

FIBREEZE: LEAK-PROOF HOLLOW FIBERS for ARTIFICIAL LUNGS

Material Cost

• Curing temperature

Cost

DIP COATING:

\$4.77 - \$5.67^{//}

Alexis Zambino, Corina Ramirez, Maddie Cramer, Sissy Henriquez, Spencer Lehr, Trisha Ambe In Collaboration with Dr. Keith Cook, Pittsburgh Technology Center

ARTIFICIAL LUNG BASICS

CLINICAL NEED & PROBLEM

• Lung disease is one of the leading causes of death in the United States, killing 4 million Americans a year. [1-2]

• Demand for lung transplants exceeds supply of healthy lungs donated and lung transplantations had a low success rate so patients are often on the waitlist for a long period of time

• Artificial lungs replace repeated lung transplants or provide a temporary solution until a lung can be successfully transplanted

• Often patients need repeated lung transplants, which means higher costs, increased use of resources and greater risk of infection and other health complications

• Devices fail due to plasma and air leakage, which can cause pulmonary embolisms and therefore death. [1-2]

· Re-engineered artificial lung with proper material coating and efficient coating method would solve these problems

DESCRIPTION OF MARKET

• As of May 2, 2014, there are 1.666 people on the waitlist for a lung transplant - this is the target audience. [3-4]

 Since many natients have such long waits and may often die while on the waitlist. artificial lungs are necessary to bridge the gap to a healthy lung transplant

< 30 Days 30 to < 90 Days

WAITLIST TIME FOR LUNG TRANSPLANT [3-4]

NOVELTY & INNOVATION

DESCRIPTION OF DESIGN

MATERIAL COATING CHOICE:

Material Selection Criteria:

 Biocompatibility · Compatibility with Polypropylene and Gas exchange Thin film capabilities Polyurethane

Polydimethyl Siloxane (PDMS) – silicone based organic polymer used in many medical and scientific applications; properties of stability, chemical resistance, and biocompatibility make it appealing

Shear Modulus Young's Modulus 360-870 kPa

AIRBRUSH SPRAY COATING

The airbrush spray coating uses a standardized amount of PDMS solution per side with a consistent sprav method to coat each side of the fiber sheet with a thin film of polymer

The dip coating method utilized a fiber bundle dipped with both ends in PDMS solution and air dried

SCANNING ELECTRON MICROSCOPY:

15% PDMS solution in hexane solvent showing varying coating surfaces. * Image F shows a coated that was scraped to show a contrast in the image

FURTHER RESEARCH

 The fibers were potted into artificial lung prototypes, however the potting process requires further optimization

• Gas exchange testing of these potted artificial devices through a circuit shown in Figure 6 would allow for blood gas analysis with samples taken to be able to assess the effectiveness of the lung fibers and coating.

PRODUCT COSTS

Part Description	Amount/Unit	Bulk Cost (\$)	Cost/Unit (\$)
PP fibers	2.4 m ²	\$150/m ²	\$360
Potting Material	300 mL	\$150/1L	\$45
Biospan, for Housing	750g	\$200/1kg	\$150
PDMS	300g	\$60/2kg	\$10.50
Hexane	38.7 mL	\$70/4L	\$0.68
Centrifuge tubing	1/100 units	\$6.32	\$0.63
Mold	1/100 units	\$150	\$1.50
Tubing	1	\$1.50/line	\$1.50
Connectors	2	\$13.12/50	\$0.52
Spraying kit	1/100 units	\$15.46	\$0.15
Airbrush hose	1/100 units	\$8.86	\$0.08
Cleaning brushes	1/100 units	\$6.96	\$0.69
TOTAL			\$571

REGULATORY PATHWAY[7-9]

• Class III medical device: new product, sustains human life, high risk of illness/injury

FDA approval requires:

• Premarket approval (PMA), includes reliable data from pre-clinical and clinical studies to establish safety and effectiveness

• Center for Biologic Evaluation Research approval because of blood collection and processing procedures

• Extracorpreal Membrane Oxygenator : similar purpose, different in

process so cannot mandate 510(k) clearance and PMA

· Need to conduct pre-clinical trials in compliance with Good

Laboratory practice for Non-clinical Laboratory studies

ACKNOWLEDGEMENTS

- We would like to thank:
- Dr. Conrad Zapanta and Miss Krista Rochussen for their advising and support
- Dr. Keith Cook for his guidance and for providing the necessary resources
- Mr. Jason Wolf for aiding in imaging and characterization
- Mr. Dave Skoog for his immense support, time, help, and patience

REFERENCES

[1] Rattue, P. "Lung Disease Leading Cause of Death, Most People Don't Know". Medical News Today. July 2012. [12] H. Nolan, D. Wang, J.B. Zwischenberger. "Artificial Lung Basics: Fundamental challenges, alternative designs, and future innovations: Organogenesis 21, 23-27. March 2011. [3] "OPIN: Organ Pocurement and Transplantation Network: "Neath Resources and Service Administration. U.S. Department of Health and Human Services, n.d. Web. 2013. <u>http://orgin.transplant.htm.acv/data/</u> [4]: "Adult Lung Transplant."SRT AS OPIN Annual Data Report. 2011.

http://srtr.transplant.hrsa.gov/annual_reports/2011/pdf/06_lung_12.pdf

[5] Cook, K., Pohlmann, J., Skoog, D. (2013). Personal Interview. [6] CES Edu/ack Software: Granta Design. 2013 [7] "Medical Delivees: Classify Your Medical Device." FDA U.S. Food and Drug Administration. U.S. Department of [7]

Health & Human Services, 3 Dec. 2012. Web. https://www.fda.gov%2F%2520MedicalDevice%2FDevice%2FDevice%2Fdefault.htm. [8] "Medical Devices: Premarket Approval (PMA)." FDA U.S. Food and Drug Administration. U.S. Department of Health & Human Services, 24 Jan. 2012. Web.

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice.

PermarketSubmissions/PremarketApproval/PMA/carn2007514.htm; [9] Waterhouse, Jamie, comp. "Brief Summary of the Circulatory System Devices." (n.d.): n, pag. Rpt. in Circulatory System Devices Panel. Np.: n.p., n.d. FDA Committees Meeting Materials. Web. http://www.fda.gov/downloads/ AdvisoryCommittees/Committees/MeetingMaterials/ Medical Devices/Medical Devices Advisory Committee CirculatorySystemDevicesPanel/UCM368460 pdf>

Figure 4: Dip coating method schematic

O2 Permeability

between dip coats.

DIP COATED 15% PDMS SPRAYED 10% PDMS

Figure 5: Scanning electron microscope pictures of the uncoated and coated fibers coated in 10% or

Figure 6: Gas exchange circuit schematic