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An overall charge-neutral substrate can nevertheless have an electric field, which then stems from
a modulation of a charge density with zero monopole moment. A plane with a 1d- and 2d-periodic
charge density (the latter with square and hexagonal symmetry) is discussed in these notes.

I. 1d PERIODICITY

Consider the xy-plane equipped with a 1d-periodic
charge density of the form

σk,ϕ(x) = σ0 cos(kx + ϕ) , (1)

where σ0 is the amplitude and k = 2π
λ the wave vector

of the periodic charge modulation (of wavelength λ) in
x-direction, and ϕ is an offset phase (see Fig.1a for an
illustration). The electric field Ek,ϕ at position (0, 0, z)>

above the plane is obtained by integrating up all 1

r2 -
contributions over the entire plane, which readily leads
to the expression
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 . (2)

Averaged over the offset-phase ϕ (equivalently: over all
x-positions) the charge density is zero; but nevertheless,
the electric field does not vanish identically. Still, just
like the charge density, it also vanishes on average:

〈Ek,ϕ(z)〉ϕ =
1

2π

∫

2π

0

dϕ Ek,ϕ(z) = 0 . (3)

Therefore, on average there is no force on a (point-)
charge a distance z above the plane.

However, what does not vanish is the square of the
electric field; it does not even depend on ϕ:

E2

k(z) =

(

σ0

2ε0εr

)2

e−2kz . (4)

Assume that there’s a (point-sized) object of (scalar)
polarizability α at position (0, 0, z)> above the plane. It
will develop a polarization

P k,ϕ(z) = αEk,ϕ(z) (5)

and will thus have an electrostatic energy

Ek,ϕ(z) = −
∫

P k,ϕ(z) · dEk,ϕ(z) = −1

2
αE2

k,ϕ(z) .

(6)

The force in z direction on that object is thus given by

F k,ϕ(z) = −∂Ek,ϕ(z)

∂z
ez = −αk

(

σ0

2ε0εr

)2

e−2kz
ez .

(7)
Note that this attractive force is independent of the phase
shift ϕ! It thus depends only on the distance z from the
plane and is laterally constant, even though the surface
itself is laterally charge-modulated.

II. 2d PERIODICITY

Two dimensional periodic arrays can have different
symmetries. We’ll be looking at the two cases of square
and hexagonal symmetry.

A. Square symmetry

The corresponding charge density is (see Fig. 1b)

σk,ϕx,ϕy
(x, y) =

σ0

2

[

cos(kx+ϕx)+cos(ky+ϕy)
]

. (8)

The electric field depends linearly on the charge density,
so the field belonging to (8) follows readily from Eqn. (2):

Ek,ϕx,ϕy
(z) =

σ0

4ε0εr

e−kz





sinϕx

sin ϕy

cos ϕx + cos ϕy



 . (9)

Hence, its square is given by

E2

k,ϕx,ϕy
(z) =

1

2

(

σ0

2ε0εr

)2

e−2kz
[

1 + cos ϕx cosϕy

]

.

(10)
Therefore, the force on a point-object of polarizability α
a distance z above the origin of the plane is

F k,ϕx,ϕy
(z) = −1

2
αk

(

σ0

2ε0εr

)2

e−2kz
[

1+cos ϕx cosϕy

]

ez .

(11)
Upon phase-averaging, the cosine product vanishes:

〈F k,ϕx,ϕy
(z)〉 = −1

2
αk

(

σ0

2ε0εr

)2

e−2kz
ez , (12)

leaving a force half as big as in the 1d-periodic case.
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FIG. 1: Illustration of the planar charge densities discussed in these notes. From left to right we have: a) the one-dimensional
density, (1), b) the two-dimensional charge density with square symmetry, (8), and c) the two-dimensional charge density with
hexagonal symmetry, (14). In all cases we have k = 2π and all phases are zero.

B. Hexagonal symmetry

The charge density now corresponds to a superposi-
tion of three one-dimensional periodic charge densities,
belonging to the wave vectors ki = kn̂i, with the unit
vectors n̂i pointing into the direction of the wave front.
A hexagonal array results from giving them mutual an-
gles of 120◦, i. e.

n1 =

(

1

0

)

, n2 =
1

2

(−1√
3

)

, n3 =
1

2

( −1

−
√

3

)

,

(13)
resulting in the charge density (see Fig. 1c)

σk,ϕ1,ϕ2,ϕ3
(x, y) =

σ0

3

{

cos
[

kx + ϕ1

]

(14)

+ cos
[

k(−x +
√

3 y)/2 + ϕ2

]

+cos
[

k(−x −
√

3 y)/2 + ϕ3

]

}

.

As we see from Eqn. (9), the electric field has some ex-
ponential prefactor, a cosine term from each wave in the
z component and a sine-term in the xy component into
the direction of the wave. Hence, without doing the in-
tegral, we can immediately write down what the field of
the hexagonal charge distribution (14) has to be:

Ek,ϕ1,ϕ2,ϕ3
(z) =

σ0

6ε0εr

e−kz





sin ϕ1 − 1

2
(sin ϕ2 + sin ϕ3)

1

2

√
3(sin ϕ2 − sinϕ3)

cosϕ1 + cos ϕ2 + cos ϕ3



 .(15)

Hence, it’s square is given by

E2

k,ϕx,ϕy
(z) =

1

3

(

σ0

2ε0εr

)2

e−2kz ×
{

1 +
1

3

[

cos(ϕ1 + ϕ2) + cosϕ1 cosϕ2

]

cos(ϕ2 + ϕ3) + cosϕ2 cosϕ3

]

cos(ϕ3 + ϕ1) + cosϕ3 cosϕ1

]

}

. (16)

This again depends in some awkward way on the three
phases. However, upon averaging over them, all the co-
sine terms vanish. Hence, in analogy to Eqn. (12), we
obtain an average force, given by

〈F k,ϕ1,ϕ2,ϕ3
(z)〉 = −1

3
αk

(

σ0

2ε0εr

)2

e−2kz
ez , (17)

which is one third as strong as in the 1d-periodic case.

III. MORAL

If one comes across an exponentially decaying force on
a polarizable point source which displays a characteristic
decay length ` = 1/2k, this would correspond within the

present scenario to a 1d or 2d surface charge modula-
tion with a wavelength λ = 4π`. In order to check the
symmetry, one would have to measure the phases.


