Introduction

Background
- Scoliosis - spinal deformity with coronal plane curvature greater than 10° [1-12] (Figure 1)
- Degenerative scoliosis is painful and often requires surgery [1]
- 38,000 surgeries/year in the US [1]

Problem
- No devices exist to realistically model deformed spine for surgical preparation

Needs Statement
- “A cost-effective, reusable, and portable way to give engineers and healthcare providers the ability to model varying Cobb angles in preparation for spinal surgery.” [12]

Testing Results

Ligament testing
- Native ligaments - 1.5MPa [5]
- Tensile testing performed on elastic bands; example trial in Figure 2 and results in Table 1

Disc testing
- Native discs - 5.8 -42.7MPa [5]
- Compression testing performed on rubber sheets; results in Table 1

Proposed Solution: Mechanical & Anatomical Synthetic Scoliosis Simulator

Final model includes following elements
- User-friendly frame design (Figure 3)
- ABS 3D printed vertebrae w/ infill modeling cortical and cancellous bone (Figure 4)
- Snap-fit vertebrae (Figure 5)
- Torsional springs to model discs (Figure 6)
- Elastic bands as ligaments (Figure 7)

Figure 1: Example of Scoliotic Spine [12]

Figure 2: Load vs. extension curve in tensile testing

<table>
<thead>
<tr>
<th>Elastic Moduli (MPa)</th>
<th>Average SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow (Light)</td>
<td>0.075 0.109</td>
</tr>
<tr>
<td>Red (Medium)</td>
<td>1.240 0.180</td>
</tr>
<tr>
<td>Blue (Strong)</td>
<td>1.444 0.096</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressive Moduli (MPa)</th>
<th>Average SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Duro</td>
<td>99.107 3.509</td>
</tr>
<tr>
<td>40 Duro</td>
<td>52.917 6.052</td>
</tr>
</tbody>
</table>

Table 1: Summary of disc and ligament testing with selected materials highlighted

Discussion

Market Analysis and Patent Search

Market Analysis
- Medical simulation ~ $2.58 Billion industry in 2022 [15]
- Table 2 and Figure 8 show market landscape for reusable spinal model

Sawbone Models (one-time use)	$500+
Cadavers (one-time use)	$3000-5000
Proposed Solution (reusable)	$275

Table 2: Cost of existing & proposed models

Results of Patent Search
- Patent search yielded two spinal models (Figure 9), 3D printing infill method, disc prosthesis with springs, & artificial ligaments [13, 14]
- Risk of infringement is low

Future Work
- Quantitative testing on drillability of 3D printed vertebrae
- Verification of robustness of snap fit
- Quantitative testing on mechanical properties of the model to match forces used in correction surgeries

Acknowledgements

The Scoliosis Simulator Team would like to thank Dr. Zapanta and Erica Comber for their support over the course of the semester. Additionally, we would like to thank Medtronic for their financial support and Medtronic engineers, Mark Grizzard and Jerald Redmond, for their mentorship. Finally, we would like to acknowledge the other Medtronic engineers and the surgeons from AGH, particularly Dr. Boyle Cheng, for their support and guidance.

References

10. "Dr. Boyle Cheng," for their support and guidance.