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x • For optical depth and density

Models
Two architectures used are visualized in Fig C below. The top

one is for reconstructing 𝜏 and 𝜌 and the bottom one is for T. SeLU

is used as the activation function for the convolution layer and the

linear layers.

Data
A hydrodynamic cosmological simulation of the ΛCDM model was

used. The parameters are h = 0.702, ΩΛ = 0.725, Ωm = 0.275, Ωb = 0.046,

ns = 0.968 and σ8 = 0.82. The mass per particle is 1.19 × 107 h−1M☉ (gas)

and 5.92 × 107 h−1M☉ (dark matter). A cube of side length 400 h-1Mpc has

65536 = 2562 evenly spaced sightlines. The simulation outputs optical

depth in real space 𝜏𝑟𝑒𝑎𝑙, peculiar velocity 𝑣, density ρ, temperature 𝑇,

etc. The optical depth in redshift space 𝜏𝑟𝑒𝑑 is obtained by convolving

𝜏𝑟𝑒𝑎𝑙 and 𝑣. The observed fluxes are then calculated by

𝐹 = 𝑒−𝜏𝑟𝑒𝑑

• Low Resolution Data
Gaussian noise with standard deviation σN = 1/5 σ𝐹 is added to 𝐹,

where σ𝐹 is the root mean square of the flux spectrum. 512 pixels are

sampled out of the original 4096 per sightline, each spanning 83.5 km/s.

For large structure information, the spectrum is further smoothed by a 1D

gaussian filter of kernel 6 pixels.

Current Results and Discussions
The naive method to reconstruct density, referred below as “naive”, is to first reconstruct 𝜏 = − log 𝐹𝑠 ,

where 𝐹𝑠 is the flux smoothed by a Gaussian filter. Next, fit 𝜌 = 𝑎𝜏3 + 𝑏𝜏2 + 𝑐𝜏 + 𝑑. Table A shows that, for

optical depth and density, the Neural Network currently cannot extract more information than the naive

method. The main challenge is that naturally the data size of low-value pixels is much larger than that of

high-value ones. This unbalance in the training set makes the Neural Net always underpredict 𝜌 and 𝜏 high-

value regions. Example sightlines plotting predictions versus actual values for 𝜌 and 𝜏 are shown in Fig D.
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To account for more diverse and inhomogeneous 𝜌-𝑇 relations

in real observations, we imposed the temperature for three

additional cases:

Case 1. Impose a constant 𝑇 = 20,000 𝐾 within two quasar

dominated regions per sightline, each with width 50 Mpc/h and a

random position. T at other pixels are the same as the simulation.

Case 2. Same as case 1, except that the 𝑇 is randomly

determined between 50,000 𝐾 and 150,000 𝐾.

Case 3. For every sightline, impose a random 𝜌-𝑇 relation with

𝐵~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 3000, 40000 , and 𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1). Fluctuations

are added as a Gaussian centered at 0 with 𝜎 =𝐵/8, with overall 𝜌-𝑇

relation shown in Fig B.

↓ Fig A. 𝜌-𝑇 Relation from Simulation

↓ Fig B. An Imposed 𝜌-𝑇 Relation  

Abstract
The Lyman-α forest is a collection of absorption lines by neutral

hydrogen in the spectrum from a distant light source. The wavelengths of

these absorption can be mapped to the distance along the line of sight. We

aim to reconstruct the optical depth, density, and temperature of

intergalactic medium along a line of sight from the observed flux spectrum

in the Lyman-α forest using Convolutional Neural Network. Neural Network

models were trained on noised mock observational data derived from

cosmological hydrodynamic simulations with various redshifts (z=3, 2.5, 2).

Currently, the models reconstructing optical depth and density have not

outperformed the naive numerical methods. Yet, the model reconstructing

temperature is able to exploit the thermal broadening of the spectrum to

detect spatial inhomogeneities without any general density-temperature

relation that the naive method must assume. The ongoing work aims to

further improve the accuracy and the generality of these Neural Networks.
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↑ Fig C. NN Architectures

RMSE 
𝜏

Overall 𝜏 < 2 𝜏 > 2

NN 0.49 0.15 1.53

Naive 0.54 0.14 1.70

RMSE
𝜌

Overall 𝜌 < 2 𝜌 > 2

NN 0.34 0.18 1.55

Naive 0.34 0.19 1.52

↑ Table A. Root-Mean-Square Errors for 𝜏 and 𝜌

• High Resolution Data
High resolution data contains all 4096 pixels, each spanning 10.45

km/s. Only 20,000 sightlines are trained on due to limited GPU memory.

With this high resolution, the thermal broadening effect becomes

significant enough to spread the flux at each pixel by a Gaussian with

𝜎 ∝ 𝑇

The simulation gives a homogeneous power-law relation between density

and temperature. As shown in Fig A,

𝑇 = 𝐵 (
𝜌

ҧ𝜌
)𝑘

For the z = 3 data set, 𝐵 = 11582 K, 𝑘 = −0.538.

𝜌, NN 𝜌, Naive 

↑ Fig D. Predicted and Actual 𝜌 for an Example Sightline 

↑ Fig E. Predicted and Actual T for an Example Sightline; Case 1 

Unsmoothed Smoothed

For Case 3, currently the Neural Net can only provide a flat spectrum due to

limited architecture complexity, an example sightline and the bias on the mean

for 5000 sightlines in the test set are shown in Fig F below. The average bias on

the mean is -7217 K.

↑ Fig F. T Prediction and Prediction Bias; Case 3 

For high resolution data Case 1 and 2, the Neural Net successfully

reconstruct the quasar-dominated high temperature regions from the

smoothing effect due to thermal broadening. No simple numerical method can

achieve this since the positions and/or T in these regions are randomly

generated. Fig E shows the Neural Net prediction for a sightline in Case 1.

Future Work
Future work will focus on:

1. to further evaluate and improve the generality of the Neural Net’s ability

to recognize the smoothing effect on the flux.

2. to include pressure broadening effect.

3. to improve the accuracy of high-value regions for 𝜌 and 𝜏.


