1. Planar glass plate

Using Snell's law, show analytically that a light beam impinging on a transparent planar glass plate exits that plate parallel to the incident direction. What is the parallel displacement of the beam behind the glass plate as a function of glass thickness d, glass index n and the angles θ_{i}, θ_{t} ?

Discuss how the light path taken through the glass plate for an incident angle, $\theta_{i}>0$, (which is longer than it would have been in air) complies with Fermat's principle.

Relating to the following geometry,

[A,B]: distance between A and B
we have

$$
\begin{aligned}
& n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}-\theta_{t}=\theta_{i}^{\prime} \\
& n_{2} \sin \theta_{i}^{\prime}=n_{1} \sin \theta_{t}^{\prime}, \text { so } n_{1} \sin \theta_{i}=n_{1} \sin \theta_{t}^{\prime} \text { and } \theta_{t}=\theta_{i}^{\prime} \\
& \cos \theta_{t}=d /[\mathrm{A}, \mathrm{~B}] ; \sin \left(\theta_{i}-\theta_{t}\right)=a /[\mathrm{A}, \mathrm{~B}]=a / d \cdot \cos \theta_{t} \\
& a=d \cdot \sin \left(\theta_{i}-\theta_{t}\right) / \cos \theta_{t}
\end{aligned}
$$

The ray crosses the glass plate at a sharper angle than it would in air, increasing the path lengths in air more than reducing the path length within the glass. Because the geometric path $s_{g l}$ in glass is multiplied by $n_{2}>n_{1}$, this actually reduces the optical path length and the longer path complies with Fermat's principle.

2. Dispersion in glass plate

Hecht, problem 4.20:
A narrow white beam strikes a slab of glass $(d=10 \mathrm{~cm})$ at an angle $\theta_{i}=60^{\circ}$. The indices of refraction of the glass are $n_{\mathrm{red}}=1.505$ and $n_{\mathrm{vio}}=1.545$ for red and violet, respectively. Determine the diameter of the beam emerging out of the far glass interface.
4.20 (4.4) $n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}$ so $\sin \left(60.0^{\circ}\right)=n_{t} \sin G_{\epsilon}$. Diameter of emerging beam (D) is related to the difference in horizontal displacement of red and violet light (h) by $D \cos \left(60.0^{\circ}\right)=h$ (See Problem 4.19). Red:
$\sin \theta_{\text {red }}=\sin \left(60.0^{\circ}\right) / n_{\text {red }}=(\sqrt{3} / 2) /(1.505), \theta_{\text {red }}=35.1^{\circ}$;
$\tan \theta_{\text {red }}=h_{\text {red }} / 10.0 \mathrm{~cm}$ so $h_{\text {red }}=(10.0 \mathrm{~cm}) \tan \left(35.1^{\circ}\right)=7.04 \mathrm{~cm}$. Violet:
$\sin \theta_{\text {violet }}=\sin \left(60.0^{\circ}\right) / n_{\text {violet }}=(\sqrt{3} / 2) /(1.545) ; \theta_{\text {violet }}=34.1^{\circ}$;
$h_{\text {violet }}=(10.0 \mathrm{~cm}) \tan \left(34.1^{\circ}\right)=6.77 \mathrm{~cm} . D=h / \cos \left(60.0^{\circ}\right)=$
$\left(h_{\text {red }}-h_{\text {violet }}\right) / \cos \left(60.0^{\circ}\right)=(7.04-6.77) /(0.5)=0.54 \mathrm{~cm}$.

3. Critical angle

Hecht, problem 4.58:
A glass block $\left(n_{\mathrm{gl}}=1.55\right)$ is covered with a water layer $\left(n_{\mathrm{gl}}=1.33\right)$. What is the critical angle at the glass/water interface?

$$
\sin \theta_{c}=n_{t} / n_{i} ; \theta_{c}=59^{\circ} .
$$

4. Transmission and reflection amplitudes

From reviewing the electrostatic boundary condition at an interface that separates media of n_{i} and n_{t} ($>n_{i}$), show that the transmission and reflection amplitudes for a light beam with polarization of \vec{E} out of the plane of incidence are related as $t_{\perp}-1=r_{\perp}$.

The tangential field across the interface is preserved to comply with $\oint_{C} \vec{E} \mathrm{~d} \vec{s}=0$.

$$
\rightarrow E_{0, l^{\perp}}+E_{0, r^{\perp}}=E_{0, t^{\perp}}, \text { or }\left(E_{0, t^{\perp}} / E_{0, i^{\perp}}\right)-\left(E_{0, r^{\prime}} / E_{0, i}^{\perp}\right)=t_{\perp}-r_{\perp}=1 .
$$

5. Transmission and reflection amplitudes II

Show analytically by starting from the Fresnel equations for t_{\perp} and r_{\perp} that $t_{\perp}-1=r_{\perp}$ is true for all θ.
From

$$
t_{\perp}=\left(\frac{E_{0 t}}{E_{0 i}}\right)_{\perp}=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}} \text { and } r_{\perp}=\left(\frac{E_{0 r}}{E_{0 i}}\right)_{\perp}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}
$$

it follows that

$$
t_{\perp}-1=\frac{2 n_{i} \cos \theta_{i}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}-\frac{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=r_{\perp}
$$

6. Polarization angle

Show that the polarization angles for internal and external reflection at a given interface complement as $\theta_{\mathrm{p}}+\theta_{\mathrm{p}}{ }^{\prime}=90^{\circ}$.

$$
\theta_{i}+\theta_{t}=90^{\circ} \text { for } \theta_{i}=\theta_{p} \rightarrow \sin \theta_{t}=\cos \theta_{p},
$$

as θ_{t} and θ_{p} are complementing angles in a rectangular triangle. Therefore,

$$
n_{i} \sin \theta_{p}=n_{t} \sin \theta_{t}=n_{t} \cos \theta_{p} \text { and } \tan \theta_{p}=n_{t} / n_{i} .
$$

Let this ratio be a at an externally reflecting interface. At an internally reflecting interface, $n_{t} / n_{i}=1 / a$, and correspondingly,

$$
\tan \theta_{p}=a \text { while } \tan \theta_{p}{ }^{\prime}=1 / a
$$

Therefore,

$$
\tan \theta_{p}=1 / \tan \theta_{p}^{\prime} \text { and } \frac{\sin \theta_{p}}{\cos \theta_{p}}=\frac{\cos \theta_{p}^{\prime}}{\sin \theta_{p}^{\prime}}
$$

or
$\sin \theta_{p} \cdot \sin \theta_{p}{ }^{\prime}-\cos \theta_{p} \cdot \cos \theta_{p}{ }^{\prime}=\cos \left(\theta_{p}+\theta_{p}{ }^{\prime}\right)=0 \rightarrow \theta_{p}+\theta_{p}{ }^{\prime}=90^{\circ}$.

