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Recent dramatic advances in AI, including Large Language Models such as GPT, Claude, and Gemini
raise the possibility that one very positive impact of AI might be to dramatically accelerate research
progress across a wide variety of scientific fields, from cell biology, to materials science, to weather and
climate modeling, to neuroscience. Here we briefly summarize this AI-Science opportunity, and what the
U.S. government can do to seize this opportunity.

1. The AI-Science Opportunity

The vast majority of today’s scientific research, across nearly every field, can be characterized as “lone
ranger” science. In other words, scientists and their research teams of a dozen or so researchers, come up
with an idea, conduct an experiment to test it, write up and publish the result, perhaps share their
experimental data on the internet, and then repeat this process. Other scientists can build on these results
by reading the published paper, but this process is error-prone and highly inefficient for several reasons:
(1) individual scientists have no hope of reading all of the published articles in their field, and therefore
operate in partial blindness to relevant other research, (2) the full details of the experiments described in
the journal publications necessarily omit many details, making it difficult or impossible for others to
replicate or build on their results, and (3) the analysis of a single experimental dataset is typically done in
isolation, failing to incorporate data (and hence valuable information) from other relevant experiments
conducted by other scientists.

Over the coming decade, AI can help scientists overcome all three of the above problems by shifting this
“lone ranger” paradigm for scientific research toward a paradigm of “community scientific discovery.”
In particular, AI can be used to create a new kind of computerized research assistant that helps human
scientists overcome these problems by

● Discovering regularities in complex data sets, including data sets built up from many experiments
conducted across many laboratories, in contrast to “lone ranger” analyses of single, much smaller
and less representative data sets. This can lead to much more comprehensive and accurate
analyses, by basing the analysis on orders of magnitude larger data sets that are beyond the ability
of humans to even examine.

● Using AI Large Language Models like GPT to read and digest every relevant publication in the
field, and thereby help the scientist form new hypotheses based not only on experimental data
from their and other labs, but also based on the hypotheses and arguments found in the published
research literature, resulting in hypotheses that are much more informed than is possible without
such natural language AI tools.
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● Creating “foundational models” that capture the growing knowledge of the field in a single place,
and that provide computer-executable models of this knowledge, by training these models on
many diverse types of experimental data collected across laboratories and scientists. These
executable “foundational models” can serve the same role that equations (e.g, f = ma) serve, in
that they make predictions about some quantities based on other observed quantities. However,
these foundational models, unlike typical equations, can capture the empirical relationships
among hundreds of thousands of different variables, rather than a handful of variables.

● Automating or semi-automating the design and the robotic execution of new experiments, thereby
accelerating the rate of new relevant experimentation, and improving the repeatability of
scientific experiments.

What are the potential scientific breakthroughs that might result from this paradigm shift in the practice of
science? Here are a few examples:

● Shrink by 10x the time and dollar cost of developing new vaccines for new disease outbreaks.
● Accelerate research in materials science, potentially leading to breakthrough products such as

room temperature superconductors, better batteries, and thermoelectric materials that convert heat
to electrical power without generating emissions.

● Combine sets of experimental data from cell biology at a volume and at a diversity that has never
before been attempted, resulting in a “foundational model” of how human cells function, leading
to the ability to simulate quickly the results of many potential experiments in silico before taking
the more costly step of running the experiment in vivo in the lab.

● Combine sets of experimental data from neuroscience - from data on single neuron behavior to
full-brain fMRI imaging - to build a “foundational model” of the human brain at multiple levels
of detail, integrating data at a scale and diversity never before attempted, and resulting in a model
that can predict neural activity the brain uses to encode different types of thoughts and emotions,
how these can be evoked by different stimuli, the impact of medications on neural activity, and
the effectiveness of different therapies for treating mental disorders.

● Improve our ability for forecasting weather, both to customize predictions to highly localized
regions (e.g., a single farm), and to extend our ability to forecast weather much further into the
future.

2. What Can the U.S. Government Do to Seize this Opportunity?

Transforming this opportunity into reality requires several components:
● Significant experimental data. One lesson from text-based foundational models is that the more

data they are trained on, the more capable they become. Empirical scientists are also well aware
of the value of more, and more diverse experimental data. To achieve multiple
order-of-magnitude advances in science, and to train the types of foundational models we desire,
will require a very significant advance in our ability to share and jointly analyze diverse data sets
contributed across the entire scientific community.

● Access to scientific publications and the ability to read them by computer. A key part of the
opportunity here is to shift from today’s state where a scientist is unlikely to be able to read even
1% of the relevant publications in their field, to a state where a computer assists them by reading



100% of these publications, summarizing them and their relevance to the current scientific
question, and providing a conversational interface to discuss their content and implications. This
will require not only access to online literature, but also AI research on how to construct such a
“literature assistant”

● Computational and networking resources. Text-based foundational models such as GPT and
Gemini are famous for the huge processing resources spent in their development, and significant
computational resources will be needed to develop foundational models in different scientific
domains as well. However, the computational needs in many AI-Science efforts can be
significantly smaller than the computation needed to train LLMs such as GPT, and therefore
achievable with investments similar to those ongoing at government research labs. For example,
AlphaFold, an AI model that has already revolutionized analysis of proteins for drug design, used
much less training computation than text-based foundation models such as GPT and Gemini – the
cost of computation to train AlphaFold is a few hundred thousands dollars, compared to a few
hundred million dollars to train today’s LLMs. Furthermore, once trained, running AlphaFold on
a new protein costs less than a dollar. Beyond GPU costs, we will also need significant computer
networking to support data sharing, but the current internet already provides an adequate starting
point for transmitting large experimental data sets. Thus, the hardware costs for supporting
AI-driven science advances may be quite modest in comparison with the potential benefits.

● New Machine Learning and AI methods. Current machine learning methods have been found to
be extremely valuable for discovering statistical regularities in data sets too large for human
inspection (e.g., AlphaFold was trained on a large set of protein sequences and their painstakingly
measured 3D structures). A key part of the new opportunity is to extend current machine learning
methods, which find statistical correlations in data, in two important directions: (1) to move from
discovering correlations to discovering causal relationships in data, and (2) to move from
learning from only large structured data sets, to learning from large structured data sets plus the
vast research literature; that is, to learn as human scientists do from both experimental data and
the published hypotheses and arguments of others expressed in natural language. The recent
advent of LLMs with advanced capabilities to digest, summarize, and reason about large text
collections can form the basis for new machine learning algorithms of this kind.

What should our government do? The key is to support each of the four components noted above, and to
rally multiple scientific communities to explore novel AI-based approaches to accelerate their research
progress. Accordingly, the government should consider several types of actions:

● To explore specific opportunities in specific scientific fields, fund multi-institutional research
teams in each of many scientific fields, to produce a vision and preliminary results showing how
AI might be used to dramatically accelerate progress in their field, and what is needed to scale the
approach. This effort should NOT be funded in grants to individual institutions, because the
biggest advances are likely to come from integrating data and studies across many scientists at
many institutions. Instead this is likely to be most effective if performed by teams of scientists
across many institutions, proposing opportunities and approaches that carry with them the
incentives to engage their full scientific community.



● To accelerate creation of new experimental datasets to train new foundation models, and to make
data available to the full community of scientists:

○ Create data sharing standards to make it easy for one scientist to (re)use the experimental
data created by a different scientist, and to form the basis for a national data resource in
each relevant science. Note there are earlier successes in setting and using such
standards, that can provide starting templates for standards efforts (e.g., the success in
sharing data in the human genome project).

○ Create and support data sharing websites for each relevant field. Just as GitHub has
become the go-to website for software developers to contribute, share and reuse software
code, create a GitHub for scientific data sets that serves as both data repository and
search engine for discovering data sets most relevant to a particular topic, hypothesis, or
planned experiment.

○ Conduct a study of how to construct incentives to maximize data sharing. Currently,
scientific fields vary widely in the degree to which individual scientists share data, and
the degree to which for-profit institutions make their data available for basic scientific
research. Building a large, sharable national data resource is such an integral component
of the AI-science opportunity, that constructing a compelling incentive structure for data
sharing will be key to success.

○ Where appropriate, fund development of automated laboratories (e.g., robotic labs for
experiments in chemistry, biology, etc., accessible to a wide collection of scientists over
the internet) to efficiently run experiments, and to produce data in a standard format. One
major side-benefit of creating such laboratories is that they will also drive the
development of standards for stating precisely the experimental procedure to be followed,
thereby improving reproducibility of experimental results. Just as we can benefit from a
GitHub for data sets, we can also benefit from a related GitHub for sharing, modifying
and reusing components of experimental protocols.

● To create the new generation of AI tools needed:
○ Fund relevant basic AI research specifically targeted to develop approaches applicable to

scientific research. This should include developing “foundation models” interpreted
broadly, as tools to accelerate research in different fields, and to accelerate the paradigm
shift from “lone ranger” science to a more powerful “community scientific discovery”
paradigm.

○ Support in particular research on reading the research literature to critique and suggest
refinements to stated input hypotheses, and generally to assist scientists in accessing the
results from the scientific literature in a way that directly relates to their current problem.

○ Support in particular research on extending ML from discovering correlations to
discovering causality, especially in settings where new experiments can be planned and
executed to test hypotheses about causality.

○ Support in particular research on extending ML algorithms from taking only big data as
input, to taking as input both big experimental data, and the full research literature in the
field, in order to produce output analyses that are jointly informed by the statistical
regularities in the experimental data, and by the stated hypotheses, explanations, and
arguments discussed in the research literature.


