:
- Difficulty breathing
- Symptoms of congestion

Clinical Need

Figure 3: Image of the Rhinomed Nasal Dilator.

Figure 4: Image of Breathe Right Strip placed on a nose.

A Treatment for Nasal Valve Collapse Neil Carleton (MechE), Zeyu Hu (BME), Rinko Maeshima (ChemE) Marissa Schwartz (MSE), Jamei Wang (ChemE)

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA

Product Design

Product Testing

Quantitative Testing:

The design of the nasal

Qualitative Testing:

• The device was worn in one nostril and comfort was assessed by the wearer over

• The average cross sectional area of the nostril opening with and without the device was determined using ImageJ.

Figure 8: Image of right nostril without (top) and without (bottom) nasal valve device.

Statistical Analysis:

- A two sample unequal variance t-test was performed on four area data samples, resulting in a p value of **0.000473**.
- p < 0.05, indicating statistical significance.
- Figure 9: A comparison of the average area of the nostril normally and while using the device.

- discomfort when inserted.
- from the nose.
- accessible option.

- passageways at different points.

The team thanks Dr. Conrad Zapanta, Dr. Phil Zapanta, Lexi Shea, Lauren Zemering, and the CMU URO for their assistance and guidance throughout this project.

- 10 Nov. 2016.

Conclusions

This product design achieves the following design goals:

• **Functionality**: the device will provide mechanical support to the nasal valve by increasing the nasal valve area and thus increase airflow via inspiration.

• Aesthetic: the device is unseen and unnoticeable by an outside viewer once inserted.

• **Safety**: the device fits securely inside the nasal passageway and will not be inhaled or fall out.

• **Comfort**: the device does not cause any irritation or

• **Ease of Use**: the device is easily inserted and removed

• Low Cost: the device is available as an inexpensive, easily

Future Work

• Create an accurate model of scaled nose prototype for better visual demonstration of how device works. • Perform quantitative testing of device flow using tubing

and gravity - a more robust set of testing is warranted to prove the clinical efficacy of the device.

• Acoustic rhinometry is the gold standard for testing and can measure the cross-sectional area of the nasal

• Prototype device for insertion and removal.

• Reinforce current device as needed (ex. if the

insertion/removal device can tear it).

Acknowledgments

References

1. P, Sulsenti. "[The Nasal Valve Area: Structure, Function, Clinical Aspects And Treatment. Sulsenti's Technic For Correction Of Valve Deformities]. -Pubmed - NCBI". Ncbi.nlm.nih.gov. N.p., 2016. Web. 11 Nov. 2016. Barrett, Dane M., Fernando J. Casanueva, and Ted A. Cook. "Management of the Nasal Valve." Facial Plast Surg Clin N M (2016): 219-34. Elsevier. Web.

Sufyan, MD Ahmed. "Nasal Batten Grafts." The Jama Network. American Medical Association, 01 Jan. 2012. Web. 19 Nov. 2016.