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The Rayleigh-Ritz theorem states that the ground state energy of a quantum system is a lower
bound for the expectation value of the Hamiltonian in any state. A proof for pure and mixed trial
states is presented. The Gibbs-Bogoliubov inequality states that the free energy of a system is
bounded above by a (quasi) free energy expression using any trial state. Its quantum version is
proved by using (and also proving) the quantum version of the Gibbs inequality. The Rayleigh-Ritz
theorem can be viewed as the zero temperature limit of the Gibbs-Bogoliubov inequality.

I. RAYLEIGH-RITZ VARIATIONAL

PRINCIPLE

The Rayleigh-Ritz-theorem states the almost obvious
fact that the expectation value of the Hamiltonian in any

arbitrary state cannot be smaller than the ground state

energy. This is “illustrated” graphically in Fig. 1. In the
following we formulate the theorem first for pure states
and then slightly generalize to mixed states, since the
latter are important in statistical physics [1]

A. Rayleigh Ritz for pure states

Theorem 1 Let Ĥ be a Hamiltonian acting on a Hilbert
space H which has a discrete spectrum and ground state
energy E0. Furthermore, let |ψ〉 ∈ H be any pure quan-
tum state. Then

〈Ĥ〉 ≡ 〈ψ|Ĥ|ψ〉 ≥ E0. (1)

Proof: Let {|n〉} be the set of state vectors correspond-

ing to the energy eigenstates of the Hamiltonian Ĥ. Since
these form an orthonormal [2] basis of H , we can write
|ψ〉 as the expansion

∑

n ψn|n〉, and it follows

〈Ĥ〉 −E0 = 〈ψ|(Ĥ − E0)|ψ〉

=
∑

m,n

ψ∗
mψn〈m|(Ĥ − E0)|n〉

=
∑

m,n

ψ∗
mψn 〈m|n〉

︸ ︷︷ ︸

δmn

(En − E0)

=
∑

n

|ψn|2
︸ ︷︷ ︸

≥0

(En − E0)
︸ ︷︷ ︸

≥0

≥ 0. ¤

B. Rayleigh Ritz for mixed states

Theorem 2 Let Ĥ be a Hamiltonian acting on a Hilbert
space H which has a discrete spectrum and ground state
energy E0. Furthermore, let Ŵ be any quantum state on
H . Then

〈Ĥ〉 ≡ Tr (Ŵ Ĥ) ≥ E0. (2)
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FIG. 1: “Graphical illustration” of the Rayleigh-Ritz theo-
rem: The expectation value of the Hamiltonian in any arbi-
trary state cannot be smaller than the ground state energy.

Proof: We can write Ŵ as a convex combination of
eigenstates Ŵn = |n〉〈n| of Ĥ, i. e., Ŵ =

∑

n pnŴn, with
∑

n pn = 1 [3]. We now have

〈Ĥ〉 − E0 = Tr
(
Ŵ (Ĥ − E0)

)

=
∑

m,n

〈m|pn|n〉〈n|(Ĥ − E0)|m〉

=
∑

m,n

| 〈m|n〉
︸ ︷︷ ︸

δnm

|2pn(Em − E0)

=
∑

n

pn(En − E0) ≥ 0. ¤

II. GIBBS-BOGOLIUBOV INEQUALITY

The Rayleigh-Ritz theorem refers to the ground state
of an isolated quantum system. What if instead we
have a quantum system coupled to a thermal heat bath,
such that the system is not in the ground state |0〉 but

instead in the canonical state Ŵcan := e−βĤ/Z with

Z = Tr e−βĤ? In that case we have a generalization of
the Rayleigh-Ritz theorem, which is termed the Gibbs-
Bogoliubov inequality:

Theorem 3 Let Ĥ be a Hamiltonian acting on a Hilbert

space H . Furthermore, let F = −kBT log Tr e−βĤ be
the canonical free energy and Ŵt some arbitrary (“trial”)
quantum state on H with (von Neumann) entropy St =

−kBTr (Ŵt log Ŵt). Denote the expectation value of the

Hamiltonian in the state Ŵt by 〈Ĥ〉t = Tr (ŴtĤ). Then

F ≤ 〈Ĥ〉t − TSt. (3)
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For the proof of this theorem we will make use of the
Gibbs-inequality, which we intend to present and proof
first:

Theorem 4 (Gibbs-inequality) Let Ŵ and Ŵ ′ be any
two arbitrary quantum states acting on a Hilbert space
H . We then have the inequality

Tr (Ŵ log Ŵ ) ≥ Tr (Ŵ log Ŵ ′) (4)

Proof: (Gibbs inequality) Write the states Ŵ and Ŵ ′

using an expansion in an arbitrary basis {|n〉} of the
Hilbert space:

Ŵ =
∑

n

pn|n〉〈n| and Ŵ ′ =
∑

n

p′
n|n〉〈n|.

We then have

Ŵ log Ŵ ′ − Ŵ log Ŵ =

=
∑

m,n

[

pn|n〉〈n| log p′
m|m〉〈m| − pn|n〉〈n| log pm|m〉〈m|

]

=
∑

n

[
pn log p′

n − pn log pn

]
|n〉〈n|.

From this follows by performing the trace and using the
elementary inequality log x ≤ x− 1

Tr (Ŵ log Ŵ ′) − Tr(Ŵ log Ŵ ) =

=
∑

n

[
pn log p′

n − pn log pn

]

=
∑

n

pn log
p′

n

pn

≤
∑

n

[
p′

n − pn

]
= 0 ¤

We are now in the position to prove the Gibbs-
Bogoliubov inequality.
Proof: (Gibbs-Bogoliubov inequality) In the Gibbs

inequality choose Ŵ ′ as the canonical state Ŵcan =

e−βĤ/Z and choose Ŵ as the trial state Ŵt. It then
follows that

TSt = −kBT Tr (Wt logWt)

≤ −kBT Tr (Wt logWcan)

= −kBT Tr
(

Ŵt

(
− βH − logZ

))

= Tr (ŴtĤ) − F. ¤

The Gibbs-Bogoliubov inequality is extremely useful in
statistical physics, since it permits an estimation of the
real free energy of any system by using a “trial” state Ŵt

that may be much easier to handle than the actual canon-
ical state. For instance, in systems comprising many in-
teracting particles the canonical state is extremely com-
plicated because all particles are correlated and the trace
is therefore essentially impossible to perform. However,
if one uses as a trial state a product state, all these cor-
relations disappear. This is often the most beautiful way
to derive a mean-field theory.

We finally remark that both the Gibbs- as well as
the Gibbs-Bogoliubov-inequality remain valid in classi-
cal statistical physics. All one has to do is to replace
the quantum state Ŵ by a classical state w(p, q) (i. e.,
a probability density on phase space) and the trace over
the Hilbert space H by the integral over phase space Γ:

∫

Γ

dΓ w(p, q) logw(p, q) ≥

∫

Γ

dΓ w(p, q) logw′(p, q)

and

F ≤ 〈H〉t − TSt,

where we have dΓ = dp1 . . . dpN dq1 . . . dqn/(2π~)N ,
and of course 〈H〉t =

∫

Γ
dΓ wt(p, q)H(p, q) and St =

−kB

∫

Γ
dΓ wt(p, q) logwt(p, q). The proof is quite analo-

gous (actually, it is easier, since no expansion in eigen-
states is necessary).

III. GIBBS-BOGOLIUBOV IN THE LIMIT T → 0

We will now show that in the limit T → 0 the Gibbs-
Bogoliubov inequality reduces to the Rayleigh-Ritz the-
orem. For this to see one only has to realize that at
zero temperature the system is in its ground state and
the free energy is equal to the energy (since the entropy
term −TS vanishes). Hence, the left hand side of the
Gibbs-Bogoliubov inequality (3) is equal to the ground
state energy, while the right hand side becomes the ex-
pectation value of the energy in some arbitrary quantum
state Ŵt. This, however, is just the Rayleigh-Ritz theo-
rem in the form of Eqn. (2).

[1] A general (mixed) quantum state is a self-adjoint, positive

operator on a Hilbert space H with trace 1: Ŵ † = Ŵ > 0
and Tr Ŵ = 1. If this state is pure, then there exists a state

vector |ψ〉 ∈ H such that Ŵ = |ψ〉〈ψ|.
[2] If degeneracy occurs, the eigenstates may not initially be

orthogonal, but they can always be orthogonalized.
[3] The pn specify the composition of the mixture, i. e., with

what fraction state Ŵn contributes to the mixture. Note

that a mixture is an incoherent superposition of quan-
tum states, since contrary to the state vector |n〉 the state

Ŵn = |n〉〈n| does not contain any phase information. In
other words, phase differences between two state vectors
|m〉 and |n〉 are invisible when looking at the states Ŵm

and Ŵn.


