
In particle detectors, calorimeters are used to detect 
and identify particles through electromagnetic and 
strong interactions with the calorimeter material. In 
hadron calorimetry, where energy is degraded and 
detected through strong interactions, much of the 
hadron-nuclei interactions are undetectable. This is 
due to energy lost from nuclear dissociation, delayed 
particles, and meson decay and absorption. By tuning 
the ratio of responses from electromagnetic and 
hadronic signals to be one to one and measuring the 
electromagnetic energy, we can accurately calculate 
the hadronic part. DREAM, a dual readout calorimeter, 
measures the electromagnetic component by looking 
at two signals, a scintillating signal proportional to 
energy degradation from ionization and a Cherenkov 
signal in plastic fibers proportional to the energy 
carried by relativistic particles.
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We used a 1 dimensional CNN with 10 hidden 
activation layers of 64 and 32 neurons and 1 neuron 
for the final hidden layer. We trained this model on 
SiPM pulse data we received from our collaborator 
Jordan Damgov from Texas Tech University. We then 
added a variable amount of Gaussian noise to the 
data. 
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Figure 1: Bundles of 
scintillating and plastic 
fibers in the original 
DREAM prototype

Recently, the original DREAM detector has been 
significantly improved by using Silicon 
Photomultipliers (SiPMs), allowing the original 
detector to be reconfigured into smaller transverse 
towers as well as improving segmentation by the 
timing of particle pulses. This allows for 24 times 
higher granularity. The improved detector is called the 
High Granularity Dream (HG DREAM) detector.

Figure 2: Hexagonal 
transverse towers in 
the original DREAM 
detector

Our goal is to see how well a Convolutional Neural 
Network (CNN) can use data received from an HG 
DREAM detector to identify and differentiate each 
particle pulse. We also looked at how well this model 
can be converted onto a chip to be applied to the front 
end of future colliders. We want to optimize for 
efficiency, accuracy, and latency.

Figure 3: The orange is the model input and the blue 
is the pulses with added noise. The pulse data is 
observed over 16 nanoseconds divided into 80 time 
segments. A similar graph can be produced for each 
“event”- our model was trained on 1500.

In order to meet the strict latency requirements of less 
than one microsecond, we plan to synthesize our 
model onto highly specialized chips called Field 
Programmable Gate Arrays (FPGA). These circuits will 
eventually be attached to the next generation of 
particle accelerators, which will likely be lepton 
colliders. 

Figure 4: (Left) An image of an integrated circuit like 
an FPGA. (Right) A schematic drawing of the 
components of the FPGA. The orange are logic cells 
which perform logical functions. The DSP slices 
perform arithmetic and the RAM cells store memory. 

To synthesize our CNNs onto FPGAs we use a 
package called hls4ml. In addition to translating the 
model onto the FPGA, hls4ml allows us to optimize 
latency and resource use and increase computational 
efficiency through tools like pruning and quantization.

To ensure that our model was actually learning, we 
plotted the loss function over each round of training or 
epoch. If our model is working, we should see a 
decaying loss function that eventually plateaus when 
the model is finished training.

Figure 5: A decay function for our training. The 
exponential decay shows that our model is 
successfully learning.

After training our model using the Keras software 
package, we converted the model to hls4ml. To 
maximize the agreement between the hls model and 
keras model, we need to create the hls model with 
enough bits of precision to cover the range of values 
in each layer of the neural network. We experimented 
with manually adjusting the precision of our model.

Figure 6: The range of values at each layer of our 
neural network. Most layers need at least 10 decimal 
bits of precision to properly train. The gray here 
represents the range of values that can be described 
with <16,6> precision (16 total bits, 6 integer bits).

Figure 7: ROC curves plotting 
the true positive against the 
false positive for increasing 
precision. The first number in 
the brackets represents the 
total number of bits and the 
second number is the amount 
of integer bits. At least 10 
decimal bits are needed to get 
a reasonable model. And at 
<24,10> precision (14 decimal 
bits), the models are almost 
indistinguishable. The ROC 
curves show an AUC for the 
Keras model of about 0.92.

Our work is the beginning of a long and exciting 
project to create fast and accurate models using 
machine learning techniques for the next generation 
of particle colliders. Particle detectors handle 
terabytes of data in seconds, making experimental 
particle physics a prime example of a field that can be 
substantially improved through advancements in 
machine learning. 

For next steps, we want to start quantization aware 
training, which will allow for the best model 
performance without compromising the latency and 
resource restrictions of the FPGA. We also want to 
explore how our model will behave as we adjust the 
training data to have different sampling frequencies, 
noise levels, and numbers of pulses. We also hope to 
soon synthesize our hls4ml model onto an FPGA chip 
and analyze what the actual resource usage and 
latency would be.

For the next generation of higher performance 
colliders, including the Future Circular Collider (FCC), 
detectors will hopefully be much more equipped to 
handle large amounts of information accurately and 
efficiently. 

Figure 8: Location and design of the FCC. It will be 
100 km in circumference compared to the 27 km LHC. 
Construction is set to begin in the 2030s.


