Abstract

The Large Hadron Collider (LHC) i1s a particle
accelerator that collides 1 billion particles per second
[1]. The LHC produces an abundance of data that 1s a
mixture of different samples. However, only some of
the background signals can be modeled by simulation
and therefore some background is not able to be
identified in order to subtract away. By utilizing
machine learning techniques such as neural networks,
decision trees, etc. one can utilize data generated
weights 1n order to achieve a background subtraction
effect to obtain the underlying desired dataset.
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In this toy model, I’'m simulating two datasets
where one 1s composed of two 2D gaussians, labelled
as pseudo-data, while the other dataset, labelled as
monte-carlo, contains only one of the 2D gaussians
that 1s shared. This simulates the situation that we can
only model one of these gaussians accurately with G2
being the hypothetical background and G1 being the
underlying data that we want to extract. I utilize the
K-nearest-neighbors (KNN) algorithm, a neural
network, and a decision tree to calculate the
probabilities necessary to generate the weights for the
data.
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The KNN algorithm 1s a supervised machine
learning algorithm that can be wused to solve
classification problems [2]. The KNN algorithm
assumes that similar things exist in close proximity
and by using the euclidean distance formula we can
find the K nearest neighbors for each point. The
probabilities are then calculated based on the fraction
of the neighbors that were either a part of the pseudo
data or a part of the monte carlo generated data and
from these probabilities we can calculate weights

following the equation: P(pd)—P(mc)
W; —
' P(pd)

pd = Pseudo-Data, mc = Monte-Carlo
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Recovered G1 (x1) with Weighting (KNN)
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Future Endeavors

With these machine learning algorithms all producing
fairly accurate results, my future plans are to apply
these same techniques onto a more realistic data set. |
will be using a convolutional neural network to
generate similar weights on a more complicated data
set.
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