Stop that Slip! Brace Support and Tracker

Alisha Lokhande¹,²,³, Berk Sahin²,³, Kara Nickolich²,³, Leon Min¹,³, Sogu Sohn¹,³

Departments of Materials Science¹, Mechanical², and Biomedical Engineering³

Dr. Conrad Zapanta, Kalliope Bouloubassis, and Dr. Greg Altman

Introduction

Our Mission: to solve the problem of reliance on patient self-reporting and migration associated with hinged knee braces

Our Proposed Solution Includes: a retrofitted angular tracking device (ATD) with a web app interface and a brace support harness

Clinical Need

- 76.6% of anterior cruciate ligament (ACL) injuries require surgery and brace usage¹
- Only 28% of patients comply with prescribed hinged knee brace usage³ - Why?
 - Brace migration from improper fit

Need: Device(s) to address issues usage tracking and brace migration for users of hinged knee braces

Product Testing

Angular Tracking Device (ATD)
- Static Test: Accuracy and precision of ATD
- Test Plan: Use goniometer to measure knee angle and compare to captured data from tracker

Design Overview

Angular Tracking Device (ATD)
- Low-cost, lightweight Arduino-compatible components
- Knee angle recorded through rotation of a potentiometer attached to the brace hinge
- Electronics housed in a 3D printed case (Lulzbot TAZ 6)
- Graphic User Interface (GUI) available as a MATLAB web app to analyze angle data between days

Brace Support Harness (BSH)
- Uses tension to resist downwards migration of the brace
- Connects to the lateral bars of the brace where more weight is located
- Adjustable length allows for better fitting
- Secure attachment for daily use

Results:
- Brace migration over time was higher during control tests
- BSH demonstrates potential to hinder brace migration

Market Analysis

Target Market
- Purchasers: hospitals and care centers
- Users: patients using hinged knee braces

Potential for Reimbursement
- Reimbursable through Medicare and Medicaid with doctor’s prescription

Patentability and Cost

Patentability²,⁶
- Difficult to patent due to recently published patents in the pipeline

Manufacturing Costs
- $112.28 ATD + $32.99 BSH = $145.27 Total Cost

Future Work

- Further testing of brace support harness for more conclusive results
- Alternate attachments of harness to brace
- Manufacture the harness as a single unit
- Dynamic testing of the ATD

Acknowledgements

We would like to thank Dr. Conrad Zapanta and our Teaching Assistant, Kalliope Bouloubassis for their invaluable assistance and guidance throughout the duration of this project. We would also like to thank Dr. Ken Urish (UPMC), Dr. Greg Altman (AGH), and Robert Zacharias (IDeATe) for sharing their guidance and expertise. Finally we would like to thank URO for sponsoring our project and making all of this possible.

References

¹. Anterior Cruciate Ligament (ACL) injuries require surgery and brace usage
². Difficult to patent due to recently published patents in the pipeline
³. Low-cost, lightweight Arduino-compatible components
⁴. Global orthopedics market: $3.3 billion
⁵. Projected to reach $5.3 billion by 2025
⁶. Reimbursable through Medicare and Medicaid with doctor’s prescription

Table 1: Overview of Costs

<table>
<thead>
<tr>
<th>Area of Expenditure</th>
<th>Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular Tracking Device (ATD)</td>
<td></td>
</tr>
<tr>
<td>ATD Components*</td>
<td>$36.00</td>
</tr>
<tr>
<td>ATD Case*</td>
<td>$26.25</td>
</tr>
<tr>
<td>MATLAB</td>
<td>$50.00</td>
</tr>
<tr>
<td>Harness</td>
<td></td>
</tr>
<tr>
<td>SUSPENDER STRAPS</td>
<td>$10.00</td>
</tr>
<tr>
<td>QUALITY CORRECTOR</td>
<td>22.99</td>
</tr>
<tr>
<td>Total Cost for Single Device</td>
<td>$145.27</td>
</tr>
</tbody>
</table>

*Includes cost of tools/components used in manufacturing