Background:
- 1.25 million Americans have Type 1 Diabetes (T1D), a condition where the body is unable to create insulin to regulate glucose.
- Current T1D treatments require stringent and intrusive monitoring of glucoses and administering of insulin.
- Research has been conducted to create pancreatic organoids (group of cells functioning as an “organ-like” structure) to restore patients’ insulin production.

Needs Statement:
- Develop a highly immune-compatible organoid therapy system for patients with impaired insulin production for recapitulation of pancreatic function without rejection.

Proposed Solution:
- Organoid Therapeutics has developed such an organoid therapy.
- Solution is classified as a “biologic”.
- Fibrin not currently used to deliver organoids.
- Similar hydrogel encapsulation methods do not exist.

Design of Solution

Organoid Components
- Beta-Islet cells derived from induced pluripotent stem cells to mimic pancreatic functionality
- Extracellular Matrix (ECM) assists in beta-islet cell aggregation/organoid formation

Fibrin-based Hydrogel Coating
- Fibrin is a natural biopolymer that encourages blood vessel growth.
- Produced when fibrinogen is enzymatically cleaved by thrombin.
- Coating encapsulates and protects organoids during delivery.
- Low immunogenicity: minimal immune response.

Fibrin Properties Ideal for Organoid Protection
- Elastic and viscous properties
- If cross-linked, can withstand large amounts of stress
- Young’s modulus = 14.5 ± 3.5 MPA
- Can stretch up to 3.3 times its original length
- Fracture strain = 332%

Coating Method Effectively Coats Organoids
- Anticipated coating tests on the following:
 1) Fabricated alginate beads
 2) Liver tissue spheroids
 3) Pancreatic organoids
- Results of preliminary alginate bead testing:
 - Fabricated alginate beads (~ 0.5 mm in diameter)
 - Fibrin hydrogel developed evenly around bead.

Organoid Survivability During Injection
- Generalized velocity profiles shown above.
- Calculated wall shear for varying needle gauge and flow conditions shown below.

<table>
<thead>
<tr>
<th>Needle Gauge</th>
<th>Wall Shear (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet Flow Rate (m/s)</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>24G</td>
<td>240</td>
</tr>
<tr>
<td>26G</td>
<td>260</td>
</tr>
<tr>
<td>27G</td>
<td>270</td>
</tr>
<tr>
<td>28G</td>
<td>280</td>
</tr>
</tbody>
</table>

- Fibrin elasticity withstands even the largest shear values.

Future Hypothesis:
- Hypothesis: Hydrogel coating will be thinner around organoids.
 - Integrim binding will allow a thin coating of fibrinogen to adhere to the surface.
 - Finish coating tests with liver tissue and organoids.
 - Optimize needle gauge by performing live-dead assay on organoids after injection.
 - In vivo testing in mice over several months monitoring insulin levels to determine number of organoids per dose and frequency of dosages.

Future Testing:
- Hypothesis: Hydrogel coating will be thinner around organoids.
 - Integrim binding will allow a thin coating of fibrinogen to adhere to the surface.
 - Finish coating tests with liver tissue and organoids.
 - Optimize needle gauge by performing live-dead assay on organoids after injection.
 - In vivo testing in mice over several months monitoring insulin levels to determine number of organoids per dose and frequency of dosages.

COSTS & REIMBURSEMENT

Cost Breakdown per Dose:
- Total material cost per dose: $8,638
- Total labor cost per dose: $1,246
- 50% overhead costs: $4,942
- 25% profit margin: $2,471
- Total selling price for one dose: $17,297

We would like to thank Dr. Conrad Zapanta and Andrew Hudson for their continued support and feedback. We would also like to thank Organoid Therapeutics for partnering with us and making this project possible. We would also like to recognize the other classmate/TA’s of (42-401-402) and our guest lecturers for all of their feedback and help.

ACKNOWLEDGEMENTS & REFERENCES