The Henderson Theorem

Markus Deserno
MPI fiir Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
(Dated: August 23, 2018)

In 1974 R. L. Henderson [Physics Letters A49, 197-198 (1974)] proved that for classical or quantum fluids
with only pairwise interactions the pair potential u(r) which gives rise to a given radial distribution function
g(r) is unique up to a constant. In this brief note Henderson’s short proof is presented, including some notes on

the crucial Gibbs inequality.

A (classical or quantum) system described by the Hamilto-
nian
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will give rise to a unique pair correlation function g(r) (in the
canonical ensemble). Henderson’s theorem asserts that the
reverse is also true: Two systems, which have a Hamiltonian
of the form (1) and which feature the same g(r) have pair
potentials which differ at most by a trivial constant.

This uniqueness theorem follows as a beautiful application
of the Gibbs-Bogoliubov inequality. For two systems with
Hamiltonian H; and H, the following inequality holds for
their free energies:

Fy, < Fy+(Hy— Hy): . 2

where (- - - )1 denotes the (canonical) average appropriate for
H,. The key point is that equality holds if and only if Hy —
H, is independent of all degrees of freedom, which implies
that the pair potentials can differ only by a constant. See the
Appendix for a proof of this inequality.

Consider now two systems which are identical in all re-
spects except that the pair potential in one is u; and the pair
potential in the other is uz. The corresponding two parti-
cle distributions are g; and g;. The uniqueness theorem as-
serts that if g1 = g¢s, then u; — us is a constant. Now, if
u1 — ueo differ by more than just a constant, the same holds for
Hy — Hi, and thus equality in (2) cannot hold, i.e., we have
Fy < Fy + (Hy — Hy)1. Or, more explicitly,

fo < fi+ %n/dST[ug(r) —uy (r)]gl(r) , 3)

where the f; are the free energies per particle and n is the
average particle density. The above argument can be repeated
with system 1 and 2 interchanged, which leads to

1< fot %n/d%[uﬂr) — uz(r)]gg(r) . )

If we now use the fact that g3 = g- and add the inequalities
(3) and (4), we obtain the contradiction 0 < 0. This proves

that the initial assumption that u; and uo differ by more than
a constant must be wrong.

It must be noted that the above line of reasoning guarantees
uniqueness, but not existence of a pair potential.

Appendix: The Gibbs inequality

Given two probability densities w; and we, the following
inequality holds:

Tr[wl Ing2:| < Tr{wl logwl} , (®)]

where the trace “Tr” means the integral over the probability
space. The proof follows very easily from the elementary in-
equality log(z) < z — 1:

Tr [wl log ’(U2:| —Tr [wl log wl] = Tr [wl log %}
w1

< Tr{wl(lwu—ffl)} = Trws—Trw, = 0.  (6)

The same inequality holds if the w; are not probability distri-
butions but state operators, i.e., self adjoint positive operators
on some Hilbert space with trace 1. The proof then follows by
using the spectral representation of the operators w;. Both in
the classical and the quantum case the proof shows that equal-
ity only holds if w; = wy (Lebesgue almost everywhere in
the classical case).

A particularly neat application follows if we choose as w;
and ws, the canonical states corresponding to Hamiltonians H;
and Hy, i.e., w; := exp{—0H,;}/Trexp{—FH,;}:

Tr[wl(—ﬁHg —logTre_ﬁHz)} < Tr[Wl 1ogW1}
—(Hy)y — kgT logTre PH2 < —T8; |
and thus
Fy, < (Hy)1 —TS:. (7

Since we of course also have F; = (H;); — T'S, elimination
of T'S; between these two expressions immediately gives the
inequality (2).



