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It is well known that different thermodynamic ensembles do not coincide for finite systems. Like-
wise, it is well established – but hardly recognized – that these differences may distinguish certain
ensembles as more appropriate than others even if one is ultimately interested in the thermody-
namic limit of infinite system size. To illustrate this point we present as an example the famous
second order phase transition in the two-dimensional Ising model and compare the canonical and
microcanonical specific heat for a lattice of 32 × 32 spins.

I. GENERAL CONSIDERATIONS

A. Laplace-Transform

Assume we know the microcanonical partition func-
tion ΩN (E) (conventionally referred to as the “density
of states”) of some finite system consisting of N parti-
cles. The canonical partition function is then given by

ZN (T ) =
∑

E

ΩN (E) e−βE , (1)

which is essentially the Laplace-transform of ΩN (E) with
respect to β ≡ 1/kBT . Since this is well known to be a
“smoothing” operation, any features which are present in
ΩN (E) will be flattened out in ZN (T ), even though they
are still present (Laplace-Transforms can be inverted!).
However, just because they are in principle present in
ZN (T ) doesn’t necessarily mean we can readily see them.

B. Legendre-Transform

Let us define the microcanonical entropy and the
canonical free energy as

SN (E) := kB log[ΩN (E)] (2)

and FN (T ) := −kBT log[ZN (T )] (3)

Eqn. (1) can then be rewritten as

e−βNfN (T ) =
∑

E

e−β[E−TSN (E)]

=
∑

e

e−βN [e−TsN (e)], (4)

where we defined the specific energy e = E/N , entropy
sN = SN/N and free energy fN = FN/N . If the thermo-
dynamic limit exists, fN and sN should approach limit-
ing functions f∞ and s∞, respectively. Moreover, in this
case the sum can be treated by a Laplace-evaluation [6],
leading to

f∞(T ) = mine{e − Ts∞(e)}, (5)

showing that the connection of the partition functions
via a Laplace transform becomes – in the thermodynamic
limit! – a connection of the corresponding potentials via
a Legendre transform.

C. Specific Heat

Let us define the microcanonical temperature by

1

Tmic
N

=
∂SN (E)

∂E
. (6)

This equation can (in principle) be solved for E and yields
the microcanonical equation of state Emic

N (Tmic
N ). Differ-

entiating this with respect to T mic
N gives the microcanon-

ical specific heat

cmic
N (Tmic

N ) =
∂emic

N

∂Tmic
N

= −

(

∂sN

∂e

)2(
∂2sN

∂e2

)−1

. (7)

Alternatively, we may also start from the free energy, but
then we get the canonical specific heat

ccan
N (T can) = −T

∂2fN

∂T 2
= NkB

〈e2〉N − 〈e〉2N
(kBT can)2

, (8)

where the angular brackets denote canonical averages
over the finite system.

Below we will illustrate the difference between these
two functions with the help of the two-dimensional Ising
model.

II. THE TWO-DIMENSIONAL ISING MODEL

A. Hamiltonian

Imagine a square lattice of N = L×L “spins” si, each
of which can take the value ±1 and has an interaction
energy with any of its nearest neighbors sj of −Jsisj .
The Hamiltonian (in zero external field) is thus given by

H = −J
∑

〈i,j〉

sisj , (9)

where the sum is over all pairs of nearest neighbors, de-
noted by 〈i, j〉. We will assume J > 0.

B. Free energy and entropy

The two-dimensional Ising model in zero external field
can be solved exactly [1], in the sense that the free energy
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FIG. 1: Entropy of the two-dimensional Ising model for an
8 × 8 lattice (dots) as well as for the infinite lattice (solid
line).
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FIG. 2: Specific heat of the two-dimensional Ising model. The
solid line is the result for the infinite system [4], the long-
dashed and dotted lines correspond to the microcanonical and
canonical result for a finite 32 × 32 lattice, respectively.

can be written down analytically—even for finite systems
of Lx × Ly spins [2]. The entropy of finite systems can
be obtained from the free energy of finite systems via an

inverse Laplace transform, as described in Ref. [3]. We
thus know the functions fN and sN . Fig. 1 shows the
entropy sN (e) for an 8 × 8 Ising lattice as well as for the
infinite lattice. The symmetry of the Ising model implies
that sN (e) = sN (−e), but positive values of the energy
correspond to negative temperatures and are hence inac-
cessible when coupled to a heat bath. The non-analytic
point in s∞(e) where the phase-transition occurs is indi-
cated.

C. Specific heat

Since we know the thermodynamic potentials we can
compute the heat capacities from Eqn. (7) and (8). Fig. 2
shows the result for a finite lattice of 32×32 spins. Several
things may be noted:

1. Canonical and microcanonical specific heat do not
coincide with each other or with the result of the
thermodynamic limit.

2. The deviations are pronounced at the critical point
but become small away from it.

3. The features visible in cmic are “sharper” developed
than the features in ccan.

Comment 1 just demonstrates the fact that different en-
sembles do not coincide for finite systems. Comment 2
says that “how finite” a system appears does not only de-
pend on its size alone. It also depends on the size of fluc-
tuations. At the critical point fluctuations on all length
scales occur, hence any finite system will appear small in
the sense that it cannot accommodate sufficiently long-
ranged fluctuations. Away from the critical point fluc-
tuations are weaker and correlations quickly decay with
distance, hence systems that are sufficiently large com-
pared to the correlation length are essentially infinite for
all practical means and purposes. Comment 3 finally
demonstrates that typical features of phase transitions –
here: a peak in the specific heat – may be better “devel-
oped” when looked at microcanonically.

The fact that the microcanonical ensemble often proves
advantageous when analyzing phase transitions is little
known and even less appreciated. The reader will find
some exemplary material in Refs. [5].
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[6] Given the integral IN :=
R

dx eNf(x); if f is continu-
ous, then limN→∞log(IN )/N = maxxf(x). Assuming that
the first correction stems from the immediate neighbor-
hood of the point x̄ where f is maximal, a quadratic
expansion of the exponent yields log(IN )/N ∼ f(x̄) −

log(−Nf ′′(x̄)/2π)/2N .


