Len(s)wipe - A Laparoscopic Lens Wiper

Eileen Ge1,3, Julia Eve Napolitano1,2, Himali Ranade1,2, Mercy Soong1,2, Shalani Stockton1,4

Departments of 1Biomedical Engineering, 2Chemical Engineering, 3Materials Science and Engineering, 4Mechanical Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

DISEASE STATE

- Laparoscopic Surgery
 - Over 15 million worldwide, 3.5 million in U.S. per year[2]
 - Minimally invasive surgery that eliminates large incisions
 - Camera inserted into body to increase visualization
 - For various pathologies/conditions involving the abdominal area and pelvic organs

- Current Problem
 - Surgeons frequently remove scope from patient
 - Results in increased surgical time, risk of infection, and post-surgical complications

OBJECTIVES

1. Clean the lens of a laparoscope inside the patient’s body
2. Achieve mechanical success of prototype
3. Conduct successful efficacy testing of wiper blade on the lens
4. Ensure biocompatible, low cost, and ergonomic

COMPETITORS & MARKET GAPS

ClickClean
- Shields lens with device trigger that interchanges soiled film for new, clean film[2]

Clearify
- Scope is removed from the body and cleaned with trocar wipes, microfiber cloth, and a warming hub[3]

Flowshield
- Lens has vortex barrier of carbon dioxide dry gas delivered by external tube, which shields and defogs the lens[4]

Current Market Gaps:
1. Safety - remain inside the patient
2. Simplicity - easy but effective mechanism for cleaning
3. Ease of Use - lightweight and easy operation
4. Cost Effectiveness - low cost solution

MANUFACTURING

- **Materials**
 - UHMWPE fishing line
 - Extension springs
 - Silicone squeegee blade
 - Threaded islets
 - ABS and PLA 3D printing filament

- **Prototyping Methods and Cost**
 - 3D printing for tubing/casing
 - Hand manufacturing for threader wire
 - Current Cost: $8.39 → Selling Price: $40.00

CONCLUSIONS & FUTURE WORK

- **Conclusions**
 - Verification of theoretical function and efficacy of our device
 - Sleek and more ergonomic design offers comfort and is an improvement from last year’s design
 - The wires are contained within the tubing so as to keep them secure and free from contact with the body
 - Low cost solution compared to competition

- **Future Work**
 - Test fully manufactured device with blood and bodily fluids
 - Manufacture samples with proposed manufacturing materials and technology
 - Create secondary model with lateral switch mechanism

ACKNOWLEDGEMENTS

We would like to thank our Professor Dr. Conrad Zapanta, our TA Elisha Raeker-Jordan, our advisor Dr. George Ebd, and the financial assistance provided by the URO. Their contributions to this research made this capstone project possible.

REFERENCES
