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In 1974 R. L. Henderson [Physics Letters A49, 197-198 (1974)] proved that for classical or quantum fluids
with only pairwise interactions the pair potential u(r) which gives rise to a given radial distribution function
g(r) is unique up to a constant. In this brief note Henderson’s short proof is presented, including some notes on
the crucial Gibbs inequality.

A (classical or quantum) system described by the Hamilto-
nian

H =
∑
i

p2i
2m

+
1

2

∑
i 6=j
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will give rise to a unique pair correlation function g(r) (in the
canonical ensemble). Henderson’s theorem asserts that the
reverse is also true: Two systems, which have a Hamiltonian
of the form (1) and which feature the same g(r) have pair
potentials which differ at most by a trivial constant.

This uniqueness theorem follows as a beautiful application
of the Gibbs-Bogoliubov inequality. For two systems with
Hamiltonian H1 and H2 the following inequality holds for
their free energies:

F2 ≤ F1 + 〈H2 −H1〉1 . (2)

where 〈· · · 〉1 denotes the (canonical) average appropriate for
H1. The key point is that equality holds if and only if H2 −
H1 is independent of all degrees of freedom, which implies
that the pair potentials can differ only by a constant. See the
Appendix for a proof of this inequality.

Consider now two systems which are identical in all re-
spects except that the pair potential in one is u1 and the pair
potential in the other is u2. The corresponding two parti-
cle distributions are g1 and g2. The uniqueness theorem as-
serts that if g1 ≡ g2, then u1 − u2 is a constant. Now, if
u1−u2 differ by more than just a constant, the same holds for
H2 − H1, and thus equality in (2) cannot hold, i.e., we have
F2 < F1 + 〈H2 −H1〉1. Or, more explicitly,

f2 < f1 +
1

2
n

∫
d3r
[
u2(r)− u1(r)

]
g1(r) , (3)

where the fi are the free energies per particle and n is the
average particle density. The above argument can be repeated
with system 1 and 2 interchanged, which leads to

f1 < f2 +
1

2
n

∫
d3r
[
u1(r)− u2(r)

]
g2(r) . (4)

If we now use the fact that g1 ≡ g2 and add the inequalities
(3) and (4), we obtain the contradiction 0 < 0. This proves

that the initial assumption that u1 and u2 differ by more than
a constant must be wrong.

It must be noted that the above line of reasoning guarantees
uniqueness, but not existence of a pair potential.

Appendix: The Gibbs inequality

Given two probability densities w1 and w2, the following
inequality holds:

Tr
[
w1 logw2

]
≤ Tr

[
w1 logw1

]
, (5)

where the trace “Tr” means the integral over the probability
space. The proof follows very easily from the elementary in-
equality log(x) ≤ x− 1:
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= Trw2 − Trw1 = 0 . (6)

The same inequality holds if the wi are not probability distri-
butions but state operators, i.e., self adjoint positive operators
on some Hilbert space with trace 1. The proof then follows by
using the spectral representation of the operators ŵi. Both in
the classical and the quantum case the proof shows that equal-
ity only holds if w1 = w2 (Lebesgue almost everywhere in
the classical case).

A particularly neat application follows if we choose as w1

andw2 the canonical states corresponding to HamiltoniansH1

and H2, i.e., wi := exp{−βHi}/Tr exp{−βHi}:

Tr
[
w1

(
− βH2 − log Tr e−βH2

)]
≤ Tr

[
W1 logW1

]
−〈H2〉1 − kBT log Tr e−βH2 ≤ −TS1 ,

and thus

F2 ≤ 〈H2〉1 − TS1 . (7)

Since we of course also have F1 = 〈H1〉1−TS1, elimination
of TS1 between these two expressions immediately gives the
inequality (2).


