CURRICULUM

CORE COURSES (84 UNITS)

42 Units Artificial Intelligence Core

- Systems and Tool Chains for AI Engineering (12 units)
 Principles and key trade-offs in data collection and storage, data engineering, neural network engineering, framework architectures, and managing constraints

- Introduction to Machine Learning for Engineers (12 units)
 Introduction to machine learning with a special focus on engineering applications covers probability and Bayesian learning, generative and discriminative classification methods, supervised and unsupervised learning, neural networks, support vector machines, clustering, dimensionality reduction, regression, optimization, evolutionary computation and search.

- Introduction to Deep Learning for Engineers (6 units)

- Trustworthy and Ethical AI Engineering (12 units)
 Understanding of different kinds of threats and concerns for deploying AI solutions in the real world, an exposure to end-to-end deployment challenges, societal issues, and policy challenges in realizing these; and an exposure to best practices for avoiding these concerns.

12 Units AI Applications in BME

Hands-on experience in applying the fundamentals of AI/ML to problems in a variety of biomedical applications. Students will work in teams to design, develop, and evaluate an AI/ML system.

30 Units BME Core Electives

Choose one of the five BME cores:
- Biomaterials and Tissue Engineering
- Biomechanics
- Biomedical Imaging and Bioinformatics
- Neural Engineering
- Physiology and Cellular/Molecular Biology

PHYSIOLOGY (12 UNITS)

Choose one:
- 42-702 Advanced Physiology
- 03-763 Advanced Systems Neuroscience

May be waived if the student has previously taken a CMU-equivalent course in physiology. If waived, the student would instead take 12 additional free elective units of BME.

RESTRICTED ELECTIVE (12 UNITS)

12 Units of approved coursework in the BME graduate curriculum

ADDITIONAL REQUIREMENTS

Biomedical Engineering Seminar Attend seminar each semester the student is enrolled in the program: 42-701 (0 units) or 42-801 (3 units).

A minimum of 48 units from BME (42-XXX)

Total Units 108 units
BME CORE ELECTIVES

Students must take at least 30 units of the chosen courses within one of the BME cores. See sample course plans in the next section.

Biomaterials and Tissue Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-610</td>
<td>Intro to Biomaterials</td>
<td>9</td>
</tr>
<tr>
<td>42-611</td>
<td>Engineering Biomaterials</td>
<td>12</td>
</tr>
<tr>
<td>42-620</td>
<td>Engineering Molecular Cell Biology</td>
<td>12</td>
</tr>
<tr>
<td>42-612</td>
<td>Tissue Engineering</td>
<td>12</td>
</tr>
<tr>
<td>42-613</td>
<td>Molecular and Micro-Scale Polymeric Biomaterials in Medicine</td>
<td>9</td>
</tr>
<tr>
<td>42-670</td>
<td>Biomaterial Host Interactions in Regenerative Medicine</td>
<td>12</td>
</tr>
<tr>
<td>42-673</td>
<td>Special Topics: Stem Cell Engineering</td>
<td>9</td>
</tr>
<tr>
<td>42-676</td>
<td>Bio-nanotechnology: Principles and Applications</td>
<td>9</td>
</tr>
<tr>
<td>42-693</td>
<td>Special Topics in Integrated Systems Technology: Micro/Nano Biomedical Devices</td>
<td>12</td>
</tr>
<tr>
<td>02-730</td>
<td>Cell and Systems Modeling</td>
<td>12</td>
</tr>
<tr>
<td>09-707</td>
<td>Nanoparticles</td>
<td>12</td>
</tr>
</tbody>
</table>

Biomechanics

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-691</td>
<td>Biomechanics of Human Movement</td>
<td>12</td>
</tr>
<tr>
<td>42-640</td>
<td>Image-Based Computational Modeling and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-645</td>
<td>Cellular Biomechanics</td>
<td>9</td>
</tr>
<tr>
<td>42-648</td>
<td>Cardiovascular Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>42-649</td>
<td>Introduction to Biomechanics</td>
<td>12</td>
</tr>
<tr>
<td>42-677</td>
<td>Rehabilitation Engineering</td>
<td>9</td>
</tr>
<tr>
<td>06-610</td>
<td>Rheology and Structure of Complex Fluids</td>
<td>9</td>
</tr>
<tr>
<td>16-868</td>
<td>Biomechanics and Motor Control</td>
<td>12</td>
</tr>
</tbody>
</table>

Biomedical Imaging and Bioinformatics

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-631</td>
<td>Neural Data Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-632</td>
<td>Neural signal processing</td>
<td>12</td>
</tr>
<tr>
<td>42-640</td>
<td>Image-Based Computational Modeling and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-737</td>
<td>Biomedical Optical Imaging</td>
<td>12</td>
</tr>
<tr>
<td>42-689</td>
<td>Introduction to Bioimaging</td>
<td>9</td>
</tr>
<tr>
<td>42-668</td>
<td>"Fun"-damentals of MRI and Neuroimaging Analysis</td>
<td>9</td>
</tr>
<tr>
<td>02-730</td>
<td>Cell and Systems Modeling</td>
<td>12</td>
</tr>
<tr>
<td>03-534</td>
<td>Biological Imaging and Fluorescence Spectroscopy</td>
<td>9</td>
</tr>
<tr>
<td>03-712</td>
<td>Computational Methods for Biological Modeling and Simulation</td>
<td>12</td>
</tr>
<tr>
<td>16-725</td>
<td>(Bio) Medical Image Analysis</td>
<td>12</td>
</tr>
<tr>
<td>86-675</td>
<td>Computational Perception</td>
<td>12</td>
</tr>
<tr>
<td>PittBIOE 2330</td>
<td>Biomedical Imaging</td>
<td>9</td>
</tr>
</tbody>
</table>
Neural Engineering

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-630</td>
<td>Intro to Neural Engineering</td>
<td>12</td>
</tr>
<tr>
<td>42-631</td>
<td>Neural Data Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-632</td>
<td>Neural Signal Processing</td>
<td>12</td>
</tr>
<tr>
<td>42-783</td>
<td>Neural Engineering Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>03-763</td>
<td>Advanced Systems Neuroscience</td>
<td>12</td>
</tr>
<tr>
<td>03-762</td>
<td>Advanced Cellular Neuroscience</td>
<td>12</td>
</tr>
<tr>
<td>86-765</td>
<td>Cognitive Neuroscience</td>
<td>12</td>
</tr>
<tr>
<td>18-491</td>
<td>Fundamentals of Signal Processing</td>
<td>12</td>
</tr>
<tr>
<td>18-792</td>
<td>Advanced Digital Signal Processing</td>
<td>12</td>
</tr>
<tr>
<td>18-794</td>
<td>Pattern Recognition Theory</td>
<td>12</td>
</tr>
<tr>
<td>86-675</td>
<td>Computational Perception</td>
<td>12</td>
</tr>
<tr>
<td>36-759</td>
<td>Statistical Models of the Brain</td>
<td>12</td>
</tr>
</tbody>
</table>

Physiology and Cellular/Molecular Biology

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-702</td>
<td>Advanced Physiology</td>
<td>12</td>
</tr>
<tr>
<td>42-620</td>
<td>Engineering Molecular Cell Biology</td>
<td>12</td>
</tr>
<tr>
<td>42-673</td>
<td>Special Topics: Stem Cell Engineering</td>
<td>9</td>
</tr>
<tr>
<td>42-684</td>
<td>Principles of Immunoengineering and Development of Immunotherapy Drugs</td>
<td>9</td>
</tr>
<tr>
<td>03-741</td>
<td>Advanced Cell Biology</td>
<td>12</td>
</tr>
<tr>
<td>03-742</td>
<td>Advanced Molecular Biology</td>
<td>12</td>
</tr>
<tr>
<td>03-751</td>
<td>Advanced Developmental Biology and Human Health</td>
<td>9</td>
</tr>
<tr>
<td>03-762</td>
<td>Advanced Cellular Neuroscience</td>
<td>12</td>
</tr>
</tbody>
</table>
SAMPLE COURSE PLANS

BME core electives, restricted elective.
Minimum number of BME (42-XXX) units: 48

Biomaterials and Tissue Engineering

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-813</td>
<td>Systems and Tool Chains for AI Engineering</td>
<td>12</td>
<td>TBD</td>
<td>6</td>
</tr>
<tr>
<td>18-661 or 24-787</td>
<td>Introduction to Machine Learning for Engineers</td>
<td>12</td>
<td>TBD</td>
<td>12</td>
</tr>
<tr>
<td>42-702</td>
<td>Advanced Physiology</td>
<td>12</td>
<td>42-TBD</td>
<td>12</td>
</tr>
<tr>
<td>42-701</td>
<td>Biomedical Engineering Seminar</td>
<td>0</td>
<td>02-TBD</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>36</td>
<td>42-TBD</td>
<td>12</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-612</td>
<td>Tissue Engineering</td>
<td>12</td>
</tr>
<tr>
<td>42-620</td>
<td>Engineering Molecular Cell Biology</td>
<td>12</td>
</tr>
<tr>
<td>42-693</td>
<td>Special Topics in Integrated Systems Technology: Micro/Nano Biomedical Devices</td>
<td>12</td>
</tr>
<tr>
<td>42-701</td>
<td>Biomedical Engineering Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

| | Total: | 36 |

Biomechanics

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-813</td>
<td>Systems and Tool Chains for AI Engineering</td>
<td>12</td>
<td>TBD</td>
<td>6</td>
</tr>
<tr>
<td>18-661 or 24-787</td>
<td>Introduction to Machine Learning for Engineers</td>
<td>12</td>
<td>TBD</td>
<td>12</td>
</tr>
<tr>
<td>42-702</td>
<td>Advanced Physiology</td>
<td>12</td>
<td>42-TBD</td>
<td>12</td>
</tr>
<tr>
<td>42-701</td>
<td>Biomedical Engineering Seminar</td>
<td>0</td>
<td>02-TBD</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>36</td>
<td>42-TBD</td>
<td>39</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-640</td>
<td>Image-Based Computational Modeling and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-691</td>
<td>Biomechanics of Human Movements</td>
<td>12</td>
</tr>
<tr>
<td>16-679</td>
<td>Medical Robotics</td>
<td>12</td>
</tr>
<tr>
<td>42-701</td>
<td>Biomedical Engineering Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

| | Total: | 36 |

Biomedical Imaging and Bioinformatics

First Year

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-813</td>
<td>Systems and Tool Chains for AI Engineering</td>
<td>12</td>
<td>TBD</td>
<td>6</td>
</tr>
<tr>
<td>18-661 or 24-787</td>
<td>Introduction to Machine Learning for Engineers</td>
<td>12</td>
<td>TBD</td>
<td>12</td>
</tr>
<tr>
<td>42-702</td>
<td>Advanced Physiology</td>
<td>12</td>
<td>42-TBD</td>
<td>12</td>
</tr>
<tr>
<td>42-701</td>
<td>Biomedical Engineering Seminar</td>
<td>0</td>
<td>02-TBD</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>36</td>
<td>42-TBD</td>
<td>42</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-640</td>
<td>Image-Based Computational Modeling and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-631</td>
<td>Neural Data Analysis</td>
<td>12</td>
</tr>
<tr>
<td>18-794</td>
<td>Pattern Recognition Theory</td>
<td>12</td>
</tr>
<tr>
<td>42-701</td>
<td>Biomedical Engineering Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

| | Total: | 36 |
Neural Engineering

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-813 Systems and Tool Chains for AI Engineering</td>
<td>12</td>
<td>TBD Introduction to Deep Learning for Engineers</td>
<td>6</td>
</tr>
<tr>
<td>18-661 or 24-787 Introduction to Machine Learning for Engineers</td>
<td>12</td>
<td>TBD Trustworthy and Ethical AI Engineering</td>
<td>12</td>
</tr>
<tr>
<td>42-702 Advanced Physiology</td>
<td>12</td>
<td>42-701 Biomedical Engineering Seminar</td>
<td>12</td>
</tr>
<tr>
<td>42-701 Biomedical Engineering Seminar</td>
<td>0</td>
<td>42-630 Introduction to Neural Engineering</td>
<td>12</td>
</tr>
<tr>
<td>Total: 36</td>
<td></td>
<td>Total: 36</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-631 Neural Data Analysis</td>
<td>12</td>
</tr>
<tr>
<td>42-783 Neural Engineering Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>16-824 Visual Learning and Recognition</td>
<td>12</td>
</tr>
<tr>
<td>42-701 Biomedical Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Total: 36</td>
<td></td>
</tr>
</tbody>
</table>

Physiology and Cellular/Molecular Biology

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-813 Systems and Tool Chains for AI Engineering</td>
<td>12</td>
<td>TBD Introduction to Deep Learning for Engineers</td>
<td>6</td>
</tr>
<tr>
<td>18-661 or 24-787 Introduction to Machine Learning for Engineers</td>
<td>12</td>
<td>TBD Trustworthy and Ethical AI Engineering</td>
<td>12</td>
</tr>
<tr>
<td>42-702 Advanced Physiology</td>
<td>12</td>
<td>42-701 Biomedical Engineering Seminar</td>
<td>12</td>
</tr>
<tr>
<td>42-701 Biomedical Engineering Seminar</td>
<td>0</td>
<td>42-673 Special Topics: Stem Cell Engineering</td>
<td>9</td>
</tr>
<tr>
<td>Total: 36</td>
<td></td>
<td>Total: 36</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>42-620 Engineering Molecular Cell Biology</td>
<td>12</td>
</tr>
<tr>
<td>03-751 Advanced Developmental Biology and Human Health</td>
<td>12</td>
</tr>
<tr>
<td>42-611 Engineering Biomaterials</td>
<td>12</td>
</tr>
<tr>
<td>42-701 Biomedical Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Total: 36</td>
<td></td>
</tr>
</tbody>
</table>