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In particle detectors, calorimeters are used to detect
and identify particles through electromagnetic and
strong interactions with the calorimeter material. In
hadron calorimetry, where energy is degraded and
detected through strong interactions, much of the
hadron-nuclei interactions are undetectable. This is
due to energy lost from nuclear dissociation, delayed
particles, and meson decay and absorption. By tuning
the ratio of responses from electromagnetic and
hadronic signhals to be one to one and measuring the
electromagnetic energy, we can accurately calculate
the hadronic part. DREAM, a dual readout calorimeter,
measures the electromagnetic component by looking
at two signals, a scintillating signal proportional to
energy degradation from ionization and a Cherenkov
signal Iin plastic fibers proportional to the energy
carried by relativistic particles.

Figure 1: Bundles of
scintillating and plastic
fibers Iin the original

DREAM prototype

Recently, the original DREAM detector has been
significantly improved by using Silicon
Photomultipliers (SiPMs), allowing the original
detector to be reconfigured into smaller transverse
towers as well as improving segmentation by the
timing of particle pulses. This allows for 24 times

higher granularity. The improved detector is called the
High Granularity Dream (HG DREAM) detector.

Figure 2: Hexagonal
transverse towers In

the original DREAM
detector

Our goal is to see how well a Convolutional Neural
Network (CNN) can use data received from an HG
DREAM detector to identify and differentiate each
particle pulse. We also looked at how well this model
can be converted onto a chip to be applied to the front
end of future colliders. We want to optimize for
efficiency, accuracy, and latency.

We used a 1 dimensional CNN with 10 hidden
activation layers of 64 and 32 neurons and 1 neuron
for the final hidden layer. We trained this model on
SiPM pulse data we received from our collaborator
Jordan Damgov from Texas Tech University. We then

added a variable amount of Gaussian noise to the
data.
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Figure 3: The orange is the model input and the blue
Is the pulses with added noise. The pulse data is
observed over 16 nanoseconds divided into 80 time
segments. A similar graph can be produced for each
“event”- our model was trained on 1500.

In order to meet the strict latency requirements of less

than one microsecond, we plan to synthesize our

model onto highly specialized chips called Field
Programmable Gate Arrays (FPGA). These circuits will
eventually be attached to the next generation of
particle accelerators, which will likely be lepton
colliders.

Figure 4. (Left) An image of an integrated circuit like
an FPGA. (Right) A schematic drawing of the
components of the FPGA. The orange are logic cells
which perform logical functions. The DSP slices
perform arithmetic and the RAM cells store memory.

To synthesize our CNNs onto FPGAs we use a
package called hls4dml. In addition to translating the
model onto the FPGA, hlsdml allows us to optimize
latency and resource use and increase computational
efficiency through tools like pruning and quantization.

To ensure that our model was actually learning, we

plotted the loss function over each round of training or
epoch. If our model is working, we should see a
decaying loss function that eventually plateaus when

the model is finished training.
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Figure 5: A decay function for our training. The
exponential decay shows that our model is

successfully learning.

After training our model using the Keras software
package, we converted the model to hlsdml. To
maximize the agreement between the hls model and
keras model, we need to create the hls model with
enough bits of precision to cover the range of values

In each layer of the neural network. We experimented
with manually adjusting the precision of our model.

Distribution of (non-zero) weights (before optimization)
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Figure 6: The range of values at each layer of our
neural network. Most layers need at least 10 decimal
bits of precision to properly train. The gray here
represents the range of values that can be described
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Figure /7: ROC curves plotting
the true positive against the
false positive for increasing
precision. The first number In
the brackets represents the
total number of bits and the
second number is the amount
of integer bits. At least 10
T e decimal bits are needed to get
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Our work is the beginning of a long and exciting
project to create fast and accurate models using
machine learning techniques for the next generation
of particle colliders. Particle detectors handle
terabytes of data in seconds, making experimental
particle physics a prime example of a field that can be
substantially improved through advancements in
machine learning.

For next steps, we want to start quantization aware
training, which will allow for the best model
performance without compromising the latency and
resource restrictions of the FPGA. We also want to
explore how our model will behave as we adjust the
training data to have different sampling frequencies,
noise levels, and numbers of pulses. We also hope to
soon synthesize our hls4dml model onto an FPGA chip
and analyze what the actual resource usage and
latency would be.

For the next generation of higher performance
colliders, including the Future Circular Collider (FCC),
detectors will hopefully be much more equipped to
handle large amounts of information accurately and
efficiently.

Figure 8: Location and design of the FCC. It will be
100 km in circumference compared to the 27 km LHC.
Construction is set to begin in the 2030s.
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