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Blocking is a method for efficiently arriving at the error of the mean for time-correlated data. These brief
notes derive an analytical expression for the estimated error as a function of blocking order, useful for instance
to test implementations of blocking programs.

Assume we want to experimentally determine some quan-
tity with good accuracy. Then we’ll probably take a se-
ries of measurements and take the average. The outcome
of each single measurement is a random variable, so if we
measure N times, we have N random variables, call them
{X1, X2, . . . , XN}. Let us further assume that these variables
are identically distributed and have finite first and second mo-
ment:

〈Xi〉 = µ , 〈X2
i 〉 = µ2 + σ2 , (1)

where 〈· · · 〉 denotes an ensemble average over the distribution
underlying the random measurement process.

We would like to know µ accurately. Its standard estimator
m is given by the average of the random variables:

m :=
1

N

N∑
i=1

Xi . (2)

Evidently, 〈m〉 = µ, so m is an unbiased estimator. But we
also would like to know how accurately we were able to esti-
mate µ. For this we need to know something about the vari-
ance of m, which is given by

Var(m) := 〈m2〉 − 〈m〉2 (3)

=
1

N2

N∑
i,j=1

[
〈XiXj〉 − 〈Xi〉〈Xj〉

]
. (4)

If the single measurements are uncorrelated, then

〈XiXj〉
uncorr
= 〈X2

i 〉 δij + 〈Xi〉2(1− δij)
= (σ2 + µ2)δij + µ2(1− δij)
= σ2δij + µ2 . (5)

and we obtain

Var(m)
uncorr
=

σ2

N
, (6)

showing that our estimatorm improves if we make more mea-
surements (provided σ is finite!).

However, generally our individual measurements are not
uncorrelated. Let us thus assume that we have a nonvanish-
ing covariance given by

Ci,j := Cov(Xi, Xj) := 〈XiXj〉 − 〈Xi〉〈Xj〉 (7)

and a corresponding correlation coefficient

γi,j :=
Ci,j
σ2

. (8)

In most cases it is reasonable to assume that Ci,j and γi,j
only depend on the (absolute) difference |i− j| of the indices,
namely, if the Xi correspond to successive measurements in a
system that leaves some memory. In this case the autocorre-
lation functions Ct or γt, where t = |i− j| is that difference,
contain all relevant information.
What is now the variance of m? A simple calculation gives

Var(m) =
1

N2

N∑
i=1

Ci,i +
2

N2

N∑
i>j=1

Ci,j

=
σ2

N
+

2

N2

N−1∑
t=1

(N − t)Ct

=
σ2

N

{
1 + 2

N−1∑
t=1

(
1− t

N

)
γt

}
. (9)

In the second step we used the fact that in anN×N covariance
matrix Ci,j there are 2(N − t) entries which have a separation
t = |i− j|, and in case of time translational symmetry they all
have the same value Ct.

If the correlation function γt decays “sufficiently” rapidly,
the expression

∑N
t=1 t γt will quickly converge to some finite

value. The last term in Eqn. (9) is thus of order 1/N , and we
can therefore write

Var(m) =
σ2

N

{
1 + 2T + O

( 1

N

)}
, (10a)

where

T :=

N−1∑
t=1

γt (10b)

is a measure of the correlation strength. We may view this as
a “total correlation time” that is well defined irrespective of
the functional form of γt.

A very common case is that the correlation function decays
exponentially:

γt = e−t/τ ≡ ct with c = e−1/τ , (11)

where τ is the “conventional” correlation time. In this case,
we can evaluate Eqn. (9) analytically, because the sums are
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FIG. 1: Blocking error relative to its naive (correlation-free) estimate
as a function of blocking order k for a sequence of exponentially
correlated random numbers with a correlation time T . Six examples
of correlation times are shown, as indicated in the figure. Notice that
the nonzero correlation times are of the form M2/2, leading to the
(approximate) asymptote M .

merely variations of finite geometric series:

N−1∑
t=1

ct =

N−1∑
t=0

ct − 1 =
1− cN

1− c
− 1 =

c− cN

1− c
,

(12a)
N−1∑
t=1

t ct =

N−1∑
t=1

(
c
∂

∂c

)
ct =

(
c
∂

∂c

)N−1∑
t=1

ct

=
c

(1− c)2
[
−NcN−1 +NcN + 1− cN

]
.

(12b)

Plugging this into Eqn. (9), we get

Var(m) =
σ2

N

{
1 + 2

[
c− cN

1− c
− 1

N

c

(1− c)2
×(

−NcN−1 +NcN + 1− cN
)]}

=
σ2

N

{
1 + c

1− c
− 2c

N

1− cN

(1− c)2

}
. (13)

For sufficiently largeN , the second part in the curly parenthe-
ses vanishes, and the variance approaches

lim
N→∞

Var(m)

σ2/N
=

1 + c

1− c
= coth

1

2τ
=

{
1 : τ � 1

2τ : τ � 1
.

(14)
Hence, in the presence of a nonvanishing correlation time,
the error of the mean is larger than the correlation free result,
asymptotically by a factor of

√
2τ .

It hence seems that in order to calculate the true error, we
need to estimate the correlation function, or at least the cor-
relation time τ . Unfortunately, though, getting an unbiased

estimator of γt is tricky. This is why an alternative method,
called data blocking, has become a popular workaround for
this problem—see H. Flyvbjerg and H. G. Petersen, Error es-
timates on averages of correlated data J. Chem. Phys. 91,
461 (1989). The general idea is that we can take our orig-
inal data set and pre-average the data points into blocks of
length b, which leaves N/b such blocks. It is easy to check
that if the data are uncorrelated, then the mean and variance
of the blocked data is the same as that of the unblocked data.
Pre-averaging does clearly not change the mean, but it also
does not change the error. However, if the data are corre-
lated, than blocking increases the error of the mean, because
it reduces the number of (blocked) data points from which
to calculate the error of the mean, while not correspondingly
reducing their individual variances (due to the correlations).
However, once the blocks become sufficiently large, they ef-
fectively become uncorrelated, and any further blocking will
no longer increase the error. This, therefore, gives insight into
both the true error and the underlying correlation time.

Let us make an explicit example: If we have a sequence
(Xi) of N exponentially correlated random variables (with a
finite variance), we could decide to subdivide them into blocks
of length b and pre-average those. An estimator for the mean
of any such block is hence mb = (X1 + X2 + · · · + Xb)/b.
From what we have just calculated, we see that its variance is
given by Eqn. (13), where N is replaced by b. Averaging the
N/b blocks, and pretending they are independent, then leads
to the following estimator for the error of the mean, relying on
blocks of length b:

δm(b)

δmnaive
=

√
1 + c

1− c
− 2c/b

(1− c)2
(1− cb) . (15)

More specifically, blocking is typically done by taking the
data and combining successive pairs of data points, resulting
in a new sequence with half as many data points, and then it-
erating this process. If k enumerates the number of such pair-
combination-steps, then at order k the block length is b = 2k,
and the blocking error at order k is given by

δm(k)

δmnaive
=

√
1 + c

1− c
− 21−kc

(1− c)2
(1− c2k) . (16)

Fig. 1 illustrates what this expression looks like for a selec-
tion of correlation times. Notice it always starts at 1 and then
monotonically increases to the true error from Eqn. (14), at
which it saturates.

Observe that if we have more complicated time corre-
lations, we could simply repeat the calculation that led to
Eqn. (13). For instance, if the correlation function is a sum of
exponentials with decay times τi and weights pi, then the right
hand side of Eqn. (13) simply gets replaced by a linear com-
bination of such terms—one for each τi, having a weight pi.
Since essentially any correlation function could be Laplace-
expanded in this way, this amounts to a complete and general
solution of the problem. However, it might nevertheless be
more convenient in specific cases to simply do the two sums
over γt and t γt explicitly for a given decay law.


