Abstract

The Large Hadron Collider (LHC) i1s a particle
accelerator that collides 1 billion particles per second
[1]. The LHC produces an abundance of data that 1s a
mixture of different samples. However, only some of
the background signals can be modeled by simulation
and therefore some background is not able to be
identified in order to subtract away. By utilizing
machine learning techniques such as neural networks,
decision trees, etc. one can utilize data generated
weights 1n order to achieve a background subtraction
effect to obtain the underlying desired dataset.

2D Map of Gaussian Points

= x
100 -
80 -
O
N 60 . ’
X X% A
x)(
40 A
x
20 -
Pseudo-Data (G1+G2)
= X x Monte-Carlo (Only G2)

20 40 60 80 100

Introduction and Background Information
Part |

In this toy model, I’'m simulating two datasets
where one 1s composed of two 2D gaussians, labelled
as pseudo-data, while the other dataset, labelled as
monte-carlo, contains only one of the 2D gaussians
that 1s shared. This simulates the situation that we can
only model one of these gaussians accurately with G2
being the hypothetical background and G1 being the
underlying data that we want to extract. I utilize the
K-nearest-neighbors (KNN) algorithm, a neural
network, and a decision tree to calculate the
probabilities necessary to generate the weights for the
data.

Background Subtraction using Weights

Duy Hoang?, John Alison*

NSF Al Planning Institute for Data-Driven Discovery in Physics
ICarnegie Mellon University; Pittsburgh, PA ; Summer 2021

J

" Introduction and Background Information

Part |l

The KNN algorithm 1s a supervised machine
learning algorithm that can be wused to solve
classification problems [2]. The KNN algorithm
assumes that similar things exist in close proximity
and by using the euclidean distance formula we can
find the K nearest neighbors for each point. The
probabilities are then calculated based on the fraction
of the neighbors that were either a part of the pseudo
data or a part of the monte carlo generated data and
from these probabilities we can calculate weights

following the equation: P(pd)—P(mc)
W; —
' P(pd)

pd = Pseudo-Data, mc = Monte-Carlo

Weights of Pseudo-Data (KNN)

1600 .
N \Weights
1400 -
1200 -

1000 -

Counts

800 A
600 -

400 A

200 A I I I
0 "_I T T T T

-1.00 -0.75 -0.50 —-0.25 000 025 050 0.75 1.00
Weights

Weights of Pseudo-Data (NN)

25000 A

EEE Weights (Train)
] Weights (Test)

20000 A

15000 A

Counts

10000 -

5000 A

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Weights

Weights of Pseudo-Data (DT)
16000

EEE Weights (Train)

14000 A =1 Weights (Test)

12000 A
10000

8000 -

Counts

6000 -

4000 A

2000 -

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Weights

Results

Recovered G1 (x1) with Weighting (KNN)

200 -

150+

Counts

100 A

50 A

Bl Pseudo-Data (Gl + G2)
=] PS-MC (Gl Only)
e PS w/ Weights

20 40 60 80 100
x1

Recovered G1 (x1) with Weighting (NN Train)

2500 A

2000 A

1500 A

Counts

1000 A

500 -

Bl Pseudo-Data (Gl + G2)
=] PS - MC (G1 Only)
b PS w/ Weights

20 40 60 80 100
x1

Recovered G1 (x1) with Weighting (DT Train)

2500 A

2000 A

1500 A

Counts

1000 -

500 -

Bl Pseudo-Data (Gl + G2)
) PS-MC (Gl Only)
W PS w/ Weights

20 40 60 80 100
x1

Carnegie Mellon University

) fr T .
ROC Curves Plot of function / (z{ +x3) Applied
1.0 A BN Pseudo-Data (Gl + G2)
3001 /|
i PS w/ Weights
0.8 250 A
-
[= %
L
ps 200 |
3 0.6 -
-4 8
g 5 150
S S
5 0.4 1 o
" —— Neural Net (Train) .
i —— Neural Net (Test)
0.2 | - Decision Tree (Train) 50 A
- Decision Tree (Test)
—— KNN (K = 20) 0
0.0 - —— KNN (K = 50)
0.0 0.2 0.4 0.6 0.8 1.0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Fraction of MC data kept —_—
y (2] +23)
Plot of function 5z} 4+ 17z3 — a7 — 5z, Applied Plot of function 3z} — 2z +10 Applied
500
mmm pseudo-Data (Gl + G2) mmm Pseudo-Data (G1 + G2)
700 A = G1 = Gl

PS w/ Weights | PS w/ Weights

0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
5r{ + 1723 — a3 — 5 le8 3z} — 223 +10 le6

Future Endeavors

With these machine learning algorithms all producing
fairly accurate results, my future plans are to apply
these same techniques onto a more realistic data set. |
will be using a convolutional neural network to
generate similar weights on a more complicated data
set.

Acknowledgements

I would like to thank John Alison with his continued support and
the Carnegie Mellon Summer Undergraduate Research Program at
the NSF AI Planning Institute for funding this work. This material
1s based upon work supported by the National Science Foundation
under the NSF Al Planning Institute for Data-Driven Discovery in
Physics, grant number PHY2020295. Any opinions, findings, and
conclusions or recommendations expressed are those of the
participants and do not necessarily reflect the views of the National
Science Foundation or the participating institutions.

References

[1] “CERN Accelerating Science.” CERN
[2] Harrison, Onel. “Machine Learning Basics with the K-Nearest Neighbors
Algorithm.” Medium, Towards Data Science, 14 July 2019,



http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

