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Square Lattice – Comparisons of the ground state phases 
and energies within a square lattice with different values 
for the aforementioned variables would further cement 
the fidelity of CQNS.

Triangular Lattice – The triangular lattice is a more 
frustrated system with experimental data that CQNS can 
replicate. Further work is being done on this.

Kagome Lattice – the Kagome lattice has been linked with 
exotic behavior and new quantum materials; therefore, 
using CQNS to verify and build on the numerical data 
available is of interest.

Higher Dimensional Lattices – It has already been 
established that if CQNS can be applied to a 1D system it 
can be applied to a 2D system. Thus, it can be applied to 
higher dimensional system. No hard experimental or 
numerical data has been found on this topic which makes 
it an area of interest.
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Abstract
Rydberg atom arrays, which are cold atoms trapped in a 2D lattice 
that interact into Rydberg states, are a source of great interest. 
They have been associated with quantum information processing, 
realization of exotic many-body states and quantum simulation 
among many other areas of research. Thus, solving for these 
arrays would lead to progress in those fields.
With the advent of machine learning, it has become even more 
possible to simulate these arrays and calculate their ground states 
with increasing accuracy. Different machine learning models have 
been applied to this problem including but not limited to Graph 
Neural Networks and Convolutional Neural Networks.
The goal of this project is to investigate the fidelity of the method 
shown in [1] that uses Convolutional Neural Networks (CNNs) 
coupled with Monte Carlo methods to solve for the ground state of 
these Rydberg Arrays

Introduction
Simulation of Ground States 
To simulate these Rydberg arrays, we use an Ising model where 
we take ‘1’ to be the Rydberg state and ‘-1’ to be the ground state. 
The Rydberg Array is represented by a matrix with the same 
dimensions as the lattice to be simulated. A starting lattice with a 
random configuration of ‘atoms’ in ground and Rydberg states is 
produced and used to begin the optimization towards its ground 
state. 
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Fig 2: Example 4 x 4 Rydberg Array Matrix Representation

The state of the array can be represented as 𝝍 =
 σ𝑺 𝔀 𝒔 |𝑺⟩ . |𝑺⟩ represents the configuration of the lattice 
and 𝔀(𝑺) represents the coefficient for that 
configuration. Given a configuration CQNS returns the 
coefficient. That coefficient is used to calculate the 
energy of the system. The total energy of the system can 
be represented as:
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Where 𝑯𝑺′𝑺 = 𝑺 𝑯 𝑺′ .
The goal is to gradually minimize the energy calculated using the 
stochastic gradient method[1], where the energy E and gradients G 
can be represented as:
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parameters in the CQNS. 

Basic 2D CQNS Structure 

First, a simulated Rydberg Array with Periodic Boundary 
Conditions to avoid loss of information at the edge of the lattice

Second, the results of convolution layer of CNN that occurs on 
lattice. The convolution filter in the above example is 3 x 3 but this 
can be adjusted. 

Third, the results of maxpooling layer. This reduces the output 
dimensions and introduces position invariance [1]. This allows a 
smaller amount of convolution filters to be used.

Lastly, the outputs of transpose convolution layer, which restores 
the original dimension. The product of these outputs is  w(S).

Methodology
Convergence to Ground State Energy 
The first requirement was to see if the CQNS, when applied to a 
simulated square Rydberg array, would converge to a ground state 
energy. It was already assured that the method would converge[1]; 

Fig 3: Convergence of CQNS on 12 X 12 lattice with Rb = 1.6

The results showed that the ground state energy converges at 
approximately y = - 0.6498. 

Lattice Ground State Phase
The next step was to observe the phases of the lattice at ground 
state. This was integral because it would prove the effectiveness of 
CQNS against already established results[2]. 

Results

Rydberg Arrays 
The long-range interactions possible with Rydberg atoms create 
frustration in any lattice structure even uncomplicated structures 
like square lattices. That coupled with other factors including the 
Rydberg Blockade radius (Rb), lattice spacing(a), the laser 
detuning(δ) for the optical tweezers used to create these lattices in 
experiment and the Rabi frequency(Ω)play into the energy 
calculations. According to [2] the agreed upon Hamiltonian of a 
Rydberg Array is:
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ground state and Rydberg state of atom 𝑖 in the lattice, 
respectively.  V represents the interaction strength and can be 
expressed in terms of Rb  : 
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where we take the structure 𝜴 = 𝒂 = 𝟏. 
This project first focused on proving the fidelity of the method, 
named Convolutional Quantum Neural State(CQNS), on square 
lattices compared to the results in [2].

Epoch 0: Random starting  
lattice constructed inside 
program to begin optimization

Epoch 18: Some patterning is 
seen in the lattices sampled by 
CQNS as it minimizes the 
energy

Epoch 627: As energy converges 
ground state phase appears in 
agreement with established 
results[2]

‘Atom’ in ground state

‘Atom’ in Rydberg state

Fig 1: Rydberg Atom Arrays in Experiment[3]. a. Atoms are loaded 
into a 2D array of optical tweezer traps and rearranged into defect-
free patterns by a second set of tweezers. b. Fluorescence image of 
initial random loading of atoms, followed by rearrangement to a 
defect-free square array. After this initialization, the atoms evolve 
coherently under laser excitation with Rabi frequency Ω(t) and 
detuning ∆(t), and long-range interactions V. Finally, the state of each 
atom is read out, with atoms excited detected as loss and marked 
with red circles. Shown on the far right is an example measurement 
following quasi-adiabatic evolution into the checkerboard phase. c, d. 
Similar evolution on honeycomb and triangular lattices result in 
analogous ordered phases of Rydberg excitations with filling 1/2 and 
1/3, respectively.
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