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A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers
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The tensile force along a cylindrical lipid bilayer tube is proportional to the membrane’s bending modulus and
inversely proportional to the tube radius. We show that thisrelation, which is experimentally exploited to mea-
sure bending rigidities, can be applied with even greater ease in computer simulations. Using a coarse-grained
bilayer model we efficiently obtain bending rigidities thatcompare very well with complementary measure-
ments based on an analysis of thermal undulation modes. We furthermore illustrate that no deviations from
simple quadratic continuum theory occur up to a radius of curvature comparable to the bilayer thickness.

INTRODUCTION

Bilayer-forming lipids are the basic structural component
of biological cell membranes. In these amphiphilic molecules
a hydrophilic group is connected to one or two hydrophobic
hydrocarbon chains. When dissolved into water they spon-
taneously assemble into a variety of structures. In Nature
lipid bilayers form the outer plasma membrane of cells as
well as the walls of the different cellular compartments and
organelles, such as the endoplasmic reticulum, the Golgi ap-
paratus, and the nucleus. [1].

Lipid bilayer membranes display interesting physics on
many different length- and time-scales. On atomistic length
scales this includes questions such as: How do lipid tail length
and its degree of saturation influence the bilayer state, how
does a specific hydrophilic head group facilitate solubiliza-
tion, or how can water permeate the hydrophobic region?
On somewhat larger scales the embedding of trans-membrane
proteins or bilayer fusion are being studied. And on scales ex-
ceeding several times the bilayer thickness, one may ask how
vesicles are formed and what shape they have, which forces go
along with a particular bilayer geometry, or how the demix-
ing of a multicomponent membrane can trigger morphology
changes. These different sets of questions require different
techniques for their treatment. In the present article we fo-
cus on the physics happening on the large scale end,i. e., on
the continuum level that may be employed on length scales
beyond a few tens of nanometers, when a membrane may be
viewed as a twodimensional fluid elastic sheet.

As is typical in any coarse-graining scheme, many details
pertaining the a physical system on a given scale get con-
densed into a few effective parameters on a larger level. In-
deed, on the continuum level what remains of all lipid de-
tail are three material parameters – two moduli describing the
softest deformation, which is bending, and one length scale
describing a spontaneous curvature. The respective Hamilto-
nian, proposed in the early 70’s [2, 3, 4] can be written as a
surface integral over the entire membrane:

E =

∫

dA
{1

2
κ(K − C0)

2 + κ̄KG

}

. (1)

Here, the extrinsic curvatureK = 1/R1 + 1/R2 is the sum
of the two local principal curvatures, and the Gaussian curva-
tureKG = 1/R1R2 is their product. The inverse lengthC0

indicates any spontaneous curvature which the bilayer might
have, so the first term quadratically penalizes deviations of
the local extrinsic curvature fromC0. The two moduliκ and
κ̄ belonging to the two quadratic curvature expressions are
referred to asbending modulusandsaddle splay modulus, re-
spectively. If the membrane has two identical leaflets,C0 = 0
by symmetry, a situation which does seldomly hold for biolog-
ical membranes but very frequently for artificial lipid bilayers
and vesicles. Furthermore, since the surface integral overthe
Ricci scalarR can be expressed as a boundary integral plus
a topological term, the second term in Eqn. (1) most often
only contributes a constant and can then be ignored. Under
these conditions there remains only a single physical parame-
ter characterizing the membrane, the bending modulusκ, and
it is thus the most important one to determine.

Bending rigidities have been measured experimentally by
various techniques [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], all ul-
timately based on one of two general approaches: One may ei-
ther utilize the dependence of thermal undulations on a mem-
brane’s rigidity, or measure the force needed to actively bend
it. The traditional realization of the first approach is to mon-
itor the fluctuations of vesicles as a function of wavelength
by light microscopy, a method termed “flicker spectroscopy”
[5, 6, 7]. A related experimental method is based on micro-
pipette manipulation techniques. There, the flicker spectrum
is successively suppressed by increasing the pipette pressure,
and the bending rigidity can then be obtained from the low-
tension regime of the tension-area curve [8, 9, 10, 11]. The
second approach is typically implemented by measuring the
force needed to pull nanoscale bilayer tubes (tethers) from
vesicles [12, 13, 14, 15]. Since the formation of a tube in-
volves the creation of a high curvature, the work to pull a
tether is basically done against bending energy, hence the
modulusκ can be determined from it.

Determination of the bending rigidity is of course equally
important in computer simulation studies of lipid bilayers, and
the spectrum of available methods is the same. However, by
far the most common approach in simulations is flicker spec-
troscopy, both for atomistic simulations [16, 17, 18] as well
as for various coarse grained methods [18, 19, 20, 21, 22,
23, 24]. Only recently den Otter and Briels have proposed
a method by which constraining forces are applied to actively
deform the membrane [25], and Farago and Pincus have pro-
posed a scheme based on the change in free energy of deform-
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ing the bilayer [26]. Unfortunately, both active methods in-
volve significant technical and conceptual sophistication. This
may explain why the idea is not commonly employed, despite
the fact that particularly for stiff membranes fluctuation based
schemes encounter difficulties (in experiments as well as in
simulations), because the thermally excited amplitudes de-
crease with bending modulus and become difficult to resolve
at some point.

In the present article we propose an alternative simulation
approach for studying the curvature elasticity of membranes
by an active deformation. Our setup essentially involves mea-
suring the force necessary to hold a membrane tether, and it is
thus conceptually identical to its experimental “counterpart”.
As we will see, complications of earlier active schemes are
avoided, and the simulations are very easy to perform and an-
alyze. We apply this method to a recently proposed coarse-
grained solvent-free simulation model [22, 23] and find results
that agree very well with data from the analysis of the thermal
fluctuations. Moreover, the method permits us to check, up to
which curvatures the quadratic model from Eqn. (1) remains
valid. Our results indicate that curvature radii close to the bi-
layer thickness can be imposed without noticeable deviations
from Eqn. (1). While the precise location for the breakdown
of quadratic theory may well be model dependent, its valid-
ity up to length scales comparable to bilayer thickness is in
agreement with experimental findings [15].

CURVATURE ELASTICITY

In this section we first briefly review the fluctuation ap-
proach towards bilayer elasticity and discuss some of its dif-
ficulties. We then introduce the alternative scheme based on
holding a membrane tether.

Flicker spectroscopy

The energy expression in Eqn. (1) requires knowledge of
the local membrane curvature. For essentially flat membranes,
which can be described by specifying their heighth(x, y)
above some reference plane (“Monge-parametrization”), this
curvature is given by

K = ∇ ·

(

∇h
√

1 + (∇h)2

)

|∇h|≪1

≈ ∆h , (2)

where∇ is the two-dimensional nabla operator on the base
plane. The approximation in the second step is the lowest
order term in a small gradient expansion. On this level the
Hamiltonian (1) becomes quadratic and can be diagonalized
by Fourier transformation. Assuming anL × L membrane
patch with periodic boundary conditions, and writingh(r) =
∑

q
hq ei q·r, one finds

E =
1

2
L2
∑

q

|hq|
2(κq4 + Σq2) , (3)
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FIG. 1: Flicker spectrum of a fluctuating membrane, plot-

ted in such a way that in the limitq → 0 the expression ap-

proachesκ, see Eqn. (4) The dashed line is a fit of the form

(kBT/κ + c1 (qσ)c2 )−1 which helps to find the asymptotic

value; the inset shows the unscaled spectrum. The fit leads to

κ = 12.5 kBT , with an error estimated to be±1 kBT . The

system is the same lipid bilayer model [22, 23] that will be

used for the tethers, see below.

where we for completeness also added a surface tension term,
Σ times excess area. From the equipartition theorem we then
see that the mean squared amplitude of each mode,i. e., the
fluctuation spectrumor thestatic structure factor, is given by

〈|hq|
2〉 =

kBT

L2
(

κq4 + Σq2)
. (4)

A fit of the fluctuation spectrum measured in the simulation
to this expression yields bending modulusκ and tensionΣ.
Since for wave vectors smaller thanqmin ≃

√

Σ/κ the fluc-
tuations are tension dominated, it is best to simulate at zero
tension in order to avoid unnecessary damping of the most
relevant modes. In this case the expression1/(q4〈|hq|

2〉L2)
approachesκ in the limit q → 0, as is illustrated in Fig. 1 for a
model simulation [22, 23] described in more detail below. For
wave vectors approachingqmax ≃ 2π/w, wherew is the bi-
layer thickness, discrete lipid fluctuations such as protrusions
require a more careful analysis [24].

There are clear limitations for the calculation ofκ using
thermal fluctuations. The first and obvious one is that large
values ofκ lead to very small amplitudes. Considering (i)
thatκ/kBT is typically of order 10 and (ii) how strongly the
amplitudes decay with increasing wave vector, one realizes
that it requires substantial statistics to be able to resolve the
spectrum. Particularly unpleasant in this context is that the
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most important low-q modes equilibrate slowest, with a time
scale diverging likeq−4.

Also, it must be appreciated that the curvaturesprobedthis
way are very weak. Since (in the tensionless state)〈K2〉 =
q4〈|h2

q
|〉 = kBT/L2κ, the average (root-mean-square) ra-

dius of curvature is given byR = 〈K2〉−1/2 = L
√

κ/kBT ,
i. e. several times the box length. These curvatures aremuch
weaker than the ones which one usually imposes on systems
if one studies vesicles, budding, tubes, or fusion. This leaves
the question open howrelevantthe measured elastic constants
really are.

It is also these limitations which den Otter and Briels [25]
had in mind when they proposed ways for obtaining larger
curvatures, either by more advanced sampling techniques,
such as umbrella sampling, or by explicitly creating undu-
lations with larger amplitudes by suitable constraints. They
found that for larger amplitudes the membrane seemed to
stiffen, which might suggest that the simple curvature elastic
model underlying Eqn. (1) breaks down. However, an alter-
native explanation would be provided by the neglect of higher
order terms in the small gradient approximation for the cur-
vature in Eqn. (2). Indeed, for a modeh(x, y) = a sin(qx)
it is easy to verify that the ratio between linear and nonlinear
prediction of the curvature energy is given by

Elin

Enonlin

qa≫1
=

3π

8
qa +

3π

32
(qa)−1 + O

(

(qa)−3
)

, (5)

which diverges linearly with growing amplitude. While this
is qualitative what den Otter and Briels observe, the magni-
tude of their stiffening is bigger than what Eqn. (5) would
predict. The observed deviation for large amplitudes appears
more likely to be a result of a residual tension stemming from
their simulations being done at constant box volume.

Stretching tethers

Here we present a method for the calculation ofκ based on
a different approach. The basic idea is to impose a deforma-
tion of the membrane, specifically by creating a curved cylin-
drical vesicle, and then measure the force required to hold it
in this deformed state. In the experiment such tethers are typ-
ically created by first attaching adhesive beads to a suitably
fixated giant vesicle (or a cell) and then pulling it away with
a laser tweezer that permits the measurement of the involved
force. In the simulation such a tether can simply be stabi-
lized by “spanning” a cylindrical vesicle through the simula-
tion box,across the periodic boundary conditions. One thus
simulates a system which is perfectly cylindrical (i. e., there
are no end effects), and the axial pulling force is readily ob-
tained from the component of the stress tensor along the box-
spanning direction.

With a vesicle radiusR and a box lengthLz in the direction
of the spanned vesicle, see Fig. 2, the curvature energy is

E =
κ

2

(

1

R

)2

2πRLz =
πκLz

R
. (6)

The axial force under the constraint of fixed areaA = 2πRLz

is obtained fromFz = (∂E/∂Lz)A = 2πκ/R, hence the
bending modulus is given by

κ =
FzR

2π
. (7)

Since bothFz andR are easily measurable,κ can be readily
determined in the simulation. In fact, it is this point whereim-
plementing the tether method in a simulation shows its biggest
advantage over its experimental counterpart: In a real exper-
imentR can not be measured directly, since its typical mag-
nitude is sub-optical. It is thus usually re-expressed in terms
of the membrane tensionΣ, leading toR =

√

κ/2Σ and thus
κ = (Fz/2π)2/2Σ, but then the tension needs to be monitored
independently by other means. Recently, however, Cuvelier
et al. [15] devised a clever setup involvingtwo tethers which
avoids such complications.

Even though the above analysis is standard in the tether lit-
erature [12, 13, 14, 15], it is still only approximate. Notice that
this time we have neglected thermal fluctuations altogether.
The formula (7) relies entirely on a “ground state” argument.
This is justifiable in two ways. First, for not too small radii
of curvature the fluctuation contribution to the force, as es-
timated for instance by a simple plane-wave ansatz for the
cylindrical modes, turns out to be very small. And second,
the two most obvious effects which fluctuations have on the
two terms in Eqn. (7) that need to be determined,Fz andR,
are working in opposite directions. While clearly the mean
axial force〈Fz〉 will increase (for exactly the same reason
that it takes a force to pull a fluctuating polymer straight),the
fluctuation-corrected mean radius〈R〉 of the vesicle will de-
crease, since the total area is constant and the area needed
for fluctuations has to come from somewhere. Within a plane
wave approximation these two effects cancel. A more accu-
rate investigation is a fair bit more subtle [27].

By performing various simulations of tethers with differ-
ent curvature radiusR, we can thus address the question how
far the present quadratic theory remains valid. Assuming
symmetric membranes, the next terms by which the Hamil-
tonian density in Eqn. (1) needs to be amended are quartic
ones, and these areK4, K2KG, K2

G, and the gradient term
(∇aK)(∇aK), where∇a is the metric-compatible covariant
derivative [28]. Since for cylindersKG = 0 and |∇aK|=0,
the only remaining term isK4. Adding 1

4
κ4K

4 to the energy
density and repeating the steps leading to Eqn. (7), we then
find

FzR

2π
= κ +

κ4

R2
= κ

[

1 + (ℓ4K)2
]

, (8)

whereℓ4 =
√

κ4/κ is a characteristic length scale associated
with corrections beyond quadratic order, and one typicallyas-
sumes that it is related to bilayer thickness.
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MESOSCOPIC MEMBRANE SIMULATION

To illustrate our method, we have performed mesoscopic
simulations of a coarse grained lipid bilayer model recently
developed in our group [22]. Roughly, lipids are represented
by three consecutive beads of diameterσ (our unit length),
with one end bead being hydrophilic and the two tail beads
hydrophobic. The latter feature, in addition to an excluded
volume interaction, an attraction with a tuneable depthǫ (our
unit of energy) and rangewc. The unit of time isτ = σ

√

m/ǫ,
wherem is the unit of mass. By properly choosingwc andǫ, a
wide range of self-assembling fluid bilayer phases of different
bending rigidities is obtained. More details can be found in
Refs. [22, 23].

Coarse-grained Molecular Dynamics simulations of a lipid
systems withwc = 1.6 σ andkBT = 1.1 ǫ were performed
using the ESPResSo package [29]. The geometries studied
are summarized in Table I. All simulations were performed
under canonical (NV T ) conditions, using a Langevin thermo-
stat [30] with friction constantΓ = 1.0 τ−1 to keep the tem-
perature constant. Within a rectangular box with dimensions
Lx = Ly andLz, using periodic boundary conditions in all di-
rections, a cylindrical membrane spanning thez-direction was
initially set up with a radiusRsetupchosen in such a way that
the area per lipid in both leaflets corresponded to the one for
a flat tensionless bilayer [23]. Upon starting the simulation
Rsetup relaxed (typically within about1000 τ ) to its equilib-
rium value〈R〉, which is smaller thanRsetup by about 3-5%
due to the area required for fluctuations. For this to happen it
was quite advantageous that the flip-flop rate of lipids between
the two leaflets is big enough to permit efficient relaxation of
area-difference strains going along with changes of the mean
radius. For the integration, a time step of∆t = 0.005 τ was
used for most of the systems, while in some cases we needed a
smaller time step of∆t = 0.001 τ in order to obtain accurate
results.

RESULTS AND DISCUSSION

Figure 2 shows two typical snapshots of equilibrated cylin-
drical vesicles from different simulations. Notice that while
fluctuations are clearly visible, they are fairly weak,i. e., the
vesicle is to a very good approximation cylindrical. We use
the midplane between the two monolayers to denote the aver-
age radius〈R〉. It is determined by first identifying the axis,
next finding the average distance of the second tail bead of the
outer leaflet to this axis,Rout, and the equivalent for the inner
leaflet,Rin. We then take〈R〉 = 1

2
〈Rout + Rin〉, where the

average is taken during long production runs typically extend-
ing over 10000-20000τ . Errors are determined via a blocking
analysis. During these runs we also measure the stress tensor
σij using the virial theorem [31]. Figure 3 shows a typical ex-
ample of the running average of the three normal stress com-
ponents. As we observe, the axial stressσzz has a finite value.
In contrast,σxx andσyy (as well as all off-diagonal compo-

FIG. 2: Snapshots of two tether simulations with20 000 lipids

and different radii of curvature: a)〈R〉 = 24 σ b) 〈R〉 = 12 σ.
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FIG. 3: Running average of the diagonal componentsσxx,

σyy andσzz of the stress tensor for a cylindrical vesicle with

〈R〉 = 70 σ.

nents not shown here) approach zero. This is expected, since
no stress is being transported across thex- andy-direction.
The error inσzz is also determined via a blocking analysis.

One more point concerning the calculation of the stress ten-
sor should be mentioned. In general, deriving accurately the
stress (or the pressure) from molecular dynamics simulations
is not a trivial aspect. Stress is a collective property withhigh
statistical uncertainty owing to the fluctuations of the instan-
taneous configurations. In common simulations these fluctu-
ations are very high due to the relatively small size (number
of particles) of the systems studied. Therefore large systems
and/or long simulation runs are needed. This point is partic-
ularly sever in the present case since, as visible in Figure 3,
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# lipids Lz = 20 30 40 50 60 70 80 90 100 120 160 200 240

5000 24.0±0.5

3.96±0.9

16.1±0.4

5.4±0.8

12.2±0.3

6.12±0.8

9.8±0.2

8.28±0.8

8.3±0.2

10.44±0.8

7.2±0.1

11.52±0.8

6.3±0.1

12.6±0.8

5.7±0.1

13.68±0.8
· · · · ·

10000 47.8±0.6

1.8±0.7
· 24.0±0.4

3.24±0.7
· 16.±0.4

4.68±0.8
· 12.2±0.2

6.8±0.8
· 9.9±0.2

8.28±0.8

8.3±0.1

10.5±0.7

6.3±0.1

12.5±0.8
· ·

20000 · · 47.7±0.6

1.7±0.8
· · · 24.0±0.4

3.5±0.8
· · 16.0±0.3

4.7±0.8

12.1±0.2

6.6±0.8

9.9±0.2

8.3±0.8

8.3±0.1

10.4±0.8

TABLE I: List of all simulation geometries, sorted by the number of lipids (first column) and their tether length (in units ofσ,

first row). In all tuples the top value indicate〈R〉 (in units ofσ), the bottom value is〈Fz〉 (in units of ǫ/σ). We always used

wc = 1.6 σ andkBT = 1.1 ǫ.
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FIG. 4: Tensile force〈Fz〉 as a function of cylinder radius

〈R〉 for the systems withN = 5000 lipids (with the ex-

ception of the open symbol, which hasN = 10 000 lipids).

The solid line is a fit to Eqn. (7), leading toκ = 11.7 kBT .

The inset shows the combinationFzR/2π as a function of

rescaled curvaturew/〈R〉, and the solid line again indicates

κ = 11.7 kBT .

we need to determine very small values of the stress. We have
found that, in order to obtain reliable values, the common time
step used in coarse grained simulations,∆t = 0.01 τ , is too
long. With this choiceσxx andσyy approached values which
were significantly different from zero, a clear sign of a sys-
tematic integration error. We thus used the smaller time step
∆t = 0.005 τ , and for the cases of very small forces,i. e. large
〈R〉, even a time step of∆t = 0.001 τ .

The tensile force inz direction is obtained from the stress
via Fz = σzzLxLy. Figure 4 shows the force for the sys-
tems withN = 5000 lipids as a function of the average cylin-

der radius〈R〉. As the radius increases, the tensile forceFz

decreases in accord with Eqn. (7). This is seen even better
by looking at the combinationFzR/2π, which is shown in
the inset of Fig. 4 as a function of rescaled curvaturew/〈R〉.
Notice that within the error bars of our simulation this ex-
pression is perfectly compatible with a constant; a fit gives
κ/kBT = 11.7 ± 0.2, in very good agreement with the value
κ/kBT = 12.5 ± 1 obtained from an analysis of thermal un-
dulation modes (see Fig. 1). A possible quadratic deviation,
as suggested by Eqn. (8), can not be identified with any statis-
tical significance. This is all the more amazing when we see
that the most strongly curved cylinder hasw/R ≈ 0.9, i. e., a
radius of curvature which is only 10% larger than the bilayer
thicknessw! Stated differently, the lengthℓ4 from Eqn. (8)
must be a fair bit smaller thanw. This remarkable robustness
of the simple quadratic Helfrich theory down to such small
radii of curvature might of course be a special feature of the
particular model we have studied, and it would be worthwhile
to subject other coarse-grained lipid models to a similar test.
But the fact that extremely high curvatures can be imposed
without noticing deviations from quadratic continuum theory
is in accord with common practice in tether pulling experi-
ments, where the radii of curvature of these membrane tubes
are typically in the 10-40 nm range, apparently without ever
having triggered the need to include higher order corrections
to the elastic behavior [15].

Another practical aspect of our proposed method, is related
to numerical efficiency. The traditional method of analyzing
the thermal fluctuation spectrum requires very long simula-
tion runs, since (i) large systems need to be studied in order
to have a series of wave vectors in the regime where contin-
uum methods are applicable, and (ii) these long wavelength
modes take a particularly long time to equilibrate (the relax-
ation time of bending modes scales with the fourth power of
wavelength). Strictly speaking our method also requires large
systems to be studied in order to extrapolate to the zero cur-
vature limit (i. e., R → ∞). However, as we have seen in
Fig. 4, the asymptotic limit in our case is already reached for
fairly small systems which still have a significant curvature.
If the same holds for other lipid models – a fact that needs
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FIG. 5: Tensile forceFz as a function of system size for sys-

tems of different ratioLz/N : •: 0.01,◦: 0.008,�: 0.006,�:

0.004. The corresponding average radius〈R〉 is als indicated.

A slight horizontal offset is included to improve visibility of

the error bars.

to be checked – their value ofκ can also be determined via
the tether method using fairly small systems and correspond-
ing small simulation times. For example, the point in Figure
4 havingw/〈R〉 = 0.5 is taken from a run of only 2-3 days
on a single AMD Opteron 2.2GHz processor. For the same
system the analysis of the thermal fluctuations needs at least
one month on the same machine.

As a final point we would like to address the issue of finite
size effects. While the tether force obviously depends on its
radius, Eqn. (7) suggests that tetherlengthLz (or equivalently,
the numberN of lipids) is irrelevant. This is indeed rigor-
ously true in the ground state, but fluctuations might change
the picture. We have thus repeated our simulations for sys-
tems with a different number of lipids and checked, whether
systems with a fixed ratioLz/N (i. e., essentially identical ra-
dius) but varyingN show any noticeable systematic change
in the tensile forceFz . Figure 5 shows the results of such
simulations. As can be seen, the measured forces are, at least
within our error bars, compatible with a constant value for a
fixed ratioLz/N . No finite size effect is detectable. Notice
that this also provides another independent check that fluctu-
ations in our system, even though present, are a subdominant
effect compared to the main “signal” which is well described
by ground state theory.

CONCLUSIONS

We have presented a new method for calculating the bend-
ing rigidity of lipid membranes in simulations. It involvesthe

simulation of cylindrical membrane tethers, spanned across
the periodic boundary conditions of the simulation box, and
measuring their equilibrium radius as well as the tensile force
they exercise on the box. In contrast to fluctuation based
schemes, which monitor thermally excited shape deforma-
tions, our approach actively imposes a deformation on the sys-
tem and measures the restoring force and is thus not limited
to the regime of deformations accessible by thermal energy.
In fact, thermal undulations only contribute a small correc-
tion to the main observable, in stark contrast to fluctuation
schemes in which they provide the dominant signal. For this
reason our method is very efficient, also applicable to stiff
membranes which show very small undulations to begin with,
and does not crucially depend on the relaxation of very slow
long wavelength modes. The straightforward access to strong
bending permits a check of quadratic continuum theory, with-
out running into difficulties of Monge gauge and its lineariza-
tion. For the coarse-grained lipid model we explicitly stud-
ied we showed continuum theory to be applicable up to cur-
vatures comparable to bilayer thickness. Finite size effects
would originate from fluctuations and are thus also weak; in
our runs they were not detectable.

We believe that this method provides a powerful alternative
to the existing schemes that is worth to be applied to other
existing coarse-grained models. Not only is an independent
measurement of the elastic modulus very valuable, determin-
ing the range of validity of continuum theory for each model
would be an important bit of knowledge, given that the cur-
vatures that are regularly imposed in simulations exceed ther-
mally excited ones by at least one or two orders of magnitude.
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