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Abstract
Background: Neuronal activity regulates gene expression to control learning and memory,
homeostasis of neuronal function, and pathological disease states such as epilepsy. A great deal of
experimental evidence supports the involvement of two particular transcription factors in shaping
the genomic response to neuronal activity and mediating plasticity: CREB and zif268 (egr-1, krox24,
NGFI-A). The gene targets of these two transcription factors are of considerable interest, since
they may help develop hypotheses about how neural activity is coupled to changes in neural
function.

Results: We have developed a computational approach for identifying binding sites for these
transcription factors within the promoter regions of annotated genes in the mouse, rat, and human
genomes. By combining a robust search algorithm to identify discrete binding sites, a comparison
of targets across species, and an analysis of binding site locations within promoter regions, we have
defined a group of candidate genes that are strong CREB- or zif268 targets and are thus regulated
by neural activity. Our analysis revealed that CREB and zif268 share a disproportionate number of
targets in common and that these common targets are dominated by transcription factors.

Conclusion: These observations may enable a more detailed understanding of the regulatory
networks that are induced by neural activity and contribute to the plasticity transcriptome. The
target genes identified in this study will be a valuable resource for investigators who hope to define
the functions of specific genes that underlie activity-dependent changes in neuronal properties.

Background
Transcription of new genes is initiated in the nervous sys-
tem by both synaptic activity and action potential firing
[1-3], and activity-dependent changes in gene expression
are critical in epileptogenesis, brain injury, and learning
and memory. For example, reducing CREB-dependent
gene expression eliminate memory acquisition [4], and
knock-out of the gene encoding zif268 (egr-1, krox24,

NGFI-A) impairs memory-like processes such as LTP [5].
Alterations in gene expression after seizure may lead to
abnormal neural function and the development of epi-
lepsy (reviewed by [6,7]). Furthermore, a number of
inherited forms of mental retardation can be traced to
defects in activity-dependent gene expression, such as
Rubenstein-Taybi syndrome, related to a mutation in the
CREB-binding protein, and Rett syndrome, tied to a defect
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in a DNA-binding protein that regulates the correct timing
of expression of many downstream genes [8]. Although
some genes that are rapidly upregulated by neuronal
activity have been identified, the direct and indirect tar-
gets of activity-dependent transcription factors remain of
substantial interest in developing and constraining mod-
els for how neuronal function is altered by experience.

Various prior approaches have attempted to identify gene
sets that underlie activity-dependent changes in neural
function. cDNA microarrays have been frequently
employed to characterize the plasticity transcriptome by
identifying candidate genes that are upregulated after
activity [9-15], typically through pharmacologically-
induced seizure [16-21] or patterned sensory stimulation
[22,23]. Alternate approaches include the use of chroma-
tin-immunoprecipitation (ChIP) against specific tran-
scription factors and determination of
immunoprecipitated DNA binding sites by hybridization
to microarrays or PCR analysis [24-28]. Both approaches,
though informative, have important limitations. For
example, current cDNA microarray analyses have typically
identified genes that are show several-fold regulation
(>1.5 up- or down-regulation), although in principle
microarray studies can identify genes showing small
changes in transcript levels given adequate numbers of
redundant measurements. Differences in the timing and
conditions of sample collection for microarray analysis
can lead to heterogeneous results between investigators.
In addition, microarray analysis typically does not reveal
information about the transcriptional pathways by which
genes are regulated in an activity-dependent manner.
Although ChIP has been a useful approach for identifying
candidate transcription factor binding sites, interpretation
of this data can be complicated by tissue-specific occu-
pancy of binding sites and the inherent heterogeneity of
cell types in brain tissue [29]. For example, ChIP cannot
identify occupied sites if they occur in only a small subset
of neurons. An alternate approach to identifying potential
activity-regulated genes has been to isolate specific candi-
dates and examine changes in the abundance of their pro-
tein or mRNA after manipulations of activity (see for
example, [30,31]). However, this approach is obviously
limited because it must proceed in a highly directed, case-
by-case manner, and does not accommodate the discovery
of novel or unlikely gene candidates.

Identification of activity-regulated genes could be
improved by genomic screens that are unbiased by cell
type, target gene preselection, or average expression level.
A growing body of knowledge regarding transcriptional
regulation of gene expression and consensus sequences
for transcription factor binding, combined with anno-
tated genome sequences, makes it possible to carry out a
directed search for binding sites of specific activity-regu-

lated transcription factors at the scale of an entire genome.
Methods for locating transcription factor binding sites
often rely upon relatively simple comparisons of a single
sequences or consensus binding sites with individual pro-
moter regions [32-34]. Although such searches can be pro-
ductive, the use of a single consensus site is problematic
because every nucleotide must be analyzed independently
from the rest of the binding site and degeneracy can easily
be over- or underestimated. This results in subjective tar-
get identification whose reliability is difficult to judge.

Here we develop and employ a rigorous computational
method for scanning gene promoters for binding sites of
two known activity-dependent transcription factors:
CREB and zif268. These transcription factors were selected
based upon a large body of data that links their activity to
adaptive responses to neuronal activity, especially activity
occurring during learning [35]. For example, transduction
of extracellular signals leads to CREB phosphorylation
and assembly of the transcriptional apparatus, events that
are necessary for consolidation of long-term memory
[36]. Overexpression of a constitutively active form of
CREB enhances LTP in mice [37], and genetic manipula-
tions that reduce CREB transcriptional activation result in
impaired learning and memory [4,38]. Zif268 is an imme-
diate-early gene (IEG), whose expression can be upregu-
lated following increased neural activity and activation of
intracellular signaling cascades [39] and is required for
some forms of learning [5,40]. Because activity-dependent
changes in gene transcription are linked to memory con-
solidation and also occur as a response to pathological
conditions such as seizure [41-43], identification of the
downstream targets of these transcription factors remains
of considerable interest.

We performed an in silico analysis for full CREB and zif268
binding sites of promoter regions from all available anno-
tated mouse genes. Likely binding sites were identified by
applying position-specific scoring matrices (PSSMs)
derived from previously characterized binding sites for
CREB1 and zif268 confirmed by in vitro assays [44,45].
Individual binding site examples from specific genes were
not used to develop the scoring matrix to provide consist-
ency to the method used to develop the training algorithm
without biasing it to a few anecdotal examples from indi-
vidual genes. Because this analysis was specific for longer
consensus binding sequences (i.e. not half-sites), it is
more stringent and has a lower false positive rate than pre-
vious searches [46].

CREB sites have been demonstrated near both coding and
non-coding regions of the genome and there is a growing
body of data that supports an important regulatory role
for CREB, and possibly other activity-dependent transcrip-
tion factors, in non-coding regions (specifically for regula-
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tory, noncoding mRNAs; [47]). Nonetheless, we restricted
our search to promoter regions of annotated genes
because locations of non-coding RNAs are currently not
adequately annotated and genome-wide scans necessitate
more stringent statistical tests than limited scans of pro-
moters, and would result in a substantial increase in false
negative rates.

As a further test of the validity of these transcription factor
binding sites, we performed this search in parallel on all
human as well as rat genes with annotated transcription
start sites. In general, because the rat genome is less well-
annotated that either mouse or human, most analysis was
carried out on mouse and human candidate genes. Dual
hits from both the mouse and human genomes were con-
sidered more likely to have an activity-dependent compo-
nent to their regulation. Our results identify 516
candidate genes with conserved CREB or zif268 binding
sites in both mouse and human homologous genes that
may be regulated by activity, six of which were predicted
to have more than one type of transcription factor binding
site. These results provide an important resource in under-
standing the regulatory networks that control activity-
dependent programs of gene expression.

Results
We used a comparative genomics approach to identify
genes likely to be regulated by neural activity. Position-
specific scoring matrices were employed to create a search
algorithm for DNA binding sites for CREB and zif268 in
the promoters of annotated genes in order to define can-
didate genes from the plasticity transcriptome to guide
and constrain future analysis. Gene lists were refined and
evaluated by comparison of target frequencies across spe-
cies and the presence of specific transcription factor bind-
ing sites in conserved homologous genes between human
and mouse genomes. These gene lists allowed us to iden-
tify a significant subset of target genes that may be regu-
lated in common by CREB and zif268. Finally, special
attention was paid to the presence and relative frequency
of genes with specific neural relevance amongst the candi-
date dataset, with an eye toward future experimental focus
on the activity-dependant regulation of these genes.

Developing binding site consensus sequences
Previous analyses of transcription factor binding sites
have suffered from low degeneracy based upon compari-
son of a target sequence to a single overrepresented bind-
ing site or high degeneracy and a high false positive rate
based upon inclusion of related IEG subfamily members
with similar but distinct sequence specificities. When
related transcription factors (such as zif268, egr-2, and
egr-3 or c-fos/c-jun and FosB/JunD heterodimers) with
overlapping binding site consensus sequences are pooled,
binding site consensus is significantly relaxed and false

positive rates are increased. Our method sought to reduce
the rate of false positives by using a smaller number of
experimentally verified, high-quality transcription factor
binding sites using frequency matrices that have been
experimentally developed for zif268 [45,48] and CREB
[44,48]. A schematic of the consensus sequences used is
shown in Fig. 1.

An analogous search was attempted with AP-1, whose
components, fos and jun, are also IEGs. The resulting pre-
dicted targets were not enriched for promoter regions and
showed little conservation across species, facts we
attribute to excessive degeneracy of the known AP-1 bind-
ing sequences used in training the computational meth-
ods. While we believe this negative result helps to
reinforce the significance of the positive CREB and zif268
results, we have omitted further discussion of AP-1 in this
report.

Computational genomic analysis: mouse, rat, and human 
genomes
In order to identify conserved gene candidates subject to
activity-dependent regulation, the entire database of
mouse, rat, and human promoter sequences was searched
for CREB and zif268 binding sites. In total, 18,071 mouse
genes, 5,943 rat genes, and 19,794 human genes were
examined (summarized in Table 1; full gene lists can be
found in Additional Files 1, 2, 3, 4). This represents all the
annotated promoters from these species (approximately
50% of the estimated distinct mouse coding regions and
two-thirds of the total estimated distinct human genes;
[49-51]). CREB binding sites were predicted in 6% of
mouse promoters, 7% of human promoters, and 11% of
rat promoters (Fig. 2a). Zif268 binding sites were pre-
dicted in 8% of mouse promoters, 6% of human promot-
ers and 4.6% of rat promoters (Fig. 2b). The precise
sequence and location of binding site for each species is
annotated in Additional Files 5, 6, 7. Because the mouse
and human gene sets were more complete and represent-
ative of the total number of coding regions within those
species than found in the rat dataset, we will primarily
refer to the human and mouse searches from this point
onward.

As we were interested in using comparative genomics to
improve hit quality, we also examined those genes with
homologues in the mouse and human datasets, a total of
13,365 genes (homologene dataset; [52]). In general, the
frequencies of binding sites predicted for genes in the
homologene dataset for either species in isolation were
similar to those found for non-homologous genes in the
same genomes (Table 1), suggesting that the homologous
genes are a representative set of genes with respect to bind-
ing site predictions. We then examined the frequencies of
binding site predictions conserved across both members
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Relative frequency of transcription factor binding sites within promoter regions across speciesFigure 2
Relative frequency of transcription factor binding sites within promoter regions across species. (A) The percentage of human, 
mouse, and rat promoters with a predicted CREB binding site. (B) The same as (A), but for zif268. (C) The percent of genes 
within the homologene dataset showing a CREB or zif268 site, calculated by (# of promoters with a binding site × 100)/(# of 
human and mouse homologous pairs).

Activity dependent transcription factor binding sites consensus sequencesFigure 1
Activity dependent transcription factor binding sites consensus sequences. The height of the letters is proportional to their fre-
quency in the data used to build the matrix. For instance, a large "A" in position one means that "A" belongs to the most prob-
able consensus for that transcription factor binding site. (A) Consensus sequence given by the transfac CRE-binding matrix 
V$CREB_01. (B) Consensus sequence given by the transfac zif268 binding matrix V$EGR1_01.
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of a gene pair. The number of hits from this search was
lower than observed for individual genomes: in the set of
mouse-human homologues, 2.66% have a conserved
CREB site and 1.24% have a conserved zif268 site (Fig.
2c).

Estimating rate of false positives
To develop a rigorous estimate of the quality of identified
targets, we applied two methods for calculating their pos-
itive predictive value, defined as the probability a pre-
dicted hit is correct (see Methods for a complete
description). This measure provides a conservative esti-
mate of the percentage of identified transcription factor
binding sites that we expect to be functional binding sites.
For this purpose, we examined binding site location and
cross-species conservation.

Fig. 3 shows an analysis of position specificity of binding
site predictions within the promoter regions. A pro-
nounced peak in the relative frequency of binding site
locations was observed for both CREB (Fig. 3a; see also
[46]) and zif268 (Fig. 3b). Both binding sites were more
than five times more likely to occur in the 50 bp closest to
the annotated start site compared to more distant or inter-
genic sequence. This frequency increase was observed in
analysis of the mouse and human gene datasets, as well as
in the conserved mouse and conserved human gene data-
sets (Fig. 3c and 3d). Furthermore, the low frequency of
binding sites in regions most distal to the annotated start
site (i.e. 800 bp upstream) was comparable to the fre-
quency in intergenic regions (see Methods), suggesting
that our selection of a 1,000 bp region surrounding tran-
scription start was sufficient to capture most of the mean-

ingful binding sites that might regulate gene expression.
Using intergenic (i.e. 50,000 nt upstream of the annotated
start site) hit frequencies to estimate false positive rate, we
derived a positive predictive value of 0.64 for CREB hits in
human and mouse promoters. Zif268 had a slightly
higher positive predictive value of 0.81 in mouse and 0.74
in human (Table 1). The full set of predicted binding site
locations is provided in Additional Files 1, 2, 3, which
present the gene, location relative to transcription start,
and sequence of each putative binding site for the mouse,
human, and rat genomes, respectively.

Comparative genomics was used to provide a second
method of estimating the positive predictive value. In the
set of mouse-human homologues, 2.7% have a conserved
CREB site and 1.2% have a conserved zif268 site. We pro-
posed that the set of homologue pairs with conserved
binding sites would provide a conservative set of true pos-
itive hits. The positive predictive value of the hits could
then be estimated from the excess of conserved hits
beyond what would be predicted from the hit rates in the
individual genomes on the assumption of independence
between genomes (see Methods). In contrast to the results
using location specificity, the conservation approach
yielded higher estimates of positive predictive value for
CREB (0.83) than for zif268 (0.56). This difference is
most likely to due changes in zif268 targets or promoter
GC content between species. We can further validate these
results by measuring conservation in binding site posi-
tions for the conserved hits. Comparing the positions of
the conserved predicted sites between mouse and human
yields correlation coefficients of 0.18 for CREB (p-value <
0.001) and 0.21 for zif268 (p-value < 0.01). There is con-

Table 1: Scores of computational search for activity-dependent transcription factor binding sites

Mouse Human Homologuea

Measure Promoterb Intergenicc Scored Promoterb Intergenicc Scored Completee Conservedf Scoreg

Total genes 18071 13475 19794 15178 13365 516
CREB targets 1050 279 0.64 1389 388 0.64 830 356 0.83
zif268 targets 1382 200 0.81 1203 244 0.74 1136 166 0.56
% CREB genes 5.81% 2.07% 7.02% 2.56% 6.21% 2.66%
% zif268 genes 7.65% 1.48% 6.08% 1.61% 8.50% 1.24%

a The homologue dataset was contructed using the Homologene resource on the NCBI website (http://www.ncbi.nih.gov).
b The promoter region is the area from -1,000 to 200 bp relative to transcription start.
c Intergenic regions refer to an area 50,000 bp away from transcription start. Fewer intergenic regions are available than genes because of gaps in 
sequencing.
d The score is determined by the positive predictive value which is a conservative estimate of the fraction of found transcription factor binding sites 
that are true hits. It is calculated as (%Observed - %Intergenic)/(%Observed).
eThe complete homologue numbers refer the the number of human/mouse homologous pairs identified using the Homologene resources.
f The conserved dataset is a subset of the Homologene dataset that consists of only those genes for which homologous pairs contain a conserved 
binding site.
g The quality is determined by the positive predictive value which is a conservative estimate of the percentage of found transcription factor binding 
sites that are true hits. It is calculated as (%Conserved Observed - %Predicted Conserved)/(%Conserved Observed).
Page 5 of 18
(page number not for citation purposes)

http://www.ncbi.nih.gov


BMC Neuroscience 2007, 8:20 http://www.biomedcentral.com/1471-2202/8/20

Page 6 of 18
(page number not for citation purposes)

CREB and zif268 binding sites show strong location specificityFigure 3
CREB and zif268 binding sites show strong location specificity. All histograms were created using a bin size of 50 bp. The total 
number of binding sites in each 50 bp region was divided by the total number of promoters for that dataset. Shown are both 
human (red) and mouse (blue) and promoters. For the intergenic dataset, the area shown is from -51,200 bp to -50,000 bp rel-
ative to transcription start. The mouse dataset is the location of mouse binding sites when the homologous gene also has a 
binding site of the same type. The human dataset is the location of human binding sites when the homologous gene also has a 
binding site of the same type. A) Promoters with a CREB binding site are grouped by position relative to transcription start, 
showing pronounced location specificity within the promoter. (B) The same as (A) but for zif268. (C) The same as (A) but for 
the conserved CREB targets in the mouse-human homogene dataset. (D) The same as (A) but for the conserved zif268 targets 
in the mouse-human homogene dataset. The percentage of promoters with a binding site is calculated relative to the total 
number of homologous pairs.

A B

C

CREB zif268
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siderable noise in location specificity, which might be
explained by insertions or deletions in the promoters
since the separation of human and mouse lineages or by
errors in annotated transcription start sites in either spe-
cies. The positions nonetheless show significantly greater
correspondence than can be explained by chance.

Overlap of CREB and zif268 target genes
Prior analyses of activity-dependent gene expression have
not addressed whether the transcription factors selected
for analysis regulate separate or partially overlapping tar-
get genes. We reasoned that genes containing binding sites
for both transcription factors might be more likely to have
an essential role in mediating activity-dependent changes
in gene expression. To examine this, we looked at the rel-
ative frequencies of genes with both CREB and zif268
binding sites in the mouse, human, and rat gene datasets
compared to the frequencies of genes with either site in
isolation. Target genes were generally non-overlapping,
suggesting that each transcription factor may regulate a
distinct subset of genes, a possibility that might allow a
cell greater combinatorial control over stimulus-specific
transcriptional programs.

Intriguingly, however, the amount of overlap between
zif268 and CREB targets was greater than would be
expected by chance, suggesting that at least a subset of tar-
get genes may be coregulated by the two transcription fac-
tors analyzed. Statistical analysis showed that the
predicted binding sites shared more targets in common
than would be expected by chance for both mouse and
human genomes, with the results weakly significant for
mouse (p < 0.05), but not significant for human (p =
0.18).

Only six genes with conserved binding sites for both tran-
scription factors were found. A significant fraction of these
common targets were transcription factors. FosB (Fig. 4a),
Jund1 (Fig. 4b), and Maff (Fig. 4c) are all members of the
AP-1 family of transcription factors. The Skil (Fig. 4d)
transcription factor is a member of the SKI/SNO/DAC
family which are known to associate with AP-1 under
some conditions [53]. The observation that a specific
group of transcription factors can be regulated by both
CREB and zif268 implicate these genes in transcriptional
networks of activity-regulated gene expression.

Computational analysis of target gene sets
We sought to characterize the functional properties of the
derived gene set through an unbiased computational
search for functional gene classes significantly over- or
under-represented in our hit set. We conducted this anal-
ysis by applying the GOstat web resource [54] to the set of
CREB and zif268 conserved and species-specific targets.
Because there were relatively few conserved targets in the

homologene datset, GOstat analysis found few hits, such
as RNA processing and localization, only for CREB target
genes.

Because of the increased statistical power of using more
data (versus higher quality data), we chose to further this
analysis using the species-specific gene target lists. We
chose to present the mouse target list because the compar-
ative data available has primarily been carried out in
rodents. As with the conserved gene list, genes with CREB
consensus sites showed significant overrepresentation for
targets involved in RNA processing, but were underrepre-
sented in electrophysiologically important transmem-
brane receptor targets (Additional File 8). However, the
few receptor and channel targets identified in this analysis
may have critical functional importance. For example, sei-
zure-dependent changes in expression of three targets,
Kcnk1, Kcnmb4 and Hcn2, have been found [55], and
these two genes represent targets for neuroprotective or
anticonvulsant agents. Targets of zif268 are also underrep-
resented for transmembrane receptors, but are overrepre-
sented for transcription factors as well as genes with
neural-specific functions such as neuron development
and axonogenesis. A full list of these targets can be found
in Additional File 9.

Comparison to experimental analyses
Many of the gene targets identified in this analysis have
been identified in previous studies. Published experimen-
tal data for the number of putative CREB and zif268 tar-
gets suggests that there may be hundreds of specific genes
that carry these binding sites (see for example, [56,57],
but much of this data is indirect. We thus surveyed the lit-
erature for examples of CREB and zif268 target regulation,
using direct evidence for CREB or zif268 binding or con-
sensus sequence identification. A comparison of some
prominent candidates from this study with a literature-
derived set of known CREB and zif268 targets is shown in
Table 2. Strong experimental support for many genes that
were identified in the present analysis was found, such as
somatostatin [58], tyrosine hydroxylase [59,60], and syn-
apsin II [61]. Because target regulation has been shown to
depend critically on brain area, developmental stage, and
even strain differences between mice and negative results
are thus uniformative, we did not choose to select a ran-
dom subset of genes to experimentally pursue as part of
this purely computational analysis.

Although there are few well-documented differences
between the transcriptional regulation of homologous
genes in mouse and humans, our analysis was successful
at identifying one of the few well-characterized mutations
in a CREB binding site between a mouse and human gene
that influence transcription, the glycoprotein hormone
alpha subunit [62]. This gene carries an identified CREB
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Binding site location in CREB/zif268 double hitsFigure 4
Binding site location in CREB/zif268 double hits. Promoter regions for the genes on the line to the left are from -1000 bp to 
200 bp relative to transcription start, which is denoted by the arrow. The red blocks above represent CREB binding sites while 
the green blocks represent zif268 binding sites. Mouse transcription factor binding sites are found on top of the line while 
human sites are below. A non-alignment method was used to identify promoter regions, so homologous binding sites might not 
be at the same location. Gene symbols shown are those for mouse. Promoter regions shown are for (A) FBJ osteosarcoma onco-
gene B/FosB, (B) Jun proto-oncogene related gene d1 (C) v-maf musculoaponeurotic fibrosarcoma oncogene family, protein F (avian), (D) 
SKI-like, (E) neuronal pentraxin 1, and (F) tropomyosin 4. The targets in the yellow box represent transcription factors.
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site in human, and a single gene mutation in the CREB
binding site in mouse abolishes placental expression of
this gene. Accordingly, this gene was identified as a
human but not a mouse CREB target gene.

Several experimental studies have sought to characterize
CREB or zif268 targets by searching for genes upregulated
after transcription factor activation. We compare the genes
isolated in a subset of these studies to the targets identi-
fied here. Microarray results of regulated genes after 1–5
weeks of hippocampal overexpression of a constitutively
active form of CREB [37] were compared to the results
from our search, using a program that takes into account
relative changes in transcript levels [63]. We found that
predicted CREB targets from our search were overrepre-
sented in that microarray dataset, but by a statistically
insignificant amount. An analysis of CREB targets from a
similar computational search [64]showed slightly less
enrichment in this microarray dataset, but this enrich-
ment was also not significant. The lack of significance in
overlap is likely due to the extended duration of VP-16
CREB overexpression, which complicates an interpreta-
tion of this result, as well as the fact that we searched spe-
cifically for direct targets of CREB while a microarray study
would be expected to capture both direct and downstream
targets.

Comparison of our work to the results of another experi-
mental study that used chromatin immunoprecipitation
followed by PCR amplification of CREB-associated DNA
[25] revealed minimal overlap of genes (Table 3). This
lack of overlap may in part be due to tissue specific CREB-
site occupancy [29] and the small number of target genes
compared. It may also derive from the fact that differences
in annotation made exhaustive comparison of the two
gene sets difficult; rather our analysis was based on a non-
exhaustive set of results reported in the body of the paper
by Impey et al. [25]. It is notable that even the study by
Impey et al. failed to identify some well-established CREB
target genes, such as somatostatin, indicating that neither
our computational nor their ChIP-based gene lists are
likely to be exhaustive.

We also compared overlap between zif268 targets identi-
fied in our computational analysis and a recent zif268
overexpression study [49]. We observed an extremely low
rate of overlap between these two studies, where only
6.7% (9/135) regulated genes were represented in either
the mouse or human zif268 target lists generated in our
study (Table 3). Only one gene, the small glutamine-rich
tetratricopeptide, showed a conserved zif268 site in both
mouse and human as well as regulated mRNA levels after
zif268 overexpression. The relatively low level of target

Table 2: Experimental support for binding site activity

protein gene name site expected site found Dataseta verification

activity-related cytoskeletal protein arc zif268 none n/ab [83]
BDNF bdnf CREB none n/ac [84, 85]
beta-polymerase polb CREB CREB C [86]
cathepsin L ctsl CREB CREB C [87]
c-fos fos CREB CREB M [88, 89]
early response gene 3 egr3 zif268 CREB M [90]
fibronectin fn1 CREB CREB M [91]
glycoprotein hormone alpha cga CREB CREB Hd [62]
Ngfi-A binding protein 2 nab2 zif268 zif268 C [90]
proteasome subunit, alpha type 5 psma5 zif268 zif268 M [92]
protein phosphatase 2a, catalytic ppp2ca CREB CREB C [93]
S100B s100b CREB CREB C [94]
somatostatin sst CREB CREB C [58]
steroid 11-beta hydroxylase cyp11b1 CREB CREB C [95]
synapsin I syn1 zif268 CREB M [96, 97]
synapsin II syn2 zif268 zif268 C [61]
transporter associated with antigen processing 2 tap2 zif268 zif268 M [92]
tropomyosin 1, alpha tpm1 CREB CREB+zif268 M [37]
tyrosine hydroxylase th CREB CREB C [59, 60]
vasoactive intestinal peptide vip CREB CREB C [98]

a Mouse (M), Human (H), or Conserved (C) homologene dataset where a putative binding site was found
bA zif268 site in the mouse arc gene was identified in an earlier version of the search, but following an important correction for GC content in the 
gene promoter this site was no longer recognized
c The CREB site in promoter I that has been well-characterized in rat (Tabuchi et al. 2002) did not qualify as having a binding site by the quality score 
criterion used in this analysis
d Glycoprotein hormone alpha has a well documented CREB site in human that is absent in rodents based on a single bp mutation
Page 9 of 18
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Table 3: Overlapping regulatory targets: comparison with other studies

Symbol Gene Name Accession #a Conserved siteb Type of studyc Reference

Clcn3 chloride channel 3 NM007711 CREB ChIP/SACO 25
Cycs cytochrome c, somatic NM007808 CREB ChIP/SACO 25
Fn1 fibronectin 1 AK147683 CREB ChIP/SACO 25
FosB FosB NM008036 CREB ChIP/SACO 25
Ldh1 lactate dehydrogenase 1, A chain BC066858 CREB ChIP/SACO 25
Mlf2 myeloid leukemia factor 2 NM145385 CREB ChIP/SACO 25
Nf1 neurofibromatosis 1 NM010897 CREB ChIP/SACO 25
Ppargc2 peroxisome proliferative activated receptor, 

gamma, coactivator 1 alpha
NM008904 CREB ChIP/SACO 25

Sstr2 somatostatin receptor 2 NM009217 CREB ChIP/SACO 25
St13 suppression of tumorigenicity 13 NM133726 CREB ChIP/SACO 25
Socs7 suppressor of cytokine signaling 7 NM138657 CREB ChIP/SACO 25
TpT1 tumor protein, translationally-controlled 1 NM009429 CREB ChIP/SACO 25
JunD1 Jun proto-oncogene related gene d1 NM010592, 16478 CREB ChIP/SACO, CREB 

overexpression
25, 37

Maff v-maf musculoaponeurotic fibrosarcoma oncogene 
family, protein F (avian)

NM_010755, 17133 CREB ChIP/SACO, CREB 
overexpression

25, 37

Arg2 arginase type II 11847 CREB CREB overexpression 37
Avpi1 arginine vasopressin-induced 1 69534 CREB CREB overexpression 37
Arih1 ariadne ubiquitin-conjugating enzyme E2 binding 

protein homolog 1 (Drosophila)
23806 CREB CREB overexpression 37

Cd2ap CD2-associated protein 12488 CREB CREB overexpression 37
Dhx36 DEAH (Asp-Glu-Ala-His) box polypeptide 36 72162 CREB CREB overexpression 37
Dusp1 dual specificity phosphatase 1 19252 CREB CREB overexpression 37
Ell2 elongation factor RNA polymerase II 2 192657 CREB CREB overexpression 37
AW050020 expressed sequence AW050020 268420 CREB CREB overexpression 37
Foxd3 forkhead box D3 15221 CREB CREB overexpression 37
Gem GTP binding protein (gene overexpressed in 

skeletal muscle)
14579 CREB CREB overexpression 37

Mcm2 minichromosome maintenance deficient 2 mitotin 
(S. cerevisiae)

17216 CREB CREB overexpression 37

Mlf1 myeloid leukemia factor 1 17349 CREB CREB overexpression 37
Myh10 myosin, heavy polypeptide 10, non-muscle 77579 CREB CREB overexpression 37
Nek1 NIMA (never in mitosis gene a)-related expressed 

kinase 1
18004 CREB CREB overexpression 37

Pde7a phosphodiesterase 7A 18583 CREB CREB overexpression 37
Psmb8 proteosome (prosome, macropain) subunit, beta 

type 8 (large multifunctional peptidase 7)
16913 CREB CREB overexpression 37

2700085E05
Rik

RIKEN cDNA 2700085E05 gene 67201 CREB CREB overexpression 37

4933407C0
3Rik

RIKEN cDNA 4933407C03 gene 74440 CREB CREB overexpression 37

6330407G1
1Rik

RIKEN cDNA 6330407G11 gene 68050 CREB CREB overexpression 37

Rbms2 RNA binding motif, single stranded interacting 
protein 2

56516 CREB CREB overexpression 37

St7 Suppression of tumorigenicity 7 64213 CREB CREB overexpression 37
Tgif2 TGFB-induced factor 2 228839 CREB CREB overexpression 37
Trip6 thyroid hormone receptor interactor 6 22051 CREB CREB overexpression 37
Tle3 transducin-like enhancer of split 3, homolog of 

Drosophila E(spl)
21887 CREB CREB overexpression 37

Tpm4 tropomyosin 4 326618 CREB CREB overexpression 37
Trp53inp2 tumor protein p53 inducible nuclear protein 2 68728 CREB CREB overexpression 37
Th tyrosine hydroxylase 21823 CREB CREB overexpression 37
Wbp5 WW domain binding protein 5 22381 CREB CREB overexpression 37
Xpr1 xenotropic and polytropic retrovirus receptor 1 19775 CREB CREB overexpression 37
Znrd1 zinc ribbon domain containing, 1 66136 CREB CREB overexpression 37
Sgta small glutamine-rich tetratricopeptide repeat 

(TPR)-containing, alpha
NM024499 Zif268 Zif268 overexpression 57

aAccession numbers for CREB overexpression experiments are the GeneID, not the mRNA acession number.
bGene target had a conserved mouse-human transcription factor binding site in the promoter region and was also identified in the referenced study.
cType of experimental analysis carried out in the referenced study. ChIP indicated chromatin immunoprecipitation followed by a serial analysis of 
chromatin occupancy in DNA isolated from rat PC12 cells that had been stimulated with forskolin to increase intracellular cAMP 15 minutes prior 
to DNA extraction [25]. Zif268 overexpression refers to studies where zif268 was overexpressed in PC12 cells, and RNA was extracted 48 hrs 
post-transfection [57]. CREB overexpression refers to studies where a super-active form of CREB is expressed in mice for 1 to 5 weeks. RNA is 
extracted from hippocampus and run on Affymetrix GeneChip Murine Genome U74 Version 2 Set MG-U74A [37]. Our analysis of the data was 
done using GSEA as described in the methods.
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overlap in this and other studies may be due to the dura-
tion of transcription factor overexpression (days) and
ensuing cascades of altered gene expression (i.e., not all
targets are directly regulated by the overexpressed tran-
scription factor). Our decision to favor a high-specificity
gene list at the cost of lower sensitivity was likely also a
factor. While the exact criterion used by James et al. study
[57] to define target sites was unclear, likely differences in
the target specificity/sensitivity trade-off would be
expected to yield poor correspondence between the data
sets.

Comparison to other computational analysis
A similar comparative genomics analysis was carried out
by Conkright et al., using a hidden Markov search algo-
rithm trained on ten well-characterized CREB binding
sites [64]. Of 78 conserved CREB targets identified by
Conkright et al. and 356 identified by our study, 25 were
common to both studies (Table 2). Although this is a
strong overlap relative to what one would expect by
chance, it is nonetheless curious that it was not higher. We
attribute this fact to likely assignment errors in both sets
as well as likely differences in annotation. We believe our
study is likely to have yielded a higher quality set of pre-
dicted binding sites based on the fact that we have access
to more recent genome annotations, search in a more
tightly focused region (1.2 kb versus 10 kb), search rela-
tive to transcription rather than translation start, and use
a prediction algorithm that would screen out some possi-
ble spurious predictions likely with a hidden Markov
model approach. This methodological argument that our
gene set is closer to the ground truth is supported by the
fact that while the two studies predict comparable num-
bers of CREB sites in mouse and human individually
(1050 mouse and 1389 human for the present study and
1349 mouse and 1663 human for Conkright et al.) our
predicted sites were validated by cross-species conserva-
tion at a rate several-fold higher (356 validated versus 78).
The similarities of our gene set to that of Conkright et al.
thus provide good validation that both approaches find
meaningful gene sets, but the deviations do not challenge
the accuracy of our set.

Discussion
We have applied computational analyses to identify can-
didate genes regulated by neural activity based upon the
presence of CREB and zif268 binding sites within their
promoters. This work combined sequence-based motif
finding methods with an analysis of homology, binding
site co-occurrence, and binding site location to estimate
and improve prediction accuracy. Because the consensus
sites used for analysis were not derived from a possibly
unrepresentative subset of specific genes but rather from
experimentally determined binding motifs [44,45], we
believe that the gene lists presented here are uniquely

unbiased. The generated candidate gene lists provide
potential targets for future experimental validation and
may also be useful for interpretation of microarray data
and inference of gene regulatory networks. This work has
also revealed a pronounced location-specificity of high-
quality CREB and zif268 binding sites, an observation
that may be a diagnostic criterion for the detection of
binding sites near poorly-annotated non-coding regions
as well.

The principal goal of this work was the generation of a
computational resource identifying likely targets of activ-
ity-dependent regulation to help guide future experimen-
tal study. Unlike previous experimental studies, which
identified both direct and indirect targets using microar-
ray analysis of regulated genes following overexpression
of activated CREB or zif268 [37,56], this study specifically
identified high-quality, direct transcriptional targets of
CREB and zif268. Based on our comparative genomic
analysis, we believe that our list of predicted targets based
on conserved binding site predictions has a very low false
positive rate. Although experimental support for some tar-
gets was not observed, this is hardly surprising given that
site occupancy has been shown to vary according to tissue
type [56,65-67] and overexpression of zif268 has been
associated with repression of genes carrying zif268 sites
within their promoter regions [56]. Omission of real can-
didate genes may have occurred due to 1) the high strin-
gency of the search we carried out, 2) poor or incomplete
annotation of transcription start sites or multiple tran-
scription start sites for a single gene, and 3) real differ-
ences in the regulation of mouse and human genes. It is
also important to note that actual CREB binding may be
influenced by chromatin superstructure as well as the
presence of additional regulatory factors, variables that
were not examined in the biochemical studies that pro-
vided the sequence matrices for CREB and zif268 that we
used here. However, several lines of evidence confirm that
this approach identifies a gene set that includes expected
CREB and zif268 targets, shows activity-dependent
expression changes and is significantly enriched for sev-
eral specific functional classes of proteins consistent with
a role in activity-dependent regulation.

The work also suggests several avenues for improvement
of computational approaches to identifying targets of
transcriptional regulation. One of the most striking find-
ings from this study was the pronounced location specifi-
city to CREB and zif268 targets within annotated gene
promoters. The frequency of CREB and zif268 sites was
greatest within the 50 bp closest to the annotated start site,
and dropped to baseline (i.e. intergenic) frequencies after
600 bp. This finding suggests that the functionality of
these sites is greatest at proximal locations within the pro-
moter, a conclusion that is further supported by the high
Page 11 of 18
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conservation of location specificity between species. Our
results strongly support the use of homology methods for
improving specificity of binding site prediction [68], as
well as the use of binding site co-occurrence for the same
purpose [69,70]. Our inability to replicate these successes
with AP-1, though, highlights the necessity of a strong set
of experimental data in these computational approaches.

Finally, this study has also led to some intriguing findings
about the specific likely targets of CREB and zif268.
Although these transcription factors are not exclusively
expressed in the CNS – indeed, they are present in many
other cell types at different developmental stages and reg-
ulate the transcription of gene targets that are not specifi-
cally neural – the essential role that they play in neural
plasticity was an important consideration in motivating
this study and the targets identified will be of strong inter-
est to neurobiologists.

Significantly, the study revealed a significant convergence
of targets containing both CREB and zif268 binding sites.
Among these putative CREB and zif268 co-regulated
genes, the set conserved across mouse and human
included several known transcription factors and tran-
scription regulatory elements, most associated with AP-1
regulation. CREB and zif268 may represent the top level
of a regulatory network implicated in neural function,
with expression of the functional proteins primarily con-
trolled by an intervening network of other regulatory fac-
tors. Indeed, it is clear from other experimental data as
well as our own that additional waves of transcriptional
regulation and distinct programs of gene expression will
follow the activation of this initial cascade [6]. Further-
more, neural activity may also induce various forms of
non-transcriptional regulation, including alternate splic-
ing, accelerated degradation, or altered intracellular traf-
ficking that the present analysis did not address. Thus, the
target set presented here is likely only a beginning towards
characterizing the full complement of genes induced by
neural activity. The problem of defining the plasticity
transcriptome is thus likely to remain an exciting chal-
lenge for computational and experimental researchers for
the foreseeable future.

Conclusion
Computational identification of putative targets of CREB
and zif268 regulation has identified a set of likely direct
targets of activity-dependent regulation that avoids biases
inherent in current experimental methods for characteriz-
ing such sets. In addition to providing a candidate gene set
for future analysis, the study has revealed a pronounced
location specificity and bias for co-occurrence particularly
in promoters of other transcription factors, which will be
useful for improving detection algorithms and more com-

pletely characterizing the regulatory networks underlying
activity-dependent gene expression.

Methods
Promoter database
We compiled a database of gene promoter regions using
sequences from mouse build mm6 [71], rat build rn3
[72], and human build hg17 [49,51] of the UCSC
Genome Bioinformatics Resource [73]. Transcription start
sites for these promoters organized by mRNA accession
number were found in the table "knownGene.txt" for
each build. Where promoter regions were reported within
50 bp of each other, only the one earlier on the chromo-
some was used, as the copies were presumed to be dupli-
cates of the same promoter region (derived from
otherwise identical mRNAs of different lengths). Incom-
plete promoters with missing sequence data were also
removed from the analysis. Annotated promoters
included both TATA-box containing and TATA-less genes.
The full promoter list was annotated with gene name,
symbol, and accession number using the NCBI gene
resources [52,74]. In total, 18,071 mouse promoters,
19,794 human promoters, and 5,943 rat promoters were
analyzed (Tables 1, Additional files 1, 2, 3).

When searching for candidate genes, we defined a puta-
tive promoter to be the genetic sequence from -1,000 bp
to +200 bp of each transcription start for human, mouse,
and rat genes. A set of intergenic sequences was also com-
piled for human and mouse to construct a "random" con-
trol dataset of 1,200 bp sequences using the regions from
-51,200 bp to -50,000 bp relative to each transcription
start site, where the transcription factors CREB and zif268
are not likely to have regulatory function. Due to a
decrease in sequence quality further away from transcrip-
tion start, distal sequence regions were available for only
77% of total genes, leaving 13,475 mouse intergenic
regions and 15,178 human intergenic regions far analysis
(Table 1). In order to confirm location-specificity trends
inferred from the 1,200 bp regions, an additional search
was run for each gene on an extended promoter region (-
6,000 bp to +200 bp). We saw no significant difference in
the region between -1,000 bp and -6,000 bp compared to
the -51,200 bp to -50,000 bp region, suggesting that the
initial search had identified the majority of sites with
likely function.

The Homologene database provided us with human and
mouse homologous pairs based on gene accession
number [52], yielding 13,365 homologous gene pairs
(Table 1, Additional File 4). A binding site prediction was
defined as conserved if the same binding site type was pre-
dicted in the promoters of both homologous genes, with-
out regard for position in the promoter.
Page 12 of 18
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Transcription factor binding site inference
The goal of this search was to identify a transcription fac-
tor binding site compared to its background. This is the
case when the probability that it is a binding site is greater
than the probability that the sequence would be observed
by chance.

P(Model) > P(Background)

log(P(Model)) > log(P(Background))

log(P(Model)) - log(P(Background)) > 0

Position specific scoring matrices (PSSMs) or position
weight matrices (PWMs), are a well-established method of
motif finding [75,76]. We used a variant of them to find
the log probability of a sequence being a part of the
model. These methods are similar to the transcription fac-
tor binding site search available through the database of
transcription start sites [77]. Binding site frequency matri-
ces for CREB and zif268 were obtained from the Transfac
[48,78] public database (see Fig. 1). These matrices give
the frequency of each nucleotide in each position of the
binding site. Scoring matrices for the present study were
created from the Transfac frequency matrices with the fol-
lowing equation:

where S is the scoring matrix, A is the frequency matrix, n
is the nucleotide, p is the position within each binding
site. The pseudocount, b, is set at the relatively small value
of 0.25 to allow limited tolerance of base-pairs which
have never been observed in a given position for a binding
site. When comparing this scoring matrix to a sequence of
the same size, adding the scores for the nucleotide that is
at that same position in the sequence gives you the log of
probability that the sequence matches the model.

The probability that a sequence is not a binding site is
based on background dinucleotide frequencies. For each
individual species, we went through all promoters and
calculated the probability of each dinucleotide transition.

For instance, . We also cal-

culated the probability of observing each nucleotide indi-
vidually. The probability of observing any sequence can
be calculated from those probabilities by multiplying the
probability of the first nucleotide by the probability of
each nucleotide transition. The log probability can be
found by adding the log of each probability.

The goal of this study was to create a comprehensive list of
possible transcription factor targets. The log of the
sequence length is often subtracted to correct for the
number of possible sites being searched. While subtract-
ing by the full log of the sequence length would provide a
more rigorous control, we deliberately chose to increase
the sensitivity of the method at the expense of specificity.
This increases the number of targets found while decreas-
ing the average quality of the target genes, allowing us to
better take advantage of homology to eliminate false pos-
itives. Instead of subtracting the log of the sequence
length, we subtracted a smaller "correction value". The
larger the correction value, the more stringent the search
is. To analyze the effects of decreasing specificity on the
quality of the target gene set, we use a measure called the
positive predicted value. Intuitively, this measure is the
probability that a predicted site is a true positive. The pos-
itive predictive value is defined as

.

In terms of our data, the positive predictive value is

.

The expected number of sites is the number of sites
expected to be conserved if there was no association
between a binding site existing in mouse and its human
homologue. A series of possible correction values are plot-
ted against the positive predicted value (Additional File
10). Because it is the point at which CREB and zif268 pos-
itive predictive values plateau, we chose to use a correc-
tion value of 300. The final positive predictive value based
on comparative genomics is found in Table 1 under
"Homologues." A binding site is considered a hit if the
final calculated score is above zero. The equation used to
determine the final score is given below:

Score = log(P(Model)) - log(P(Background)) -
log(correction_value)

Global data analysis

The positive predictive values for the individual species is
calculated by comparing the promoter region to the inter-
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genic region (see Table 1). It is still calculated as

, but the observed sites is

now the percentage of promoter targets with a binding site
and the expected sites is the percentage of intergenic
regions with that binding site.

Associations between co-occurring binding sites were ana-
lyzed by applying a 2-tailed Fisher's exact test [79], using
a web-based calculator [80], to the 2 by 2 contingency
table of counts of occurrence of either, both, or neither
site.

Analysis of the function of the activity-dependent tran-
scription factor targets was done using GOstat [81], an
online tool for finding overrepresented ontologies in a set
of genes [54]. The list of targets for each transcription fac-
tor binding site and species was searched against the entire
list of promoters for overrepresentation of different gene
ontology classes.

The VP16-CREB expression data [37] was obtained from
the Gene Expression Omnibus (Barrett), record GSE3965,
on the NCBI website. The SOFT data files were converted
to a single matrix using the GEOquery as part of the Bio-
conductor [82] package for R. We separated out the
expression data into two groups: a control group where
CREB is expressed at normal levels (On dox, rev, wt) and
an experimental group where VP16-CREB has been active
from one to five weeks (1w, 2w, 5w) [37]. Only experi-
ments where the entire hippocampus is dissected are used,
not micro-dissected CA1 regions of the hippocampus,
where region-specific gene expression could bias the
results. The data was analyzed using the GSEA software
package for Windows [64]. The change in gene expression
levels between the control and the super active CREB were
determined by a signal-to-noise metric. We created gene-
sets out of our conserved CREB targets and the conserved
CREB targets identified by Conkright et al. [65]. Symbols
present on these lists but with no corresponding microar-
ray probe are ignored. The expression levels correspond-
ing to the symbols in the genesets are queried for
enrichment in the control versus the experimental micro-
array datasets using the methods described in Subrama-
nian et al. A list of genes identified as the leading edge
subset [64], which are genes that contribute to the enrich-
ment of the CREB targets in the microarray data, are listed
as the overlap between our dataset and VP16-CREB data-
set [37].

Abbreviations
ChIP, chromatin immunoprecipitation; IEG, intermedi-
ate early gene; LTP, long term potentiation; PCR, polymer-

ase chain reaction; PSSM, position-specific scoring matrix;
PWM, position weight matrix

Authors' contributions
ARP implemented all computational tools developed for
this study and performed all computational and statistical
analyses. ALB conceived the project and advised ARP on
experimental design, data sets, and analysis. RS partici-
pated in the design of the study and advised ARP on com-
putational and statistical issues. All authors read and
approved the final manuscript.

Additional material

ObservedSites ExpectedSites

ObservedSites

−

Additional File 1
Table of all identified CREB and zif268 target genes in mouse. The file 
includes all mouse genes that were searched indicating the number of 
identified CREB or zif268 target sites in each gene. Also noted is the score 
for each site, the mRNA, the gene ID, and a gene description.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S1.txt]

Additional File 2
Table of all identified CREB and zif268 target genes in human. The file 
includes all human genes that were searched indicating the number of 
identified CREB or zif268 target sites in each gene. Also noted is the score 
for each site, the mRNA, the gene ID, and a gene description.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S2.txt]

Additional File 3
Table of all identified CREB and zif268 target genes in rat. The file 
includes all rat genes that were searched indicating the number of identi-
fied CREB or zif268 target sites in each gene. Also noted is the score for 
each site, the mRNA, the gene ID, and a gene description.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S3.txt]

Additional File 4
Table of all identified CREB and zif268 target genes in the mouse-human 
homologene dataset. The file includes all mouse-human homologous genes 
that were searched, indicating the number of identified CREB or zif268 
target sites in each gene. Also noted is the gene ID and a gene description.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S4.txt]

Additional File 5
Position and sequence of CREB and zif268 binding sites in mouse pro-
moter regions. Mouse genes that had one or more CREB and zif268 bind-
ing sites are listed in table format, with the precise nucleotide sequence 
corresponding to the binding site and the relative position of this sequence 
within the promoter region indicated. Genes are identified by gene ID, 
symbol, and gene descriptor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S5.txt]
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Additional File 6
Position and sequence of CREB and zif268 binding sites in human pro-
moter regions. Human genes that had one or more CREB and zif268 
binding sites are listed in table format, with the precise nucleotide 
sequence corresponding to the binding site and the relative position of this 
sequence within the promoter region indicated. Genes are identified by 
gene ID, symbol, and gene descriptor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S6.txt]

Additional File 7
Position and sequence of CREB and zif268 binding sites in rat promoter 
regions. Rat genes that had one or more CREB and zif268 binding sites 
are listed in table format, with the precise nucleotide sequence correspond-
ing to the binding site and the relative position of this sequence within the 
promoter region indicated. Genes are identified by gene ID, symbol, and 
gene descriptor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S7.txt]

Additional File 8
Gene functions associated with CREB and zif268 targets. A list of the 
broad gene ontology classifications where CREB or zif268 targets showed 
an over- or underrepresentation, according to the GOstat ontology classi-
fier.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S8.xls]

Additional File 9
CREB or zif268 target genes in overrepresented gene ontology categories. 
The specific genes that were placed in over- or underrepresented gene ono-
tologies using the GOstat resource are listed according to ontology classi-
fication.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S9.xls]

Additional File 10
Comparative genomics as a metric for transcription factor targets quality. 
Transcription factor binding site searches were done with varying correc-
tion scores that correspond to the specificity of the search. The log of the 
specificity is subtracted from every subsequence scored by the program to 
correct for sequence length (see Methods). A higher specificity means a 
smaller number of higher quality binding sites are used. The predicted 
fraction of true positives or positive predictive value is defined as (true pos-
itives)/(true positives + false positives). This measure is estimated as 
(observed sites - expected sites)/(observed sites). The observed sites are the 
targets verified by comparative genomics while the expected sites are the 
number of binding sites one would find by chance if comparing independ-
ent human/mouse datasets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-8-20-S10.pdf]
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