due: Wednesday, Sept-29, 2010 - before class

1. Planar glass plate

Using Snell's law, show analytically that a light beam impinging on a transparent planar glass plate exits that plate parallel to the incident direction. What is the parallel displacement of the beam behind the glass plate as a function of glass thickness *d*, glass index *n* and the angles θ_i , θ_t ?

Discuss how the light path taken through the glass plate for an incident angle, $\theta_i > 0$, (which is longer than it would have been in air) complies with Fermat's principle.

Relating to the following geometry,

[A,B]: distance between A and B

we have

 $n_1 \sin \theta_i = n_2 \sin \theta_t \quad --- \quad \theta_t = \theta_i'$

 $n_2 \sin \theta_i' = n_1 \sin \theta_t'$, so $n_1 \sin \theta_i = n_1 \sin \theta_t'$ and $\theta_t = \theta_i'$

 $\cos \theta_t = d/[A,B]; \sin(\theta_t - \theta_t) = a/[A,B] = a/d \cdot \cos \theta_t$

 $a = d \cdot \sin(\theta_i - \theta_t) / \cos \theta_t$

The ray crosses the glass plate at a sharper angle than it would in air, increasing the path lengths in air more than reducing the path length within the glass. Because the geometric path s_{gl} in glass is multiplied by $n_2 > n_1$, this actually *reduces* the optical path length and the longer path complies with Fermat's principle.

HW solution, week 5

due: Wednesday, Sept-29, 2010 - before class

2. Dispersion in glass plate

Hecht, problem 4.20:

A narrow white beam strikes a slab of glass (d = 10 cm) at an angle $\theta_i = 60^\circ$. The indices of refraction of the glass are $n_{red} = 1.505$ and $n_{vio} = 1.545$ for red and violet, respectively. Determine the diameter of the beam emerging out of the far glass interface.

4.20 (4.4)
$$n_i \sin \theta_i = n_t \sin \theta_t$$
 so $\sin(60.0^\circ) = n_t \sin G_\epsilon$. Diameter of emerging
beam (D) is related to the difference in horizontal displacement of red and
violet light (h) by $D \cos(60.0^\circ) = h$ (See Problem 4.19). Red:
 $\sin \theta_{\rm red} = \sin(60.0^\circ)/n_{\rm red} = (\sqrt{3}/2)/(1.505), \theta_{\rm red} = 35.1^\circ;$
 $\tan \theta_{\rm red} = h_{\rm red}/10.0$ cm so $h_{\rm red} = (10.0$ cm) $\tan(35.1^\circ) = 7.04$ cm. Violet:
 $\sin \theta_{\rm violet} = \sin(60.0^\circ)/n_{\rm violet} = (\sqrt{3}/2)/(1.545); \theta_{\rm violet} = 34.1^\circ;$
 $h_{\rm violet} = (10.0$ cm) $\tan(34.1^\circ) = 6.77$ cm. $D = h/\cos(60.0^\circ) = (h_{\rm red} - h_{\rm violet})/\cos(60.0^\circ) = (7.04 - 6.77)/(0.5) = 0.54$ cm.

3. Critical angle

Hecht, problem 4.58:

A glass block ($n_{gl} = 1.55$) is covered with a water layer ($n_{gl} = 1.33$). What is the critical angle at the glass/water interface?

$$\sin \theta_c = n_t/n_i; \ \theta_c = 59^\circ.$$

4. Transmission and reflection amplitudes

From reviewing the electrostatic boundary condition at an interface that separates media of n_i and n_t (> n_i), show that the transmission and reflection amplitudes for a light beam with polarization of \vec{E} out of the plane of incidence are related as $t_{\perp} - 1 = r_{\perp}$.

The tangential field across the interface is preserved to comply with $\oint \vec{E} d\vec{s} = 0$.

$$\rightarrow E_{0,t^{\perp}} + E_{0,r^{\perp}} = E_{0,t^{\perp}}, \text{ or } (E_{0,t^{\perp}}/E_{0,t^{\perp}}) - (E_{0,r^{\perp}}/E_{0,t^{\perp}}) = t_{\perp} - r_{\perp} = 1.$$

Thursday, Sept-23, 2010

(3 pts)

(3 pts)

HW solution, week 5

5. Transmission and reflection amplitudes II

Show analytically by starting from the Fresnel equations for t_{\perp} and r_{\perp} that $t_{\perp} - 1 = r_{\perp}$ is true for all θ . From

$$t_{\perp} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t} \text{ and } r_{\perp} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

it follows that

$$t_{\perp} - 1 = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t} - \frac{n_i \cos \theta_i + n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} = r_{\perp}$$

6. Polarization angle

Show that the polarization angles for internal and external reflection at a given interface complement as $\theta_p + \theta_p' = 90^\circ$.

 $\theta_i + \theta_t = 90^\circ$ for $\theta_i = \theta_p \rightarrow \sin \theta_t = \cos \theta_p$,

as θ_t and θ_p are complementing angles in a rectangular triangle. Therefore,

 $n_i \sin \theta_p = n_t \sin \theta_t = n_t \cos \theta_p$ and $\tan \theta_p = n_t/n_i$.

Let this ratio be *a* at an externally reflecting interface. At an internally reflecting interface, $n_t/n_i = 1/a$, and correspondingly,

$$\tan \theta_p = a$$
 while $\tan \theta_p' = 1/a$

Therefore,

$$\tan \theta_p = 1/\tan \theta_p$$
' and $\frac{\sin \theta_p}{\cos \theta_p} = \frac{\cos \theta'_p}{\sin \theta'_p}$

or

$$\sin \theta_p \cdot \sin \theta_p' - \cos \theta_p \cdot \cos \theta_p' = \cos(\theta_p + \theta_p') = 0 \longrightarrow \theta_p + \theta_p' = 90^\circ.$$

(4 pts)

(3 pts)