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Thermal fluctuations soften the response of fluid membranes to bending deformations. These
notes provide a short “semi-heuristic” derivation of this result.

I. INTRODUCTION

The classical description of fluid membranes on the
level of continuum elasticity goes back to the seminal pa-
pers by Canham [1] and Helfrich [2]. Given some shape
S of a membrane, the curvature-elastic energy is ob-
tained as the following a functional surface integral:

E[S ] =

∫

dA
1

2
κK2[S ] , (1)

where K = K[S ] is the total curvature of the mem-
brane and κ is the (bare) bending modulus. A second
quadratic term proportional to the Gaussian curvature
has been neglected, since by virtue of the Gauss-Bonnet
theorem [3] it only depends on the boundary and topol-
ogy of the membrane and is thus usually irrelevant. A
term proportional to the mean curvature has also been
omitted, since we will only consider up-down symmetric
membranes. Notice finally that Eqn. (1) corresponds to
membranes with vanishing (bare) tension, as there is no
term proportional to the area.

Equation (1) determines the energy of a membrane,
not the free energy. It is thus a ground state descrip-
tion. However, suppose we bend a membrane such as to
give it some average shape S that extends over a char-
acteristic length scale λ. At nonzero temperature this
membrane will display thermal fluctuations on all length
scales smaller than λ, while length scales bigger than λ
are supposed to be under our control and therefore not
determined by the heat bath. The work required to ob-
tain this average shape S is not necessarily given by its
energy E[S ] as calculated via Eqn. (1), but is modified
by these fluctuations. Indeed, for such problems there
is no guarantee that the coarse grained free energy, ob-
tained by integrating out some small-scale fluctuations,
can be calculated by a functional which displays some
resemblance to Eqn. (1). In fact, it generally doesn’t. In
this case, however, the influence of fluctuations, among
other things, is to create new terms that formally look
like the already existing curvature contribution. It then
appears as if the bending rigidity κ has a different value
which depends on the temperature as well as on the
length scale λ up to which we would like to coarsen our
description. The standard lingo for this situation is that
the bending rigidity is thermally renormalized in a length
scale dependent way. The first predictions of this effect
have been due to Helfrich [4], Peliti and Leibler [5], and
Förster [6] – all producing different prefactors. Kleinert
[7] gave a careful analysis of the origin of the discrepancy.

II. SETTING UP THE CALCULATION

A. Flat surfaces

A rigorous treatment of bending renormalization is
very difficult and not intended here. We will restrict to
the classical situation of essentially flat surfaces and per-
form a perturbation analysis up to quadratic order in the
fluctuations, following essentially the presentation given
by Kleinert [7]. Moreover, the measure to be used for
tracing out the fluctuations will be determined heuristi-
cally. We will nevertheless get the correct result, even
though somewhat fortuitously. Below we will provide a
brief discussion of these difficulties.

B. Monge parametrization and quartic expansion

For essentially flat surfaces the most convenient de-
scription of the membrane is in terms of a so-called
Monge parametrization (or “gauge”), i. e., by specify-
ing the height h of the surface as a function of the Eu-
clidean coordinates x and y of the flat base plane. This
parametrization can of course not describe overhangs,
but then, essentially flat surfaces do not have overhangs.

The total curvature K in Monge gauge is

K = ∇ ·
(

∇h
√

1 + (∇h)2

)

, (2)

where ∇ = (∂x, ∂y)> is the two-dimensional nabla op-
erator in the base plane. Notice that this expression is
nonlinear in the shape h(x, y) due to the occurrence of the
square root in the denominator. One hence usually ex-
pands this term up to lowest nontrivial order and obtains
K = ∇2h+O(3). But as it turns out, to see the influence
of thermal fluctuations on the bending rigidity we need
to go to higher than linear order. The simple reason is
this: if K is linear in h, the Hamiltonian is quadratic in
h and thus harmonic; but then all modes fluctuate inde-
pendently. Let us, therefore, expand Eqn. (2) up to cubic

order in the derivatives:

K = ∂i

[

hi(1 − 1
2hjhj + O(4))

]

= hii(1 − 1
2hjhj + O(4)) + hi(−hijhj + O(4))

= hii − 1
2hiihjhj − hihijhj + O(5) , (3)

where hi = ∂ih denotes a partial derivative. We thus get
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FIG. 1: The shape of a fluctuating membrane is decomposed
into a large scale average shape h̄ and small fluctuations on
shorter wavelengths, ε.

the square of the total curvature up to quartic order as:

K2 =
[

hii − 1
2hiihjhj − hihijhj + O(5)

]2

= (hii)
2 − (hii)

2hjhj − 2hiihjhjkhk + O(6) . (4)

Finally, we must consider that we don’t really want to
perform the surface integral in Eqn. (1) over curved mem-
brane but rather over the base plane (x, y). The re-
lation between these two measures involves the square
root of the metric determinant: dA =

√
g dx dy =

√

1 + (∇h)2 dx dy. This nonlinearity needs to be ex-
panded as well. If we do so up to quadratic order, we
get the integrand within Monge parametrization up to
quartic order:

√
gK2 =

[

1 + 1
2hlhl + O(4)

]

×
[

(hii)
2 − (hii)

2hjhj − 2hiihjhjkhk + O(6)
]

= (hii)
2 − 1

2 (hii)
2hjhj − 2hiihjhjkhk + O(6) . (5)

C. Fluctuations around mean shape

Equation (5) is the approximate integrand we need to
work with. It is quartic in h, since we argued that going
only up to quadratic order would not get us anywhere.
Unfortunately, quartic Hamiltonians are nowhere near as
easy to handle as quadratic ones! Hence, we will now
introduce a second approximation, which is inspired by
the original problem we wanted to solve: We will write
our shape h as the sum of an average shape h̄ plus some

small fluctuations ε: h = h̄+ε, see Fig. 1. The idea is now
to insert this into the expression (5) for the integrand and
expand simultaneously up to quadratic order in h̄ and

ε. The reason for this is that (i) we shall be perfectly
content with obtaining a renormalized bending rigidity
on the level of a linearized Monge Hamiltonian; and (ii)
higher than quadratic order in ε will be impossible to
integrate out and, hopefully, small anyways. Inserting
this decomposition into Eqn. (5) and expanding gives us

√
gK2 = (h̄ii + εii)

2 − 1
2 (h̄ii + εii)

2(h̄j + εj)(h̄j + εj) − 2(h̄ii + εii)(h̄j + εj)(h̄jk + εjk)(h̄k + εk) + O(6)

= (h̄ii)
2 + 2h̄iiεjj + (εii)

2

− 1
2

[

(h̄ii)
2εkεk + 4h̄iih̄kεjjεk − h̄kh̄k(εjj)

2
]

−2
[

2h̄iih̄jεjkεk + 2h̄j h̄jkεiiεk + h̄iih̄jkεjεk − 2h̄j h̄kεiiεjk

]

+ O(h̄3, ε3) . (6)

D. Integrating out the fluctuations

We now need to integrate out the small fluctuations
ε, i. e., perform a partial partition function over small
length scale fluctuations. However, what is the correct
“measure” to be used in the partition function when sum-
ming up this continuous field degrees of freedom?

We will not attempt a rigorous treatment here (see
[7, 8]. Rather, we use a heuristic approach based on our
“experience” from the quadratic level. If in Eqn. (6) we

set h̄ ≡ 0, we obtain the Hamiltonian

E =

∫

d2r
1

2
κ(εii)

2 . (7)

Let us expand ε in a Fourier series,

ε =
∑

q

ε̂q eiq·r , q =
2π

L

(

nx

ny

)

, ni ∈ Z , (8)

where L is the total side length of the membrane in x
and y direction, and where the complex Fourier compo-
nents satisfy ε̂q = ε̂∗

−q
. Inserting this expansion into the
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quadratic Hamiltonian (7), we immediately get

E =
∑

q

1
2 (κL2q4)|ε̂q|2 . (9)

This is not only quadratic, the different Fourier com-
ponents are even nicely decoupled. The Hamiltonian is
a sum of harmonic oscillators, provided we consider the
ε̂q as our fundamental degrees of freedom, which hence
amounts to making an assumption about our measure of
integration for the partition function. We now do not
even need to perform this integration, since the equipar-
tition theorem ( 1

2kBT energy on average per quadratic
degree of freedom) gives us all we need:

〈ε̂q ε̂q′〉 =
kBT

L2κq4
δq,−q′ . (10)

We finally transform this back into real space by mul-
tiplying on both sides with eiq·reiq′

·r
′

, summing over q

and q
′, and using Eqn. (8). The result is

〈ε(r)ε(r′)〉 =
kBT

L2κ

∑

q

q−4 eiq·(r−r
′) . (11)

If we want to know the average of particular derivatives,
and all evaluated at a single r = r

′, this gives

〈εi···(r)εk···(r)〉 = 〈εi···(r)εk···(r
′)〉
∣

∣

r=r′

=
kBT

L2κ

∑

q

q−4(iqi) · · · (−iqk) · · · , (12)

where the index appearing on q now refer to the compo-

nent of the vector q. Notice that an term containing a to-
tal odd number of derivative indices vanishes identically,
because these will give rise to at least one q-component
which occurs linearly and therefore sums to zero.

III. BENDING RENORMALIZATION

The final calculation is now easy. We will assume that
Eqn. (12) also holds when h̄ does not identically vanish
(this is wrong, see Sec. V A). We will therefore perform
the canonical average over the small wavelength fluctua-
tion by inserting this equation into the Hamiltonian be-
longing to the integrand (6):

〈E〉 =
1

2
κ

∫

d2r

{

(h̄ii)
2 + 〈(εii)

2〉

−1

2

[

(h̄ii)
2〈εkεk〉 − h̄kh̄k〈(εii)

2〉
]

(13)

−2
[

h̄iih̄jk〈εjεk〉 − 2h̄jh̄k〈εiiεjk〉
]

}

.

The remaining task is to evaluate the angular brackets,
i. e., to evaluate the corresponding q-sum in Eqn. (12).

We will make life simple, once more, by transforming
from a sum to an integral:

〈εiεi〉 =
kBT

κL2

∑

q

1

q2
' kBT

κL2

(

L

2π

)2 ∫

d2q
1

q2

=
kBT

2πκ

∫ qmax

qmin

dq
1

q
=

kBT

2πκ
ln

qmax

qmin
, (14)

〈εiεj〉 =
kBT

κL2

∑

q

qiqj

q4
=

1

2
δij〈εkεk〉 , (15)

〈(εii)
2〉 =

kBT

κL2

∑

q

1 ' kBT

κL2

(

L

2π

)2 ∫

d2q 1

=
kBT

2πκ

∫ qmax

qmin

dq q =
kBT

4πκ
(q2

max − q2
min) , (16)

〈εiiεjk〉 =
kBT

κL2

∑

q

qjqk

q2
=

1

2
δjk〈(εii)

2〉 . (17)

Inserting these expressions into Eqn. (13) and neglecting
constants, we obtain the result

〈E〉 =
1

2

∫

d2r

{

[

κ − 3kBT

4π
ln

qmax

qmin

]

(∇2h̄)2

+
[

− 3kBT

8π
(q2

max − q2
min)

]

(∇h̄)2
}

.(18)

Notice that we have finally obtained a Hamiltonian which
looks like the linearized Monge version of (1) – with two
important differences: First, the bending constant is dif-
ferent from κ. And second, there appears an additional

term (second line in Eqn. (18) that has the form of a
surface tension.

What is the meaning of the wave vectors qmax and
qmin? The bigger one corresponds to a small distance
cut-off, a = 2π/qmax, which we expect to be on the order
of the thickness of the membrane. The small one cor-
responds to the large length scale up to which we have
indeed coarse grained our Hamiltonian, λ = 2π/qmin. We
then see that thermal fluctuations soften the membrane
and create a negative surface energy:

κ(T, λ, a) = κ − 3

4π
kBT ln

λ

a
, (19a)

σ(T, a) ' −3π

2

kBT

a2
. (19b)

Equation (19a) is confirmed by numerical simulations [9]

IV. A SIMPLE APPLICATION: PERSISTENCE

LENGTH

Since the bending modulus κ gets smaller on larger
length scales due to thermal fluctuations, there will be
one length scale, λp, at which it vanishes. This scale
is called the persistence length, since membranes beyond
this scale will be crumpled (there is no bending energy
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left to keep them straight), while on shorter length scales
membranes maintain their average orientation. Using
Eqn. (19a), we find

λp = a e4πκ/3kBT . (20)

How big is this? For very soft surfaces, having a bare
bending resistance of κ = kBT , we get λp ' 1 nm ×
e4π/3 ' 70 nm. Hence, these objects are crumpled on op-
tical length scales. With only slightly stiffer membranes,
κ = 2 kBT , we already get λ ' 4 µm. The exponential de-
pendence on κ is not to be underestimated! In fact, using
a value κ = 20 kBT , which is a typical number for phos-
pholipid bilayers, we get λ(κ = 20 kBT ) ' 5 nm× e83.4 '
1.2×1028m. This is whopping – ten times the size of the
universe (150 billion lightyears). It also tells us that we
should not misinterpret a membrane’s persistence length.
In particular, it does not mean that membranes on much
shorter length scales are basically completely flat. Mem-
branes do have very pronounced thermal fluctuations –
even stiff ones, even on the micron scale.

V. SKELETONS IN THE CLOSET

The above calculation is evidently not exact, and was
not intended to be. But it suffers from two conceptually
different kinds of error: On the obvious side, we did not
work on the full nonlinear level; rather, we employed a
Monge parametrization and expanded up to quartic or-
der. Furthermore, the corresponding Hamiltonian was
only expanded up to quadratic order in perturbations ε
around some large scale mean shape. These are inten-
tional simplifications. However, there are two issues we
dealt with in an “approximate” way that are more dan-
gerous, and at first sight not easy to identify as potential
pitfalls.

A. Improper normal gauge

The decomposition h = h̄+ε is always permissible, but
we incorrectly assumed that the calculation of the total
curvature via Eqn. (2) remains valid with ε replacing
h. Eqn. (2) applies for height functions which describe
perpendicular deviations from a flat base plane, but in
our case ε describes deviations which are measured from a
curved manifold (namely, h̄), and which moreover are not
even perpendicular to it (they are perpendicular to the
base plane, not to h̄!). As has been explained in Ref. [7],
this has no influence on the renormalization of κ, but it
yields a new term which can be read as a renormalization
of the bending rigidity corresponding to the Gaussian

curvature. However, it does modify the result for the
generated surface energy.

B. Improper measure

Performing partition functions over fields is a tricky
business, and one has to be quite careful concerning the
measure of integration one uses [8]. Here we basically
assumed that the mode-counting procedure can be ex-
tended to the (improper...) modes living on the curved
manifold. Treating this issue more properly, we again
find that Eqn. (19a) remains unaffected, but further
changes occur in the surface energy, which combined with
the issue raised in Sec. V A yield σ(T, a) ' −π kBT

a2 , see
[7]. In fact, if the original Hamiltonian had some initial
nonzero tension, the renormalization of it would involve
also a logarithmic term similar to the one in Eqn. (19a),
but positive [8].

Using a completely different measure, Helfrich has re-
cently even predicted that thermal fluctuations should
stiffen a membrane [10].
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