Carovac: The Carotid Clot Vacuum

Palak Bajaj1,2, Cameron Breze1,2, Yuanyuan Fu1,2, Molly Kaissar1,3, Cameron Smith1,2, Mengxi Yang1,2

Department of Biomedical Engineering1, Department of Chemical Engineering2, Department of Materials Science and Engineering3
Carnegie Mellon University, Pittsburgh, PA

Clinical Need

Clinical Need
- Stroke:
 - 5th leading cause of death in the United States
 - Kills 130,000 people every year - 1 out of every 20 deaths
- Ischemic stroke:
 - Accounts for 87% of all strokes
 - Major leading cause of neurological disability
 - Chance of disability increases as the time between stroke onset and treatment increases

Background & Goal

Current treatments
- tPA:
 - Most successful within 3 hours of stroke onset
 - Non-ideal for patients on blood thinners or with larger clots
- Mechanical thrombectomy:
 - Most successful within 6 hours of stroke onset
 - Procedure could be long and has risk of causing secondary strokes

Project Objective:
- Entry through carotid artery rather than femoral artery
 - Reduces procedure time
 - Reduces complexity of procedure and risk of causing further clots

Methods

Prototype Design

Novel Aspiration Sheath Design (Figure 3)
- Added “teeth” to the design of the aspiration sheath
 - Prevent clot backflow similar to a heart valve

Prototype
- 3D printed mold for sheath at 3x scale (Figure 4)
- Used Smooth-On silicone to create new aspiration sheath
- Combined smaller sheaths to create a full length catheter

Filter (Figure 5)
- Distal filter ensuring that no clot fragments travel downstream and cause further clotting
 - Roughly 100 um pore size catches small clot fragments while still allowing for blood to flow
 - Self-deploying nitinol design

Circuit (Figure 6)
- Peristaltic pump gives constant flow rate at levels matching the Reynold’s Number of arterial blood flow in the body

Testing Results

COMSOL Analysis
- Addition of “teeth” creates a significant pressure drop between the front of catheter and behind the teeth to successfully prevent backflow of aspiration material

Sensitivity Analysis
- Entrance through the carotid artery reduces necessary aspiration pressure when compared to the femoral artery

Regulatory Analysis

- Conceptually novel but functionally similar; FDA will deem it to be “substantially equivalent” (SE) through Premarket Notification Application
- Situationaly reimbursed by Medicaid and Medicare

Future Work

- Develop manufacturing technique for the teethed catheter as well as the nitinol filter
- Improve testing criteria and measure aspiration efficiency and completeness
- Develop incision closure and clot signaling technology

Acknowledgments

We would like to thank Dr. Conrad Zapanta, Elisha Raeker-Jordan, Dr. Mark Wholey, and the Carnegie Mellon Small Undergraduate Research Grant (SURG) program.

References

11. “Mechanical thrombectomy devices for treating acute ischemic stroke.” Let’s Talk About Stroke Patient Information Sheets